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ABSTRUCT

Background: Tuberculosis (TB) is a global health concern; nearly one-third of the global 

population is infected with Mycobacterium tuberculosis and at risk of developing the disease 

(WHO, 2011). The objective of this study is to Model time –to- cure of tuberculosis patients 

using mixture cure model and identify the risk factors for the cure of tuberculosis patients under 

DOTS.

Methods: longitudinal retrospective cohort (1st July, 2014 and 1st January, 2016) follow up 

(retrospective cohort design) of tuberculosis patients’ data were obtained from Jimma University 

Specialized Hospital TB Patient Clinic located in Jimma town. Univariate and multivariate 

analyses were performed using a logistic Cox PH mixture cure model and for uncured group 

standard Cox regression model. 

Results: Of all 501 tuberculosis patients 439(87.62%) susceptible group 328(74.15%) were 

cured. The median cure time from TB was 6 months and 62(12.37%) non susceptible those 

multi-drug resistance TB none of them cured with in the follow up period.  In the two population 

susceptible and non-susceptible or multidrug resistances TB the most of the MDR-TB patients 

are pulmonary negative 55 of them. From these patients of TB type pulmonary negative was risk 

to develop MDR-TB. An increased incidence of TB was reported for smear result (pulmonary 

positive, pulmonary negative and extra pulmonary), weight at initiation of treatment and HIV 

(HIV-/HIV+) were the risk factors predicting time to cure from tuberculosis diseases. HR and 

95%CI were 2.3 [1.808 :3.121], 0.9853 [0.9766 :0.9941] and 0.7564 [0.522 ,  1.095] 

respectively. Then both direction selection methods are applied using the software and 

AIC=3455.42 were small with the following end covariates. 

Conclusions: body weight at initiation of treatment and smear result are the risk factor for time 

to cure in tuberculosis patients in multivariable Cox proportional regression model during anti 

tuberculosis treatment period for uncured and regiment in addition two was the risk for cured 

population in multivariable logistic Cox PH mixture cure model. 
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CHAPTER ONE

1. INTRODUCTION

1.1. Background of the study

Tuberculosis (TB) is a global health concern; nearly one-third of the global population is infected 

with Mycobacterium tuberculosis and at risk of developing the disease (WHO, 2011). More than 

90% of global TB cases and deaths occur in the developing world, where 75% of cases are in the 

most economically productive age group (WHO, 2010). Ethiopia ranks seventh among the 

world’s 22 high-burden tuberculosis (TB) countries (Chaisson RE, Harrington M, 2009)

Worldwide, tuberculosis (TB) kills more young and middle-aged adults than any other infectious 

disease (WHO, 1999). Though it is curable and preventable, more than 5,000 people die of TB 

every day (2 to 3 million people per year) (WHO, 1999). TB often strikes the most vulnerable 

members of society and, if left untreated, causes its victims to lose weight, weaken, and 

eventually waste away (Ryan, 1993). TB disproportionately affects the indigent and other 

marginalized groups of society in whom unequal susceptibility patterns have long been 

recognized.

Adding further urgency to controlling TB, multidrug-resistant TB (MDR-TB) has emerged as a 

serious problem in many parts of the world, including Russia, Latvia, Estonia, Argentina, the 

Dominican Republic, and the Ivory Coast (WHO, 1999). Up to 50 million people worldwide 

may be infected with MDR-TB (WHO, 1999). In low-prevalence countries, drug resistance is 

generally more common in foreign-born populations, most likely reflecting inadequate treatment 

programs and sporadic drug availability in high-prevalence countries (Broekmans, 2000). 

Many complex biological and social factors impact TB transmission, progression to disease, and 

treatment. By identifying and examining the interrelation of these factors, anthropologists and 

other social scientists have made important contributions toward the control of TB. 

Anthropological methods and approaches have been especially valuable in understanding and 

addressing the broad range of socio-cultural, behavioral, and structural issues pertinent to TB 
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control. While limited in breadth and scope, the research highlighted here has many implications 

and applications for TB control practice. 

Tuberculosis treatment success rate (% of new cases) in Ethiopia was 91.00 as of 2012. Its 

highest value over the past 18 years was 91.00 in 2012, while its lowest value was 61.00 in 1995. 

Tuberculosis treatment success rate is the percentage of all new tuberculosis cases (or new and 

relapse cases for some countries) registered under a national tuberculosis control program in a 

given year that successfully completed treatment, with or without bacteriological evidence of 

success ("cured" and "treatment completed" respectively) (WHO, 2014).

To build on the achievements of DOTS and address the remaining challenges, the STOP TB 

strategy was launched by WHO in 2006 to help achieve the millennium development goals for 

TB in 2015. Ethiopia also adopted this strategy to achieve the national TB targets.

Although subtle, one needs to distinguish between the concepts of censoring and cure: censoring 

refers to a subject who does not fail within the monitoring time window of a particular subject, 

while cure refers to one who will not fail within any reasonable monitoring time window. Indeed 

the latter is an abstraction as we never “observe” a cure (due to a finite monitoring time). 

Recently much attention has been devoted to formulating parametric survival models 

incorporating a cured fraction – a non-zero tail probability of the survival function. These have 

focused upon cancer-relapse trials including breast cancer, non-Hodgkins lymphoma, leukemia, 

prostate cancer, melanoma, and head and neck cancer, where due to recent advances in therapy 

and treatment, a significant proportion of patients are expected to be “cured”, that is to remain 

disease-free even after really long follow-ups. Cure rate models incorporating a cured fraction, 

defined as a non-zero tail probability of the survival function, adjust for this feature of the data 

and date back to the mixture model by Berkson and Gage (1952) (mixture-cure model, in short) 

and has been extensively discussed by several authors, including Farewell (1982), Farewell 

(1986), Maller and Zhou (1996), Ewell and Ibrahim (1997).

The mixture cure model (ScCheng at el., 1998, Yingwei, Peng and Keith B.G.Dear, 2000,J.P.Sy 

and J.M.G.Taylor, 2000) is particularly designed to handle the dataset with a cure fraction. 

Unlike the standard survival model, the mixture cure model has two components in order to 

model the cure probability and the survival probability of uncured patients. As discussed in 
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Maller and Zhou (1996), the population contains” long term survivors” ( or “cured”, “immune” 

individuals) if the cdf  F(t) of failure time is improper, i.e. 𝐹(∞) = 𝑃(𝑇 * < ∞) < 1.

1.2. Statement of the Problem

The survivor function for the entire population one unstated assumption of the standard PH 

model is that all individuals under study are susceptible to the adverse event of interest, and they 

would experience the event eventually if there was no censoring. However, more and more 

patients will be cured now a day due to the advances in recent medical research, that is, those 

patients may never experience the event even after a sufficient follow-up period. With rapid 

developments in medical and health sciences, we now encounter more survival studies where 

some patients are expected to be cured. Survival models that account for cure are important for 

understanding prognosis in potentially terminal diseases. Traditional parametric survival models 

such as Weibull or Gamma (Cox and Oakes, 1984) do not account for the probability of cure. 

Therefore, this work is different from other work by: -as stated above the standard Cox PH 

regression does not consider the cured patients, but this study will consider the mixture cure 

model that consider the cured and uncured  individuals simultaneously.  And again the target of 

the world is to stop and control tuberculosis by applying the DOTs strategies to achieve 

millennium development goal and it can define tuberculosis is curable disease but the survival 

study take their event as death which consider the survival probability of individual at time of 

follow up increases is zero, but the drug objective is to make patients free from disease by 

treating them in appropriate manner. 

In 2009 TB is the 5th cause of admission, the 3rd leading cause of death with 67%cure rate for 

registered patient in the same year in Ethiopia (FMOH, 2010), so we say in one direction TB is 

curable and the data consider the patient under treatment, but using the death as event of interest 

by itself is contradicting the idea because of the population of tuberculosis patient is two, those 

MDR-TB or long term-survivors and susceptible those cured in short period. Therefore this study 

will use the event as cure to overcome this contradiction. 

The mixture cure model is a special type of survival models and it assumes that the studied 

population is a mixture of susceptible individuals who may experience the event of interest, and 
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cure/non-susceptible individuals who will never experience the event. For such data, standard 

survival models are usually not appropriate because they do not account for the possibility of 

cure. Based on this the paper should depend on the following research question:

1. What is the incidence prevalence of tuberculosis in study area?

2. What are the cofactors affecting the susceptible and non-susceptible 

patients?

3. What is the appropriate baseline distribution for the susceptible patients?

4. Does the cure model appropriate for the data?

1.3 Objective of the study

1.3.1 General objectives

The general objective of this study is to Model time –to- cure of tuberculosis patients using 

mixture cure model and identify the risk factors for the cure of tuberculosis patients under DOTS 

at the study area.

1.3.2 Specific objectives

i. To fit Cure model for the MDR-TB group under the significant factors 

under DOTS.

ii. To determine failure time distribution of uncured patients.

iii. To identify factors associated with time to cure of TB patients.

iv. To compare the probability of cure between the tuberculosis types in terms 

of their excess hazards rates.

1.4. Significance of the Study

The result of this study was providing information on modeling time to cure of tuberculosis 

patients under DOTs by considering the mixture cure models. This results give some knowledge 

about the determinants or risk factors of time to cure of tuberculosis patients, provides an input 

for further study in the area, provides an evidence for the government and concerned bodies to 

evaluate their plan and used for the professional to determine the incidence prevalence of 

tuberculosis. 
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CHAPTER TWO

2. LITERATURE REVIEW

2.1. The literature of curability of tuberculosis

Worldwide, tuberculosis (TB) kills more young and middle-aged adults than any other infectious 

disease (WHO, 1999). Though it is curable and preventable, more than 5,000 people die of TB 

every day (2 to 3 million people per year) (WHO, 1999).

Much literature confirms what current rates for TB diagnosis and treatment completion 

demonstrate: TB control programs do a better job holding rather than finding cases. Although 

both are pressing tasks, bringing people in to get diagnosed seems a more formidable challenge 

than ensuring that patients get and complete treatment once they are in the health system. As 

long as monitoring and supervision are adequate, the majority of patients are likely to complete 

treatment. Certainly, both diagnosis and treatment effectiveness require that the infrastructure of 

TB control programs had a minimally acceptable functioning. That is, drug supply is reliable and 

sustainable, laboratory facilities are available and sufficiently equipped to perform tests, 

monitoring systems are in place, and human capacity for different tasks (e.g. supervision, 

laboratory work) is adequate.

