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ABSTRACT 

Background: Arabica coffee (Coffea arabica L.) is the fine flavored, aromatic type makes up 60-

65% of total production and usually fetches the highest prices. Arabica Coffee is the most important 

and backbone of Ethiopian economy, which accounts for an average 60% of export earnings. Coffee 

is a perennial crop which can be harvested multiple times of years, and it is known to be affected 

with a characteristic biennial, which is more pronounced in the species Arabica coffee. The 

immediate objective of this study was to analyze Arabica coffee bean yield longitudinally by using 

Linear Mixed Model (LMM), and to assess its Genotype by Environment interaction (GEI). Coffee 

Bean Yield (CBY), Coffee Yield, and Yield are used interchangeably in this document. 

 

Methods: The data for this study came from coffee variety field trials conducted by Jimma 

Agricultural Research Center (JARC) over several years. The trial was conducted in south west 

Ethiopia across coffee growing areas (Jimma, Agaro, and Metu). The experimental design of the trial 

was RCBD with 4 replications and 17 Arabica coffee genotypes. A complete CBY data set of these 

coffee growing areas which had been collected during 2005-2011 was considered in this study. 

Exploratory Data Analysis (EDA) and LMM were employed for longitudinal analysis, whereas 

combined ANOVA and AMMI model were used for GEI analysis. All analyses were done with the 

help of R statistical package.  

 

Results: The LMM results revealed that the heterogeneous variance function (varIdent(t)) and 

autoregressive order three (AR3) were, respectively, found to give better fit to the variance and 

correlation structure among  measurements of CBY. Biennial interacts significantly with location and 

genotype. The estimated variance of random effect of block associated with intercept and biennial 

were     (b0j) = (221.81)2 and      (b3j) = 145.242, respectively. The result also showed significant 

location by linear and quadratic time effect interactions. Estimates of quadratic time effects for 

Jimma, Agaro, and Mutu were, respectively, -151.51, -66.05, and -4, whereas estimates of linear time 

effects for these locations were 158.92, 158.92, and 31.08, respectively. The combined analysis of 

variance revealed that the genotype, environment, and GEI effects are highly significant (P-

values<0.001). GEI accounted for 16.2% of the total sum of squares and was about 2 times larger 

than that of genotypes. The  AMMI  procedure revealed  that  AMMI-5  was  the  best  truncated  

AMMI  model  that  can  sufficiently  explain  the information contained in GEI. The first three 

interaction principal components (IPC1, IPC2 and IPC3) retained by Gollob’s F-test for graphical 

display accounted for 64.2% of GEI. 

 
Conclusion: The measurements of CBY that are obtained from Arabica coffee tree over time induce 

an autocorrelation which is known as serial correlation. There is initially an increasing and gradually 

a decreasing trend in Arabica CBY over time years with linear rate of growth. There is also a 

differential response of genotypes and environments in the presence and absence of biennially. The 

major factor  that  influence  yield  performance  of  Arabica  coffee in  Ethiopia  is  the  

environment, and  among 17 Arabica coffee genotypes, G1, G2, G3, G7, G8, G9 and G12 have the 

best performance with G1, G2, G3, G8 and G12 being relatively stable across the test environments. 

It was recommended to use information from longitudinal and GEI analysis to investigate the effect 

of time and biennial and the association between genotype and environment in Arabica CBY. 

 Key Words: Arabica Coffee, Biennia, Clustered Longitudinal Data, GEI, LMM  
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1. NTRODUCTION 

1.1. Background 

Arabica coffee (Coffea arabica L.) belongs  to  the  genus  Coffea  in  the  Rubiaceae  family  

and  is  a  self-fertile allotetraploid  species that is mostly grown in the tropical and  subtropical  

regions(Berhanu et al, 2015).  Of the 124 species in the genus Coffea, Arabica coffee (Coffea 

arabica L.) and Robusta coffee (Coffea canephora P.) are the two most important commercial 

species (Gichuru, et al, 2008; Davis et al, 2011, as cited in Lemi, 2016). 

 

Economically, coffee is the second most exported commodity after oil, and employs over 100 

million people worldwide (Gray et al., 2013). According to ECEA (2008), coffee is exported in 

its raw, roasted, or soluble product forms to more than 165 countries worldwide by more than 

121 countries, and about 17 of these countries get 25 percent of their foreign exchange earnings 

from coffee. Among 124 species of coffee (genus Coffea) (Davis et al, 2011), Arabica coffee and 

Robusta are the two botanical varieties which originate from Africa and consumed widely as 

non-alcoholic stimulant beverage in the world (Nuhu, 2014). Arabica coffee is the fine-flavored, 

aromatic type makes up 60-65% of total production and usually fetches the highest prices, 

whereas Robusta is easier to produce and more resistant to disease (Hilten, 2002, Chauhan, 

2015).  

 

In Africa, coffee is one of the most important commodities generating substantial income to rural 

communities, contributing to the fight against extreme poverty and key to achieving sustainable 

development. It accounts for the primary source of income for more than 10 million households 

in 25 African coffee-growing countries. Some of these countries depend on coffee as a primary 

source of income for their rural population and an important source of export revenues. It is a 

vital contributor to foreign exchange earnings in addition to accounting for a significant 

proportion of taxable income and Gross Domestic Product (ICO, 2015)  

 

Ethiopia is the birth place of Arabica coffee that originates in the southwest area of the country 

(Bart et al, 2014), a fact of which Ethiopians is understandably proud (Kassahun et al., 2008). It 

is from this part of the country that coffee spread to the rest of the world and constituted the 

ancestor of the present day coffee plantations across the globe. Many researchers consolidate the 



 

2 
 

idea that Ethiopia is the primary center of origin and genetic diversity of Arabica coffee with 

considerable heterogeneity (Kassahun et al., 2008; Taye, 2011). As the country of origin for 

crop, Ethiopia produces premium quality Arabica coffee and is the leading producer in Africa, 

and the 5th in the world, following Brazil, Vietnam, Colombia and Indonesia (ICO, 2015). In the 

country, at least 15 million people directly or indirectly rely on coffee for their livelihood 

(Ministry of Trade, 2012; Gray et al. 2013). Ethiopia is also the second largest exporter of 

organic coffee by volume after Peru (Kodama, 2009). Generally, coffee is most important and 

backbone of Ethiopian economy, which accounts for an average about 5% of GDP, 10% of the 

total agriculture production and 60% of export earnings (Chauhan et al., 2015).  

 

The land covered with coffee in Ethiopia is very large and is estimated to range from 400,000 to 

650,000 ha.( Jefuka et al., 2012, as cited in Yonas et al, 2014b), and  total coffee production is 

about 200,000 tones of clean coffee per year (Chauhan et al., 2015). Despite the role coffee plays 

in the national economy and in spite of  the country is origin of Arabica coffee, the national 

average coffee yield level is low as compare to major coffee growing regions in the world (Taye 

et al, 2011b). The factors attributed to such low productivity include lack of resistant variety to 

various diseases and insect pests and poor agronomy practice (Workafes et al., 2000). Lack of 

suitable varieties that exhibit stable performance across wide ranges of environments is also one 

of the major factors attributed to low productivity of Arabica coffee (Yonas and Bayetta, 2008).   

 

Arabica coffee grows in Ethiopia in several places at various altitudes ranging from 550 -2750 

meters above sea level (Quintin et al., 2013). The major producing areas are concentrating in the 

southwestern part of Ethiopia where Arabica coffee originated and diverse (Kassahun, 2008; 

Taye et al, 2011a). Arabica coffee grows under very diverse environments including annual 

rainfall (1000 – 2000 mm), temperature (minimum 8 – 15 
0
C, maximum 24 – 31 

0
C) and soil 

type, and this has a lot contribution to the high genetic diversity and as though high yield 

variability within Arabica coffee in the country (Mesfin and Bayetta, 1987). Yonas (2005) 

pointed out that there is strong variation within southwestern region of Ethiopia due to climatic 

and edaphic variations along altitudinal gradient. Environment and genotype have roles in 

determining the yield of Arabica coffee and they are also important factors for breeding purpose 
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(Tesfaye et al., 2008; Alemseged and Tesfaye, 2012). Since Ethiopia has both wide genetic 

diversity and diverse environment for growing Arabica coffee, conducting multi-location trial 

over years is important to assess GEI and  identify stable genotype which can increase 

productivity of Arabica coffee in the country (Yonas, 2014a).  

 

This study was greatly intended to model multi environment coffee yield data using cluster 

longitudinal data-modeling framework. Longitudinal data is a term refers to measurements made 

repeatedly over time to study how the subjects evolve over time. Observations from cross 

sectional data are uncorrelated but in longitudinal study the measurements made for subjects 

over a period of time are correlated.  Longitudinal studies play a prominent role in almost all 

endeavors. They are indispensable to the study of change in an outcome over time. By measuring 

study participants repeatedly through time, longitudinal studies allow the direct study of 

temporal changes within individuals and the factors that influence change (Fitzmaurice et al., 

2009). Laird and Ware (1982) proposed a flexible class of linear mixed-effects models for 

longitudinal data. These models could handle the complications of mistimed and incomplete 

measurements in a very natural way.  

Correspondingly, the study also aimed to assess the effect GEI in coffee yield to investigate 

performance coffee genotypes across environment. In previous studies, a number of parametric 

statistical procedures have been elaborated over the years to analyze genotype by environment 

interaction and yield stability over environment. These statistical methods broadly categorized in 

to two classes, univariate and multivariate models.  Univariate models encompass a range of 

models, such as combined ANOVA, regression slope, deviation from regression, environmental 

variance, and Kang's yield-stability (Eberhart & Russell, 1966; Freeman, 1973; Chakroun et al., 

1990). Multivariate models are more powerful and flexible to investigate GEI, and they have 

gotten special attention in theory and application (Zobele et al, 1988; Girma et al, 2000; Girma 

and Dan, 2014). These models are linear-bilinear models such as, AMMI, Site Regression 

(SREG), Genotypic Regression (GREG), Completely Multiplicative Model (COMM) and Factor 

Analytic (FA).  

 



 

4 
 

The AMMI model combines the analysis of variance for the genotype and environment main 

effects with principal component analysis of the genotype by environment interaction.  It has 

proven useful and widely used for understanding complex GEI (van Eeuwijk, 1995; Girma, 2000 

Zelalem, 2011; Dejene, 2016). The results can be graphed in a useful bi-plot that shows  both  

main  and  interaction  effects  for  both  genotypes  and  environments.  

 

1.2. Statement of the Problem  

In Ethiopia, agriculture is the backbone of the economy, employs about 85% of the population 

and account for around 90% of foreign exchange and 40% of the growth domestic product 

(Chauhan et al., 2015). Even thought Ethiopia is the center and origin of several crops (IBC, 

2008), the increase in human population and the decrease in arable land cause the country fail to 

increase agricultural production output. With this scenario, therefore, the best strategy of 

increasing production of agricultural output is by increasing productivity per unit area using 

improved and reliable production technologies which are achieved by proper statistical design 

and model (Girma, 2010). Accordingly, plant breeders conduct multi-location trials over years to 

evaluate yield performance of genotypes across environment and to assess the GEI interaction, 

aiming to release quality, stable, high yielder, and disease resistant improved varieties.  Such 

improved variety can be obtained after rigorous breeding and selection procedures that involve 

testing of a large collection of genotypes across diverse environments and use of efficient 

statistical methods (Asfaw et al., 2011, as cited in Degene, 2016).  

  

Data collected in multi-location trials are intrinsically complex, having three fundamental 

aspects: structural patterns, nonstructural noise and relationships among genotypes, 

environments, and genotypes and environments considered jointly (Crossa, 1990). For the 

analysis of such data especially for GEI interaction, various statistical methodologies have been 

extensively reviewed and documented (Zelalem, 2011; Hasan et al., 2011; Degene, 2016). 

Among these statistical methodologies, the most commonly used statistical techniques for 

analyzing multi-environment trial (MET) data are the combined analysis of variance (ANOVA) 

and linear regression techniques. However, they are open to criticism due to the fact that they do 

not discern patterns of the underlying genotype by environment interaction, and the assumptions 

of normality, independency and constant variance may not be always satisfied (de Resende, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3594989/#B43
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2007). Another statistical method that commonly used in agricultural researches is the additive 

main effect and multiplicative interaction effect (AMMI) model. But, current studies show that 

the linear mixed model is more powerful than AMMI model because of its flexibility in the 

assumption of ANOVA and missing data (de Resende, 2007; Crossa et al., 2010, as cited in 

Degene, 2016). 

 

However, such extensive studies have been well reviewed and documented on annual crops but 

not that much for perennial crops like coffee by differ the distinction between them.  Field trials 

with perennial crops give rise longitudinal measurements taken on the same plot on several 

occasions (Piepho and Eckl, 2014). So, it is important to account for correlation among repeated 

measurements in such trials. Similarly, time effects need to be taken into account to avoid 

overestimation in genetic parameters and thereby estimate genetic trend (longitudinal evolution) 

(Laidig et al., 2014).   

 

Coffee is a perennial crop with more than 124 species of which Arabica coffee is economical 

important (Gichuru et al, 2008).  Like annual crops, coffee breeders generate multi-location trial 

data over year to evaluate the yield performance of coffee genotypes across location over year. 

Again, the statistical methods which used to analyze such data are also open to criticism not only 

due to the correlation among measurements but also the biennial property of coffee (Rodriguez et 

al., 2013).  Biennial is a phenomenon that occurred in two year interval which results alternation 

of high and low yield along with  consecutive years, and it is more pronounced in the species 

Arabica coffee. (Taye et al., 2001; Tesfaye et al., 2002; Bernardes et al, 2012; Rodriguez et al., 

2013) 

 

In Ethiopia, due to the wealth of coffee ecology and the dominant role of Arabica coffee in the 

national economy, the country is emerged with an opening opportunity to carry out coffee 

research aiming to increase coffee productivity with improved technologies (Taye et al., 2001; 

Bayetta et al., 2008). Accordingly, in the conventional linear model setting, various studies have 

been conducted to analyze the effect of genotype, environment, and to asses GEI interaction and 

yield stability of Arabica coffee regardless of its longitudinal (repeated since perennial) and 

biennial property. Thus, no information is available on the correlation among measurements of 
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coffee, longitudinal time effect (genetic trend or evolution of coffee yield over time), and 

biennial effect. By using linear mixed model, therefore, handling these open criticisms is a great 

deal of interest in this study.     

In general, the motivation behind this study is intended to address the following research 

questions in two major approaches  

 

 Longitudinal Analysis  

 How does the yield of coffee change over time/year?  

 Is there significant biennial effect on the yield of coffee? 

 Is there significant correlation among measurements of coffee yield over year? 

 

 Genotype by Environment Interaction Analysis(GEI) 

 Is there significant coffee genotype by Environment interaction? 

 How do coffee genotypes perform across environment? 

 

1.3. Objective of the Study 

1.3.1. General objective 

To model Arabica coffee bean yield longitudinally by using Linear Mixed Model (LMM), and to 

assess its Genotype by Environment Interaction (GEI) 

1.3.2. Specific objectives 

 To assess the evolution of coffee bean yield over time  

 To investigate  the effect of biennial in coffee bean yield  

 To model the variance and correlation structure  among repeated measurements of coffee 

bean yield 

 To assess effect of genotype by environment interaction in coffee yield 

1.4. Significance of the Study  

The result of this study will provide information of how the yield of coffee changes over time, 

the effect of biennial in Arabica CBY, and the relation between coffee genotype and 

environment. Specifically, 
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 To provide more valid and reliable information about the factors which affect coffee 

yield 

 To provide information for coffee researchers on longitudinal data analysis approach 

for multi-location trial over year. 

 Use as a stepping stone for further studies related to multi-location trial over year for 

perennial crops like coffee. 
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2. LITERATURE REVIEW 

2.1. Origin and Genetic Diversity Coffee 

The coffee plant is indigenous to Africa, and it was in Ethiopia that the habit of drinking coffee 

first developed (ICO, 2015). Ethiopia is widely regarded as the birth place of coffee (Amamo, 

2014). The name ‘coffee’ is believed to originate from the name of the province Kaffa in the 

southwestern part of the country, where according to legend; a goat herder discovered coffee 

beans during the sixth century A.D. (Gomez-Ruiz et al., 2007). Coffee is under-story plant of the 

ever-green afromontan rain-forest of the southern western part of the country and it originated in 

the southwestern part of Ethiopian highland where it was first discovered (Getachew et al., 

2013). It is from this part of the country that coffee spread to the rest of the world and constituted 

the ancestor of the present day coffee plantations across the globe (Kassahun et al., 2008). 

On the perspective of coffee genetic diversity, researchers have seen that the country possesses a 

diverse genetic base for Arabica coffee with considerable heterogeneity (Yonas and Bayata, 

2008; Bayetta, 2011).  Many native researchers consolidate the idea that Ethiopia is the primary 

center of origin and genetic diversity of coffee (Arabica coffee) with considerable heterogeneity. 

Tesfaye (2006) reported that there was high genetic variability within and between different wild 

populations in Ethiopia. He further noted that these populations of Arabica coffee in the montane 

rainforests are the most important, and are genetically distinct and more diverse when compared 

to the cultivated varieties grown in Ethiopia and around the world. According to Anthony et al. 

(2002) and  Denich  et  al. (2006), this was also confirmed by the fact that within small area, the 

wild coffee plants of Ethiopia  have  relatively  high  genetic  variability  as  compared  to  the  

wild  coffee of other countries that  showed  a  characteristically  low  genetic  diversity. 

Moreover,  the  existence  of  high  genetic  diversity  of  coffee  plants  is  due  to Ethiopia’s 

suitable altitude, ample rain fall, optimum temperature and planting materials. Generally, 

Arabica coffee from southwest of Ethiopia showed a relatively high genetic diversity (Anthony 

et al., 2001; Anthony et al., 2002; Chaparro et al., 2004). 

 

2.2. Worldwide Production and Economy of Coffee  

Coffee is one of the most important traded commodities in the world. The coffee sector’s trade 

structure and performance have large development and poverty implications, given the high 

concentration of production by small-holders in poor developing countries (ICO, 2015).  
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Coffee’s global value chains are quickly transforming because of shifts in demands and an 

increasing emphasis on product differentiation in importing countries (Ponte, 2002; Daviron and 

Ponte, 2005). There is a growing willingness-to-pay for premium; high quality coffee by rich 

consumers and the demand for specialty and certified coffee is on the rise. These changes have 

important implications for a number of the poorest developing countries, as most coffee 

production takes place in these countries, even though most coffee consumption is in developed 

countries (Ponte, 2002; Pendergrast, 2010).  

 

Coffee is cultivated by over 4 million primarily smallholder farming households (CSA, 2013) 

and with those employed in ancillary activities to coffee production, even more households are 

dependent on coffee for part of their livelihoods.  Ethiopia is also unique in Africa in so far as it 

has a strong domestic coffee consumption culture, which frequently accounts for over half of 

production (ICO, 2015).  

