

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING HIGH WAY ENGINEERING STREAM

Causes of Defects of Asphalt Pavement and Its Remedies

A Case Study In Agaro Town

A thesis submitted to the School of Graduate Studies of Jimma University in Partial fulfillment of the requirements for the Degree of Masters of Science in Highway Engineering

By: Markos Tsegaye

July, 2016 Jimma, Ethiopia

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING HIGH WAY ENGINEERING STREAM

Causes of Defects of Asphalt Pavement and Its Remedies

A Case Study In Agaro Town

A thesis submitted to the School of Graduate Studies of Jimma University in Partial fulfillment of the requirements for the Degree of Masters of Science in Highway Engineering

By: Markos Tsegaye

Advisor: EMERT. QUEZON (Associate Professor) Co-Advisor: Getachew Kebede (Msc)

> July, 2016 Jimma, Ethiopia

Declaration

This thesis is my original work and has not been presented for degree in any other university

Name			Signat	Signature			Date	Date			
This	thesis	has	been submitte	d for e	xamination	with	my	approval	as	university	supervisor

Approved by Board of Examiners:

Name	Signature	Date	
Name			
1		//	/
Chairman			
2		//	/
Principal advisor			
3		//	/
Co-advisor			
4		//	/
Internal Examiner			
5		//	/
External Examiner			

ABSTRACT

Asphalt pavements provide an excellent material for roadways when designed and constructed properly and deliver a smooth, quiet, and durable solution. However, the success of any asphalt pavement is dependent on the paving material being designed for its environment, construction methodology, and drainage and work man ship. Based on the level of accuracy achieved by various approaches and tools available, frequent design defects, discrepancies and work redundancy are obvious in road design project which ultimately leads to damages and deterioration. Due to those mentioned problems, the government and road user in general is suffering from loss of huge sum of money due to pavement damages and deterioration

The objective of this Study is to examine the Causes and remedial measures for asphalt concrete pavement damages. It is also intended to compare the engineering properties of the existing pavement layers with the standards and finally, recommendations on how to address possible problems associated with the different types of pavement damages and deterioration.

The study was conducted in Agaro town a route from "Bulbulo Kebele - KoyeBer" cover around 15km length. Based on the existing theories and principles this research study addresses the general objectives to investigate the causes of asphalt concrete pavement failures and its remedial measures. For this planned purpose, the samples from sub grade, sub bases, base course and asphalt layer disturbed samples were collected from the worst road failure location of the road. The study used both primary and secondary data. The secondary data were obtained from various published and unpublished sources of the governmental and the non-governmental organization. The primary data were obtained through field survey and condition surveying, and laboratory analysis.

During condition surveying some localized pavement distresses like shoving, potholes, alligator cracks, block cracks, edge cracks, longitudinal cracks, ravelling ,rutting and poor drainage condition were observed. The average thickness of each layers were measured and Asphalt 3.95cm, Base 13.37cm, and Sub base 19.25cm. From field investigation and laboratory test result the AASHTO and Unified soil classification are Sub grade A-7&MH, sub base A-2-6&GM and base course A-2-4 & GW, Atterberg limits parameters Average LL, and PI in percent were base course (4,4), sub base(27,12.99) and sub-grade(54,20.5) and compaction, MDD g/cc and OMC% were base course(2.7,6.21), sub base(1.83,9.67) and sub-grade(1.61,14.64), CBR% were base course 145.9%, sub base 84.7% and sub-grade10.1% obtained, Bitumen content Non-damaged asphalt 4.97%, BH1=3.12%, BH2=2.64%,BH3=2.16% and BH4=2.29%

Based on the laboratory test result and condition survey the following are cause of pavement damages; Sub grade soil, degree of compaction, pavement material thickness, improper bitumen content and Poor drainage. Finally surface treatments, Fill cracks with asphalt emulsion slurry, Full-depth patching, removing vegetation close to the ditches are some of the recommendation forwarded.

Keywords:- Asphalt Pavement Damages, Causes, Condition Survey, Non Damaged Asphalt, Traffic

Class, engineering property.

Acknowledgments

First of all I would like to thank the almighty GOD for his unspeakable gift, help and protection and I am heartily thankful to St. Virgin Mary and all Saints supporting and protecting me during my work.

I would like to express my thanks and gratitude to Ethiopian Road Authority for granting me this opportunity to pursue my Master degree under Highway engineering stream. I am also grateful to my employer Jimma University, Jimma Institute of Technology.

I would like to express my genuine gratitude and appreciation to my advisor Emert.Quezon (Associate Professor) and Co. Advisor Getachew Kebede (Msc), for their unlimited support, guidance, and close supervision, throughout the thesis work from the start to the completion of the study.

I am very grateful to Ethiopian Road construction Corporation Jimma District, Geotechnical laboratory workers, especially Ato Tamirat Mulken for his contribution in carrying out the laboratory test.

Finally, I am greatly indebted to the love and support of my family specially my wife Serkalem Haile and my baby girl Wengelawit Markos. Thus, I would like to say "Thank You".

Last but not least, my heartfelt gratitude goes to those who assisted me on this research work to reach final, particularly Mr.Mamuye Busier (Msc) for his unreserved support and encouragement throughout my journey.