 The study demonstrated that patients who died, treatment failures and defaulters were the main 

reason why we don’t archive the 85% target treatment success set by the WHO. The youngest 

age group (0-14years), females, new patients and HIV negative TB patients, had higher 

proportions of treatment outcome. HIV negative TB patients were found to be significantly 

associated with better treatment outcome (Bong Ngeasham Collins, 2011).

Tuberculosis (TB) remains one of the world’s deadliest communicable diseases. In 2013, an 

estimated 9.0 million people developed TB and 1.5 million died from the disease, 360 000 of 

whom were HIV-positive. TB is slowly declining each year and it is estimated that 37 million 

lives were saved between 2000 and 2013 through effective diagnosis and treatment. However, 

given that most deaths from TB are preventable, the death toll from the disease is still 
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unacceptably high and efforts to combat it must be accelerated if 2015 global targets, set within 

the context of the Millennium Development Goals (MDGs), are to be met. TB is present in all 

regions of the world and the Global Tuberculosis Report 2014 includes data compiled from 202 

countries and territories. This year’s report shows higher global totals for new TB cases and 

deaths in 2013 than previously, reflecting use of increased and improved national data. A special 

supplement to the 2014 report highlights the progress that has been made in surveillance of drug-

resistant TB over the last two decades, and the response at global and national levels in recent 

years. Worldwide, the proportion of new cases with multidrug-resistant TB (MDR-TB) was 

3.5% in 2013 and has not changed compared with recent years. However, much higher levels of 

resistance and poor treatment outcomes are of major concern in some parts of the world. The 

supplement, Drug Resistant TB: Surveillance and Response, defines priority actions needed, 

from prevention to cure (WHO, 2014) 

The emergence and geographical spread of strains of TB that are resistant to treatment by the 

standard anti-TB drugs is a second major concern. Resistance to any one drug is the result of 

naturally occurring genetic mutation within the Mycobacterium, but resistance to multiple drugs 

emerges through incorrect, interrupted or frequently repeated treatment. The WHO estimates that 

there are now almost 490,000 new cases of multidrug-resistant (MDR) TB every year, and that 

the amount of drug resistance has been ever-increasing in countries as diverse as Peru, South 

Africa, China and India.( Corbett EL, Watt CJ, Walker N, et al,2003) An estimated 120,000 

people die annually from multidrug-resistant TB.( WHO/IUATLD,2008)

In 1995 the DOTS (Directly Observed Treatment, Short course) strategy was established as the 

key intervention to achieve TB control worldwide. Between 1995 (when reliable records began) 

and 2006, a total of 31.8 million new and relapse cases, and 15.5 million new smear-positive 

cases were notified by DOTS programme (WHO, 2008). Later on, in 2006, WHO launched the 

stop TB strategy as an approach to TB care and control (WHO, 2013).

Ethiopia is one among the 27 high Multi Drug Resistant Tuberculosis (MDR-TB) burden 

countries and the rate of TB treatment success in the country was 83% in 2011 (WHO, 2006).

The research done on time to default in the south of Benin states that:  it was challenging to 

know who was not susceptible and vice versa before the end of the follow up. Therefore it is 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102884#pone.0102884-World2
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102884#pone.0102884-World3
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102884#pone.0102884-World1
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important to consider early the HIV/AIDS status and the age of patients as well as their TB 

history as underlying factors for compliance with anti-TB treatment in future. For instance, 

prospective research integrating the impact of the malnutrition, patients’ immunological state and 

the genomics of TB may be interesting (Sylvère TA (2015)). 

2.2 Determinant factors of time to cure of tuberculosis patients

Many studies suggested that tuberculosis is curable disease if it treated well. But there are many 

factors that determine the time of cure.  Low awareness, low individual and social risk 

perception, high stigma, and external constraints (e.g. distance, transportation, economic 

limitations) account for delayed care-seeking and diagnosis. Also, conventional care-seeking 

behaviors (e.g. consulting traditional healers, pharmacists, and other private providers) also 

explain delay, particularly among women. Gender differences are crucial to understand 

diagnostic delay. Females in poor communities in developing countries are more likely to be less 

educated, be stigmatized for seeking TB care, and suffer more from external constraints (Ryan, 

1993).Because only a few studies have actually correlated those variables, it is impossible to 

reach conclusions with general validity. Many factors that predict delay seem to be mutually 

associated. It is impossible to single out one factor that, regardless of other conditions, explains 

diagnosis delay and treatment default. 

Moreover, even multivariate analyses that offer an explanation for TB detection and treatment 

adherence in one community do not provide conclusive results that are applicable to different 

settings. Although the literature has plenty of case studies with individual findings that can be 

tested, the dearth of comparative studies does not allow us to draw general conclusions. The 

inability of health systems to screen people before they develop active TB largely accounts for 

system delay. From the studies reviewed, a number of factors account for why health systems 

miss patients.

 The lack of diagnostic tools in health clinics, bad implementation, overall under-utilization of 

health care services, and oversight by healthcare providers (due to insufficient knowledge and 

neglect) are plausible explanations. Once people come in contact with health clinics, then, the 

poor quality of services explains why a large number of patients are not diagnosed. Problems 

with the quality of services range from poor interpersonal communication of healthcare providers 
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to infrastructural deficits (Ryan, 1993).The survival status was significantly different between 

patient age, weight at initiation of anti-TB treatment, patient category, year of enrolment, and 

treatment centre(B. Getahun,et al,2011). In the MDR-TB treatment program patients with HIV 

infection and low weight had higher hazards of death. Overall treatment outcomes were poor. 

Efforts to improve treatment for MDR-TB are urgently needed (Jason E. Farley,et.al ,2011). 

Studies by (B. Getahun, et al, 2011, M. D. F. P. M. de Albuquerque,et al,2009, M. Vasantha, et 

al, 2008)  also reported that body weight at initiation of treatment was a risk factor for death 

from TB and is associated with survival of patients who begin treatment for tuberculosis.

 Types of tuberculosis (positive pulmonary, negative pulmonary, and extra pulmonary 

tuberculosis) were identified as the significant factors for mortality of tuberculosis patients (M. 

P. Domingos,et al.,2008, M. Muñoz-Sellart,et al.,2010, M. W. Borgdorff, et al.,1998).  Also 

other literatures states that TB patient category (TBC) was statistically associated with death of 

patients with tuberculosis(M. D. F. P. M. de Albuquerque,et al.,2009, M. P. Domingos,et 

al,2008, M. Vasantha, et a.l, 2008, T. A. Mathew, T. N. Ovsyanikova, S. S. Shin et al.,2006)

TB often strikes the most vulnerable members of society and, if left untreated, causes its victims 

to lose weight, weaken, and eventually waste away (Ryan, 1993). TB disproportionately affects 

the indigent and other marginalized groups of society in whom unequal susceptibility patterns 

have long been recognized (Dubos, R and Dubos,J, 1952).

Age between 30-39 years compared to 40 years and above and being farmers were a negatively 

risk factors. Living in the same house with 5 or more family members, HIV positive, having 

history of previous self & family member TB infection and missing TB drug were also the risk 

factors for TB treatment failure (Girmatsion Fisseha et al., 2014).

After the introduction of directly observed therapy (DOT), the numbers of people being cured 

from TB are increasing. But millions will remain ill because they lack access to high-quality care 

(UN, 2010). And the treatment success rate among smear positive pulmonary TB reached 87% 

globally in 2009, but in the Africa region it is 80% which is lower than WHO target. Among the 

22 high burden countries 15 of the reached the target and Ethiopia is one of the 7 countries from 

which treatment successes rate lower than the target (WHO, 2010).
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Even though, Ethiopia adopted and fully implemented the DOT, TB continues to be a major 

public health problem which puts the countries at 7thrank from the 22 TB high burden countries 

by estimated number of case (WHO, 2009). In 2009 TB is the 5th cause of admission, the 3rd 

leading cause of death with 67%cure rate for registered patient in the same year in Ethiopia 

(FMOH, 2010). In addition to these, for all new TB cases, 20% of them have a chance to be 

multidrug-resistant (MDR) TB (USAID, 2009).

2.3 Mixture cure models

‘Cure models’ are part of the mixture models family (Bohning& Seidel, 2003). In ‘mixture cure 

models’, it is considered that the studied population is a mixture of susceptible (i.e. that may 

undergo the event of interest) and non-susceptible individuals (i.e. that will never undergo the 

event of interest) (Farewell, 1982). Unlike classical survival analysis, they allow a separate 

estimation of covariate effects on incidence and incubation length. Cure models also allow 

estimation of the proportion of healthy (or conversely infected) individuals in a population, 

including individuals that did not last the total length of the study (Lam et al., 2005).

The motivation behind mixture cure modeling is the desire to address the situations in which 

there are cured proportions of individuals and the resulting consequence that those individuals 

will never experience the event of interest (Taylor, 2000). This led to exploration into cure rate 

estimation and development of the first mixture cure models by (Boag, 1949, Berkson and Gage, 

1952, and Haybittle, 1965) from those initially developed models, various studies have proposed 

and assessed parametric and semi-parametric mixture cure models. Several authors have studied 

the parametric approach to mixture cure models (Farewell 1982, Peng et al.,1998, Yamaguchi 

K,1992) however, semi-parametric models, are often of greater interest than parametric models 

since the parametric assumption can be hard to meet. Therefore, many studies more recently 

have explored modeling and estimation with semi-parametric mixture cure models. (Li, C., and J. 

Taylor, 2002, Peng, Y., 2003,Sy J.P., and J.M.G. Taylor, 2000, Taylor, J, 1995, Zhang, J., and Y. 