 

The two coffee species currently used for commercial purposes are Arabica Coffee and Robusta 

Coffee. Ethiopia only produces Arabica coffee, which is widely believed to have originated 

there. Arabica coffee still grow in wild in the forests of the south-western part of the country, 

which remains an important source of genetic resources for the world coffee industry (Gole et al, 

2002). 

 

2.3. Importance of Coffee in the Ethiopian Economy 

Agriculture is the main sector in the national economy of Ethiopia, employs about 85% of the 

population. It account for around 90% of foreign exchange and 40% of GDP. The coffee industry 

dominates agriculture sector in its contribution to the national economy in general and export 

sector in particular (Birhe, 2010). This implies that the sector is the back bone of Ethiopian 

Economy. Coffee in Ethiopia accounts for 25% of GNP, 40% of total export and 10% of total 

government revenue (MoARD, 2007). It also accounts for an average 5% of GDP, 10% of the 

total agriculture production and 60% of export earnings (Girma, 2011). Coffee has always been 

the Ethiopia’s most important cash crop and largest export commodity, which account 90% of 

exports and 80% of total employment (CSA, 2008). In 2015, Ethiopia produces 6.4 million bags, 

making it the leading African coffee producer and the five largest producers in the world, and 
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also exported 3.2 million bags, ranked it the most important African coffee exporter and the 

eighth largest exporter in the world (ICO, 2015).   

  

Coffee has thus significant impact on the socio-economic life of the people and economic 

development of the country. It is estimated that more than 15 million people are directly or 

indirectly engaged in the production, processing and trading of coffee. Coffee plays a significant 

role in the Ethiopian export earnings (ICO, 2013). 

 

2.4. Alternate Bearing in Perennial Crops (Biennial) 

Problems of alternate (biennial) bearing in perennial plants (especially in fruit trees) have been 

reviewed and documented (Singh, 1948; Davis, 1957; Singh, 1971; Jonkers, 1979). The term 

biennial bearing is used sometimes interchangeably with alternate bearing, and it is the 

phenomenon observed in most of perennial crops that results not bear regular crop   year after 

year rather heavy yields are followed by extremely light ones and vice-versa (Pearce and 

Urbane- Urbanc, 1967). Biennial (alternate) bearing also refers to the tendency of an entire tree 

to produce a greater than average crop one year, and a lower than average crop the following 

year. 

 

According to Bernardes et al. (2012), a coffee plot exhibits high and low production in alternated 

years, and it is a characteristic called biennial yield.  Rodrigues et al. (2013), also reports that 

coffee plantations present large spatial and temporal variability of yield, and the variation along 

the years with high and low productions is known as biennially.  The phenomenon biennial is 

more pronounced in the species coffee Arabica, but it is also present in Robusta coffee, usually 

less intense due to its mitigation with the pruning practices and alternation of the plagiotropic 

branches in production (Taye et al, 2011; Rodrigues et al., 2013; Omondi et al., 2016). This 

biennial alternation of yield is the result of the physiological nature of the coffee plant, which 

needs to vegetate along a year to sustain the fruit production in the next year (Davis, 1957).  

 

The occurrence of biennially in coffee plants is connected to a source-sink relationship existing 

between fruit and leaves.  Leaves are sources of photosynthesis while the growing tissues act as 

sinks.  As both of the reproductive   and   vegetative   growths   occur simultaneously, the plant 
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needs to balance the partition of photosynthesis for both processes (Barros, 1997). In  years  of  

high  production,  the  plant  directs  the photosynthesis  to  the  formation  and  growth  of  

fruits, reducing the formation of new vegetative buds. In years of low production, the 

photosynthesis is directed to the formation of new vegetative buds that will produce new 

branches.  Therefore,  the  over  production  of  fruits  in  a year  causes  a  reduction  in  growth  

in  the  current  year, exhausting the metabolic reserves for the fruit production. Consequently, 

the growth is restricted and the emission of new plagiotropic branches is limited, compromising 

the fruit production of the next season (Picini, 1998). Additionally,  this  relationship  between  

leaf  biomass  and  coffee  yield  is  influenced  by  the occurrence of diseases, especially coffee 

rust (Hemileia vastatrix) (Costa et al., 2006). In years with high production, rust infestations are 

more severe resulting in high leaf fall after harvest and, consequently, it causes yield reduction 

the  following  year  Therefore,  the  occurrence  of  rust  in  years  of  high  yield accentuates the 

effect of coffee biennially (Zambolim et al., 2002 ) 

 

2.5. Difference among Clustered, Repeated Measures, Longitudinal, and Clustered 

longitudinal data 

According to (west et al., 2014), clustered data is a data sets in which the dependent variable is 

measured once for each subject (the unit of analysis), and the units of analysis are grouped into 

or nested within clusters of units. For example, the math scores of students (the units of analysis) 

nested within classrooms (clusters of units), which are in turn nested within schools (clusters of 

clusters). This type of data set is defined to be three-level clustered data set. Repeated measures 

data quite generally as data sets in which the dependent variable is measured more than once on 

the same unit of analysis across levels of a repeated-measures factor (or factors). The repeated-

measures factors, which may be time or other experimental or observational conditions, are often 

referred to as within-subject factors. 

 

 Longitudinal data is data sets in which the dependent variable is measured at several points in 

time for each unit of analysis. We usually conceptualize longitudinal data as involving at least 

two repeated measurements made over a relatively long period of time. In some cases, when the 

dependent variable is measured over time, it may be difficult to classify data sets as either 

longitudinal or repeated-measures data. In the context of analyzing data using LMMs, this 
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distinction is not critical. The important feature of both of these types of data is that the 

dependent variable is measured more than once for each unit of analysis, with the repeated 

measures likely to be correlated. Clustered longitudinal data sets combine features of both 

clustered and longitudinal data. More specifically, the units of analysis are nested within clusters, 

and each unit is measured more than once.  Generally clustered, repeated-measures, and 

longitudinal data are hierarchical data sets, because the observations can be placed into levels of 

a hierarchy in the data (West et al., 2014). 

 

2.6. The Concept of Levels in Data Structure 

The concept of “levels” of data is based on ideas from the hierarchical linear modeling (HLM) 

literature (Raudenbush and Bryk, 2002). All data sets appropriate for an analysis using LMMs 

have at least two levels. Very often data sets in HLM may exist as a two-level or three-level 

structure, depending on how many levels of data are present. Level 1 denotes observations at the 

most detailed level of the data. In a clustered data set, Level 1 represents the units of analysis (or 

subjects) in the study. In a repeated-measures or longitudinal data set, Level 1 represents the 

repeated measures made on the same unit of analysis. The continuous dependent variable is 

always measured at Level 1 of the data. Level 2 represents the next level of the hierarchy. In 

clustered data sets, Level 2 observations represent clusters of units. In repeated-measures and 

longitudinal data sets, Level 2 represents the units of analysis. Level 3 represents the next level 

of the hierarchy, and generally refers to clusters of units in clustered longitudinal data sets, or 

clusters of Level 2 units (clusters of clusters) in three-level clustered data sets.  Continuous and 

categorical variables can be considered at different levels of the data, and these variables refer to 

the variables as Level 1, Level 2, or Level 3 variables. 

 

2.7. Models for Gaussian Longitudinal Data 

The analysis of change is a fundamental component of so many research endeavors in almost 

every discipline. Many of the earliest statistical methods for the analysis of change were based 

on the analysis of variance (ANOVA) paradigm, as originally developed by R. A. Fisher.  Before 

it was put on a more formal theoretical footing in the seminal work of R. A. Fisher, Airy (1861) 

laid the foundations for the linear mixed-model in a longitudinal study.   
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Scheff´e (1956) provides a fascinating discussion of the early contributions to the development 

of the theory of random-effects models. As such, it can be argued that statistical methods for the 

analysis of longitudinal data, in common with classical linear regression and the method of least 

squares have their earliest origins. On the one hand, the univariate repeated-measures ANOVA 

model provided a natural generalization of Student’s (1908) paired t-test to handle more than two 

repeated measurements, A special case of the repeated-measures analysis by MANOVA is a 

general approach known as profile analysis (Box, 1950; Geisser and Greenhouse, 1958; 

Greenhouse and Geisser, 1959). It proceeds by constructing a set of derived variables, based on a 

linear combination of the original sequence of repeated measures, and using relevant subsets of 

these to address questions about longitudinal change and its relation to between-subject 

factors.The linear mixed-effects model is the most widely used method for analyzing 

longitudinal data. Although the early development of mixed-effects models for hierarchical or 

clustered data can be traced back to the ANOVA paradigm (Scheff´e, 1959) and to the seminal 

paper by Harville (1977), their usefulness for analyzing longitudinal data, especially in the life 

sciences, was highlighted by Laird and Ware (1982). Laird and Ware (1982), drawing upon a 

general class of mixed models introduced earlier by Harville (1977), proposed a flexible class of 

linear mixed-effects models for longitudinal data. These models could handle the complications 

of mistimed and incomplete measurements in a very natural way the.  

 

The linear mixed-effects model proposed by Laird and Ware (1982) included the univariate 

repeated-measures ANOVA and growth curve models for longitudinal data as special cases. In 

addition, the Laird and Ware (1982) formulation of the model had two desirable features: first, 

there were fewer restrictions on the design matrices for the fixed and random effects; second, the 

model parameters could be estimated efficiently via likelihood based methods. To estimate 

parameters, Jennrich and Schluchter (1986) proposed a variety of alternative algorithms, 

including Fisher scoring and Newton–Raphson. Currently, maximum likelihood and restricted 

maximum likelihood estimation, the latter devised to diminish the small-sample bias of 

maximum likelihood, are the most frequently employed routes for estimation and inference 

(Verbeke and Molenberghs, 2000; Fitzmaurice, Laird, and Ware, 2004). 
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2.8. The Concept of Random Factor, Random Effect, Fixed Factor and Fixed Effect 

Here we need to describe and define concepts of fixed and random effects that are applied in 

mixed effects model. The distinction between fixed and random factors and their related effects 

on a dependent variable are critical in the context of LMMs. According to West et al. (2014), a 

fixed factor is a categorical or classification variable, for which the investigator has included all 

levels (or conditions) that are of interest in the study. Levels of a fixed factor are chosen so that 

they represent specific conditions, and they can be used to define contrasts (or sets of contrasts) 

of interest in the research study. A random factor is a classification variable with levels that can 

be thought of as being randomly sampled from a population of levels being studied. All possible 

levels of the random factor are not present in the data set, but it is the researcher’s intention to 

make inferences about the entire population of levels.  

 

Thus, West et al. (2014) also describe that the classification variables that identify the Level 2 

and Level 3 units in both clustered and repeated-measures/longitudinal data sets are often 

considered to be random factors. Random factors are considered in an analysis so that variation 

in the dependent variable across levels of the random factors can be assessed, and the results of 

the data analysis can be generalized to a greater population of levels of the random factor. In 

contrast to the levels of fixed factors, the levels of random factors do not represent conditions 

chosen specifically to meet the objectives of the study. However, depending on the goals of the 

study, the same factor may be considered either as a fixed factor or a random factor. 

 

According to Fitzmaurice (2009), fixed effects, called regression coefficients or fixed-effect 

parameters, describe the relationships between the dependent variable and predictor variables 

(i.e., fixed factors or continuous covariates) for an entire population of units of analysis, or for a 

relatively small number of subpopulations defined by levels of a fixed factor. Fixed effects may 

describe contrasts or differences between levels of a fixed factor in terms of mean responses for 

the continuous dependent variable, or they may describe the effect of a continuous covariate on 

the dependent variable. Fixed effects are assumed to be unknown fixed quantities in an LMM, 

and we estimate them based on our analysis of the data collected in a given research study. 

Random effects are random values associated with the levels of a random factor (or factors) in an 

LMM.  
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2.9. Genotype by Environment Interaction 

GEI is a large and complex phenomenon. However, it is an extremely important occurrence that 

has strong ecological, evolutionary, and commercial implications.  Studying GEI not only 

provides models for quantitative analyses but will lead to improved breeding in both cultivated 

(agriculture) and natural (conservation) populations (Crossa, 1990; Magari and Kang, 1993; 

Basford and Cooper, 1998). The  phenotype characteristic of  an  organism is  always determined  

by  both  the  genotype  and  the environment (Boughey, 1973).  However, these  two  effects  are  

not  always  additive  which  indicates  that genotype by  environment  interactions  (GEI)  is  

present. The GEI result in inconsistent performances between the genotypes across 

environments. Significant GEI results from the changes in the magnitude of differences between 

genotypes in  different  environments  or  changes  in  the  relative  ranking  of  the  genotypes 

(Falconer, 1952; Fernandez, 1991) 

 

Genotype by environment interaction (GEI) can be defined as the differential response of 

varying genotypes under change(s) in the environment (Mather and Caligari, 1976). It is an 

important aspect in both plant breeding programs and the introduction of new crop, and can 

occur when specified genotypes are grown across diverse environments (Zobel, 1990). 

Genotypes are assumed by observing differential effects on their expression.  This implies that 

the most popular method of determining GEI is by studying the resulting phenotypes under the 

influence of the environment.  However, Mather and Caligari (1976) suggest that because 

variation in a character may result from variation in either genotype or environment, heritable 

and non-heritable character variation cannot be determined by only inspecting the phenotypes. It 

is important to know the environment of an organism and its genetic history.  Common 

environmental factors in GEI studies include locations, growing seasons, years,  rainfall,  the  

amount  of  precipitation  received  in  each  season,  temperature,  etc which may have positive 

or negative impact on genotypes (Dean, 1995).  

 

Genotypic variation originates from differences in the genome of different individuals whereas 

phenotypic variation occurs when individuals are exposed to different environmental parameters 

during the development of similar genomes.  In phenotypic variation, individuals adapt in 

response to specific environmental changes. The association between the environment and the 
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phenotypic expression of a genotype constitute the GEI, and it has profound implications on the 

evolution of species (Reano, 2010, as cited in Zelalem, 2011).  Lande and Shannon (1996) 

suggest that in constant or unpredictable environments, genetic variance reduces population 

mean fitness and increases the risk of extinction. In the short-term, genetic variability is often 

less critical than other determinants of population persistence (Lande, 1988).  But over time, it 

can play the decisive role in allowing a population to persist and adapt in a changing 

environment (Lande and Shannon, 1996).  

 

2.10. The Concept of Stability 

The yield stability is one of the most desirable properties of a genotype to be released as a variety 

for cultivation. Stability is a complex product of genetic yield potential to stress conditions. The 

yield stability is influenced by several factors, such as environmental factors, agricultural 

managements and pest pressures (Hu and Buyanovsky, 2003; Berzsenyi and Dang, 2008). 

Breeding genotypes that are adapted throughout a reasonable large geographical area and that 

show   some degree of stability from year to year is a major problem facing plant breeders. As a 

result, several methods of measuring and describing genotypic response across environments 

have been developed a utilized. For this purpose, multi-locational trials, over a number of years 

are conducted (Luthra et al, 1974). The level of performance of any character is a result of the 

genotype (G) of the cultivar, the environment in which it is grown (E), and the interaction 

between G and E (GEI).  

 

Genotype x environment interaction (GEI) exists when the responses of two genotypes to 

different levels of environmental stress are not consistent (Allard and Bradshaw, 1964). GEI 

greatly affect the phenotype of a variety, so the stability analysis is required to characterize the 

performance of varieties in different environments, to help plant breeders in selecting varieties. 

Instability is the result of cultivars response in different environments which usually indicates a 

high interaction between genetic and environmental factors (Jusuf et al., 2008; Lone et al., 

2009). Grain yield depends on genotype, environment and management practices and their 

interaction with each other. Under the same management conditions, variation in grain yield is 

principally explained by the effects of genotype and environment (Luquet et al., 2006). 

Interaction between these two explanatory variables gives insight for identifying genotype 
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suitable for specific environments. The environmental effect is typically a large contributor to 

total variation (Blanche et al., 2009). The analyses of genotype x environment has focused on the 

identification of stable genotype for cultivation.  

 

2.11. Related Empirical Literature Review  

2.11.1. Longitudinal study 

Longitudinal studies play a prominent role in various endeavors including agricultural sciences. 

They are indispensable to the study of change in an outcome over time. By measuring study 

participants repeatedly through time, longitudinal studies allow the direct study of temporal 

changes within individuals and the factors that influence change (Fitzmaurize et al, 2008). The 

repeated measurements taken over time give rise to a complex random error variance covariance 

structure which needs especial concern in the analysis (piepho et al, 2014). Thus, multi location 

trials conducted over year for perennial crops give rise to such data that taken on the same plot 

on several occasions. 

 

The statistical methods that employed to analyze longitudinal data initially were based on the 

analysis of variance (ANOVA) paradigm, as originally developed by R. A. Fisher. There has 

been a remarkable advancement in statistical methodology basing form ANOVA till the repeated 

measures analysis by MANOVA. However, while these methods can provide a reasonable basis 

for a longitudinal data analysis in cases where the study design is complete and quite simple, 

they have many shortcomings that have limited their usefulness in applications (Fitzmaurize et 

al, 2008). Finally, Laird and Ware (1982) proposed a linear mixed model for longitudinal data 

that could handle issues of unbalanced data, due to either mistimed measurement or missing data, 

could handle both time-varying and time-invariant covariates, and provided a flexible, yet 

parsimonious, model for the covariance.  

 

Some recent empirical works have used the mixed effect model to exploit the correlation among 

repeated measurements of perennial crops that conducted in multi location over year.   Thus, 

Piepho and Eckl(2014) conducted a longitudinal analysis on a perennial ryegrass varieties with 

annual yields recorded per plot for three consecutive years in southern Germany. Their main 

object was to account for the correlation among repeated measurements in such trials. 
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Accordingly, they found a significance serial correlation that can be adequately captured by 

fitting autoregressive order (AR1) model. In Ivory Coast, Cilas et al. (2011) have also conducted 

a longitudinal analysis on Robusta coffee to estimate the correlation among measurements of 

coffee yield over year. Regardless of biennial and time effect, they quantified this correlation 

using Compound Symmetry model. In similar way, in Brazil, de Resende (2006) investigated the 

correlation among yield measurements of tea plant using ARH model. These authors also pointed 

out that it needs new modeling approach not only for longitudinal correlation but also both 

special and longitudinal correlations simultaneously. 

 

However, these studies aimed at only the comparison of several models for correlation among 

measurements of perennial crop, and the effect of time and biennial was not considered. There 

was no clear published literature relating to longitudinal analysis on yields of Arabica Coffee in 

the linear mixed model setting including time variant factor biennial to investigate the effect 

biennial and trend of coffee yield. But in Brazil, Rodriguez et al. (2013) investigated only the 

effect of biennial on the genotypes of Robusta coffee. by calculating the magnitude of biennial 

(i.e., by subtracting the mean production of the years of low production from the mean of the 

years of high production based on an even number of years). The result showed high yield 

variation between years of high and low productions and variation among genotypes on their 

calculated biennial means. 

 

2.11.2. Genotype by Environment Interaction Study (GEI) 

Genotype by environment interaction (GEI) is an important phenomenon, and it is a deferential 

response of genotypes across environments (often location–by–year combinations) (Gauch, 

2013, Rodrigues et al., 2014)). This phenomenon is  an enormous importance  to  plant  breeders,  

production  agronomists,  biometricians  and  other  agricultural experts. This is due to the fact 

that the presence of GEI  determines  if  a  genotype  is  widely adapted for  an  entire  range  of  

environmental conditions or separate  genotypes must be selected for different sub environments. 

  

Since GEI is large and complex, and it is an extremely important occurrence that has strong 

ecological, evolutionary phenomenon, it has got special attention in the theory and application of 

statistical models (Crossa, 1990; Girma et al., 2000). In the beginning, Eberhart & Russell 
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(1966) and Finlay & Wilkinson (1963) have investigated GEI through joint analysis of variance 

(ANOVA) and linear regression techniques. Regardless of their limitation in the assumption of 

conventional ANOVA and linear regression, the method has been widely used for log time 

(Becker and Leon, 1988, as cited in Degene, 2016). Even thought alternatives have been made 

by Cruz et al. (1989) and Toler & Burrows (1998) for these limitations, it yet again open to 

another criticism due to the fact that the GEI component has been estimated but not decomposed 

into structures (paterns)( de Resende, 2006). 

 

Gauch  (1988;  1992)  attempt to avoid these limitations by describing the technique called 

AMMI (Additive  Main  Effects  and  Multiplicative  Interaction  Analysis) which was attributed 

to the work of Mackenzie (1923) and Gollob (1968). AMMI have been popularized in a fixed 

model context and a number of applications have been developed (Gauch, 1988; 1992; Crosse et 

al., 1990).  AMMI  analysis  combines,  in  a  model, additive  components  for  main  effects  

(treatments  and  environments)  and multiplicative  components  for  GEI  effects.  It  combines  

a  univariate  technique (ANOVA)  for  the  main  effects  and  a  multivariate  technique  (PCA-

principal component  analysis)  for  GEI  effects.  Crossa  (1990)  suggests  that  the  use  of 

multivariate  techniques  permits  a  better  use  of  information  than  the  traditional regression 

methods.  

 

The proposed models (ANOVA, linear regression, and AMMI) were functioning in the linear 

fixed model setting. However, families of linear mixed model have being wide used by 

researchers for GEI study due to the fact that they are flexible and powerful especially in the 

violation of the classical linear fixed model assumptions and in the area of incomplete multi 

environment data (Smith et al., 2001; Girma et al., 2014). According to de Resende (2006), the 

method of analysis in the mixed model setting encompass the Piepho (1998) factor analytic 

multiplicative mixed (FAMM) model with random genotype and GEI effects which is 

conceptually and functionally better than AMMI and Smith et al. (2001) which is a general class 

of FAMM models that encompass the approach of Piepho (1998) and include separate spatial 

errors for each environment (FAMMS). 
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On multi environment crop trial data, several recent empirical investigations have been done 

using those proposed statistical methods to exploit the information contained in the GEI. Girma 

et al. (2014) conducted GEI analysis on the data sets of Intermediate to Late Hybrid Trails 

(ILHT) conducted in five Eastern and Central Africa (ECA) countries from 2008 to 2011 under 

different management by fitting and compare linear bilinear models, and they showed that Site  

Regression  (SREG2),  Genotypic  Regression (GREG2) and Factor Analytic FA(1) are preferred 

models to identify stable genotype. In Ethiopian context, by using grain yield of 36 field pea 

genotypes planted in four locations over two years, Girma et al. (2000) showed  the presence of 

significance GEI in field pea grain yield ,  and did AMMI adjustment in modeling  the effect of 

GEI  to increase accuracy for yield estimate and classification of genotypes and environments. 

 Specifically, in Ethiopia, Yonas et al. (2014a) conducted stability analysis on 30 genotypes of 

Arabica Coffee across 8 environments using Eberhart & Russell regression and AMMI method. 

The investigators reported that the mean squares of genotypes, environments and genotype by 

environment interaction were highly significant, and the  first  IPCA  axis  alone  accounted  for  

36%  of  the  total GEI sum of squares and it was 50% higher in contrast to the interaction 

accounted by the Eberhart & Russell regression method. The investigators also put their 

condemnation on the drawback of Eberhart & Russell regression method by their second work 

Yonas et al. (2014b), and they reported that analyzing stability of performance of Arabica coffee 

variety using Eberhart and Russell stability model which was actually not bad for annual crops 

leads to invalid results and wrong conclusions. Similarly, Meaza et al. (2011) have made GEI 

analysis on 43 genotypes of Arabica coffee across 8 environments, and it was reported that at 

1%, the combined ANOVA showed significant mean squares for genotype, environment, GEI, 

and four IPCAs. The investigators also reported that the first two principal components explained 

about 74 percent of the GEI   interaction component. Yonas and Tarekegn (2015) and Lemi and 

Ashenafi (2016)) who reported genetic variation and heritability of various traits in Arabica 

coffee genotypes also reported that the major factor that influence yield performance of Arabica 

coffee genotypes is the environment. 
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3. DATA AND METHODS 

3.1. Data Source 

The data for this study came from coffee variety field trials conducted by Jimma Agricultural 

Research Center (JARC) of Ethiopian Institute of Agricultural Research (EIAR) over several 

years. The center is located in southwestern Ethiopia and has a national mandate for coffee 

research in the country, and serves as the center of excellence for coffee research in Ethiopia. It 

serves for the sustainable production of Arabica coffee in the country by releasing improved 

disease resistant, high yielder and quality coffee varieties. The field trial was conducted in three 

locations (Jimma, Agaro and Metu) of southwest Ethiopia. These locations have different soil 

type and altitudes and could also possibly be differentiated with their mean seasonal rainfall and 

temperature. Seven year CBY data collected during 2005 to 2011 were used in this study. These 

observations were obtained from a total of 204 coffee trees with 7 observations per coffee tree 

(over 7 years period). 

 

3.1.1. Experimental design and trial managements 

The trials consisted of 17 Arabica coffee genotypes. They were selected for their high potential 

resistance to CBD, yield and cup quality during a preliminary evaluation. Primarily they were 

collected from different farmer’s field of south-western region of the country along with quite 

large numbers of coffee accessions. The seedlings were planted on the field when they are 

approximately ten months old in randomized complete block design with 4 replications. Each 

plot consisted of ten trees in a single row. The spacing between rows and trees within a row was 

2m by 2m, respectively. The plots received uniform application of fertilizer and other cultural 

practices throughout the period of data collection. All coffee trees were maintained on a single 

stem pruning system. Yield was recorded in fresh cherry in gram and converted to clean coffee 

bean yield in kilogram per hectare using a conversion factor. The measurement of coffee tree or 

plot used in the analysis was the clean average coffee bean yield of 10 coffee trees per plot. 

 

3.1.2. Type and structure of variables used for longitudinal study 

For longitudinal study, the type of the data set were considered as clustered longitudinal data in 

which subjects/coffee trees nested in clusters of block. Thus, two ID variables/grouping factors 
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(Block and Coffee tree) were used in this study. Therefore, the structures of variables included in 

the longitudinal analysis were as follows. 

Block (Level 3) Variables 

             Block (ID2) =block ID number (random factor) 

             Location = the environment where coffee grown (fixed factor)  

 Coffee trees (Level 2) Variables 

            Coffee tree (ID1) = coffee tree ID number nested in block (random factor) 

            Genotype = genetically different types of coffee (fixed factor) (G1 (Dessu) =0 is the                           

 Reference genotype) 

Time-Varying (Level 1) Variables 

           Time = Time points of longitudinal measures (1 = 1 year, 2 = 2 year…..7=7 year) 

Biennial = alternating year (0=years at two year interval (even years); 1=the other years)                       

          CBY= yield of coffee tree in kilogram per hectare (kgha
-1

) (response or dependent 

variable) 

3.1.3. Data setting for GIE analysis 

The Independent variables used for GIE analysis were Block, Genotype and the Environment 

where the Environment is a specific year-location combination, whereas CBY was the dependent 

(study) variable.  The location-year combinations and the assigned Environment and Genotype 

code are given in Table 1 and Table 2. 

Table 1: Brief summary of Environments and assigned code 

Location(Year)  Environment Code  Location(Year) Environment Code 

Agaro(2005) E1 Metu(2009) E12 

Agaro(2006) E2 Metu(2010) E13 

Agaro(2007) E3 Metu(2011) E14 

Agaro(2008) E4 Jimma(2005) E15 

Agaro(2009) E5 Jimma(2006) E16 

Agaro(2010) E6 Jimma(2007) E17 

Agaro(2011) E7 Jimma(2008) E18 

Mutu(2005) E8 Jimma(2009) E19 

Metu(2006) E9 Jimma(2010) E20 

Metu(2007) E10 Jimma(2011) E21 

Metu(2008) E11 
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Table 2:  Brief summary of Arabica coffee Genotype and assigned code 

Genotype Name Genotype Code Genotype Name  Genotype Code  

Dessu(check) G1 39/77 G10 

744(check) G2 39/82 G11 

21/81A G3 4/84 G12 

235/71A G4 43/70 G13 

29/82 G5 5/81 G14 

3/77 G6 51/'84 G15 

32/82 G7 64/84 G16 

36/82 G8 20/81 G17 

38/82 G9 

   

3.2. Methods of Data Analysis for Longitudinal Study   

3.2.1 Exploratory data analysis 

Exploratory data analysis comprises techniques to visualize patterns in the data. Data analysis 

must begin by making displays that expose patterns relevant to the scientific question. The best 

methods are capable of uncovering patterns which are unexpected. Most longitudinal studies 

address the relationship of a response with explanatory variables, often including time. 

Exploratory data analysis explores the individual profile, the average evolution, the variance 

function, and the correlation structure of the data. Data exploration is a very helpful tool in the 

selection of appropriate models. The average evolution describes how the profile of a number of 

relevant sub-populations (or the population as a whole) evolves over time. The results of such 

exploration will be useful in order to choose a fixed-effects structure for linear mixed model. 

 

In addition to the average evolution, exploring the evolution of the variance is important to build 

an appropriate longitudinal model. This could be done by plotting the variances of sub groups 

with each time points. It helps to check whether the assumption of constant variance is fulfilled. 

Explanatory data analysis is also very useful to explore the correlation structure between 

measurements. The correlation structure describes how measurements within a subject correlate. 

A different way of exploring the correlation structure is using a scatter plot matrix and 

correlation matrix of the observed data. The decay of correlation with time is studied by 

considering the evolution of the scatter with increasing distance to the main diagonal. Stationary 

in this case implies that the scatter plots remain similar within diagonal bands if measurement 
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occasions are approximately equally spaced. In addition to the scatter plot the histogram on the 

diagonal also useful to capture the variance structure, including such as skewness. Hence, these 

possible graphical tools were used in this study. 

 

3.2.2. Linear mixed model 

Laird and Ware (1982) proposed a flexible class of linear mixed-effects model that could handle 

the complications of mistimed and incomplete measurements in a very natural way. Suppose we 

sampled i = 1, 2, …, k independent units each with t = 1, …, ni repeated measurements. The 

linear mixed-effects model is given by.  

 

              
            

            

                             

                                                        [1] 

Where 

   is the    -dimensional response vector for subject               is the number of subjects, 

   and    are (       ) and (       ) dimensional matrix of known covariates,   is a  -

dimensional vector containing the fixed effects,     is the q-dimensional vector containing the 

random effects, and     is    –dimensional vector of residual components. Finally,   is a general 

(     ) covariance matrix of random effects and    is (       ) covariance matrix random error 

which depends on   only through its dimension   , i.e. the set of unknown parameters in    will 

not depend on i. The distributional assumptions of this model imply that 

                                       
      

The multilevel model can be written in terms of the LMM model. This point can be best 

illustrated by constructing a model for our cluster longitudinal CBY dataset. Recall that this data 

set has three levels of hierarchy: repeated measurements of CBY taken over year on the same 

coffee tree which is nested within block. The indices account for the clustering in the dataset 

where j = 1, . . . , m used for blocks, i=1, . . . ,k  for coffee tree nested in block and t=1, . . . , n  

for repeated measurements of CBY taken over time. Though only the balanced case is presented 

here, note that these models can easily accommodate unbalanced data on any level of the 

hierarchy. Thus, according to Modur (2010), a linear mixed effect model for cluster longitudinal 

CBY data set given as 
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                                                     [2] 

 

Xji is a n x p design matrix with covariates defined at different levels. The design matrices for 

both the block level random effects (Mi ) and coffee tree level random effects (Cji ) are denoted 

by Z
M

ji and Z
C

ji, respectively. The random effects design matrices are formed from a subset of 

the appropriate columns of Xji . These matrices can contain covariates that vary at lower levels of 

the hierarchy. The model assumptions here pertain to the sources of variability. The random 

effects at the same level are correlated within units at that level. Random effects at different 

levels are assumed to be independent of each other. In other words, all components of the block 

level random effects vector (Mi ) are allowed to be correlated with each other. This covariance 

will be captured by the off diagonal components of the covariance matrix DM . The same applies 

for the coffee tree level random effects vector, Cji. The vectors Mi , Cji , and  єji , are assumed to 

be independent of each other. 

 

If we rewrite Zji = [Z
M

ji|Z
C

ji] and bji = (Mi
t
 Cji

t
)
t
  then model 2  can be represented as follows: 

 

 
 

 
                   

       
     

                    

              
  

                                                     [3] 

5.2.3. Variance functions for modeling heteroscedasticity 

Variance functions are used to model the variance structure of the within group errors using 

covariates. They have been studied in detail in the context of mixed effects models by Davidian 

and Giltinan (1995) and in the context of the extended linear model by Carroll and Ruppert 

(1988). Acoording to Davidian and Giltinan (1995), the general variance function model for the 

within-group errors in the extended linear mixed effects model given as 

 

                
                                                                                         [4] 
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Where µjit= E (yjit |bji), vjit is a vector of variance covariates, δ is a vector of variance parameters 

and g( · ) is the variance function, assumed continuous in δ . For example, if the within-group 

variability is believed to increase with some power of the absolute value of a covariate vjit, we 

can write the variance model as                           
    . Table 3 shows   the most 

standard variance function classes which are built in R computing statistical package 

 

                                         Table 3: Standard variance function classes 

Name expression 

varFixed                           fixed variance 

varIdent different         variances per stratum 

varPower                      power of covariate 

varExp                             exponential of covariate 

 

3.2.4. Correlation functions for modeling dependency 

Correlation structures are used to model dependence among observations.  In the context of 

mixed effects models and extended linear models, they are used to model dependence among the 

within group errors. Historically, correlation structures have been developed for two main classes 

of data: time-series data and spatial data. The former is generally associated with observations 

indexed by an integer-valued time variable, while the latter refers primarily to observations 

indexed by a two-dimensional spatial location vector, taking values in the real plane. The general 

within group correlation structure for two-level grouping is expressed. 

                                   ,                                                                      [3] 

Where ρ is a vector of correlation parameters and h (·) is a correlation function taking values 

between − 1 and 1, assumed continuous in ρ, and such that h (0, ρ) = 1, that is, if two 

observations have identical position vectors, they are the same observation and therefore have 

correlation 1. Table 4 shows   the most common standard correlation function classes that are 

built in R computing program. 
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Table 4: Standard correlation function classes 

Name Expression 

corCompSymm compound symmetry 

corSymm General (unstructured) 

corAR1 autoregressive of order 1 

corAR(p) Autoregressive of order p (p>1) 

corExp exponential 

corGaus Gaussian 

corLin linear 

corRatio rational quadratic 

corSpher spherical 

 

3.2.5. Method of parameter estimations  

Maximum likelihood estimation and restricted maximum likelihood estimation are the two 

commonly used methods of estimations in linear mixed model. Maximum likelihood estimation 

and restricted maximum likelihood estimation both have the same merits of being based on the 

likelihood principle which leads to useful properties such as consistency, asymptotic normality, 

and efficiency. ME estimation also provides estimators of the fixed effects, whereas REML 

estimation, in its self, does not. On other hand, for balanced mixed ANOVA models, the REML 

estimates for the variance component are identical to classical ANOVA type estimates obtained 

from solving the equations which set mean squares equal to their expectations. This implies 

optimal minimum variance properties, and it shows that REML estimates in that context do not 

rely on any normality assumptions since any moment assumptions are involved (harville, 1977 

and Searle, casella and McCulloch,1992). REML corrects for the downward bias in the ML 

parameters in D and R , and handles strong correlations among the responses more effectively. 

The differences between ML and REML estimation increase as the number of fixed effects in the 

model increases. There is also the non-iterative MIVQUE0 method, which performs minimum 

variance quadratic unbiased estimation of the covariance parameters. However simulation 

evidence favors REML and ML over MIVQUE0.  

 

First consider parameter estimation in model 1, and then it follows for model 3 in the same way. 

Let    denote the vector of all variance covariance parameters (usually called variance 

component) found in         
    , that is,   consists of the        2 different elements in 
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D and of all parameters in   . Finally, let            be the s-dimensional vector of all 

parameters in the mariginal model for    and let         denote the parameters for  , with 

           the parameters space for the fixed effects and for the variance components 

respectively. The classical approach to inference is based on estimations obtained from 

maximizing the marginal likelihood function 

              
   

         
 
 

                      
   

                
 
              [4] 

With respect to  . Let as first assume    to be known. The maximum likelihood estimator (MLE) 

of  , obtained from maximizing 4, conditional on  , is then given by(Laird and Ware 1982). 

           
     

 
   

  
  
   

     
 
   , where    equals    

                                       [5] 

When   is not known, but an estimator    is available, we can set               
  , and 

estimate   by using the expression 4 in which     is replace by    . 

The Maximum likelihood estimator (MLE) of    is obtained by maximizing 4 with respect to  , 

after   is replaced by expression 5 

For variance estimation in normal distribution, Consider a sample of N obviations           

from      ), for known  , MLE of     equals     =            
   . Thus      unbiased 

estimator for   . When   is not known, the MLE of     equals    =             
   . In this 

case      is biased for    since         
   

 
   . The biased expression tells us to derive an 

unbiased estimate 

                   
   . 

Apparently, having to estimate   introduces bias in MLE of   . To estimate    without 

estimating    , we transform Y such that   vanishes from the likelihood.  

  

 
 
 
 
 

     
     

 
         
        

 
 
 
 

                                                  [6] 

The MLE of   , based on  , equals                     
   . A defines a set of     

linearly independent error contrasts and    is called REM estimator of   , and     is independent 

of  . 

Also for the estimation of residual variance in linear regression model, consider a sample of 

observations           from a linear regression model: 
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                                                                        [7] 

The maximum likelihood estimator of    is              
 
         . Thus,     is biased for 

    since       
   

 
  . The bias expression tells us how to derive an unbiased estimator. 

MSE=       
 
              can also be obtained from transforming the data orthogonal to 

columns of the design matrix . 