Peng, 2007)

The modeling strategy for the mixture cure model involves separately modeling the cure 

proportion and the survival distribution of the uncured patients. In recent years the development 

of new drugs and treatment regimens has resulted in patients living longer with diseases such as 
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cancer and heart disease. In cohorts of patients with certain types of cancer, it is observed that 

some patients are cured permanently, i.e. show no recurrence of the disease. The patients who 

are cured are called immunes or long-term survivors, while the remaining patients who develop a 

recurrence of the disease are termed susceptible. The population of interest may thus be regarded 

as a mixture of these two types of patients. Standard parametric and non-parametric survival 

models are in appropriate for analyzing such data because they ignore the distinction between the 

immunes and susceptible in the population (Boag, J. W, 1949) proposed a two-component 

mixture model for analyzing breast cancer data. The model he proposed is referred to as the \cure 

rate" model, and is formulated in terms of a mixture model. 

The model introduces a component representing the proportion of immunes in the population and 

a distribution representing the survival experience of the susceptible, called the latency 

distribution. Many researcher searches in this area include articles by (Yu etal., 2004, Farewell, 

1982, Gamel et al., 1999, Yamaguchi k, 1992, and Taylor, 1995). Various parametric and semi-

parametric approaches have been proposed for mixture cure models (Peng&Carriere, 2002; Lam 

et al., 2005). For modeling the influence of exploratory variables on the incidence, a logistic 

regression model is usually chosen (Kuk& Chen, 1992; Peng& Dear, 2000):

(Yu et al, 2004) used the mixture cure rate model for grouped survival data and observed that the 

estimate of the cure fraction can be quite sensitive to the length of follow up time and the choice 

of latency distribution. They investigated the effect of various distributions such as the 

lognormal, loglogisitc, Weibull and generalized gamma, and conclude that the estimate of the 

cure fraction was robust with the generalized gamma distribution. (Yu et al, 2004) also 

investigated the identifiablity of mixture models, and noted that the overall survival function and 

the survival function for the latency distribution can become unidentifiable if the follow up time 

is short. They suggest that a longer follow up time with respect to the median survival time and 

homogeneity of the observations affect the accuracy of the estimate of the cure fraction.

(Yamaguchi k, 1992) proposed an accelerated failure-time regression model with an additional 

regression model for the cure fraction to study inter-firm job mobility in Japan. He used the 

generalized gamma to model the latency distribution and the logistic function to model the cure 
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fraction in terms of covariates. This model helps to estimate simultaneously the effect of 

covariates on the acceleration (deceleration) of an event as well as the surviving fraction.

(Farewell, 1982) also used covariates to model the cure fraction. (Chen et al., 1999) proposed a 

new Bayesian model for survival data with a surviving fraction. This model has a proportional 

hazards structure, with the cure rate depending naturally on covariates. One key difference 

between the Bayesian approach and the cure rate approach is that the former models the entire 

population as a proportional hazards model while the later models only the non-cured group with 

a proportional hazards model. Both the models can be obtained from one another. The authors 

suggest that the Bayesian model is computationally attractive.

In survival analysis, it is usually assumed that if complete follow-up were possible for all 

individuals, each would eventually experience the event of interest. Sometimes’ however, the 

data come from a population where a substantial proportion of the individuals do not experience 

the event at the end of the observation period. In some situations, some of these survivors are 

actually cured in the sense that, even after an extended follow-up, no further events are observed. 

An example is patients with tonsil cancer treated using radiation therapy (Withers et al., 1995), in 

which cure occurs if the radiation kills all the cancer cells.

 For such data, Kaplan-Meier (K-M) estimates of the survival function for time to local 

recurrence level off to nonzero proportions. Furthermore, there is a time window within which 

most or all of the recurrences are expected to occur, and so a patient without any recurrence 

beyond this window can usually be considered as being cured. This type of data is typical of 

diseases where the biology of the disease suggests the possibility of cure. A K-M survival curve 

that shows a long and stable plateau with heavy censoring at the tail may be taken as empirical 

evidence of a cured fraction. The use of standard survival analysis for such data may be 

inappropriate since not all the individuals are susceptible.

 In a cure model, the population is a mixture of susceptible and non-susceptible (cured) 

individuals. Various parametric and nonparametric methods have been proposed for the cure 

model. (Farewell, 1982) used logistic regression for the mixture proportion and the logistic Cox 

PH mixture cure model was used to account for the cure fraction of the sample. It assumes a 

binary distribution to model the incidence probability and a parametric failure time distribution 
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to model the latency (Kuk and Chen, 1992) and proposed a semi-parametric generalization of 

Farewell’s model using a Cox proportional hazard (PH) model in the susceptible group; we call 

this the PH cure model. They used an estimation method involving Monte Carlo simulation. For 

modeling the influence of exploratory variables on the incidence, a logistic regression model is 

usually chosen (Kuk& Chen, 1992; Peng& Dear, 2000)

The cure model should not be used indiscriminately (Farewell, 1986). There must be good 

empirical and biological evidence of a non-susceptible population. The model generally requires 

long-term follow-up and large samples and censoring from loss to follow-up during the period 

when events can occur must not be excessive. Otherwise, identifiability problems between the 

incidence and latency parameters can occur. In medical and epidemiological studies, some 

individuals in the population will not experience the event of interest. i.e., those individuals are 

cured (immune). 

Historically, the univariate mixture cure models (MCMs) (Boag, 1949 and Farewell, 1982) have 

been used to model the survival data with a cure fraction. Additionally, MCMs allow that both 

the cure fraction and the survival function of the uncured patients (latency distribution) depend 

on covariates. In our case these covariates are age of patient, weight of patient, HIV status of 

patient, regiment, TB type, and gender of the patients.
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CHAPTER THREE

3. METHODOLOGY

3.1 Study area and Period

For this study, longitudinal retrospective cohort follow up (retrospective cohort design) of 

tuberculosis patients data obtained from Jimma University Specialized Hospital TB Patient 

Clinic located in jimma town. The follow-up time was the time span in month between the 

treatment initiation date and the date the treatment final outcome was evaluated. Treatment 

initiation date was between 1st July, 2014 and 1st January, 2016 when each patient started the 

anti-TB therapy after diagnosis.

3.2. Data source

All information are obtained from Jimma University Specialized Hospital and Shanen Gibe 

Jimma hospital and the data extracted from the patient’s chart which contains epidemiological, 

laboratory and clinical information of all TB patients under directly observed treatment. Those 

follow their treatment at that hospital up to finish their treatment were extracted and those MDR-

TB group are transferred to shanen Gibe Jimma hospital after they were tested and confirmed by 

laboratory. Then those are collected from this hospital in order to get the relevant information.

3.3. Study Population
TB Case

TB Case was a patient in whom TB has been bacteriological confirmed or diagnosed by a 

clinician (Normann B, et al., 2000). TB history and treatment outcomes were classified using 

the standard World health organization (WHO) definitions (Corbière F, Joly P ,2007). As with 

HIV/AIDS treatment, TB therapy requires high (> 90%) compliance to facilitate cure 50. TB 

history was divided into new, treatment after relapse, treatment after failure, treatment after 

default or transfer in. Final TB treatment outcome was one of the following: successful, 

failure, death, default and transferred out. A successful treatment outcome included “cure”, or 

“treatment complete”.
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The end point

 Time to cure was the end point. Cure is the success of the treatment for the tuberculosis 

patients. Time to cure was defined using the WHO guidelines for TB surveillance strategy. 

Accordingly, a cure was a patient whose treatment was success with in6-12 months or more. 

Thus, time to cure status was coded 1 if given TB patients “cured from TB” and 0 if a TB 

patient treatment outcome was set to “not cured” for both group of populations those 

susceptible and non-susceptible(MDR-TB in our cases). 

Generally there are two group of population. These are who develop MDR-TB and who are free 

from bacteria with in short period of time. So those who develop MDR-TB are considered as 

cure (immune) since they are treated a minimum of two year it possible to say they never 

experience the event of interest. And those susceptible groups were uncured in this study because 

they are free from the bacteria within 6-12 month. These were identified based on the patient’s 

regiment. Based on this way the total number of patients within this period of follow up were 

501 patients among those 62 of them are MDR-TB group.

3.4. Variables in the Study

The variable that was included in these studies are response and the predictor or explanatory 

variables that can be directly or indirectly affect the outcome of the patients.

3.4.1. Dependent variable

The response (outcome) variable in this study is time to cure of tuberculosis patients, which is 

the probability of cure from tuberculosis. These response variables are the results of the patients 

though their follow up by the clinicians directly. These response were cured, treatment complete, 

and death. 

3.4.2. Independent (Predictor) Variables

Since several variables were expected to relate with determinants of time to cure of tuberculosis, 

the predictor variables in this study are the possible socio-economic, demographic and 

environmental factors. This study considers only the predictors that clinicians and doctors were 

record while they follow the patient.  These predictors are specifically:-
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4. 1: list of explanatory variables

Predictors Categories 

Age in year

Weight in kilograms at the time of admission

0=female Gender of the patient

1=male 

1=pulmonary positive 

2=pulmonary negative Types of TB

3=Extra pulmonary TB

0=HIV negative  HIV co- infection 

1=HIV positive 

0=new patientRegiment 

1=previously treated

0=non health worker

Work place 1=health worker
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3.5. Methods of Data Analysis

3.5.1 Survival Analysis

The use of survival analysis, as opposed to the use of other statistical method, is most important 

when some subjects are lost to follow up or when the period of observation is finite certain 

patients may not experience the event of interest over the study period. In this latter case one 

cannot have complete information for such individuals. These incomplete observations are 

referred to as being censored. Most survival analyses consider a key analytical problem of 

censoring. In essence, censoring occurs when we have some information about individual 

survival time, but we do not know the survival time exactly. In reality such event can occur due 

to the following reasons:

A person does not experience the event before the study ends

 A person is lost to follow-up during the study period and

A person withdraws from the study for unknown/known reasons

Censoring can be occurred in the following way:  

i) Right censoring: Survival time is said to be right censored when an individual cannot 

experience an event up to the end of the study time. This type of censoring is commonly 

recognized survival analysis and also considered in this study as cured.

ii) Left censoring: Survival time is said to be left censored if an individual develops an event of 

interest prior to the beginning of the study.

iii) Interval censoring: Survival time is said to be interval censored when it is only known that 

the event of interest occurs within an interval of time but the exact time of its occurrence is not 

known. The prospect of censoring complicates research design and complicates statistical 

analysis. Thus, censoring creates some unusual problem in the analysis of data because such data 

cannot be handled properly by standard statistical methods. Researchers used different 

techniques to respond to the complication due to censoring unsatisfactorily. New developments 

in statistical theory accompanied by new development in statistical computing have changed how 

researchers can study such data. The response variable in survival analysis is survival time and is 

no longer limited to only time to death. It is a non-negative random variable used loosely for the 

time period from a starting time point to the occurrence of any event. 
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In this study context, survival time will the length of time of tuberculosis patients.