                                                                           [8] 

The MLE of   , based on  ,now equals the mean square error (MSE). The MSE is again called 

REME estimate of     

 

Again, for the estimation of REML for the Linear Mixed Model, we first combine all models 

              into one model            in which  

                
  
 
  

 ,            
  
 
  

 ,              
    
   
    

 .  

 

Again the data are transformed orthogonal to X.                  . Thus the MLE based 

on U is called the RELM estimator, and is denoted by       . The resulting estimator             

for   will be denoted by       .        and         can also be obtained from maximizing 

                    
 
    

 
 

        with respect to  , i.e. with respect to   and   

simultaneously.  

 

So far, we have seen methods of parameter estimation in linear mixed model. Usually, one is 

primarily interested in drawing inference on the parameter in the model in order to generalize 

results obtained from a specific sample to a general population from which the sample was taken.  

Commonly used statistical tests to make inference for fixed effect in LMM are T-test, F-test, 

Wald test, and LR test. Similarly, Wald and LR tests are used to make inference for variance 

components. 
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3.2.6 Model selection 

LRTs are a class of tests that are based on comparing the values of likelihood functions for two 

models (i.e., the nested and reference models) defining a hypothesis being tested. LRTs can be 

employed to test hypotheses about covariance parameters or fixed-effect parameters in the 

context of LMMs. In general, LRTs require that both the nested (null hypothesis) model and 

reference model corresponding to a specified hypothesis are fitted to the same subset of the data. 

The LRT statistic is calculated by subtracting −2 times the log-likelihood for the reference model 

from that for the nested model, as shown in the following equation: 

         
       

          
                                      

 
                             [9] 

 In Equation 9,         refers to the value of the likelihood function evaluated at the ML or 

REML estimates of the parameters in the nested model, and            refers to the value of the 

likelihood function in the reference model. Likelihood theory states that under mild regularity 

conditions the LRT statistic asymptotically follows a    distribution, in which the number of 

degrees of freedom, df, is obtained by subtracting the number of parameters in the nested model 

from the number of parameters in the reference model. Using the result in Equation 1, 

hypotheses about the parameters in LMMs can be tested. The significance of the likelihood ratio 

test statistic can be determined by referring it to a    distribution with the appropriate degrees of 

freedom. If the LRT statistic is sufficiently large, there is evidence against the null hypothesis 

model and in favor of the reference model. If the likelihood values of the two models are very 

close, and the resulting LRT statistic is small, we have evidence in favor of the nested (null 

hypothesis) model. 

 

The likelihood ratio tests that we use to test linear hypotheses about fixed-effect parameters in an 

LMM are based on ML estimation; using REML estimation is not appropriate in this context 

(Morrell, 1998; Verbeke and Molenberghs, 2000). For LRTs of fixed effects, the nested and 

reference models have the same set of covariance parameters but different sets of fixed-effect 

parameters. The test statistic is calculated by subtracting the –2 ML log-likelihood for the 

reference model from that for the nested model. The asymptotic null distribution of the test 

statistic is a     with degrees of freedom equal to the difference in the number of fixed-effect 

parameters between the two models. When testing hypotheses about covariance parameters in 

linear mixed model, REML estimation should be used for both the reference and nested models. 
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REML estimation has been shown to reduce the bias inherent in ML estimates of covariance 

parameters (Morrell, 1998). We assume that the nested and reference models have the same set 

of fixed-effect parameters, but different sets of covariance parameters. To carry out a REML-

based likelihood ratio test for covariance parameters, the −2REML log-likelihood value for the 

reference model is subtracted from that for the nested model. The null distribution of the test 

statistic depends on whether the null hypothesis values for the covariance parameters lie on the 

boundary of the parameter space for the covariance parameters or not. 

 

Another set of tools useful in model selection are referred to as information criteria. The 

information criteria (sometimes referred to as fit criteria) provide a way to assess the fit of a 

model based on its optimum log-likelihood value, after applying a penalty for the parameters that 

are estimated in fitting the model. A key feature of the information criteria is that they provide a 

way to compare any two models fitted to the same set of observations; i.e., the models do not 

need to be nested. We use the “smaller is better” form for the information criteria that is, a 

smaller value of the criterion indicates a “better” fit. The Akaike information criterion (AIC) 

may be calculated based on the (ML or REML) log-likelihood,         , of a fitted model as 

follows (Akaike, 1973) 

                                                                                                       [10] 

 

In Equation 10, p represents the total number of parameters being estimated in the model for 

both the fixed and random effects. Note that the AIC in effect “penalizes” the fit of a model for 

the number of parameters being estimated by adding 2p to the −2 log-likelihood. Some software 

procedures calculate the AIC using slightly different formulas, depending on whether ML or 

REML estimation is being used. 

The BIC is also commonly used and may be calculated as follows: 

                                                                                                                           [11] 

The BIC applies a greater penalty for models with more parameters than does the AIC, because 

we multiply the number of parameters being estimated by the natural logarithm of n, where n is 

the total number of observations used in estimation of the model.  
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3.2.7. Checking model assumptions (diagnostics) 

After fitting an LMM, it is important to carry out model diagnostics to check whether 

distributional assumptions for the residuals are satisfied and whether the fit of the model is 

sensitive to unusual observations. In this study, two basic assumptions were considered for 

mixed effects. 

Assumption 1 - The within-group errors are independent and identically normally distributed, 

with mean zero and variance  2, and they are independent of the random effects.  

Assumption 2 - The random effects are normally distributed, with mean zero and covariance 

matrix D and are independent for different groups. 

 

Diagnostic methods for standard linear models are well established in the statistics literature. In 

contrast, diagnostics for LMMs are more difficult to perform and interpret, because the model 

itself is more complex, due to the presence of random effects and different covariance structures 

(Schabenberger, 2004). The primary quantities used to assess the adequacy of Assumption 1 are 

the within-group residuals, defined as the difference between the observed response and the 

within-group fitted value. Conditional on the random effects variance covariance components, 

the within-group residuals are the BLUPs of the within-group errors. In practice, the within-

group residuals are only estimated BLUPs, as the random-effects variance covariance 

components need to be replaced with their estimates. Nevertheless, they generally provide good 

surrogates for the within-group errors and can be used to qualitatively assess the validity of 

Assumption 1. Other quantities used for assessing Assumption 1 graphically include the within-

group fitted values, the observed values, and any covariates of interest. 

Graphically, Assumption2 can also be assessed by using two types of diagnostic plots. 

• qqnorm: normal plot of estimated random effects for checking marginal normality and   

identifying outliers; 

• pairs: scatter plot matrix of the estimated random effects for identifying outliers and checking         

the assumption of homogeneity of the random effects covariance matrix 

 

3.3. Methods of data analysis for GEI and stability study  

Various statistical procedures have been proposed to assess GEI and find out the stability of new 

cultivars. One of the most frequently used stability measures is based on a regression model 
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(Yates and Cochran 1938). However, it was developed by Finlay (Finlay and Wilkinson 1963) to 

describe the adaptation of individual varieties to changing environment and while Eberhart 

(Eberhart and Russell 1966), used regression coefficient values as measures of environmental 

response and deviations from regression as measures of stability. Several of these statistics have 

been summarized and compared by Lin (Lin et al, 1986) who pointed out that stability statistics 

fall into four groups depending on whether they are based on the deviation from the average 

genotype effect or on the genotype by environment term and whether or not they incorporate a 

regression model on an environment index. Other workers have suggested use of Parameters like 

Coefficient of Variation, Wricke’s ecovalence and AMMI Stability Value as measures of 

stability. Further, the simultaneous selection for yield and stability in crop performance is also 

used based on Kang’s modified rank-sum method. This yield-stability statistic component is 

basically based on Shukla’s (1972) stability-variance statistic. The Additive Main Effects and 

Multiplicative Interaction (AMMI) model has found more use recently since it incorporates both 

the classical additive main effects model for GEI and the multiplicative components into an 

integrated least square analysis and thus becomes more effective in selection of stable genotypes 

(Crossa et al., 1991) 

3.3.1 Combined analysis of variance  

Preliminary ANOVAs can be carried out for individual experiments to assess variation among 

environments for experimental error and, possibly, genotypic variance. Combined ANOVAs for 

a complete set of experiments or its subsets can be performed with different objectives, such as: 

 Verification of the occurrence (i.e. significance) of different effects; 

 Estimation and comparison of mean values for levels of fixed factors (in particular, 

genotype mean values across the region or within sub regions); and 

 Estimation of the size of genotypic and genotype-environmental variance components 

(possibly as a step towards estimation of genetic parameters). 

 

The ANOVA may also represent one step in the analysis of adaptation or in the assessment of 

yield stability measures. In  the  analysis  of  combined  experiment  of  data  from  several  

environments,  the  first  requirement is to assess the homogeneity of the error variance at the 

various environments. If the errors are homogeneous, the analysis can proceed.  However, if the 
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error variances are heterogeneous, the data will be transformed to produce homogenous variance 

or the locations may be separated into groups within which the variance is homogenous. In 

multi-environment yield trials of G genotypes (i=1,2,…,g), E environments(j=1,2,…e) and r 

replicates(l=1,2,…,r)  arranged  in  RCBD,  the  liner  model  for  the  conventional combined 

analysis variance(ANOVA) is  

Yjir =µ +Gi  +Ej  +GEji  +Bjr  + Єjir                                                                  [12]  

where,  

Yjil   is  the  observed  yield  response  of  the  i
th

  genotype of  the j
th

 environment 

µ is the overall mean yield of genotypes at all possible environments. 

Gi is the effect of i
th 

genotype; thus    ,   
 
     

Ej is the effect of the j
th

    environment and        
 
    

GEji  is  the  interaction  effect  of  the  i
th

  genotype  in  the  j
th

 environment.  

Bjr    is the effect of the i
th

 replication in the j
th

 environment, and 

Єjir is random error term with mean 0 and variance  
2

jir and distributed as NID (0,  
2

jir) 

3.3.2. The Additive Main Effect and Multiplicative Interaction effect Model (AMMI) 

Gauch(1988,1992) has advocated the use of AMMI for yield trials. Gauch and Zobel (1988) 

compared the performance of AMMI analysis with the ANOVA approach and regression 

approach and found that ANOVA fails to detect a significant interaction components and the 

regression approach accounts only a small portion of the interaction sum of squares only when 

the patterns fits a specific model. AMMI  combines  analysis  of  variance  (ANOVA)  in  to  a  

single  model  with  additive  and multiplicative parameters. After removing the replicate effect 

when combining the data, the observations are portioned in to two sources: Additive main effects 

for genotypes and environments, and Non additive effects due to genotype-environment 

interaction. The AMMI model for G genotypes and E environments is given as  

                
  
                           

                                [13] 

Where Yji  is the mean yield of i
th

 genotype in the j
th

  environment ; m the grand mean; Gi  is the 

i
th

 genotype effect ; Ej  is the j
th

 environment effect; λn is eigen value of the PCA axis n; αin and   

λjn  are the i
th

 genotype  j
th

 environment PCA scores for PCA axis n; εji is the residual; n’ is the 

number of PCA axes in the model. Ordinarily the number n’ is judged on the basis of empirical 

consideration on F-test of significance Gauch( 1988,1992). The residual combines the PCA 
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scores from the N-n’ discarded axes, where N=min(g-1,e-1). The other constraints in the model 

12 are  

    
 

 

     
 

 

               
 

         
 

     

                         

The model in (1) can be reparameterized as  

                   

 Where        
  
                

Let the estimate of the interaction in the (i,j)
th

 cell of       be                 . Using 

matrix notation, denote          a matrix of order GEI. Now, the estimate of the parameters of 

the model is  

   = the non-zero eigen values of Z’Z (in descending order), and 

    = the principal components of the row sum of squares and cross product matrix ZZ’ 

    = the principal components of the column sum of squares and cross product matrix Z’Z 

Using these we can write           
  
            

 

3.3.3. Graphical plots (Bi-plots and 3-D plots) 

The model formulation for AMMI shows its interaction part consists of summed orthogonal 

products. Because this form the interaction lends itself to graphical display in the form so-called 

biplots(Gabriel,1971). Let start with AMMI and assume that either two terms suffice for an 

adequate description of the interaction. For AMMI the interaction consists of the sum of two 

products:    
    

     
    

  .  The genotype scores,    
  and    

 , are now interpreted as coordinates 

for planar depiction of the genotype, and the environmental scores,     
   and    

 , for a similar 

depiction of the environment. The score determines the end points of the genotypic and 

environmental vectors, which depart from the origin. Simple geometric reveals that the 

interaction between a genotype i and an environment j can be obtained from a projection of 

either vector onto the other. The reason is that the interaction according to an AMMI model with 

two product terms of interaction,    
    

     
    

  , is equal to the inner product between vectors 

(   
     

 ) and      
     

 ), or the projection of either vector on to the other, times the length of the 
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vector on which projection take place. It is easy to read from a bi-plot the relative interaction that 

genotypes exhibit in a particular environment.  

 

To have a better discussion on the graphical plots IPCAs (bi-plots, three dimensional plots  ets.) 

resulted from the AMMI analysis, we must consider the following points (Kempton, 1984; 

Kroonenberg, 1995, as cited in Rashidi et al., 2013):  

(i) The center of bi-plot shows the mean of genotypes or environments.  

(ii) A long distance of a genotype (or an environment) from the center of bi-plot indicates a large 

interaction with that genotype (or environment).  

(iii) The long length of a genotype on the environmental vector reveals more deviation from the 

mean and vice versa.  

(iv) The angle between the vectors of a genotype and an environments shows that the interaction 

is positive or negative. 

 

AMMI1 bi-plot is constructed with additive main effects or mean yield along the abscissa and 

the first IPCA or multiplicative interaction on the ordinate axis. Thus, the interpretation of the bi-

plot assay is that if main effects have IPCA score close to zero, it indicates negligible interaction 

effects and when a genotype and an environment have the same sign on the IPCA axis, their 

interaction is positive; if different, their interaction is negative. The Bi-plot space of AMMI1 is  

divided  into  4  sections(quadrants) from  low  yielding  environments  in quadrants  1 (up  left)  

and  4 (low  left)  to  high  yielding environments  in quadrants  2  (up right)  and  3  (low right).  

From the bi-plot, if the points for environment  are  more  scattered  than  the  point  for  

genotypes  indicating  that  variability  due  to  environments  is higher than that due to 

genotypes difference, and the reverse is true if genotypes take the situation(Zobel et al. 1988).  

On the bi-plot,  the  points  for  the  generally  adapted  genotypes  would  be  at  right  hand  side  

of  grand  mean  levels  (this suggests high mean performance) and close to the line showing 

IPCA= 0 and (this suggests negligible or no G × E Interaction).   

 

AMMI2 biplot   The IPCA 1 versus IPCA 2 biplot (i.e. AMMI 2 biplot) explain the magnitude of 

interaction of each genotype and environment. The genotypes and environments that are farthest 

from the origin being more responsive fit the worst. Genotypes and environments that fall into 
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the same sector interact positively; negatively if they fall into opposite sectors. A genotype 

showing high positive interaction in an environment obviously has the ability to exploit the agro-

ecological or agro-management conditions of the specific environment and is therefore best 

suited to that environment (Rashidi et al., 2013). The interpretation for AMMI3 (3-dimentional plot) 

follows like AMMI2 interpretation. 
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4. RESULTS AND DISCUSSION 

4.1. Longitudinal Analysis 

4.1.1. Baseline information and descriptive statistics of coffee bean yield  

The base line (year1) is the time when the age of coffee trees was 5 years after planted on the 

field. As explained in section 3.1, the data set consists of 204 subjects (coffee trees) with 7 

measurements per subject. The data set is complete and balanced since the number of 

measurements at each time points is equal and there is no missing value in the data set. In the 

actual coffee bean yield, the minimum and maximum values were 0.0 and 5722.91 kgha
-1

, 

respectively.  

 

Table 5: Summary of coffee bean yield (kgha
-1

) by location and coffee genotype over years 

   Year1 Year2 Year3 Year4 Year5 Year6 Year7 Mean 

Location 

Agaro 491.62 1193.04 1223.28 2595.83 973.57 2290.41 1225.01 1427.54 

Jimma 714.47 1366.29 2103.67 2567.67 2626.28 2737.18 951.70 1866.75 

Metu 909.08 1454.78 1034.08 1984.62 487.09 1710.08 1171.17 1250.13 

Genotype 

G1 1000.31 1688.69 1584.85 2763.12 1765.86 2660.55 1435.07 1842.64 

G2 722.90 1561.16 2107.42 2734.05 2039.06 2706.10 1897.70 1966.91 

G3 647.98 1407.96 1013.64 2153.02 893.29 2362.30 373.15 1264.48 

G4 846.58 1475.75 1390.59 2301.97 1698.21 2189.88 895.92 1542.70 

G5 584.95 1372.53 1284.12 2201.45 1617.93 2035.21 1259.86 1479.44 

G6 484.59 1073.91 962.60 3788.05 657.74 2769.74 1078.47 1545.01 

G7 600.41 1016.29 1071.16 1780.97 1066.07 1583.42 706.95 1117.90 

G8 707.75 1625.22 1756.92 3292.48 1439.22 2850.34 1124.68 1828.09 

G9 562.74 1591.42 2068.46 2442.14 1741.19 2239.94 1500.26 1735.17 

G10 813.12 1344.07 1623.98 2939.42 1521.42 2589.03 1313.52 1734.93 

G11 510.65 998.25 1039.32 1546.32 905.28 1882.27 654.03 1076.59 

G12 679.64 1278.28 1551.99 2534.07 1600.42 1965.22 1137.05 1535.24 

G13 1089.73 1508.30 2037.63 2436.40 1973.64 2552.42 1853.50 1921.66 

G14 643.88 1071.92 1196.90 1564.27 682.27 1941.00 705.81 1115.15 

G15 629.15 1150.08 1366.18 1798.10 1384.31 1767.06 881.26 1282.31 

G16 794.28 1197.00 1686.53 1802.03 1455.91 1939.12 1154.33 1432.74 

G17 667.37 1385.80 970.25 2428.11 717.51 2146.56 999.76 1330.77 

    Mean 705.06 1338.04 1453.68 2382.70 1362.31 2245.89 1115.96 1514.81 

SD 373.09 501.79 834.16 982.75 1310.45 901.61 867.16 1033.34 

SD=standard deviation 
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Table 5 shows that the least and the highest overall mean value of coffee bean yield (705.06 

kgha
-1

 and 2382.70 kgha
-1

 respectively) were observed at the base line and year four, 

respectively. It also presents that there is yield difference among locations and coffee genotypes. 

The highest mean value of coffee bean yield was recorded at Jimma (658.06 kg ha
-1

). On the 

basis of combined mean values across location over years, genotypes: G2 (check), G13, and G1 

(check) exhibited the top three mean values of coffee bean yield. Starting from the base line, 

both the mean and variance of the observed coffee bean yield have increased up to the fourth 

year, and then fluctuates through seventh year (Table 5).  

 

4.1.2. Exploring the individual profile of coffee bean yield  

Individual profile plots in Figure 1a show that there is variability within and between coffee 

trees. From Figure 1a, the variability between coffee trees at the base line is clearly observed and 

evident to include random intercepts in a linear mixed model. In Figure 1b, the coffee bean yield 

values for almost all coffee trees within a given block tend to follow the same trend over time. 

But for the levels of block, the trend is different over time. Thus, block b6 and b12 are evident 

for different trends in coffee bean yield values over time. These patterns suggest that an 

appropriate model for the data might include random block-specific intercepts and slopes.  

 

On the other hand, besides fixed factors, the coffee bean yield values which tend to be vary from 

block to block at base line and over time suggesting that a model should also include random 

block-specific intercepts and slopes of time variant variable. Similarly, coffee bean yield values 

which tend to be different by coffee tree at base line and over time suggesting that random coffee 

tree-specific intercepts and random slopes of time variant variables should be included in the 

model selection. The growth trend in the individual profile plot shows that the coffee bean yield 

is in somehow increasing and then tends to decline with zigzag trajectory over time. The factor 

that causes the growth trend to follow a zigzag (rises and down) trajectory was clearly 

investigated in section 4.1.3 by exploring the mean profile of coffee yield over time. Of course at 

this point it is not yet possible to decide the trend (i.e. linear, quadratic, cubic and others), but by 

adjusting this zigzag trajectory, it is expected that the possible trend could be determined.   
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Figure 1: Individual profile plots of CBY by coffee tree (a) and coffee tree nested in block (b)  
 

4.1.3. Exploring the mean structure of coffee bean yield  

Besides plotting the yield of coffee tree over time, it is also useful to include graph for different 

subgroups to illustrate the relationship between coffee bean yield and explanatory variables over 

time.  The results of this exploration are useful in order to choose a fixed- effects structure for 

the linear mixed model. The mean profile per location and genotype arm are plotted in Figure 2. 

The mean profile plot by location in Figure 2a shows that there is location by time interaction 
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effect, and thus the average evolution of coffee bean yield in Jimma is quite different from that 

of Agaro and Metu. But the trends for Agaro and Metu are almost similar with the falling and the 

rising trajectory.  The mean profile plot in Figure 2b shows that there is an average evolution of 

coffee bean yield for each coffee genotype over time. Figure 2b also shows that there is a mean 

difference between coffee genotypes at each point of time. Accordingly, all fixed factors such as, 

location, genotype, and genotype by location interaction and location by time interaction may 

have significant fixed effects and can be included in the mean structure of linear mixed model. 

 

 

 

Figure 2: The mean profile plot of coffee yield by location (a) and genotype (b)  
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In all mean profile plots, we can observe that there is a time variant factor which alters the 

growth trend with a zigzag (rise and fall) trajectory in regular basis (rise for even years and fall 

for odd years). Having such unusual shape of growth trajectory, it was clear that a linear model 

would be inappropriate. Similarly, using a polynomial model would not solve the problem due to 

two reasons. First, it couldn’t be able to show the growth trend regardless of the rising and the 

falling trajectory. Second, it is difficult to set up parsimonious model. Thus, quadratic model 

would allow for a change in the rate of change. However, quadratic model could only capture the 

shape of a growth trajectory with one bend. To capture the shape of growth trajectory which has 

two bends would require a cubic model. The cubic model allows for a change in a change in a 

rate of change. As time increases, degree of polynomials also increases and at the same time the 

number of random effects associated with the slope of each polynomial also increases. This 

makes the work so complicated in the computation of the variance covariance matrix of random 

effects in the linear mixed model, and as a result we couldn’t have a parsimonious model. 

 

However, it is possible to control the variability due to rise and down alternation in the growth 

trend by inserting a time variant factor in the model with binary coding scheme for rising and 

down if the factor for this alternating is known. Thus, the property “biennia” in the bearing habit 

of coffee which occurred in two years interval was evident for this unusual trajectory (rise and 

down alternation). The general mean profile in Figure 3 clearly shows the rise and fall 

alternations over time due to biennial effect.  From Figure 2a&b), we can also observe that the 

effect of this factor is different among locations and genotypes. Thus, Figure 2a shows that the 

effect of biennial is clearly observed in Agaro and Metu but not Jimma. This indicates that coffee 

trees that grown in Jimma are not affected by biennial relative to Agaro and Metu. Similarly, 

Figure 2b shows that some genotypes relatively more affected by biennial.  

 

 In this study the time variant factor “biennia” is coded (0 for raising and 1 for falling) and 

considered as a factor in the subsequent analysis to control the variability that brings unusual 

shape of trajectory in the trend of coffee bean yield. As a result, we expect biennial by location 

and genotype interaction effects in the linear mixed model, and therefore a quadratic evolution is 

also expected on the long run trajectory (Figure 3). Regardless of the alternations due to biennial 

in the growth trend, the clear shape of growth trajectory is depicted in Figure.4 by using loess 
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smoothing method. The plot shows that the mean evolution of coffee yield is a quadratic function 

of time. 

 

Figure 3:  General mean profile plot of CBY 

 

Figure 4:  General mean profile plot of CBY by using loess smoothing  

 

4.1.4. Exploring the variance and correlation structure in coffee bean yield  

To have an appropriate model, investigation of how the base line variance could evolve over 

time is very important step in the modeling approach. This can be investigated with plots of 

individual profile, variance function, and by using variance covariance matrix of the observed 

measurements. As shown in the individual profile plot (Figure 1a&b, there is a considerable 

within and between subject variability over time. This can also be shown in Table 6 on the 
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diagonal of variance covariance matrix of the observed data. It also shows that variance of coffee 

yield increases up to year 5 and then decreases. Graphically, the evolution of variance is also 

depicted in Figure 5a&b, and shows that the overall variance increases up to year 5
th

 and then 

tends to decrease afterwards. But from Figure 5), it is expected that the variances of each 

location differ in magnitude and evolution. Having this, it is clear that different variance models 

should be fitted and compared to handle heterogeneous variability across location over time. 

 

 

Figure 5: Plot of variance of CBY over year: overall (a) and by location (b)  

 

Observations that are obtained from repeated measurements over time may not be independent in 

many circumstances and this induces what is known as autocorrelation among observations. 

Thus, investigating the structure of correlation among observations is an important aspect of 

exploratory data analysis to set up a parsimonious model. The correlation structure describes 

how measurements within a subject are correlated. This correlation structure can be studied 

through the correlation matrix, or scatter plot matrix.  The correlation scatter plot matrix in 

Figure 6 and the correlation structure matrix in Table 6 show that there is a correlation among 
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measurements of coffee yield over time. From Table 6, the correlations of the observations at 

time 3 with time 5 and at time 4 with time 6 are evident for the presence of correlation among 

measurements of coffee yield over year. Except some time points, Table 6 show that there is 

decaying of correlation over time (for instance, among even years). Both Figure 6 and Table 6 

shows that models for correlation structure should be compared by including autoregressive 

order one and unstructured correlation model. 

 

Table 6: Variance and correlation structure of coffee bean yield over year 

    Year1 Year2 Year3 Year4 Year5 Year6 Year7 

 
Year1 139193 

      

 
Year2 51952 251795 

     

 
Year3 82443 43799 695816 

    Var-Cov Year4 6139 162626 80656 965795 

   

 
Year5 41812 115405 714341 125243 1717291 

  

 
Year6 -4145 83181 232262 478531 389146 812893 

   Year7 65972 101868 145480 202990 115737 93022 751968 

 
Year1 1 

      

 
Year2 0.28 1 

     

 
Year3 0.26 0.10 1 

    Corr Year4 0.02 0.33 0.10 1 

   

 
Year5 0.09 0.18 0.65 0.10 1 

  

 
Year6 -0.01 0.18 0.31 0.54 0.33 1 

   Year7 0.20 0.23 0.20 0.24 0.10 0.12 1 

Var-Cov= variance covariance; Corr= correlation 

 

 Figure 6:  Scatter plot of correlation matrix for coffee yield over year 
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4.1.5 Linear mixed model results  

4.1.5.1. Possible structures of fixed and random effects of coffee bean yield  

The top-down strategy that were suggested by Verbeke and Molenberghs (2000, Chapter 9) for 

building an LMM for a given data set was used in this study. The possible variables (factors and 

interaction terms) that able to show variation in the part exploratory data analysis were 

candidates in the specification of the initial model. The possible random effects and the shape of 

trajectory (quadratic evolution) that was explored through exploratory data analysis have been 

also considered. Hence, the initial model with a potential “loaded” mean structure given by 
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Note: for the sake of interpretation of intercept (  ), time was centered on the average 
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4.1.5.2. Selection of the fixed effects structure for coffee bean yield 

The selection of fixed effects have been done in the conventional linear model setting by using 

ML estimation method, and AIC and BIC values without considering the structure of random 

effects. All terms in the fixed effect structure of initial linear mixed model (Model 4.1) were 

fitted first so as to identify significant fixed effects for coffee yield over time. The fitted model 

then reduced by removing none significance terms starting from high order interaction terms by 

using AIC and BIC values. From the outputs in Table 7, we can observe that all terms except the 

last four interaction terms (Genotype*Time, Genotype*Time
2
, Location*Genotype*Time and 

Location*Genotype*Time
2
) are statistically significant. Thus, none significant terms should be 

removed from the model starting with the most none significant one of which is the interaction 

term (location*Genotype*Time) with p-value of 0.6767. The model was then refitted after 

removing each none significant interaction terms one by one and finally the AIC and BIC values 

dropped from 22979.99 to 22914.77 and from 24059.12 to 23488.55, respectively, indicating a 

better fit.  

 

Table 7: Fixed effects structure with all covariates and interaction terms with the corresponding 

p-values from the overall F test  

Effects DF F-value p-value 

Intercept 1 5621.626 <.0001 

Time 1 109.296 <.0001 

Time
2
 1 144.651 <.0001 

Biennial 1 412.948 <.0001 

Location 2 82.29 <.0001 

Genotype 16 12.092 <.0001 

Location*Genotype 32 2.163 0.0002 

Location*Biennial 2 8.989 0.0001 

Location*Time 2 15.253 <.0001 

Location*Time
2
 2 87.656 <.0001 

Genotype*Biennial 16 4.583 <.0001 

Genotype*Time 16 1.293 0.1929 

Genotype*Time
2
 16 1.025 0.4262 

Location*Genotype*Biennial 32 2.385 <.0001 

Location*Genotype*Time 32 0.87 0.6767 

Location*Genotype*Time
2
 32 1.015 0.4446 

DF=degree of freedom 
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4.1.5.3. Selection of the random effects structure for coffee bean yield 

After selecting the structure of fixed effects by using ML estimation method, and AIC and BIC 

values in the conventional linear model setting, the next work was the selection of the structure 

of random effects. Given the selected fixed effects structure, starting from a simple linear 

regression model (no random effects),  all  random effects associated with intercepts and slopes 

for block and coffee tree nested in block was subjected in the top-down selection strategy by 

using REML estimation method, and AIC and BIC values. The random effects associated with 

intercept, biennial, and linear and quadratic slopes of time were selected first for block and then 

for coffee tree given the selected random effects of block.  The inclusions of random effects in 

the model were done by keeping previously included random effects there (Table 8).  

 

Table 8: Selection of random effects to be included in the linear mixed model 

  

For block 

     No Random Effects AIC BIC logLik 

 

Test L.Ratio p-value 

1 No random effect 21618.4 22183.61 -10700.2 

   2 intercept 21577.48 22147.87 -10678.74 1 vs 2 42.92 <.0001  

3 Biennial 21567.84 22148.6 -10671.92 2 vs 3 13.64 0.0011  

4 Linear slope 21571.88 22168.19 -10670.94 3 vs 4 1.96 0.5798  

5 Quadratic slope 21578.62 22195.69 -10670.31 4 vs 5 1.25 0.8696 

 

For coffee tree nested in block 

     1 No random effect 21567.84 22148.6 

      2 intercept 21569.84 22155.79 -10671.92 1 vs 2 0.00 0.9986  

3 Biennial 21573.74 22170.06 -10671.87 2 vs 3 0.10 0.9524  

4 Linear slope 21574.75 22186.63 -10669.38 3 vs 4 4.99 0.1725  

5 Quadratic slope 21582.74 22215.36 -10669.37 4 vs 5 0.01 1.0000  

AIC= Akaike Information Criterion BIC= Bayesian Information Criteria; logLik= log likelihood; 

L.Ratio= likelihood ratio 

 

The choice was made with AIC and BIC values for which smaller value is considered as better. 

Table 8 shows summary measures; Akaki information criteria (AIC), Bayesian information 

criteria and likelihood ratio test for the models with different random effects of block and coffee 

tree nested in block. It indicates that the model is improved when random effects of block 

associated with intercept and biennial are included in the model (AIC=21567.84 and BIC = 

22148.6). But the AIC and BIC values were no more dropped when the random effects of coffee 
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tree nested in block associated with intercept  biennial, and linear and quadratic slopes of time 

are included in the model. Hence, the final reduced model given by 
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where, 

                                                       

                                                                

                                            

                                                      

                                       

                                                              

                                                                                

                                         

                    

Note: for the sake of interpretation of intercept (  ), time was centered on the average 

 

4.1.5.4. Selection of the variance and correlation functions for coffee bean yield            

In the cluster longitudinal data setting, we have only fitted a model with fixed and random 

effects structure that constitutes the major variability in the data. The model was fitted such that 

the random effects of block associated with intercept and biennial effect were included to 

account for the variability between blocks. However, in longitudinal study, selecting best model 

is not selecting a model with only the fixed and random effect structure but also variance and 

correlation structures. Thus, the part of exploratory data analysis in section 4.1.4 was evident that 

the model should be refitted and compared again to account for the variance and correlation 

structures across location over year.  
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In section 4.1.4, it was shown that yield variability differs in magnitude and evolution across 

location over years. This variability is expected to be constant to compare levels of fixed factors 

corresponding to location, genotype and interaction terms. In this study different variance 

functions like varPower, varFixed, varIdent and varExp were used and compared to model the 

variance structure within group using covariates location (l) and time (t) (Table 9).  Based on the 

AIC and BIC value, the two variance functions (varIdent(t) and varIdent(t,l))  were  preferred 

variance functions compared to the others . However, varIdent(t) has small AIC value compared 

to varIdent(t,l)) but the reverse is true on  BIC value (Table 9). This is due to the fact that the 

AIC performs poorly if there are too many parameters in the model (Sugiura, 1978, as cited in 

Girma, 2010). Thus, in addition to fixed parameters there are 7 parameters if varIdent(t) 

functions is used, but 21(7x3) parameters if varIdent(t,l))  is used. For this reason, the selection is 

made based on the BIC value since it applies a greater penalty for models with more parameters 

than does the AIC. Therefore, the heterogeneous variance function (varIdent(t)) can model 

different variances over year by using covariates (time) and found to be preferable variance 

function compared to others (AIC=21347.25, BIC=22013.22). 

 

In addition to variance functions, different correlation functions were used to model the 

dependency among measurements coming from the same coffee tree. Table (9) presents the 

common correlation functions (compound symmetry (corCompSymm), autoregressive of order 

1, 2, 3, and 4 (corAR1, corAR2, corAR3 and corAR4), exponential (corExp), Gaussian 

(corGaus), and unstructured (corSymm(UN))) which were compared to model the correlation 

structure among measurements of coffee bean yield over time. Based on the AIC and BIC 

values, the fitted model with unstructured correlation function (corSymm(UN)) and 

autoregressive of order 3 (corAR3)  found to be a better fit compared to others. Since many 

parameters in the unstructured correlation function, the selection was made on the BIC value 

likewise the variance function. Therefore, autoregressive of order 3 (corAR3), found to be a 

better fit based on the BIC value (AIC=21358.79, BIC=21986.22). 

 

 

 

 



 

51 
 

Table 9: Comparison of different models for variance and correlation structure 

  

For variance 

     

 

AIC BIC logLik 

 

Test L.Ratio p-value 

varConstant 21567.84 22148.6 -10671.92 

     varFixed(t) 21435.56 22016.32 -10605.78 

     varPower(t) 21435.68 22021.63 -10604.84 2 vs 3 1.88 0.171 

varPower(t,l) 21425.78 22022.10 -10597.89 3 vs 4 13.90 0.001 

varExp(t) 21477.00 22062.95 -10625.50 4 vs 5 55.23 <.001 

varExp(t,l) 21470.03 22066.34 -10620.01 5 vs 6 10.98 0.004 

varIdent(l) 21564.01 22155.15 -10668.01 6 vs 7 95.99 <.001 

varIdent(t) 21401.35 22013.22 -10582.67 7 vs 8 170.67 <.001 

varIdent(t,l) 21347.25 22031.72 -10541.62 8 vs 9 82.10 <.001 

  

For correlation 

     No correlation 21401.35 22013.22 -10582.67 

     corSymm(UN) 21325.07 22045.84 -10523.54 1 vs 2 118.27 <.001 

corAR(1) 21378.10 21995.17 -10570.05 2 vs 3 93.03 <.001 

corAR(2) 21368.10 21990.34 -10564.05 3 vs 4 12.01 0.001 

corAR(3) 21358.79 21986.22 -10558.40 4 vs 5 11.30 0.001 

corAR(4) 21360.79 21993.41 -10558.40 5 vs 6 0.00 0.990 

corCompSymm 21403.14 22020.21 -10582.57 6 vs 7 48.35 <.001 

corExp 21403.35 22020.41 -10582.67 

     corGaus 21403.35 22020.41 -10582.67 

     varConstant=constant variance; varFixed(t)=fixed variance with a function of time; varPower(t) 

variances with power function of time; varPower(t,l)= variances with power function of time and 

location; varExp(t,l)=variance with exponential  function of time and location; varIdent(l)= 

heterogeneous variance across location over year; corSymm(UN)=unstructured correlation 

function; corAR =autoregressive correlation; corCompSymm=compound symmetry correlation;  

 

4.1.5.5. Results of the final fitted linear mixed model  

The output of the final fitted linear mixed model is summarized in two tables (Table 10 and 

Table 11). These tables present the parameter estimates with their corresponding 95% confidence 

interval and p-value for the effect of main and interaction terms ( in both Table 10 and Table 11) 

, and the parameter estimate of random effects with 95% CI (Table11).  

 

Table 11 presents significant parameter estimates for the intercept, linear and quadratic time, 

Agaro by quadratic time interaction effect (p-values < 0.001), and Metu by linear and quadratic 

time interaction effects (p-values < 0.001). Thus, the estimated parameter for intercept was 
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2623.77 (with 95% CI: 2191.56, 3055.97 and P-value < 0.001), represents an estimate of the 

average coffee bean yield at the average time of the study for coffee genotype G1 that grown in 

Jimma in the presence of biennially. The significant linear effect of time for coffee bean yield 

was positive (estimate =158.92 and 95% CI: 132.04, 185.80), revealing that there is initially 

increasing linear rate of growth in Jimma.  However, the significant quadratic effect of time for 

coffee bean yield was found to be negative (estimate =-151.51, and 95% CI: -167.43, -135.59), 

suggesting that there is gradually fast decreasing linear rate of growth in later years in Jimma.  