Models for survival analysis typically assume that everybody in the study population is 

susceptible to the event of interest and will eventually experience this event if the follow up is 

sufficiently long. In recent years, there has been an increasing interest in modeling survival data 

with long term survivors. Such data may arise from clinical trials, in which, even after an 

extended follow-up, no further events of interest are observed. Some people in the population 

may be considered as cured or non-susceptible. Failing to account for such cured subjects would 

lead to incorrect inferences.

 Moreover, researchers may be interested in estimating the cured fraction. Differences between 

subcategories were compared using the chi-square statistic and Fisher’s exact test was used if 

expected value of a cell was less than 5%. The cured fraction was computed by summing the 

simulated individual posterior probability of being cured (Allison PD, 1995). In univariate 

analysis, cured time was analyzed with the Kaplan–Meier estimator (KME) (Kruk ME, 2008, 

Nguyen PT, 2010, and Kuk AYC, Chen C-H, 1992) and the log-rank test was applied to compare 

the cure time function between subcategories.

Mixture cure model:-is firstly introduced by Boag (1949) and Berkson and Gage (1952), is one 

of the popular models to estimate the cure rate of the treatment and the survival rate of uncure 

patients at the same time.

Mixture cure models assume that the studied populations are a mixture of susceptible (uncured) 

individuals, that may experience the event of interest, and non-susceptible (cured) individuals 

that will never experience it (Farewell, 1982). Therefore in this study those TB patients free from 

the bacteria in the study period is susceptible and those develop default is non-susceptible 

(MDR-TB). This approach allows estimating simultaneously whether the event of interest will 

occur, which is called incidence, and when it will occur, given that it can occur, which is called 

latency.
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3.5.2 Survival functions

3.5.2.1 Univariate analysis

3.5.2.1.1. The Kaplan-Meier Product Limit Method

The Kaplan-Meier (KM) estimator is the standard non parametric estimator of the survival 

function, S (t), proposed by Kaplan and Meier (1958). It is also called the Product-Limit 

estimator. KM estimator incorporates information from all of the observations available, both 

censored and uncensored, by considering any point in time as a series of steps defined by the 

observed survival and censored times. When there is no censoring, the estimator is simply the 

sample proportion of observations with event times greater than t. The technique becomes a little 

more complicated but still manageable when censored times are included.

Let ordered survival times are given by 0≤ t1≤t2 ≤tj ≤ ∞, then:

𝑆(𝑡) = { 1 ,            𝑖𝑓𝑡 < 𝑡1

∏
𝑗,𝑡𝑗 ≤ 𝑡

(1 -
𝑑𝑗

𝑟𝑗), 𝑖𝑓𝑡 ≥ 𝑡1 � ------------------ (1)

Where;  is the observed number of events at time  and  is the number of individuals at riskat 𝑑𝑗 𝑡𝑗 𝑟𝑗

time .𝑡𝑗

3.5.2.2 Multivariate analysis

The survivor function is defined to be the probability that the survival time of a randomly 

selected subject is greater than or equal to some specified time. Thus, it gives the probability that 

an individual surviving beyond a specified time. 
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3.5.2.2.1 Standard Cox regression

Standard Cox regression was fitted under the PH assumption. That is:

. Where h(𝑡; 𝑋1, 𝑋2 ,...,𝑋𝑘) =  𝜆0 (𝑡)𝑒𝑥𝑝(𝜆1𝑋1 +  𝜆2 𝑋2 + ... +  𝜆𝑘𝑋𝑘) ---- (2) 𝜆0(

 is the baseline hazard of patient cured at time t and x1, xk are the k independent covariates. 𝑡)

Here, t is the time to cure. Here the model can consider only the patients cured or complete the 

treatment as event and the rest as censored. 

Assumptions of the Cox proportional hazards model are;

 The ratio of the hazard function for two individuals with different sets of covariates does 

not depend on time.

 Time is measured on a continuous scale and

 Censoring occurs randomly.

Use of the standard Cox PH model is linked to the hypothesis that, if complete follow-up were 

possible for all patients, each would have eventually experienced the cure from treatment. This 

hypothesis, however, did not hold for all data set.

3.4.2.2.2. Proportional Hazards Mixture Model

The PH assumption provides a way to introduce covariates into models and to separate the effect 

of the covariates and the shape of a baseline hazard function. 

The model can be formulated as follows the survival model is assumed that the failure time can 

be decomposed 

𝑇 * = 𝜂𝑇𝑠 + (1 - 𝜂)∞ ------------------------ 3

Where  denotes the failure time of susceptible subject, and is indicated by value 1 or 0 𝑇𝑠 < ∞ 𝜂 

whether the sampled subject is susceptible or not.

If we assume that the proportion of susceptible where , then the 𝑝(𝜂 = 1) = 𝜋 𝜋𝜖(0,1]

distribution function of   is given by 𝑇 *

𝐹(𝑥) = 𝑃(𝑇𝑠 ≤ 𝑥)𝑝(𝜂 = 1) + 𝑃(∞ ≤ 𝑥)𝑝(𝜂 = 0) = 𝜋𝐹0(𝑥) -------- 4
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Where   is the latent distribution for  (no-cure /susceptible) group. The effects of some 𝐹0(.) 𝑇𝑠

independent covariates on both the incidence probability P and the survival function  for the 𝑆𝑜(𝑡)

susceptible group can be modeled. Therefore

The incidence model can be typically given by 

𝜋(𝑥) =
exp(𝑥𝑇𝛾1)

1 + exp(𝑥𝑇𝛾1)
----------------------- 5

Where x is a vector for covariates  is a parameter to be estimated T denotes transpose.𝛾1

Baseline survival distributions are assumed to follow parametric distribution

It has been successfully employed in Cox’s PH regression model for survival data.

To model the effect of covariates x, on the failure time distribution of uncured patients in the 

mixture model, we also employ the PH assumption, i.e., the effect of x, on the Cox PH hazard 

function distribution for  is modeled by𝑇 *

h𝑢(𝑡𝑖│𝑥𝑖,) =  h𝑢𝑜(𝑡𝑖)𝑒𝑥𝑝(𝛽’𝑥𝑖) ------------------- (6)

Where is the baseline hazard function, which can be any arbitrary unspecified h𝑢𝑜(𝑡) =
𝜋𝑓𝑜(𝑡)

1 - 𝜋𝐹𝑜(𝑡)

hazard function but not a function of x, this assumption implies

,where . Then equation 𝑆𝑢(𝑡𝑖| 𝒙𝒊) =  𝑆𝑢𝑂(𝑡𝑖)𝑒𝑥𝑝(𝛽’𝑥𝑖) 𝑆𝑢𝑜(𝑡) =  𝑒𝑥𝑝{ - ∫𝑡
0h𝑢𝑜(𝑤)𝑑𝑤 }

(6) can be maximized after the baseline hazard is specified.h𝑢𝑜(𝑡)

3.5.2.2.3. The logistic Cox PH mixture cure model

The logistic Cox PH mixture cure model was used to account for the cure fraction of the sample. 

It assumes a binary distribution to model the incidence probability and a parametric failure time 

distribution to model the latency.

Moreover, the distribution of survival time is characterized by three functions:

Let U be the indicator denoting an individual is susceptible (U = 1) or non-susceptible (U = 0) to 

the event of interest and T is a non-negative random variable denoting the failure time of interest, 

defined only when U = 1. The mixture cure model is given by

𝑆(𝑡│𝒙, 𝒛) =  𝜋(𝒛)𝑆(𝑡│𝑈 =  1, 𝒙) +  1 - 𝜋(𝒛) -------------- (7)
where is the unconditional survival function of T for the entire populations.𝑆(𝑡|𝒙, 𝒛) 
This can be written in words as follow
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Usually, is refer to as “incidence" and  is refer to as “latency If the PH model 𝜋(𝒛) 𝑆(𝑡|𝑼 = 𝟏,𝒙)

is used to model the latency part, the cure model is called the PH mixture cure model.”.

𝑆(𝑡│𝑈 =  1, 𝒙) =  𝑃(𝑇 > 𝑡│𝑈 =  1, 𝒙) ----------------- (8)

The survival functions for susceptible individuals given a covariate vector  and 𝒙 =  (𝑥1, . . . , 𝑥𝑝)',

 is the probabilityof being susceptible given a covariate vector 𝜋(𝒛) =  𝑃(𝑈 =  1|𝒛)

Which may include the same covariates as x. Starting with the incidence 𝒛 =  (𝑧1, . . . , 𝑧𝑞)',

portion of the model, the effects of the covariate vector z on the cure proportion is typically 

modeled using a  link function𝑙𝑜𝑔𝑖𝑡

Where b is a vector of unknown parameters associated with the covariate vector z.

The latency portion of the model can be defined to be the proportional hazards (PH) model or the 

accelerated failure time (AFT) model. Let  be thebaseline survival function for uncured 𝑆𝑜(𝑡)

(susceptible) individuals. When , the proportional hazards mixture cure 𝑆(𝑡│𝑈 =  1, 𝒙) = 𝑠𝑜(𝑡)𝑒𝛽𝑥

(PHMC) model is selected and when , the accelerated failure time 𝑆(𝑡│𝑈 =  1, 𝒙) = 𝑠𝑜(𝑡𝑒𝛽𝑥)

mixture cure (AFTMC) model is selected.

Characteristics of survival function 

1. The survival function of cured patients can be set to one for all finite values of t because 

they will never experience the event of interest.  𝑆(𝑡|𝒙, 𝒛) →1 - 𝜋(𝒛) 𝑎𝑠𝑡→∞.

When for all i.e. when there is no cured fraction, the mixture cures 𝜋(𝒛𝑖) =  1 𝒛𝑖,

modelreduces to the standard survival model. 