 

The parameter estimate for the effect of Agaro by quadratic time interaction was 85.47 (with 

95%CI:  62.96, 107.98, p-values < 0.001), suggesting that the quadratic effects of time in Agaro 

is 85.47 kgha
1
 greater than that of Jimma.   Likewise, the parameter estimates for the effects of 

Metu by linear and quadratic time interaction respectively were -127.84 and 146.52 (with 95% 

CI: -165.86, -89.82 and 124.01, 169.030, respectively), suggesting that the linear effect of time 

in location Metu is -127.84 kgha
-1 

lower than that of Jimma, but the quadratic effect of time is 

188.91 kgha
-1

 greater than that of Jimma. 

 

Additionally, Table 11 shows there is significant effect of Metu and Agaro by Biennial 

interaction. Thus, the parameter estimate for the effect of Agaro by Biennial interaction at the 

average time of the study was -879.54 (with 95% CI: -1565.75, -193.32 and p-value=0.012) 

indicates that the average coffee bean yield of Agaro at the average time of the study is 879.54 

kgha
1 

lower than that of Jimma for coffee genotype G1 and in the absence biennially.



 

53 
 

Table 10:  Parameter estimates and their corresponding 95% CI and p-value for fixed effects from the final fitted LMM 

 

Jimma Agaro Metu 

Genotype Estimate 95%CI p-value Estimate 95%CI p-value Estimate 95%CI p-value 

  

In the presence of biennially  
 G2 169.17 (-354.43 692.77) 0.526 -501.24 (-1241.73 239.24) 0.184 -144.79 (-885.27 595.69) 0.701 

G3 -92.15 (-615.75 431.45) 0.73 -331.71 (-1072.20 408.77) 0.38 -263.02 (-1003.51 477.46) 0.486 

G4 -512.63 (-1036.23 10.97) 0.055 -110.16 (-850.64 630.32) 0.77 446.7 (-293.79 1187.18) 0.237 

G5 -239.04 (-762.64 284.56) 0.371 -417.74 (-1158.22 322.75) 0.269 187.7 (-552.78 928.18) 0.619 

G6 -840.21 (-1363.81 -316.61) 0.002 -315.65 (-1056.14 424.83) 0.403 471.01 (-269.47 1211.49) 0.212 

G7 786.67 (263.06 1310.27) 0.003 -1093.77 (-1834.25 -353.28) 0.004 -1057.55 (-1798.04 -317.07) 0.005 

G8 61.05 (-462.55 584.65) 0.819 -791.4 (-1531.88 -50.91) 0.036 184.95 (-555.53 925.43) 0.624 

G9 121.05 (-402.56 644.65) 0.65 -387.09 (-1127.57 353.39) 0.305 -657.84 (-1398.32 82.64) 0.082 

G10 -671.76 (-1195.36 -148.16) 0.012 -384.01 (-1124.49 356.48) 0.309 130.87 (-609.61 871.36) 0.729 

G11 -214.11 (-737.71 309.49) 0.423 -401.09 (-1141.57 339.40) 0.288 -274.42 (-1014.91 466.06) 0.467 

G12 38.19 (-485.41 561.79) 0.886 -399.01 (-1139.49 341.48) 0.291 -199.73 (-940.21 540.76) 0.597 

G13 -409.24 (-932.84 114.36) 0.125 -760.31 (-1500.79 -19.82) 0.044 -72.27 (-812.76 668.21) 0.848 

G14 -502 (-1025.60 21.60) 0.06 -716.27 (-1456.75 24.21) 0.058 293.61 (-446.87 1034.09) 0.437 

G15 -484.75 (-1008.36 38.85) 0.07 -63.39 (-803.87 677.09) 0.867 -177.83 (-918.31 562.65) 0.638 

G16 -12.56 (-536.16 511.04) 0.963 -658.05 (-1398.54 82.43) 0.082 -386.35 (-1126.83 354.14) 0.306 

G17 127.53 (-396.07 651.13) 0.633 -965.96 (-1706.45 -225.48) 0.011 -374.2 (-1114.68 366.29) 0.322 

  

In the absence of biennially 

 G2 -230.89 (-877.91 416.13) 0.484 869.29 (-45.73 1784.31) 0.063 -527.54 (-1442.56 387.48) 0.258 

G3 163.44 (-483.58 810.46) 0.62 295.51 (-619.51 1210.53) 0.527 -415.4 (-1330.42 499.62) 0.373 

G4 481.63 (-165.39 1128.65) 0.144 -33.87 (-948.89 881.15) 0.942 -1330.06 (-2245.09 -415.04) 0.004 

G5 -188.79 (-835.81 458.23) 0.567 395.15 (-519.87 1310.17) 0.397 -650.98 (-1566.00 264.04) 0.163 

G6 765.69 (118.68 1412.71) 0.02 210.95 (-704.08 1125.97) 0.651 -1415.89 (-2330.91 -500.86) 0.002 

G7 -746.74 (-1393.76 -99.73) 0.024 898.55 (-16.47 1813.58) 0.054 285.1 (-629.92 1200.12) 0.541 

G8 169.47 (-477.55 816.49) 0.608 293.34 (-621.69 1208.36) 0.53 -1335.93 (-2250.95 -420.91) 0.004 

G9 -24.71 (-671.73 622.31) 0.94 115.99 (-799.03 1031.02) 0.804 76.85 (-838.17 991.88) 0.869 

G10 425.15 (-221.87 1072.17) 0.198 447.29 (-467.73 1362.31) 0.338 -975.11 (-1890.13 -60.09) 0.037 

G11 239.37 (-407.65 886.38) 0.468 -32.82 (-947.84 882.21) 0.944 -257.23 (-1172.25 657.79) 0.581 

G12 22.3 (-624.72 669.32) 0.946 851 (-64.02 1766.03) 0.068 -6.99 (-922.01 908.03) 0.988 

G13 192.49 (-454.53 839.51) 0.56 711.33 (-203.69 1626.35) 0.128 -389.62 (-1304.65 525.40) 0.404 

G14 382.72 (-264.30 1029.73) 0.246 612.59 (-302.43 1527.62) 0.189 -898.78 (-1813.80 16.24) 0.054 

G15 728.99 (81.97 1376.01) 0.027 -151.41 (-1066.43 763.61) 0.746 -868.63 (-1783.66 46.39) 0.063 

G16 -91.88 (-738.89 555.14) 0.781 586.29 (-328.73 1501.31) 0.209 -367.66 (-1282.68 547.37) 0.431 

G17 -158.58 (-805.60 488.44) 0.631 719.79 (-195.24 1634.81) 0.123 -539.92 (-1454.94 375.10) 0.247 
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Table 11: Parameter estimates and their corresponding 95% CI for both random effects and the 

remaining fixed effects (which are not presented in table 10) from the final fitted LMM 

Fixed effect Estimate 95% CI         P-value 

Intercept 2623.77 (2191.56 3055.97) <0.001 

Time 158.92 (132.04 185.80) <0.001 

Time
2
 -151.51 (-167.43 -135.59) <0.001 

Biennial -103.42 (-588.65 381.80) 0.676 

Agaro -32.82 (-737.65 672.00) 0.918 

Metu -745.35 (-1450.18 -40.52) 0.040 

Agaro*Biennial -879.54 (-1565.75 -193.32) 0.012 

Metu*Biennial -46.78 (-732.99 639.43) 0.894 

Agaro*Time -0.87 (-38.89 37.14) 0.964 

Metu*Time -127.84 (-165.86 -89.82) <0.001 

Agaro* Time
2
 85.47 (62.96 107.98) <0.001 

Metu*Time
2
 146.52 (124.01 169.030 <0.001 

Parameters estimates of random  effects  with their corresponding 95% CI 

Parameter 

 

Estimate                              95% CI 

  (b0j) 

 

221.81 (129.03 381.28) 

  (b3j) 

 

145.24 (68.48 308.05) 

corr(b0j, b3j) 

 

-0.78 (-0.96 -0.13) 

  (єtji) 

 

255.03 (221.51 293.62) 

   
 

-0.16 (-0.23 -0.12) 

   
 

0.17 (0.07 0.26) 

   
 

0.15 (0.06 0.24) 

          AIC= 21358.79          BIC= 21986.22   logLik= -10558.4 

 

At the average time of the study and in the presence biennially, the parameter estimate for the 

effect of location Metu was -745.35 (with 95%CI: -1450.18, -40.52 and p-value=0.040), 

indicates that the average coffee bean yield of Metu at the average time of the study and in the 

presence biennially is 745.35 kgha
-1

 lower than that of Jimma for G1 genotype.  

 

The parameter estimates for the effects of genotype, genotype*biennial, genotype*location, and 

genotype*location*biennial are presented in Table 10. In the presence of biennially, three coffee 

genotypes (G6, G7, and G10) that grown in Jimma showed significant effect on coffee bean 

yield compared to the reference genotype G1. Thus, the parameter estimate for coffee genotype 

G6 that grown in Jimma in the presence of biennially was -840.21 (with 95% CI: -1363.81, -

316.61 and P-value < 0.002), suggests that the average coffee bean yield of coffee genotype G6 
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that grown in Jimma in the presence of biennially is 840.21 kgha
-1

 lower than that of G1 

genotype.  The parameter estimate for the effect of coffee genotype G7 that grown in Jimma in 

the presence of biennially was 786.67 (with 95% CI: 263.06, 1310.27 and p-value <0.003). This 

indicates that the average coffee bean yield of coffee genotype G7 that grown in Jimma in the 

presence of biennially is 786.67 kgha
-1

 greater than that of coffee genotype G1.  Again, the 

parameter estimate for the effect of coffee genotype G10 that grown in Jimma in the presence of 

biennially was -671.76 (with 95% CI: -1195.36, -148.16 and p-value < 0.012). This suggests that 

the average coffee bean yield of genotype G10 that grown in Jimma in the presence of biennially 

is 671.76 kgha
-1

 lower than that of genotype G1. 

 

Also, in the absence of biennially, three coffee genotypes (G6, G7, and G15) that are grown in 

Jimma showed significant effect on coffee bean yield compared to the reference genotype (G1). 

Thus, the parameter estimate for coffee genotype G6 that grown in Jimma in the absence of 

biennial was 765.69 (with 95% CI: 118.68, 1412.71and P-value < 0.02). This suggests that the 

average coffee bean yield of genotype G6 that grown in Jimma in the absence of biennially is 

765.69 kg ha
-1 

greater than that of genotype G1. And, the parameter estimate for the effect of 

coffee genotype G7 that is grown in Jimma in the absence of biennially was -746.74 (with 95% 

CI: -1393.76, -99.73 and p-value <0.024). This indicates that the average coffee bean yield of 

genotype G7 that grown in Jimma in the absence of biennially is 746.74 kgha
-1

 lower than that of 

genotype G1. Again, the parameter estimate for the effect of coffee genotype G15 that grown in 

Jimma in the absence of biennially was 728.99 (with 95% CI: 81.97, 1376.01 and p-value < 

0.027). This indicates that the average coffee yield of coffee genotype G15 that grown in Jimma 

in the absence of biennially is 728.99 kgha
-1

 greater than that of genotype G1. 

 

 Besides main effects, there were also significant locations by genotype interaction at the midle 

of the time (Table 10). Accordingly, four genotypes in Agaro and one genotype in Metu were 

showed significance mean difference compared to the reference category G1 in the presence of 

biennially, and. From Table 10, we can observe that the effect of these genotypes were negative, 

suggesting that they have lower mean than the reference category G1.  Thus, the parameter 

estimate for coffee genotype G7 in Agaro was -542.11 (with 95% CI: -915.27, -168.94 and P-

value < 0.005) suggesting that the average coffee yield of genotype G7 in Agaro is 542.11 lower 
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than that of genotype G1. Following this, similar interpretation follows for the remaining 

significance parameter estimates in Agaro.  Similarly, the parameter estimate for coffee genotype 

G7 in Metu was -1057.55 (with 95% CI: -1798.04, -317.07 P-value < 0.005) suggesting that the 

average coffee yield of genotype G7 in Metu is 1057.55 lower than that of genotype G1. 

Moreover, four genotypes in Metu were showed significance mean difference compared to the 

reference category G1 in the absence of biennially, and similar interpretation follows for these 

significant parameter estimates as usual. 

 

4.1.6 Model diagnostics for the final fitted linear mixed model 

4.1.6 .1. Assessing assumptions of the within-group error (Assumption1) 

The primary quantities used to assess the adequacy of Assumption1 are the within-group 

residuals, defined as the difference between the observed response and the within-group fitted 

value. Other quantities used for assessing Assumption 1 graphically include the within-group 

fitted values, the observed values, and any covariates of interest. The first residual plot that was 

considered in this study is the boxplot of residuals by groups. This plot is useful for verifying 

that the errors are centered at zero (i.e., E(єji) = 0), have constant variance across different groups 

(Var (єji) =  
2
), and are independent of the group. 

 

 In appendix, Figure 9a presents box-plots of the residuals by coffee tree (pid) for the final fitted 

model, and it indicates that the residuals are centered at zero, and the variability is almost the 

same for coffee tree except some outlying observations to the right. A better feeling for this 

pattern can also be judged by examining the plot of the standardized residuals versus fitted 

values in overall or by groups (location, block, time, and genotypes). Figure 9b&12 (in 

appendix)  also present scatter plots of standardized residuals versus fitted values for the final 

fitted model in overall and by Location ,Block ,Genotype and Time. These figures indicate that 

the standardized residuals in each group also have about the same variability.  

 

The assumption of normality for the within-group errors can also be assessed with the normal 

probability plot of the residuals, produced by the qqnorm method.  Figure 10 (in appendix) 

presents normal plot of row (a) and standardize residual (b) for the final fitted linear mixed 

model, and it indicates that the random error within group follows an approximately normal 
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distribution. Moreover, Figure 12(in appendix) shows normal plots of residuals for each group 

(Location (a), Block (b), Genotype(c), and Time (d)). Again, it indicates that the assumption of 

normality for error term is plausible in each group. 

 

4.1.6.2. Assessing assumptions of the random effects (Assumption2) 

Two types of diagnostic plots were used for assessing Assumption2 on the distribution of the 

random effects. These are the normal plot of estimated random effects for checking marginal 

normality and identifying outliers (qqnorn), and scatter plot matrix of the estimated random 

effects for identifying outliers and checking the assumption of homogeneity of the random 

effects covariance matrix.  Figure 13 (in appendix) presents the normality plot of random effects 

of block associated with intercept and biennial for overall (a) and groups (b and c), and it does 

not indicate any departures from normality or serious outlying observations. The plots in Figure 

14a&b are made on g1 and t1 among the levels of genotypes and time points, respectively to 

show homogeneity of the random effects covariance matrix. Thus, Figure 14 reveals similar 

patterns, and it indicates homogeneity of the random effects covariance matrix. 

 

4.2. Genotype by Environment Interaction Analysis (GEI) 

In the longitudinal study, the analysis was done on the actual data for the purpose of 

interpretation of parameter estimates and due to the possibility of handling heterogeneity of 

variance and the correlations among different environments. Fortunately, heterogeneity of 

variance and the correlations among different environments were adequately modeled, and the 

assumption of normality found to be believable in the linear mixed model setting. 

 

However, before  conducting  any analyses  of genotype by environment interaction,  the  data  

were  subjected  to  data transformation to fix failures of assumptions of  normality and  

homogeneity  of  error  variances  among  the  different  environments. The box plots of coffee 

bean yield measurements over year in appendix (Figure 15a) shows a high degree of skewness 

and outliers towards high coffee yield measurements. This suggests that the data should be 

treated with some transformations unless the assumption of normality and constant variance may 

be seriously despoiled. In this study, the natural logarithm and square root transformation were 

checked, and the square root transformation found to be plausible transformation for coffee bean 
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yield measurements (Figure 15b in appendix), so that any analyses of genotype by environment 

interaction were done on the square root transformation.  

 

4.2.1. Combined analysis of variance  

After  confirming  the  presence  of  significant  differences  among  genotypes  for  coffee  yield  

at  the  specific environments(Table 13 in appendix), combined analysis of variance was done. 

The combined analysis of variance in Table 12 shows that there were significant differences 

among environments (p<0.001) and genotypes (p<0.001) for coffee bean yield, indicating the 

presence of variability in genotypes as well as diversity of growing conditions at different 

locations. The GEI was highly significant (p<0.001) reflecting the differential response of 

genotypes in various environments. The total variation explained was 49.5% for environment, 

7.2 % for genotype and 16.2% for GEI. The high percentage of the environment is an indication 

that the major factor that influence yield performance of coffee genotypes in Ethiopia is the 

environment. The percentage of variation explained by GEI was relatively large as compared to 

the variation explained by main effect of genotype. 

 

Table 12: Combined ANOVA for coffee bean yield and the percentage sum of squares of the 17 

genotypes tested at 21 environments (three locations over a period of seven years) 
 

  

 

 

 

 

4.2.2. Additive Main effects and Multiplicative Interaction (AMMI) analysis  

The AMMI procedure has been used in order to further investigate the nature of GEI and explore 

the information contained in it. The result of this procedure was presented in Table 13 with the 

combined analysis of variance. As mentioned earlier, the environment and genotype main effects 

are significant, accounting for 49.5% and 7.2% of the total variation in the data set, respectively. 

It has also been found that 16.2% of total variation was attributed to the genotype by 

environment interaction. 

Source DF SS %SS MS F-value p-value 

Environments(E) 20 126169 49.5 6308.5 33.6 <0.001 

Block(B(E)) 63 11819 4.6 187.6 3.3 <0.001 

Genotypes(G) 16 18481 7.2 1155.1 20.3 <0.001 

Interactions(GEI) 320 41208 16.2 128.8 2.3 <0.001 

Error 1008 57333 
 

56.9 
  Total 1427 255011 

 
178.7 
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GEI was further partitioned by principal component analysis. The Gollob F-test that has been 

used to measure  significant  of  the  GEI  interaction  components, and it shows  that the  first  

five  IPCAs  were  significant  (P-value<0.01). This indicates  that  the  total  information  

contained  in  GEI  that  has  320 degree of freedom can  be  sufficiently  explained  using  only  

155  degree of freedom  which  captures 80% of the total sum square of GEI, leaving only 20% 

of sum square of GEI as a noise.  

 

Table 13: Combined analysis of variance (ANOVA) according to the AMMI model and Gollob’s 

tests of interaction PCAs 

Source DF SS MS 

Total variation 

explained (%) 

       GEI 

explained (%) 

 

Cumulative 

(%) 

Total 1427 255011 178.7
 

 

         72.9 Treatment 356 185858 522.1
*** 

Environments(E) 20 126169 6308.5
*** 

49.5 

   Block nested in E 63 11819 187.6
*** 

4.6 

   Genotypes(G) 16 18481 1155.1
*** 

7.3 

   Interactions(GEI) 320 41208 128.8
*** 

16.2 

   IPCA1 35 12005 343
*** 

4.7 29.1 29.1 

IPCA2 33 8232 249.5
*** 

3.2 20.0 49.1 

IPCA3 31 6216 200.5
*** 

2.4 15.1 64.2 

IPCA4 29 3663 126.3
*** 

1.4 9.0 73.1 

IPCA5 27 2852 105.6
** 

1.1 7.0 80 

IPCA6 25 2220 88.8
* 

0.9 5.4 85.4 

IPCA7 23 2018 87.8
* 

0.8 5.0 90.3 

IPCA residuals 117 4001 34.2 

    Error 1008 57333 56.9 

    ***p-value<0.001; **p-value<0.01;*p-value<0.05 IPCA=Interaction Principal Component Axis 

 

At 1%, Table 13 shows that these principal components (PCA1, PCA2, PCA3, PCA4 and PCA5) 

captured about 29.1%, 20%, 15.1%, 9% and 7% of variation due to GEI sum of squares, 

respectively. Together they accounted for 80% of GEI sum of squares. However, most of the 

variation was explained by the first three principle components (PCA1, PCA2 and PCA3) which 

accounted for cumulative 64.2%. Over all, the contribution of environment, genotype and the 

first three principal components to the treatment sum square (the sum of sum of squares of 

genotype, environment and GEI) was around 92%, indicating the reasonableness and 

parsimoniousness of AMMI model with the first three interaction principal components in 

partitioning the treatment sum of squares. 
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Estimates for the genotypic and environmental scores of AMMI-3 (scores of PCA1, PCA2 and 

PCA3) with their corresponding average coffee bean yield are given in Table 14.  The PCA 

scores of a genotype  from  AMMI  analysis  indicate  the  stability  or  adaptation  of  a  

genotype  across environments. The larger the PCA score, either positive or negative, as it is a 

relative value, the more specifically adapted a genotype is to certain environments.  The  closer  

the  PCA scores  near  zero,  the  more  stable  or  adapted  a  genotype  is  over  all  test  

environments. Environment  scores  from  AMMI  analysis  relating  to  interaction  also  have  

meaningful interpretation.  Environments with large PCA scores are more discriminating of 

genotypes, while environments with PCA scores near zero exhibit little interaction across 

genotypes and low discrimination among genotypes. 

 

Genotype and environment combinations with PCA scores of the same signs produce positive 

specific  interaction  effect,  whereas  combination  of  opposite  signs  have  negative  specific  

interactions. For example, E3 and G1 have positive specific interaction effect while E2 and G2 

have negative specific interaction effect. Environment which have same signs of interaction PCA 

scores discriminate genotypes similarly, for instance E2 and E8; and Environments with  

opposite  sign  of  interaction  scores  discriminate  genotypes differently, for example E2 and 

E3(Table 14). 

 

To further explain the GEI and stability, a bi-plot and three dimension plot with IPCAs scores 

were used.  AMMI  bi-plot of the first  two principle component  axes  is  a    powerful  way  of  

detecting  important  score  of  GEI. This analysis represents stability of the genotypes across 

environments in terms of principle component analysis. It is used to see generally adapted 

genotypes that offer stable performance across environments, as well as genotypes that perform 

well under specific conditions. In this study, the first two principal component axes (PCA1 and 

PCA2) which capture around 50% of the total GEI sum squares in bi-plot analysis and 
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Table 14: IPCA1, IPCA2 and PCA3 scores for genotypes and environment with their 

corresponding estimated mean 

Env Mean PCA1 PCA2 PC3 Gen Mean PCA1 PCA2 PCA3 

E1 21.20 0.451 -1.869 -1.140 G1 41.06 0.499 0.670 -0.680 

E2 34.08 -0.415 -0.723 0.067 G2 42.23 1.129 1.774 -2.482 

E3 33.83 0.367 0.671 -1.336 G3 37.39 1.093 -0.295 0.617 

E4 49.91 -1.342 2.738 1.154 G4 36.52 1.541 0.507 -0.289 

E5 28.34 0.632 -1.259 -2.328 G5 34.58 -5.174 3.019 -1.004 

E6 46.95 0.093 1.516 0.024 G6 31.69 -0.447 -1.696 -1.508 

E7 32.63 0.707 2.200 -3.002 G7 39.97 -0.077 1.750 3.170 

E8 26.36 -0.534 -1.714 0.631 G8 38.85 2.300 2.087 1.885 

E9 36.35 0.365 -0.778 1.585 G9 39.52 -0.356 0.721 0.199 

E10 45.07 1.658 0.635 0.873 G10 31.07 -0.370 -1.754 -0.570 

E11 49.81 -2.874 0.668 2.345 G11 36.90 1.115 0.573 1.898 

E12 49.10 4.725 1.021 1.785 G12 42.55 1.381 -0.130 -2.403 

E13 51.71 -2.891 0.781 0.847 G13 31.76 -0.820 -1.799 -0.542 

E14 28.70 1.980 1.476 0.916 G14 33.79 0.644 -2.182 0.535 

E15 29.33 -0.456 -0.775 -0.351 G15 36.15 1.803 -0.597 -0.767 

E16 37.38 -0.593 -0.422 0.474 G16 34.44 -1.586 0.438 -0.179 

E17 31.02 0.834 -1.875 0.943 G17 33.09 -2.674 -3.086 2.122 

E18 43.71 -1.645 1.837 -1.693 
     E19 20.67 0.182 -2.360 -0.206 
     E20 40.71 -1.242 -1.793 -0.004 
     E21 30.94 -0.001 0.025 -1.584 
     Env=environment; Gen=genotype 

the 3-dimensional plots (PCA1, PCA2 and PCA3) that explained about 64%  of the total GEI  

sum  of  squares are presented in Figure 7. On these AMMI plots, genotypes and environment  

having PCA values close to zero (near the origin) have small interaction  effects,  whereas  those  

having  large  positive  or  negative  PCA values (distant from zero) largely contribute to GEI 

interaction. According to Figure 7b, G5 and  G17 are relatively far apart from the origin, 

indicating  strong interaction effects and G1, G3, G4, G5, G6 G8, G9, G10 and G12 appeared 

close to zero( the center of the axes) , and therefore are relatively more stable. Among the 21 

environments, E7, E18, E4, E13, E11 and E12 exhibited larger interactions (i.e. they are 

relatively far apart from the origin) and were more discriminating of genotypes, whereas  the  

environment  E8, E9, E10, E14, E15, E16, E8, E19  and  E21   relatively  exhibited negligible 

interaction and  low discrimination ( Figure 7a&b). 
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(a)    Bi-plot                                                                                                          (b) 3-dimentional plot 

Figure 7: Bi-plot (a) and 3-dimensional plot (b) of interaction principal components analysis (PCA):  IPCA1 versus IPCA2 (a) and IPCA1 

verses IPCA3 verse IPCA3 (b) for bean yield (kgha
-1

) for17 coffee genotype grown in 21 environments
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The bi-plot in Figure 8 presents interaction PCAs score versus mean bean yield of both coffee 

genotypes and environments.  From  the  bi-plot,  environments  are  distributed  from  lower  

yielding environments in quadrants II(top left) and III(bottom left) to the high yielding 

environments in  quadrants  I  (top  right)  and  IV  (bottom  right).  Thus, The  high  yielding  

environments classified  according  to  the  AMMI1  model  were E12, E10, E6, E4, E16, E20, 

E18, E11 and E13. The lower yielding environments were E19, E1, E14, E5, E17, E7, E3, E9, 

E21, E8, E15 and E2. The environments E19 & E1, E12, and E11 &E13 are visible in quadrant I, 

III, and IV, respectively, and are relatively quite distant from the origin. Accordingly, E11, E12 

and E13 were the most favorable season and E19 and E1 were the less favorable seasons among 

the 21 environments.  

 

Figure 8: Bi-plot of the first interaction principal component axis (IPCA1) versus means yield 

for17 coffee genotype grown in 21 environments
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Furthermore, the genotypes grouped under favorable environments with above average means 

were G1, G12, G3, G7, G8, G9 and G12.  Among them, G1, G3 were found to be relative more 

stable. Genotypes grouped under low yielding environments are shown on the left quadrants of 

the bi-plot. Thus, G5 and G17 were low yielder and the most unstable genotype identified by the 

AMMI model.   

 

4.3 General Discussion 

In this study, longitudinal and GIE analysis were done to investigate the biennial effect, the 

correlation among measurements of coffee yield, the evolution (trend) of coffee yield over time , 

and  the relation between genotype and environment. For longitudinal study,  Exploratory data 

analysis (EDA) and  linear mixed model (LMM) was used to analyze clustered longitudinal 

coffee bean yield data set, in which units of analysis (coffee tree) are nested within clusters 

(blocks), and repeated measures (coffee bean yield) are collected on the units of analysis over 

time. Correspondingly, combined ANOVA and AMMI model was used to analyze multi 

environment data (location-year combination) so as to extract the information contained in GEI.   

 

In the longitudinal study, graphically, the base line covariates by time interaction, mean 

evolution/trajectory, and between and within coffee tree variability were investigated in the 

course of exploratory data analysis. Accordingly, it was shown that there is between and within 

coffee tree variability (Figure 1a), and the variability between clusters (blocks) was also shown 

Figure 1b.  On the mean trend, it was shown that there is up and down trajectory in the evolution 

of coffee yield over time, and it was indicated that it is evident for the presence of biennial factor 

on coffee yield. This is more or less similar with the work (Rodriguez et al., 2013) who 

quantified variability due to biennial in Robusta coffee.  This factor was coded and used as 

indicator variable in LMM for the adjustment of biennial effect. It was also pointed out that the 

mean evolution could have a quadratic trajectory over time after the adjustment of biennial 

effect. The base line factors by time interaction (location*time and genotype*time) was 

investigated, and it was observed that there is location by time interaction (Figure 2). This 

suggests that there is different CBY growth trend among coffee growing areas over time of year.  

The variance covariance structure was also explored, and it was shown that there is variance 
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heterogeneity in magnitude and evolution across location over time, and a correlation among 

coffee yield measurements that comes from the same coffee tree. 

 

Given the evidences in the graphical investigation and then with possible fixed and random 

factors , the next work was model selection for the structure of fixed and random effects, and 

variance covariance components based on AIC and BIC values as well as likelihood ratio test.  

Without considering the structure of random effects and variance covariance components, the 

structure of fixed effects was selected first using ML estimation method. Given the selected fixed 

effects structure, the structure of random effects was also selected using REML estimation 

method (Table 8). Thus, the random effects of block associated with intercept and biennial found 

to be a better fit for the random effects structure of intercept + biennial (         ).  

 

After selecting fixed and random effect structure, functions of variance and correlation were 

compared for the variance and correlation structure of random error in LMM. For variance 

structure, nine variance functions (Table 9) were compared, and heterogeneous variance over 

time (varIdent(t)) found to be a better fit compared to others . Similarly, nine correlation 

functions (Table 9) were compared, and the autoregressive order three (AR (3)) found to be 

better fit. Accordingly, this study showed evidence for the presence of serial correlation among 

repeated measurements of Arabica coffee bean yield via significant parameter estimates of third-

ordered autoregressive model ( 1= -0.16,  2=0.17, and  1=0.15 with 95% CI: (-0.23, -0.12), 

(0.07, 0.26), and (0.06, 0.24), respectively). Despite the type of correlation structure, this was 

similar with the work of Cilas et al. (2011) who estimated the Compound Symmetry correlation 

among measurements of Robusta coffee. bean yield in successive years.  

 

Studies shows that, the phenomenon of biennially is more pronounced in the species Arabica 

coffee, than Robusta coffee, which results in years with high yield intercalated with years of low 

yield in production(Taye et al., 2001; Bernardes et al, 2012; Rodriguez et al., 2013). This 

biennial alternation of yield is the result of the physiological nature of the coffee plant, which 

needs to vegetate along a year to sustain the fruit production in the next year (Rena and Maestri, 

1985). There was no clear published literature relating to longitudinal analysis on yields of 

Coffee arabica in the linear mixed model setting including time variant factor biennial. But in 
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Brazil, Rodriguez et al. (2013) investigated the effect of biennial on the genotypes of Robusta 

coffee by calculating the magnitude of biennial (i.e., by subtracting the mean production of the 

years of low production from the mean of the years of high production based on an even number 

of years). The result showed high yield variation between years of high and low productions and 

variation among genotypes on their calculated biennial means. However, by using linear mixed 

model, this study revealed that, it is possible to capture the variability due to biennial in terms of 

fixed and random effect. Thus, the estimated variance of random effect of block associated with 

intercept and biennial respectively were     (b0j) = (221.81)
2
 and      (b3j) = 145.24

2
, and which 

would be benefit from using linear mixed model with time variant factor biennial.  This could 

improve the accuracy and precision of the estimates of genotype contrasts and their standard 

error.   

 

This thesis also revealed a significant location by linear and quadratic time effect interaction. 

From Table 11, the estimates of quadratic time effect for Jimma., Agaro and Mutu  respectively 

were -151.51, -151.51+ 85.47=-66.05 and  -151.51+146.52=-4, whereas 158.92, 158.92, 158.92-

127.84=31.08 for linear time effect.  Thus, for each location, the sign of the parameter estimates 

of linear and quadratic time effect was positive and negative, respectively. This indicates that the 

coffee bean yield initially increasing and gradually decreasing in linear rate of growth in all 

location but evolves in different magnitude. Moreover, it was shown that biennial interacts 

significantly with location and genotype, suggesting that differential response of genotypes and 

environments in the presence and absence of biennially.  

 

Genotype by Environment Interaction (GEI) analysis was done after square root transformation 

of the data. The combined analysis of variance revealed that the mean squares of genotypes, 

environments and genotype by environment interaction were highly significant. The significance 

of interaction indicates that there is uncertainty in measuring overall performance of genotypes 

across different environments (Yonas et al., 2014b), or reflecting the differential response of 

genotypes in various environments (Girma et al., 2000; Zubair et al., 2001, as cited in Zelalem, 

2011; Asnake et al.,  2013, as cited in Degene, 2016). The proportion of variability attributed to 

environment was relatively large (Table 12), and it was an indication that the major factor that 

influence yield performance of coffee genotypes in Ethiopia is the environment. This is in line 
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with the work of Lemi and Ashenafi (2016) and Yonas and Tarekegn (2015) who reported 

genetic variation and heritability of various traits in Arabica coffee genotypes. The magnitude of 

the GEI sum of squares was about 2 times larger than that of genotypes, indicating sizeable 

differences in genotypic response across environments, and as GEI was significant therefore we 

can further proceed and calculate phenotypic stability (Rashidi et al., 2013). 

 

GEI was further partitioned by principal component analysis (Table 13). The Gollob’s test using 

an approximate F-statistic revealed high significant differences for IPC1, IPC2, IPC3, IPC4 and 

IPC5 at 1%.   The  first  three  interaction  principal  components  (IPC1,  IPC2  and  IPC3)  

retained  by  Gollob’s  F-test accounted for 64.2% of GEI, indicating the reasonableness and 

parsimony of AMMI model with the first three interaction principal component axes hereafter 

called AMMI3, in  partitioning  the  treatment  sum  of  squares effectively ((Gauch and Zobel, 

1988; Gauch, 1992).  This is also in line with the work of Meaza et al. (2011) and Yonas et al. 

(2014a) who reported the possibility of developing stable coffee genotype across environments. 

But the investigators showed that more than 70% of GEI sum square was explained by the first 

two interaction principal components. The difference could be due to the nature of the data. The 

current study also reported that Environments E12, E10, E6, E4, E16, E20, E18, E11 and E13 are 

found to be high potential environments, where genotypes having high-yield (greater than grand 

mean).  Among 17 genotypes, G1, G2, G3, G7, G8, G9 and G12 are found to have the best 

performance with G1, G2, G3, G8 and G12 being relatively stable. Among the high-yielding 

genotypes, G7 and G9 are found to be unstable and particularly adapted to environment E4.  E17 

and G5 found to be low yielder and highly unstable among 17 genotypes. 

 

 

 

 

 

 

 

 

 



 

68 
 

5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

For coffee variety field trial conducted over year, the heterogeneous variance function 

(varIdent(t)) and autoregressive order three (AR3) are better  fit , respectively, to the variance 

and correlation structure among measurements of Arabica CBY. Biennial interacts significantly 

with location and genotype, suggesting that differential response of genotypes and environments 

in the presence and absence of biennially. The CBY follows a quadratic trend with positive and 

negative signs, respectively, to the linear and quadratic time effect, suggesting that the Arabica 

CBY initially increasing and gradually decreasing in linear rate of growth.  

 

The  major  factor  that  influence  yield  performance  of  Arabica  coffee in  Ethiopia  is  the  

environment. In particular, GEI highly significant and is about 2 times larger than that of 

genotypes, implying further proceed of extracting the information contained in GEI to 

investigating the nature of differential response of genotypes across environments. Among 17 

genotypes, G1, G2, G3, G7, G8, G9 and G12 were identified to have the best performance with 

G1, G2, G3, G8 and G12 being relatively stable across the test environments under investigation 

using AMMI procedure. Hence, these genotypes can potentially be released for wide adaptation 

across coffee producing areas that have similar agro-climatic settings. 

 

Generally, the coffee variety trial data set that conducted across location over year with RCBD 

design can constitute not only multi environment data set but also cluster longitudinal data set in 

which coffee trees are nested within blocks and repeated measures of CBY are collected on 

coffee trees over time. Following this, both longitudinal and GEI analysis are important to 

investigate the longitudinal time effect , the correlation among repeated measure of CBY, the 

biennial effect, and the relation between genotype and environment 

 

5.2. Recommendations 

The current study identified location by linear and quadratic time interaction effect which 

informing CBY initially increasing and gradually decreasing in linear rate of growth. Hence, 

Future studies should be conducted on the situation associated with the gradually decreasing rate 

of growth in Arabica coffee bean yield.  
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The current study also revealed that, the time variant factor (biennial) has significance effect on 

Arabica coffee bean yield. Hence, future studies that involve estimation of time effect and 

evolution of Arabica coffee variety should not discard this factor. 

Coffee variety field trial conducted over year gives rise to repeated measurements taken on the 

same plot on several occasions. So, it is important to account for serial correlation among 

repeated measurements in such trials. 