2. There should be nonzero probability of cure.

3. The population being studied is the mixture of two subpopulations. I.e. the proportion  𝜋

cured and 1-  uncured. As modeled in equation (5) above.𝜋

There are many parametric and nonparametric models are proposed to analyze this type of 

distributions.
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3.5.3. Computational methods and theory

3.5.3.1. Parametric and semi-parametric mixture cure models
The Cox PH model is a semi-parametric model where the baseline hazard is allowed to vary 𝛽𝑂(𝑡)

with time.

The effect of z on the probability of (z) can be modeled bythe use of binary regression models, 𝜋

with  link𝑙𝑜𝑔𝑖𝑡

𝑙𝑜𝑔𝑖𝑡(𝜋(𝒛)) =  𝛽𝑂 +  𝛽1𝑍1 + 𝛽2𝑍2 + ··· + 𝛽𝑞𝑍𝑞 = 𝜷'𝒁 ---------- (𝟗)

Where  is the intercept and is the vector of regressionparameters associated to z. Other 𝛽𝑂 𝛽

regression models include the  link𝑝𝑟𝑜𝑏𝑖𝑡

𝜙 - 1(𝜋(𝒛)) = 𝜷'𝒁 ------------------------ (𝟏𝟎)
Where is the distribution function of a standard normal distribution, and the complementary 𝜙

log–log link.

𝑙𝑜𝑔( - 𝑙𝑜𝑔(1 - 𝜋(𝒛))) =  𝜷'𝒁 ------------------- (11)

The conditional latency distribution  can take theform of parametric or semi-𝑆(𝑡|𝑈 =  1)

parametric distributions. Amongthe parametric models, exponential (EXP),  (WB), 𝑊𝑒𝑖𝑏𝑢𝑙𝑙

lognormal (LN) and (LG) are commonly used to model survival data. After 𝑙𝑜𝑔𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

 , these distributionscan be expressed as𝑒𝑡𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑆(𝑡│𝑈 =  1) = {
exp[ - exp(log t - μ)],exponential

exp [ - exp (𝑙𝑜𝑔𝑡 - 𝜇
𝜎 )],𝑊𝑒𝑖𝑏𝑢𝑙𝑙

1 - 𝜙(𝑙𝑜𝑔𝑡 - 𝜇
𝜎 ),𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙

[1 + exp(
𝑙𝑜𝑔𝑡 - 𝜇

𝜎 )] - 1,𝑙𝑜𝑔𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐

---------- (12) �
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Covariates can be included by parameterizing such as x, where represents the vector of 𝜇 𝜇 = 𝛾'  𝛾 

unknown regression parameters. These models are also known as parametric accelerated failure 

time (AFT) mixture cure models. Since x acts multiplicatively on the scale parameter 𝜇

itaccelerates or decelerates the failure time of susceptible individuals.

In proportional hazards (PH) models, the conditional distribution of T is modeled by𝑆

(𝑡│𝑈 =  1, 𝒙) = 𝑠𝑜(𝑡│𝑢 = 1)
exp (𝛾'𝑥)

= exp ( - exp (𝛾'𝑥)∫𝑡

0
𝜆𝑜(𝑣│𝑢 = 1)𝑑𝑣) --------------- (13)

Where  and  are the baseline conditionalsurvival and hazard functions, 𝑠𝑜(𝑡|𝑢 = 1) 𝜆𝑜(𝑣|𝑢 = 1)

respectively. The conditionalcumulative hazard function is 

𝜆(𝑡│𝑢 = 1) = 𝜆𝑜(𝑡│𝑢 = 1)exp (𝛾'𝑥) ----------------- (14)

Where𝜆𝑜(𝑡│𝑢 = 1) = ∫𝑡
0𝜆𝑜(𝑣|𝑢 = 1)𝑑𝑣

 If is left arbitrary, the model is defined as the Cox’s proportionalhazards mixture 𝑠𝑜(𝑡|𝑢 = 1)

cure model. Note that the Weibull (and exponential) models are both AFT and PH models.

Through the vectors of regression parameters and parametric and semi-parametric mixture 𝛽 𝛾 

cure models are able to separate the covariate effects on the incidence and the latency.

3.5.3.2. Likelihood
Suppose data are form of where i is the censoring indicator with  (𝑡𝑖, 𝛿𝑖, 𝒙𝑖, 𝒛𝑖), 𝑖 =  1, . . . , 𝑛, 𝛿 𝛿𝑖

if is uncensored and otherwise. The likelihood contribution for individual is= 1 𝑡𝑖  𝛿𝑖 = 0 𝑖 

𝜋𝑖(𝑧𝑖)𝑓(𝑡𝑖│𝑈 = 1,𝑥𝑖),𝑓𝑜𝑟𝛿𝑖 = 1 𝑎𝑛𝑑(1 - 𝜋𝑖(𝑧𝑖)) + 𝜋𝑖(𝑧𝑖)𝑆(𝑡𝑖│𝑈 = 1,𝑥𝑖),𝑓𝑜𝑟𝛿𝑖 = 0 

Where is the conditional probability densityfunction of T𝑓 (·) =  𝑆(·)𝜆(·)

The observed full likelihood is then given by

𝐿(𝛾,𝛽) =
𝑛

∏
𝐼 = 1

[𝜋𝑖(𝑧𝑖)𝑓(𝑡𝑖│𝑈 = 1,𝑥𝑖)]𝛿𝑖 * [(1 - 𝜋𝑖(𝑧𝑖)) + 𝜋𝑖(𝑧𝑖)𝑆(𝑡𝑖│𝑈 = 1,𝑥𝑖)]1 - 𝛿𝑖 ‒‒ (15)

When no cured fraction is assumed, i.e.  for all , the likelihood function (14) reduces 𝜋(𝒛𝑖) =  1 𝒛𝑖

to the likelihood of the standard survival model.
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3.5.3.3. Estimation procedures

The procedures that will be applied to estimate the unknown parameters were based on 

maximization of the likelihood functions that exists on equation (15).

To estimate , we must specify the failure time distributionof uncured subjects. For parametric 𝜸

mixture cure models  and  can be defined by a few unknownparameters , 𝑓(·|𝑈 =  1) 𝑆(·|𝑈 =  1)

in (14). Therefore, maximum likelihood estimates are obtained via usual optimization methods as 

the Newton–Raphson method. Asymptotic standard errors are obtained by inverting the Fisher’s 

information matrix of second order derivatives of log (L).

Unlike in the standard Cox’s proportional hazard, where little information is lost by eliminating𝑆

, one cannot eliminate  in the Cox’ PH mixture cure model without losing 0(𝑡) 𝑆0(𝑡|𝑈 =  1)

information about . The EM algorithm provides a simpleand efficientway to estimate separately 𝛽

and  from the introduction, U is the random variable denoting an 𝛽,𝛾 𝑆0(𝑡│𝑈 =  1, 𝒙𝑖). 

individual is susceptible (U = 1) or non-susceptible (U = 0).

It follows that, if then , and if then is not observed, where  is the value 𝛿𝑖 = 1 𝑢𝑖 =  1 𝛿𝑖 = 0 𝑢𝑖 𝑢𝑖

taken by the random variable . Given the , the complete-data full log–likelihood (15) is the 𝑈𝑖 𝑢𝑖’𝑠

sum of two independent components  which depends only on , and , which depends only on , 𝑙𝐼, 𝛽 𝑙𝑆

and where𝛾 𝜆𝑂

𝑙𝐼(𝛽,𝑈) = 𝑙𝑜𝑔
𝑛

∏
𝑖 = 1

𝜋(𝑧𝑖)𝑢𝑖 * [1 - 𝜋(𝑧𝑖)]1 - 𝑢𝑖 ------------- (16)

𝑙𝑆(𝛾,𝜆𝑂,𝑈) = 𝑙𝑜𝑔
𝑛

∏
𝑖 = 1

𝜆(𝑡|𝑈 = 1,𝑥𝑖)𝛿𝑖𝑢𝑖 * 𝑆(𝑡│𝑈 = 1,𝑥𝑖)𝑢𝑖 ------- (17)

where U is the vector of  value.𝑢𝑖

The EM algorithm starts with initial values , and . The E step in the 𝛽(0) 𝛾(0) 𝑆0
0(𝑡|𝑈 = 1) (𝑟)𝑡

   iteration calculates the expectation of the complete log–likelihood function with respect to u, h
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conditional on the observed data and , and , the estimates of𝛽(𝑟) 𝛾(𝑟) 𝑆0
(𝑟)(𝑡|𝑈 = 1)  𝛽,𝛾,𝑎𝑛𝑑 𝑆

 at the rth iteration. This is given by the following conditional expectation(𝑡|𝑈 = 1)

𝑦𝑖(𝑟) = 𝐸{𝛽(𝑟),𝛾(𝑟),𝑆0
(𝑟)(𝑡|𝑈 = 1,𝑥𝑖)}

= 𝛿𝑖 + (1 - 𝛿𝑖) *
𝜋(𝑟)(𝑧𝑖)𝑆(𝑟)(𝑡│𝑈 = 1,𝑥𝑖)

1 - 𝜋(𝑟)(𝑧𝑖) + 𝜋(𝑟)(𝑧𝑖)𝑆(𝑟)(𝑡│𝑈 = 1,𝑥𝑖)
------- (18)

which is the estimator of the probability of the individualbeing susceptible. Given heM 𝑟𝑡ℎ 𝑖𝑡ℎ

step  in the  iteration maximizes the expected complete log–likelihood function 𝑦𝑖𝑟 (𝑟 + 1)𝑡ℎ 

with respect to and   to obtain , and . The algorithm iterates 𝛽 𝛾 𝛽𝑟 + 1 𝛾𝑟 + 1 𝑠𝑜𝑟 + 1(𝑡|𝑢 = 1)
until convergence on estimates of , and . 𝛽 𝛾  𝑆𝑜(𝑡|𝑢 = 1)

As we see from equation (16) above conditional baseline is accommodated in. so estimating the 

conditional baseline survival function in semi parametric models are possible. Accordingly two 

non-parametric methods are discussed by peng and Dear, andSy and Taylor, in 2000. The two 

methods are:-

 Profile likelihood estimate of , similar to theBreslow’s likelihood for the 𝑆𝑜(𝑡|𝑢 = 1)

standard Cox’s PH model.

 product limit estimator (PLE)after Kalbfleisch and Prentice

In order to obtain good estimators for   and it is important for  to approach 0 as 𝛾 𝜷 , 𝑆0(𝑡|𝑈 =  1)

t→∞. However, the estimates from the Breslow or the PLE methods do not approach zero as 

t→∞ when there are censored survival times after , where  is the last observed failure time. 𝑡𝑘 𝑡𝑘

Setting  for all  allows for a proper distribution function for susceptible 𝑆0(𝑡|𝑈 =  1) =  0 𝑡 ≥ 𝑡𝑘

individuals and avoid identifiability problems (Taylor, 1995 and Li, et.al., 2001)
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3.5.4. Model selection

3.5.4.1. TheAkaike information criterion

From the list of the parametric and semi parametric models that is assumed for the baseline 

distribution for the latency parts there should be the criterions to select the best fit. Therefore the 

AIC is the advisable criterion for the mixture cure models.