The current study also showed that GEI highly significant (p<0.001) accounting for 16.2% of the 

total sum of squares and is about 2 times larger than that of genotypes, therefore, future studies 

should do further analysis of GEI using not only the conventional methods but also more reliable 

statistical methods.    
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7. APPENDIX 

Appendix  A.  Figures  

 

Figure 9:  Boxplots of the residuals by subject(coffee trees/pid) (a)  and standardized residuals 

versus fitted values(b)  for the final fitted linear mixed model  

 

Figure 10: Normal plot of residuals (a) and standardize residuals (b) for the final fitted linear 

mixed model  
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Figure 11:  Scatter plots of standardized residuals versus fitted values for the final fitted linear 

mixed model by Location (a), Block (b), Genotype(c), and Time (d) 
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Figure 12: Normal plot of residuals for the final fitted linear mixed model by Location (a), Block 

(b), Genotype(c), and Time (d).  
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Figure 13: Normal plot of random effects of block associated with intercept and biennial: for 

overall (a) and for groups (example, for genotype1 (G1) (b) and for time1 (at year1) (c))  
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Figure 14: Scatter plot of random effects: for overall (a) and for groups (b) and (c) 
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Figure 15: Box-plot of coffee yield measurements :(a) actual yield, (b) Square root 

transformation and  (c) Logarithm transformation  
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Appendix B Tables 
 

Table 15:  Parameter estimates and their corresponding standard error, t-value, degree of 

freedom (DF) and p-value for fixed effects from the final fitted LMM  

 

 

Jimma Agaro Metu 

 

In the presence of biennially  

  

 

estimate t-value p-value estimate t-value p-value estimate t-value p-value 

G2 169.17 0.63 0.526 -501.24 -1.33 0.184 -144.79 -0.38 0.701 

G3 -92.15 -0.35 0.730 -331.71 -0.88 0.380 -263.02 -0.70 0.486 

G4 -512.63 -1.92 0.055 -110.16 -0.29 0.770 446.70 1.18 0.237 

G5 -239.04 -0.90 0.371 -417.74 -1.11 0.269 187.70 0.50 0.619 

G6 -840.21 -3.15 0.002 -315.65 -0.84 0.403 471.01 1.25 0.212 

G7 786.67 2.95 0.003 -1093.77 -2.90 0.004 -1057.55 -2.80 0.005 

G8 61.05 0.23 0.819 -791.40 -2.10 0.036 184.95 0.49 0.624 

G9 121.05 0.45 0.650 -387.09 -1.03 0.305 -657.84 -1.74 0.082 

G10 -671.76 -2.52 0.012 -384.01 -1.02 0.309 130.87 0.35 0.729 

G11 -214.11 -0.80 0.423 -401.09 -1.06 0.288 -274.42 -0.73 0.467 

G12 38.19 0.14 0.886 -399.01 -1.06 0.291 -199.73 -0.53 0.597 

G13 -409.24 -1.53 0.125 -760.31 -2.01 0.044 -72.27 -0.19 0.848 

G14 -502.00 -1.88 0.060 -716.27 -1.90 0.058 293.61 0.78 0.437 

G15 -484.75 -1.82 0.070 -63.39 -0.17 0.867 -177.83 -0.47 0.638 

G16 -12.56 -0.05 0.963 -658.05 -1.74 0.082 -386.35 -1.02 0.306 

G17 127.53 0.48 0.6329 -965.96 -2.56 0.011 -374.20 -0.99 0.322 

Df 1311 1311 1311 

Std.Error 266.90 377.46 377.46 

 

In the absence of biennially 

 G2 -230.89 -0.70 0.484 869.29 1.86 0.063 -527.54 -1.13 0.258 

G3 163.44 0.50 0.620 295.51 0.63 0.527 -415.40 -0.89 0.373 

G4 481.63 1.46 0.144 -33.87 -0.07 0.942 -1330.06 -2.85 0.004 

G5 -188.79 -0.57 0.567 395.15 0.85 0.397 -650.98 -1.40 0.163 

G6 765.69 2.32 0.020 210.95 0.45 0.651 -1415.89 -3.04 0.002 

G7 -746.74 -2.26 0.024 898.55 1.93 0.054 285.10 0.61 0.541 

G8 169.47 0.51 0.608 293.34 0.63 0.530 -1335.93 -2.86 0.004 

G9 -24.71 -0.07 0.940 115.99 0.25 0.804 76.85 0.16 0.869 

G10 425.15 1.29 0.198 447.29 0.96 0.338 -975.11 -2.09 0.037 

G11 239.37 0.73 0.468 -32.82 -0.07 0.944 -257.23 -0.55 0.581 

G12 22.30 0.07 0.946 851.00 1.82 0.068 -6.99 -0.01 0.988 

G13 192.49 0.58 0.560 711.33 1.53 0.128 -389.62 -0.84 0.404 

G14 382.72 1.16 0.246 612.59 1.31 0.189 -898.78 -1.93 0.054 

G15 728.99 2.21 0.027 -151.41 -0.32 0.746 -868.63 -1.86 0.063 

G16 -91.88 -0.28 0.781 586.29 1.26 0.209 -367.66 -0.79 0.431 

G17 -158.58 -0.48 0.631 719.79 1.54 0.123 -539.92 -1.16 0.247 

Df 1311 1311 1311 

Std.Error 329.8124 466.4252 466.4252 
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Table 16: Parameter estimates and their corresponding standard error, t-value, degree of freedom 

(DF) and p-value for the remaining fixed effects (which are not presented in Table 15) from the 

final fitted LMM 

 
Estimate  Std.Error DF t-value p-value 

Intercept 2623.77 220.32 1311 11.91 0.000 

Time 158.92 13.70 1311 11.60 0.000 

Time
2
 -151.51 8.11 1311 -18.67 0.000 

Biennial -103.42 247.34 1311 -0.42 0.676 

Agaro -32.82 311.57 9 -0.11 0.918 

Metu -745.35 311.57 9 -2.39 0.040 

Agaro*Biennial -879.54 349.79 1311 -2.51 0.012 

Metu*Biennial -46.78 349.79 1311 -0.13 0.894 

Agaro*Time -0.87 19.38 1311 -0.05 0.964 

Metu*Time -127.84 19.38 1311 -6.60 0.000 

Agaro* Time
2
 85.47 11.47 1311 7.45 0.000 

Metu*Time
2
 146.52 11.47 1311 12.77 0.000 
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Table 17: Individual (separate) analyses of variance (RCB design) for a trial with 17 genotypes 

and four replications, by 21 environment 

Env DF 
Source of 
variation SS MS Env 

Source of 
Variation DF SS MS 

E1 3 rep 207.77 69.26 E12 rep 3 485.96 161.99 

 
16 genotype 1417.41 88.59 

 
genotype 16 9243.10 577.69 

 
48 error 1281.19 26.69 

 
error 48 4974.71 103.64 

E2 3 rep 503.74 167.91 E13 rep 3 131.80 43.93 

 
16 genotype 909.71 56.86 

 
genotype 16 2617.10 163.57 

 
48 error 757.81 15.79 

 
error 48 1584.25 33.01 

E3 3 rep 56.07 18.69 E14 rep 3 19.06 6.35 

 
16 genotype 3639.98 227.50 

 
genotype 16 4501.82 281.36 

 
48 error 1694.69 35.31 

 
error 48 4219.84 87.91 

E4 3 rep 1592.81 530.94 E15 rep 3 823.94 274.65 

 
16 genotype 3934.33 245.90 

 
genotype 16 1732.46 108.28 

 
48 error 1637.93 34.12 

 
error 48 789.36 16.45 

E5 3 rep 271.86 90.62 E16 rep 3 778.59 259.53 

 

16 genotype 3335.88 208.49 
 

genotype 16 1007.06 62.94 

 
48 error 8015.22 166.98 

 
error 48 2170.95 45.23 

E6 3 rep 574.82 191.61 E17 rep 3 527.61 175.87 

 
16 genotype 3163.40 197.71 

 
genotype 16 2303.85 143.99 

 

48 error 2121.14 44.19 
 

error 48 2106.89 43.89 

E7 3 rep 779.03 259.68 E18 rep 3 115.10 38.37 

 

16 genotype 5982.80 373.93 
 

genotype 16 3191.81 199.49 

 
48 error 4189.70 87.29 

 
error 48 1742.99 36.31 

E8 3 rep 211.92 70.64 E19 rep 3 253.71 84.57 

 
16 genotype 313.44 19.59 

 
genotype 16 1580.55 98.78 

 
48 error 860.88 17.94 

 
error 48 2262.19 47.13 

E9 3 rep 277.54 92.51 E20 rep 3 423.2512 141.084 

 
16 genotype 1955.02 122.19 

 
genotype 16 326.5068 20.4067 

 
48 error 868.11 18.09 

 
error 48 2888.346 60.1739 

E10 3 rep 406.14 135.38 E21 rep 3 2536.725 845.575 

 
16 genotype 2935.22 183.45 

 
genotype 16 2089.682 130.605 

 
48 error 1621.66 33.78 

 
error 48 9946.011 207.209 

E11 3 rep 841.44 280.48 
     

 
16 genotype 3507.79 219.24 

     

 
48 error 1599.54 33.32 

     Df = degree of freedom; SS= sum square; MS mean square; Env =environment  
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Appendix C.  R code 

#LONGITUDINAL ANALYSIS 

library(foreign) 

library(lattice) 

library(nlme) 

library(faraway) 

library(MASS) 

rm(list=ls()) 

my<- read.csv(file="C:\\Users\\user\\Desktop\\\Tdata\lmm.csv") 

attach(my) 

View(my) 

 

##Exploratory data analysis 

#############exploring the individual profile ############## 

xyplot (y ~ t0, data = m, type = "a", group = pid, xlab = "Time in year"   

        , col.line = "gray20",ylab = " Yield(kg/ha)", sub="b") 

 

xyplot (y ~ t0|bid, data = m, type = "a", group = pid, xlab = "Time in year"   

        , col.line = "gray20",ylab = " Yield(kg/ha)", sub="b") 

 

####################exploring the mean profile#################### 

interaction.plot(t0,Location,y , fun=mean, lwd = 3, xlab= "Time in year", 

                 ylab= "   Yield(kg/ha)", las=1,sub="a") 

interaction.plot(t0,Genotype,y , fun=mean,  lwd = 3, xlab= "Time in year", 

                 ylab= "yield(kg/ha)", las=1, sub="b") 

 

mean1<-tapply(y, t0, mean) 

age1<-as.numeric(unique(t0)) 

plot(age1,mean1,type= "l",ylim=c(0,3000),col="1",lwd = 2,xlab="Time in Year",ylab="Coffee 

grain yield(kg/ha) ")  

        

####################smoothing plot####################               

       

 title(main="Mean profile plot of coffee yield by genotype using loess smoothing") 

plot(t0,y,col = "gray50",lwd = 1, pch = ".", main="General mean profile plot of coffe yield by 

using loess smoothing ", 

                 xlab = "Time(years) since base line",ylab = "Coffee    yield  (kg/hectar") 

                  with(m,{lines(loess.smooth (t0,y ,family = "gaussian"), 

                  lwd = 4,lty = 1,col = 1)}) 

     

mean1<-tapply(y, t0, mean) 

age1<-as.numeric(unique(t0)) 

plot(age1,mean1,type= "l",ylim=c(0,3000),col="1",lwd = 2,xlab="Time in Year",ylab="Coffee 

grain yield(kg/ha) ")  
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#############Exploring Correlation############## 

par(mfrow=c(3,3)) 

CD4.lm <- lm (y ~ t, data = m) 

m$lmres <- resid (CD4.lm) 

m$roundyr <- round(m$t) 

 

## Reshape the data to wide format 

CD4w <- reshape(m[,c("pid", "lmres", "roundyr")], 

direction = "wide", 

v.names = "lmres", timevar = "roundyr", 

idvar = "pid") 

## Put histograms on the diagonal 

panel.hist <- function(x, ...) { 

usr <- par("usr"); on.exit(par(usr)) 

par(usr = c(usr[1:2], 0, 1.5) ) 

h <- hist(x, plot = FALSE) 

breaks <- h$breaks; 

nB <- length(breaks) 

y <- h$counts; 

y <- y/max(y) 

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)} 

## Put (absolute) correlations on the upper panel, w/ size prop. to correlation. 

panel.cor <- function(x, y, digits=2, prefix="", cex.cor) { 

usr <- par("usr"); on.exit(par(usr)) 

par(usr = c(0, 1, 0, 1)) 

r <- abs (cor(x, y, use = "pairwise.complete.obs")) 

txt <- format(c(r, 0.123456789), digits=digits)[1] 

txt <- paste(prefix, txt, sep="") 

if(missing(cex.cor)) cex <- 0.8/strwidth(txt) 

text(0.5, 0.5, txt, cex = cex * r) 

} 

pairs (CD4w[,c(2:8)], upper.panel = panel.cor,diag.panel = panel.hist) 

 

##################correlation of the observed data################ 

t=as.factor(t) 

t1<-y[Time==1] 

t2<-y[Time==2] 

t3<-y[Time==3] 

t4<-y[Time==4] 

t5<-y[Time==5] 

t6<-y[Time==6] 

t7<-y[Time==7] 

distance1<-cbind(t1,t2,t3,t4,t5,t6,t7) 

cov(distance1) 

panel.hist <- function(x, ...) 

{ 
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usr <- par("usr"); on.exit(par(usr)) 

par(usr = c(usr[1:2], 0, 1.5) ) 

h <- hist(x, plot = FALSE) 

breaks <- h$breaks; nB <- length(breaks) 

y <- h$counts; y <- y/max(y) 

rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) 

} 

pairs(distance1, panel=panel.smooth, cex = 1.5, pch = 24, 

bg="light green",diag.panel=panel.hist, 

cex.labels = 2, font.labels=2) 

 

##Model building 

 

#########selection of fixed effect structure##############     

f0=gls(y~l*g*(bb +t + t2), 

      data=my,method = "ML") 

f1=stepAIC(f0,direction="backward") 

 

###############selection of random effects#################### 

rb0=gls(y ~ l + g + bb + t + t2 + l:g + l:bb + l:t + l:t2 + 

           g:bb + l:g:bb,data=my,method = "REML") 

rb1=lme(y ~ l + g + bb + t + t2 + l:g + l:bb + l:t + l:t2 + 

           g:bb + l:g:bb,data=my,method = "REML",random=list(bid=pdSymm(~1))) 

rb2=update(rb1,random=list(bid=pdSymm(~bb)),weights=varIdent(~1|l)) 

rb3=update(rb1,random=list(bid=pdSymm(~bb+t)),weights=varIdent(~1|l)) 

rb4=update(rb1,random=list(bid=pdSymm(~bb+t+t2)),weights=varIdent(~1|l)) 

anova(rb0,rb1,rb2,rb3,rb4) 

rp1=update(rb2,random=list(bid=pdSymm(~bb),pid=~1)) 

rp2=update(rb2,random=list(bid=pdSymm(~bb),pid=pdSymm(~bb)),weights=varIdent(~1|l)) 

rp3=update(rb2,random=list(bid=pdSymm(~bb),pid=pdSymm(~bb+t)),weights=varIdent(~1|l)) 

rp4=update(rb2,random=list(bid=pdSymm(~bb),pid=pdSymm(~bb+t+t2)),weights=varIdent(~1|l

)) 

anova(rb2,rp1,rp2,rp3,rp4) 

#################selection of the variance function##################### 

c=lmeControl(maxIter=50000, msMaxIter=200, tolerance=1e-4, niter=50, 

      msTol=1e-5, nlmStepMax=500,msVerbose=TRUE,returnObject=TRUE) 

v1=update(rb2,weights=varFixed(~t0),control=c) 

v2=update(rb2,weights=varPower(form=~t0),control=c) 

v3=update(rb2,weights=varPower(form=~t0|l),control=c) 

v4=update(rb2,weights=varExp(form=~t0),control=c) 

v5=update(rb2,weights=varExp(form=~t0|l),control=c) 

v6=update(rb2,weights=varIdent(form=~1|l),control=c) 

v7=update(rb2,weights=varIdent(5,form=~1|t0),control=c) 

v8=update(rb2,weights=varIdent(5,form=~1|t0*l),control=c) 

anova(rb2,v1,v2,v3,v4,v5,v6,v7,v8) 

####################selection of the correlation structure############ 
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c1=update(v7,corr=corSymm(form=~1|bid/pid)) 

c2=update(v7,corr=corAR1(-0.5,form=~1|bid/pid)) 

c3=update(v7,corr=corARMA(c(-0.3,0.2),form=~1|bid/pid,p=2)) 

c4=update(v7,corr=corARMA(c(-0.2,0.15,0.1,0.09),form=~1|bid/pid,p=3)) 

c5=update(v7,corr=corARMA(c(-0.2,0.15,0.1,0.09),form=~1|bid/pid,p=4)) 

c6=update(v7,corr=corCompSymm(form=~1|bid/pid)) 

c7=update(v7,corr=corExp(form=~t0|bid/pid)) 

c8=update(v7,corr=corGaus(form=~t0|bid/pid)) 

anova(v7,c1,c2,c3,c4,c5,c6,c7,c8) 

########final fitted model############## 

c4=lme(y ~ l + g + bb 

 + t + t2 + l:g + l:bb + l:t + l:t2 + 

           g:bb + l:g:bb,data=my,method = "REML",random=list(bid=pdSymm(~biennial)), 

         weights=varIdent(5,form=~1|t0),control=c, corr=corARMA(c(-

0.2,0.15,0.1),form=~1|bid/pid,p=3)) 

 

##Model diagnosis 
plot( c4, pid~resid(.), abline = 0, sub="(a) boxplot of residuals" ) 

plot( c4, sub="(b) standardized residuals versus fitted values ") 

 

plot( c4, resid(., type = "p") ~ fitted(.)|l,id = 0.000001, adj = -0.3, sub="(a) by Location") 

plot( c4, resid(., type = "p") ~ fitted(.)|bid,id = 0.000001, adj = -0.3, sub="(b) by Block") 

plot( c4, resid(., type = "p") ~ fitted(.)|g,id = 0.000001, adj = -0.3, sub="(c) by Genotype") 

plot( c4, resid(., type = "p") ~ fitted(.)|ts,id = 0.000001, adj = -0.3, sub="(d) by Time") 

 

qqnorm(c4,~resid(.),sub="(a)") 

qqnorm(c4,sub="(b)") 

 

qqnorm(c4,~resid(.)|l,sub="(a) by Location") 

qqnorm(c4,~resid(.)|bid,sub="(b) by Block") 

qqnorm(c4,~resid(.)|g,sub="(c) by Genotype") 

qqnorm(c4,~resid(.)|ts,sub="(d) by Time") 

 

qqnorm( c4,~ranef(.,level = 1)|biennial,id =0.05) 

pairs( c4, ~ranef(.,augFrame=T), id = 0.1, adj=-0.5) 

 

#GEI ANALYSIS 

 

################# data transformation ############################## 

 

library(agricolae) 

my<- read.csv(file="C:\\Users\\user\\Desktop\\Tdata\\ammi.csv") 

attach(my) 

View(my) 

bwplot( y~ ENV, data=m, xlab="Block",ylab="y", 

        sub="a") 
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bwplot( sy~ ENV, data=m, xlab="Block",ylab="sqrt(y)", 

        sub="b") 

bwplot( ly~ ENV, data=m, xlab="Block",ylab="ln(y)", 

        sub="c") 

 

########################Ammi analysis#################### 

 

model<- with(my,AMMI(ENV, GEN, REP, y0, console=T,PC=T)) 

model$analysis 

# see help(plot.AMMI) 

# biplot 

plot(model) 

# triplot PC 1,2,3  

plot(model, type=2, number=F) 

# biplot PC1 vs Yield  

plot(model, first=0,second=3, number=F) 

pc(model) 
 