For estimation of mixture cure models, Cai et al. (2012) explain the use of the expectation 

maximization (EM) algorithm to deal with the latent Y values. The log-likelihood for the data 

triplets (Ti; ; ) could be used in the AIC. 𝛿𝑖 𝑈𝑖

𝐴𝐼𝐶 = - 𝑙𝑜𝑔𝐿𝑇𝑖,𝛿𝑖,𝑈𝑖(𝛩,𝑇𝑖;𝛿𝑖; 𝑈) + 2𝑑 --------------- (19)

Where d counts the number of parameters in the model, and is the maximum likelihood 𝛩

estimator of the parameter vector. Variable selection was performed using stepwise backward 

elimination with a significance threshold of 5%. For backward elimination selection, a full model 

was initially fitted with all candidate covariates included. The covariates were then tested for 

statistical significance and the largest p-values were removed one by one until the remaining 

covariates had p-values of less than 5%.

3.5.5. Model diagnosis

3.5.5.1. Evaluation of the semi-Parametric Baselines

For the mixture cure model the baseline distribution is diagnosed by using graphical methods. 

The Kaplan-Meier (KM) plot:-is the plot of the survival function estimate versus time.  The KM 

survival function estimate levels off at the right tail and exhibits a long and stable plateau, which 

ensures the applicability of the mixture cure model approach. 

If the KM survival estimates were plotted against the model-based survival estimates, a well-

calibrated model would produce estimates that fall on a 450 line through the origin.
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3.5.5.2. Schoenfeld residuals

There are defined at each observed failure time as:

𝑟𝑠
𝑖𝑗 = 𝑍𝑖𝑗(𝑡𝑖) - 𝑍𝑗(𝑡𝑖) --------- ‒‒‒‒‒‒‒‒‒‒‒‒‒ (20)

Where is the observation under cofactor and is the observed failure time𝑟𝑖𝑗 𝑖𝑡ℎ 𝑗𝑡ℎ 𝑡𝑖

• Represent the difference between the observed covariate and the average over the risk set 

at that time

• Calculated for each covariate

• Useful for assessing time trend or lack or proportionality based on plotting versus event 

time
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CHAPTER FOUR

4. STATISTICAL ANALYSIS AND RESULTS

4.1. Descriptive summaries.

Of all 501 tuberculosis patients 439(87.62%) susceptible group 328(74.15%) were cured (Table 

4.1). The median cure time from TB was 6 months and 62(12.37%) non susceptible those multi-

drug resistance TB none of them cured with in the follow up period. proportion of male (65.45%) 

and female (34.53%) were involved of which 38.7% of females and 61.29 % of males were non 

susceptible group were none of them cured within given time and 66.06% of males and 33.94% 

of females were susceptible group were 75.2% of males and 73.8% of females was cured. The 

median cure time of susceptible group was 6 months.

 From those the total patients 10.2% of them are HIV positive while 89.8% of them were none 

infected. From the co-infected 11.29% of them was the non-susceptible group while 88.7% of 

them were from susceptible group. In general there are two population susceptible and non-

susceptible or multidrug resistances TB from the summaries of table 4.1 below the most of the 

MDR-TB patients are pulmonary negative 55 of them. 

From these patients of TB type pulmonary negative was risk to develop MDR-TB. And in the 

case of HIV co-Infection most of the co-infection was from MDR-TB group. The proportion of 

the HIV co-infection in non-susceptible group was 11.3% while the proportion of susceptible 

group was 10%. The median age 24 year ranged between 1- 90 year. And mean age was 27year. 

The median weight and mean weight of the patients were 52kg and 50.58kg respectively with 

range 6-89kg.From table 4.1 below  time to cure of  MDR-T B  is more than 18 months and the 

median time to cure for the susceptible patients is 6 months, but from confidence interval even 

the median survival time is equal under each factor, regiment, smear test result and work place 

have wide confidence interval comparatively. This imply under thesefactor there are variability 

on the survival time of the disease it elongate or decrease the survival time.Pulmonary positive 

TB  increase the time of treatment by one month compared to the other two. Unlike pulmonary 

positiveTB previously treated and working in health center decrease the treatment by one month. 
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4. 2 : Time to cure analysis of tuberculosis patients based on the categories of the 
predictors.

Characteristics

No.

Patients

Non

-susceptible

Cured Median Standard 

error 

95%CI of 

median 

Male 328 38 218(75.2%) 6 .04339 [6 ,    6]Sex

Female 173 24 110(73.8%) 6 .0576628   [6,    6]

Infected 51 7 31(70.45%) 6 .1234161 [6,   6]HIV co-

infection Not infected 450 55 297(75.2%) 6 .0358633  [6,    6]

Pulmonary +ve 195 1 145(74.7%) 6 .0644125 [6,    7]

Pulmonary–Ve 170 55 83(72.2%) 6 .0440645  [6,    6]

Smear. 

Test

Extra pulmonary 136 6 100(76.9%) 6 .0638126  [6,    6]

New 441 61 282(74.2%) 6 .0346754 [6    ,6]Regime

nt Treated 60 1 46(77.97%) 6 .1755743 [5,    6]

Health worker 53 9 31(70.45%) 6 .1755743 [5 , 6]Work 

place Non health worker 448 53 297(75.2%) 6 .0346754 [6,   6]

4.1.1. Test of equalities of probabilities across the different groups of categorical 
variables.

Before proceeding to more complicated models, we make a descriptive analysis that will use as 

initiation to our subsequent findings. Here we start with the test of equality of probabilities 

across the different groups of a categorical variable using Log Rank test. The null hypothesis to 

be tested is that there is no difference between the probabilities of an event occurring at any time 

point for each population. The Stata and R results have been summarized in Table 3 below. The 

table shows that the different groups of work place of patient, regiment of patient, sex and

HIV status is statistically not equal in experiencing the cure event, whereas smear test result is 

statistically the same in experiencing the event cure. The Log–Rank test results suggests that 

smear test result is significant covariate whose different levels have an impact in the survival 

longevity of TB patients; while work place of patient, regiment of patient, sex and

HIV status does not have an impact.
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4. 3:Log rank test for equality of survival experience among the different groups of 
covariates

Factor Chi-square DF P-value 

Regiment 3.5 1 0.0618

Smear test result 55.9 2 7.36e-13

HIV test result 2.5 1 0.111

Work place 1.3 1 0.252

Sex 1.5 1 0.223

This indicate there is the significance difference between the categories of smear test result with 

p-value=7.36e-13 on the time to cure of tubeculosis patients.

4.2. Graphical presentation of data
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Figure 4. 1: Kaplan Meier survival plot by covariate sex for modeling time to cure of 
tuberculosis patientsat Jimma University specialized hospital. 
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Of the group of patient based on their gender the survival time of the diseases is greater for the 

female than for the male even if there is no so much gaps between them as supported by the 

logrank test indicates there is no difference on time to cure of the patient based on the sex 

categorie (p=0.223).
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Figure 4. 2:Kaplan Meier curve for the covariate working place for modeling time 
to cure of tuberculosis patients at Jimma University specialized hospital. 

Figure 4.2 indicates that those patients whose work was not related with health centre were low 

survival time with diseases than those health workers. Working at health centre is risk for TB if 

he\she may affected.Directly the curve is not easy to say there is a difference at all. Because,the 

curve is above and below based on time this is supported by logrank test (p=0.252)  work place 

was no significant effect on the time to cure of the patient.
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Figure 4. 3:Kaplan Meier curve by covariate HIV .test for modeling time to cure of 
tuberculosis patientsat Jimma university specialized hospital

Based on figure 4.3 it seems  patients of hiv co-infected were long surviving with diseases 

compared to those not ifected. This implies the patients co-infected were need long period of 

time of folow up than not infected under the use of drug by observing righ tail of the curve, but 

through all the curves it can’t show this trend. So, it is supported by logrank test (p=0.111) there 

is no significant effect of hiv on time to cure of the patient.
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Figure 4. 4:Kaplan Meier curve by covariate regiment for modeling time to cure of 
tuberculosis patients at Jimma University specialized hospital. 

This seems, these patiens who previously treated could be cured in short time than those newly 

comerafter 6 months.  But, the survival of the two group is almost equal. Similarly the 

logranktest shows there is no group variation on time to cure of the patients (p=0.0618) at 5% 

level of significance.
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Figure 4. 5: Kaplan Meier curve for the covariate smear result of the patient. Source: 
Jimma University specialized Hospital

Patients of plumonary positive were stay with diseases longer than the other type of TB and extra 

plumonary TB were also have a long survival probability of the diseases compared to plumonary 

negative. Similarly logrank test shows us p=7.36e-13 which is smear result categories have the 

significant effect on the time to cure of the tuberculosis patients.

4.3. Effect of covariates using the mixture cure model

Data was designed such that each of the selected covariates has an effect on both the cured 

fraction and the survival of the uncured individuals or patients who cured within the follow up 

period. The Use of the standard Cox PH model is linked to the hypothesis that, if complete 

follow-up were possible for all patients, each would have eventually cured from tuberculosis. 

This hypothesis, however, did not hold for the dataset at hand. Some individuals were cured or 

immune against the event, resulting in the fact that cure time distribution was improper as it has 

total mass less than 1.
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 Indeed, from the figure 4.1-4.5, the KME curve levels off at nonzero proportion (around 20%) at 

the right tail and exhibits a relatively long and stable plateau (Figure 4.1-4.5). Combined with the 

fact that the last cure time was censored, this supported the applicability of the mixture cure 

model (McLachlan GJ, Chrishnan T., 1996, Kruk ME, Schwalbe NR, Aguiar CA, 2008).  

Another evidence of the presence of immune individuals in the 2015 cohort of TB patients was 

based on the value of the largest event time (Kruk ME, Schwalbe NR, Aguiar CA, 2008). The 

largest cure time was censored. This led to the rejection of the hypothesis of no immune patient 

in the source population of the cohort which establishing the evidence of sufficient follow-up. 

Added to this, we found 12.37% of non-susceptible, satisfying the cut-off criterion of at least 5% 

of event needed to apply the mixture cure model (McLachlan GJ, Chrishnan T., 1996).

To estimate the probability of cured the logistic cox PH mixture cure model is assumed 

according to (Kuk& Chen, 1992; Peng& Dear, 2000) reference For modeling the influence of 

exploratory variables on the incidence, a logistic regression model is usually chosen and the 

factors affecting the cure probability and fluire time distributions were identified as listed in table 

4.2 below in univariable analysis using semi parametric mixture cure model.
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4. 4: The univariate estimates in modeling time to cure of tuberculosis patients for logistic 
PH mixture cure model

Cure probability model

Covariates Estimate Std.Error Z value Pr(>|Z|)

Weight -0.05117782 0.01801626 -2.840646 4.502222e-03

Sex 0.2048506 0.3110912 0.6584906 5.102230e-01

Age --0.01315393 0.008909613 -1.476375 1.398433e-01

Work place -0.6596622 0.4028949 -1.637306 0.1015666

HIV.test -0.522814  0.397798 -1.31427 0.1887553

smear.result 1.765821 0.4569642  3.864244 0.0001114338

Regment 16.637733 2.0278454  8.204636 2.220446e-16

Failure time distribution model

Weight -0.002096773 0.003111946 -0.6737819  0.50045

Sex1(male) 0.0864443 0.06167498 1.40161 0.1610316

Age -0.001261908 0.002690223 -0.4690719 0.6390182

Workplace1(health worker) 0.007841045 0.1551715 0.05053149 0.9596989

HIV.test1(HIV+) -0.1039459 0.1169365 -0.8889089 0.3740521

Smear.result2(pulmonary 

negative )

0.002775936 0.08304287 0.03342775 0.9733335

Smear.result3(Etra 

pulmonary)

0.045624579 0.08533037 0.53468158 0.5928701

Regment1(previously 

treated)

-0.249114 0.1219655 -2.042496 0.04110235

The Cox PH mixture cure models showed that from the selected covariates regiment is the only 

variable has effects on the time to cure of the uncured individuals and cured individual. Those 

covariates are selected by univariable analysis and those has the significant effect based on their 

p-value in the univariate is included in multivariable fit. Based on their p-value and their 

standard error with logit link the signifiant factors are proposed to next analysed in multivariable 
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analysis. Accordingly weight,age, smear.result and regiment are the significant factor on the cure 

portion and similrly at the same time regiment affect the survival of the diseases at 5% level of 

significant. Based on those significant factors with the same distribution and link function the 

multi-variable analysis are given in table 4.3 below.

4. 5: The multivariable estimates in modeling time to cure of tuberculosis patients for 
logistic-mixture cure model

Cure probability model(cure portion)

Covariates Estimate Std.Error Z value Pr(>|Z|)

Intercept 2.83734016 1.4729411  1.926309 5.406576e-02

Weight -0.07638137 0.02782684 -2.744881 6.053289e-03

smear.result 1.72854423 0.43911592  3.936419 8.270652e-05

Regment 17.14157081 2.23464153  7.670837 1.709743e-14

Failure time distribution model(survival)

Weight -0.001432372 0.003320818 -0.43133125 0.66622753

Smear.result2(pulmonary 

negative)

-0.005579360 0.077912513 -0.07161058 0.94291182

Smear.result3(Extra 

pulmonary)

0.013690014 0.075980771  0.18017735 0.85701334

Regment1(previously 

treated)

-0.246115637 0.115980256 -2.12204772 0.03383373

From the parameter estimates in the cure probability model, the cure rate can be calculated for 

each of cofactors. The cure rate for the weight group is calculated to be

, Suggesting that 1 ‒ 𝜋(𝑤𝑒𝑖𝑔ℎ𝑡) = 1 ‒
𝑒𝑤𝑒𝑖𝑔ℎ𝑡

1 + 𝑒𝑤𝑒𝑖𝑔ℎ𝑡 = 1 ‒
𝑒2.83734016 ‒ 0.07638137

1 + 𝑒2.83734016 ‒ 0.07638137 = 0.05896

5.9% of patients are cured under the effect of weight. However, the p-value for the weight 

variable is significant at α = 0.05 level of significance (p = 6.053289e-03). Therefore, weight has 

a significant effect on the cure rate of the TB patients, and similarly the cure rate at the effect of 

smear result and regiment are 15.5%, and 5.03%, respectively. And even though their p-value 

cannot indicate significances since it have the significant effect in cure rate the excess hazard 
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rates for the covariates are calculated under the assumption of Cox PH. Therefore the hazard of 

pulmonary negative is  times the hazards of pulmonary positive it implies that 𝑒 - 0.00558

pulmonary negative decrease the risk by 1% compared to pulmonary positive and the hazards of 

extra pulmonary TB group was  times hazards of pulmonary Positive TB group. And a 𝑒0.0137

hazard of pulmonary negative is this implies that the risk of 𝑒 - 0.00558 - 0.0137 = 𝑒 - 0.02

plumonaery negative TB type is greater than the risk of extra plumonary TB type. 

4.4. Assesing the accuracy of the model

The accuracy of the model is checked by ploting the predicted survival probabilty versus time 

taken to cure. If the plot shows plateau as time goes to infinity at probabilty above zero the 

model is accurate.
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Figure 4. 6:Predicted survival probability using logistic Cox PH mixture cure model for the 
covariate smear result of the patient.
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Figure 4. 7: Predicted survival probability using logistic Cox PH mixture cure model for the 
covariate regiment of the patient.

From the predicted cure model the plot pulmonary positive is above the two types while Extra 

pulmonary tuberculosis diseases is the bottom line and the middle line was the pulmonary 

negative plot. Based on this it is clearly seen that being attacked by pulmonary positive type of 

tuberculosis patient take more time to be free from the diseases under the TB drug. And 

pulmonary negative is second TB categories which need long time compared to extra pulmonary 

TB categories. From the Predicted survival probability curves of regiment the survival 

probability of the previously treated patients are above the newly come patients. So from this the 

patients of TB if they are treated before the time taken to be free from the diseases is longer than 

those newly affected patients.
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4.5. Semi-parametric survival analysis of uncured group

4.5.1. Parametric baseline hazard distribution

Under the all distribution regiment of the patient, TB categories and weight of the patients were 

having the significant effect on the time to be free from the tuberculosis disease in all 

distribution.  But, the smallest AIC was the good model; accordingly, log normal distribution is 

the appropriate baseline distribution for the Cox PH regression.

4. 6: Baseline distribution comparison based on their AIC for Standard Cox regression

Distribution AIC

Exponential 2108.622

Weibull 1801.363

Logistic 1995.563

Log normal 1667.14

4.5.2.Univariable Analysis using  standard Cox PH regression

From the univariable analysis at 5% level of significance only three variables are significant.  

These were given in table 4.5 below. The hazard of pulmonary negative and extra pulmonary 

were almost equal 2.376 times the hazards of pulmonary positives. Also from 95% confidence 

interval for the hazards ratio the confidence interval were not contain 1 which mean that the 

estimates are different from zero. That means those cofactors were influence the curing time of 

the patients from the diseases. From the coefficient of the estimates age and weight have a 

negative impact on the survival of the diseases compared to below median age and below median 

weight respectively. Similarly pulmonary negative and extra pulmonary TB have positive 

coefficients indicating that they have the positive impact on the survival probability of diseases 

compared to the pulmonary positive TB.
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4. 7: The parameter estimates of the Cox PH fit for the uncured patients in univariate.

Cofactor Estimates Standard 

errors 

95%CI of  HR Hazard ratio p-value

Age -0.006315  0.004835 [0.5198 ,0.8082] 0.993705  0.192

Weight -0.014815  0.004544 [0.9766  ,0.9941] 0.985294  0.00111 **

Sex1(male) 0.1287 0.1170 [0.9043  , 1.43] 1.137 0.271

Workplace1

(health worker)

-0.2622 0.1890 [0.5312   ,1.114] 0.7693 0.165

HIV.test1

(HIV positive )

-0.2792 0.1888 [0.5224  ,1.095] 0.7564 0.139

Smear test2 

(pulmonary negative)

0.8654    0.1392 [1.808   ,  3.121] 2.376 5.14e-10 ***

Smear test3

(etra pulmonary )

0.8356 0.1492 [1.721   ,  3.090] 2.306 2.15e-08 ***

Regiment1 

(previously treated)

0.1964 0.1592 [0.8909   ,1.663] 1.217 0.217

4.5.2. Multivariate analysis of time to cure using the Cox’s PH model

For the classical Cox’ PH analysis, covariates included were those with p-value less than or 

equal to 15%. When adjusted for all these potential risk factors at hand, smear result (pulmonary 

positive, pulmonary negative and extra pulmonary) and weight at initiation of treatment are the 

risk factors predicting time to cure from tuberculosis diseases (Table 4.4). HR and 95%CI were 

2.3 [1.808 :3.121] for pulmonary negative and 0.9853 [0.9766 :0.9941] for extra pulmonary. 

Then both direction selection methods are applied using the software and AIC=3455.42 were 

small with the following end covariates. The analysis indicates that at 5% level of significance 

smear test and weight has the significant effect on the curing time of the TB patients. And weight 
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has the negative slope which means at baseline weight, a kilogram increase in weight accelerate 

the time to cure by0.9902.

4. 8 : The parameter estimates of the Cox PH fit for the uncured patients in multivariabe 
case.

Cofactor Estimates Standard 

errors 

95%CI of  HR Hazard 

ratio

p-value

Weight -0.009880  0.004397 [0.9817 , 0.9987] 0.9902 0.0246 *

Smear.test2(pulmonary 

negative)

0.838193   0.141933  [1.7507  ,  3.0538] 2.3122     3.51e-09 ***

Smear test3

(Etra pulmonary)

0.798534  0.149960  [1.6564   , 2.9816] 2.1533 1.01e-07 ***

HIV.test1

(HIV positive )

-0.350887  0.191307 0.4839    1.0244 0.7041     0.0666

The variables significant for the cure portion and survival of the individual case in addition to 

weight and smear result regiment of the patient has an impact on the time to cure of the patients 

but in uncured part here regiment is not statistically significant. 
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4.5. Model diagnosis

4.5.1. Plot of log of cumulative hazard vs log time
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Figure 4. 8: The log cumulative hazard vs log time plot for smear result factor.

For testing the PH assumption where smear=1 pulmonary positive, smear=2 pulmonary 
negative and smear=3 is extra pulmonary TB for Proportional Hazards Mixture Model

It is easy to see that the two curves are not crossover which indicates that the PH assumption is 

appropriate for this data set.

4.5.2. SchoenfeldResiduals.

This schoenfeld residual is one method of assessing the goodness of fit and outlier. If the plot 

shows a flat shape the model is a good fit. And similarly this plot seems flat and the outliers are 

not as much influential as observed below.
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Figure 4. 9: schoenfeld residual plot.

From figure 4.9 there were no observable patterns, which mean that PH-assumption is not 

violated. If this can show increasing or decreasing trend with time the assumption of proportional 

hazard ratio is violated.  Also it is used to examine fit and detect outlying covariate values
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CHAPTER FIVE

5. DISCUSSION AND CONCLUSION

5.1 Discussions
The research was targeted on a positive event which is curing from tuberculosis diseases. Adding 

further urgency to controlling TB, multidrug-resistant TB (MDR-TB) has emerged as a serious 

problem in many parts of the world, including Russia, Latvia, Estonia, Argentina, the Dominican 

Republic, and the Ivory Coast (WHO, 1999). Up to 50 million people worldwide may be infected 

with MDR-TB (WHO, 1999). In low-prevalence countries, drug resistance is generally more 

common in foreign-born populations, most likely reflecting inadequate treatment programs and 

sporadic drug availability in high-prevalence countries (Broekmans, 2000).

The most infectious patients are those with smear-positive pulmonary disease. Delay in the 

diagnoses and treatment of such patients increases the risk of transmission in the community and 

is associated with increased mortality (Rylance J, et al, 2010). The aims of tuberculosis control 

programs are to cure the patients, to reduce transmission, and to prevent the emergence of drug 

resistance (WHO, 2010). Treating drug-resistant TB is notoriously arduous for patients and 

presents huge difficulties for health programmes. 

Most of the second-line TB drugs used to treat drug-resistant TB are known for their relative 

ineffectiveness against the bacilli, meaning a lengthy treatment of up to two years. Patients must 

receive daily injections for up to six months and take a handful of different drugs once or twice a 

day for a further eighteen months or more. Treatment is also fraught with numerous side effects 

which require additional medical management (NathansonE,et al,2004) such intense treatment 

places very big demands on patients. Many have to give up work in order to see their treatment 

through. Some patients who are hospitalized for periods of their treatment are isolated from their 

families, which can again give rise to psychological problems and major loss of income. The 

toxicity of the drugs is perhaps the most striking feature of drug-resistant TB treatment.
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 Indeed, the severity of the side effects has been compared to cancer chemotherapy, with the 

difference that MDR-TB therapy is not administered in cycles, but in a continuum over two 

years. With a long list of commonly experienced side effects added to such a lengthy treatment, 

it is not surprising that many patients give up, some considering the treatment worse than the 

disease((Bong Ngeasham Collins, 2011).

Therefore, in reality analyzing those two groups within 18 month follow up data is knowingly 

making those groups censored. But those censored are the right censored data due to the end of 

the study. This results wrong conclusion in order to account this mixture cure model is best 

survival models. The main aim of the study was to model time to cure of tuberculosis patients 

using mixture cure model by considering the population are two groups. Those susceptible 

(uncured) and non-susceptible (cured or MDR-TB). Then based on the data 12.4% of the patients 

are the patients of MDR-TB and 87.6% are the patients of susceptible one. The median cure time 

for those susceptible groups was 6 months while no one patient is cured with in follow up period 

for the non-susceptible group. Almost seven explanatory variables are included to see the effect 

of them on the cure time of the patient based on the literature and information of the clinicians. 

Those covariates are: Age, Sex, Weight, HIV co-infection, Work place, Regiment and Smear 

test. 

 The effect of those covariates was seen in two different ways. The studies of (Kuk& Chen, 

1992; Peng& Dear, 2000) states for modeling the influence of exploratory variables on the 

incidence, a logistic regression model is usually chosen. According to, studies by [B. Getahun, et 

al, 2011, M. D. F. P. M. de Albuquerque,et al,2009, M. Vasantha, et al, 2008] reported that body 

weight at initiation of treatment was a risk factor for death from TB and is associated with 

survival of patients who begin treatment for tuberculosis. Similarly the studies by [M. P. 

Domingos,et al.,2008, M. Muñoz-Sellart,et al.,2010, M. W. Borgdorff, et al.,1998]  indicates 

types of tuberculosis (positive pulmonary, negative pulmonary, and extra pulmonary 

tuberculosis) were identified as the significant factors for mortality of tuberculosis patients where 

time to event is death using Cox ph. regression with Weibull  baseline distribution  and again the 

studies by (M. D. F. P. M. de Albuquerque,et al.,2009, M. P. Domingos,et al,2008, M. Vasantha, 

et a.l, 2008, T. A. Mathew, T. N. Ovsyanikova, S. S. Shin et al.,2006) also states TB patient 

category (TBC) was statistically associated with death of patients with tuberculosis with the 
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same distribution. My study also found that baseline weight, regiment and smear result (TB 

patient categories) are statistically significant factors for time to cure of TB patients by logistic 

Cox PH mixture cure model and weight at initiation and smear result were significant factor by 

standard Cox regression with lognormal baseline distribution. In addition to these, regiment of 

patients was affecting the cure and survival probability of the patient at the same time so it needs 

a great attention. The lognormal distribution has been used for both the non-mixture and mixture 

cure models (Koti,2001; Sposto 2002) identifies in population based cancer studies age has the 

significant effect on the curing time of cancer with the same model and distribution.

 The effect on the probability of cure by using R-3.3.0 version with package smcure was used to 

analysis the data.  smcure fit and effect of them on the survival probability of uncured patients  

was analyzed with Cox.ph fit. For the smcure fit the logistic Cox PH mixture cure model was 

assumed in order to fit and started from univariable analysis then regiment, weight and smear test 

are identified based on their p-values. And then after the full model is fitted similarly they show 

significant effect on the cure probability (table 4.2). Predicted survival probabilities are plotted 

by using plotpredictsmcure function. And the plot shows that the importance’s of mixture cure 

model. These predictions also measure the accuracy of the model.

For the uncured populations similarly univariable analysis was applied with Cox ph. Model and 

regiment, smear test and weight were identified at 5% level of significance and when the level of 

significance increases to 15% HIV test also significant then it is also proposed to be included in 

the multivariable analysis. Those significant in univariable model by p-value were included in 

multi-variable analysis based on AIC criterion weight and smear test (TB types) was having the 

significant effect on the survival probability of the uncured population (Table4.3) at 5% level of 

significant and HIV. Test is nearly significant at 5% level of significant (p=0.066). Hazard of 

pulmonary negative was 3.2699 times the hazards of pulmonary positive, indicating that patients 

of HIV positive decelerate time to cure by 30% compared to HIV negative. And hazards of extra 

pulmonary were 3.3549 times hazards of pulmonary positive that means extra pulmonary was 

29.8% faster to heal than pulmonary positive. For the regiment of the patient’s hazards of 

previously treated patient was 0.9851 times hazards of newly come patients. Previously treated 

increase the hazards of being cure.  From the Parametric baseline distribution Exponential, 
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Weibull, Logistic and lognormal were tested and based on the AIC of the fit Log normal was 

best fit with (AIC=1679.178) for the Cox ph. fit.

5.2. CONCLUSION

The study identified factors or variables which influence the survival of tuberculosis under 

DOTS at Jimma University specialized hospital. The result showed that baseline weight, 

regiment and smear test result have the significant influence on the cure rate of the MDR-TB 

group and regiment have the significance influence on the survival of the TB patients when 

multivariable logistic Cox PH mixture cure model is used. But in standard Cox regression 

baseline weight and smear test result have the significant influence on the survival of the uncured 

group by the lognormal distribution. The predicted survival probability under the risk factors 

indicates plateau as time of follow up increases, indicating that mixture cure model is better than 

standard survival analysis for the given data. The time to cure for the uncured patients is in 

average 6 months.

5.3. RECOMMENDATION

From the result the maximum time of follow up was 18 months for MDR-TB, but with this time 

period none of patients are cured which indicates that also it need great attention for the 

concerned stakeholders in order to prevent and reduce the time to cure from the diseases since 

TB is curable diseases. In addition to this from the analysis most of the patients 55 of them are 

those extra pulmonary TB types. Therefore, it is better if concerned bodies observe the strategies 

clearly and work on it. Generally In order to mitigate the consequences of TB; concerned 

stakeholders need to design successful mechanisms to improve awareness of the community on 

TB and to reduce time to cure for the MDR-TB patients from seeking care after experiencing TB
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5.4. LIMITATION OF THE STUDY

This study had some limitations: the first is that the study used data from single hospital. Thus, 

the findings of this study should be interpreted very carefully when they are inferred to the 

national level. The second limitation is lack of published literature on our country related to the 

time to cure of tuberculosis using mixture cure model; the references are more of other countries 

outcome. Finally as different literature pointed out, there are different factors that are assumed to 

have impacts on time to cure of tuberculosis patients, such as educational level and life style of 

the patient.  However, data on these variables could not be available in hospital records, so these 

variables were not integrated in this study. 
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