TABLE OF CONTENT

ABSTRACTü
Acknowledgmentsiii
List of Figures
List of Tables
Acronymsix
CHAPTER ONE
INTRODUCTION
1.1 Background11
1.2 Statement of the Problem
1.3 Research Questions
1.4. Objective of the Study14
General Objective
Specific Objectives
1.5 Significance of the Study14
1.6 Scope of the Study14
CHAPTER TWO
LITERATURE REVIEW
2.1. Introduction
2.1.1 What is pavement?
2.1.2 Types of pavement
Flexible (Bituminous Pavements)
2.3 Pavement Functions:
2.4. Factors Influencing the Performance of a Pavement
2.5 Types of Pavement Damages and Deterioration:
2.5.1 Cracking:
i. Fatigue Cracking (Alligator Cracking):
ii. Longitudinal Cracking:
iii. Transverse Cracking:
iv. Block Cracking:
v. Slippage Cracking:
Vi. Reflective Cracking:

vii. Edge Cracking:	26
2.5.2 Surface Deformation:	27
i. Rutting	27
ii. Corrugation	28
iii. Shoving	29
iv. Depressions	29
v. Swell	30
2.5.3 Disintegration	30
i. Potholes	31
ii. Patches:	31
2.5.4 Surface Defects:	32
i. Ravelling:	32
ii. Bleeding:	33
2.6.1 General	35
2.6.2 Properties of unbound Pavement Materials	36
2.7 ERA Classification and Quantification of Damages.	43
CHAPTER THREE	46
RESEARCH METHODOLOGY	46
3.1 Study Area	46
3.2 Research design	48
3.3 Study Variables	48
3.4 Test Sample collection and Process of Results	49
3.5 Sampling Frame	49
iv. Surface Defects:	50
3.6 Sampling Size and Procedure	50
3.7 Data Collection Process	52
3.7.1 Field observation	55
3.7.2 Laboratory Tests	56
CHAPTER FOUR	57
Result and Discussion	57
4.1 Field Test Result	57

4.1.1 Condition Survey	. 57
4.1.2 Field Investigation Result	.60
4.1.3 Field Density Test	.61
4.2 Laboratory Tests	. 62
4.2.1Atterberg Limits Test Results	. 62
4.2.2 Grain size Analysis Result	. 62
4.2.3 Compaction Tests	. 64
4.2.4 California Bearing Ratio (CBR) Tests	. 66
4.3 Extraction of Bitumen & Mechanical Analysis of Extracted Aggregate	. 67
4.4 Dynamic Cone Penetration (DCP)	. 68
5. Discussions	. 69
5.1 Road Surface defects	. 69
5.2 Grain size Analysis	.71
5.3 Atterberg Limits	.72
5.4 Compaction Test	. 73
5.5 California Bearing Ratio (CBR) Test	.73
5.6 Drainage conditions	.74
CHAPTER FIVE	79
CONCLUSION AND RECOMMENDATION	79
5.1. Conclusions	. 79
5.2. Recommendations	.81
REFERENCES	83
APPENDEX A. PARTICLE SIZE DISTRIBUTION	86
APPENDEX B. ATTERBERG LIMIT	99
APPENDEX C. MODIFIED PROCTOR TEST 1	06
APPENDIX D. CALIFORNIA BEARING TEST 1	18
APPENDIX E. ASPHALT EXTRACTION TEST	43
APPENDIX F. DYNAMIC CONE PENETERATION TEST 1	58
APPENDIX G. TRAFFIC ANALYSIS	65
APPENDIX H. PHOTOGRAPHS OF FIELD INSPECTION AND LABORATORY TEST 1	67

List of Figures

Figure 2.1: Alligator cracks (Pavement Distress Identification Manual, July 2011)	22
Figure 2.2. Longitudinal cracks (Pavement Distress Identification Manual, July 2011)	23
Figure 2.3. Transverse cracks (Catalogue of Road Defects (CORD) January 2013)	24
Figure 2.4. Block cracks (Catalogue of Road Defects (CORD) January 2013).	25
Figure 2.5. Slippage cracks (Catalogue of Road Defects (CORD) Division January 2013)	25
Figure 2.6. Reflective cracking (Pavement Distress Identification Manual, July)	26
Figure 2.7. Edge cracks (Pavement Distress Identification Manual, July 2011)	27
Figure 2.8.Rutting (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)	28
Figure 2.9. Corrugation and Shoving. (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)	29
Figure 2.10.Depressions (Catalogue of Road Defects (CORD) January 2013).	30
Figure 2.11:- Potholes (Catalogue of Road Defects (CORD) January 2013).	31
Figure: 2.12 patch(Catalogue of Road Defects (CORD) January 2013).	32
Figure: 2.13Ravelling (Catalogue of Road Defects (CORD) January 2013).	33
Figure:2.14 Bleeding(Catalogue of Road Defects (CORD) January 2013).	34
Figure: 2.15Polishing (Catalogue of Road Defects (CORD) January 2013).	34
Figure 2.16: Delamination of an overlay (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)	35
Figure.3.1.Agaro map (Google Earth accessed on April19, 2015)	47
Figure 3.1 Borehole BH-1 at station 385+000(Nov-15)	53
Figure 3.2 Borehole (BH-2) at station 398+000 (29-Nov-15)	53
Figure 3.3 Borehole BH-3 at station 386+000 (30-Nov-15)	54
Figure 3.4 Borehole BH-4 at station 397+000 (30-Nov-15)	54
Figure 3.6: Borehole Number BH-6 (Lat	55
Figure 4.1: Shoving or Corrugations (29-Nov-15)	58
Figure 4.2: Alligator cracks (29-Nov-15	58
Figure 4.3: Edge cracking (29-Nov-15)	58
Figure 4.4: Potholes (29-Nov-15)	59
Figure 4.5 longitudinal cracks and edge cracks (29-Nov-15)	59
Figure 4.6: Ravelling (29-Nov-15)	59
Figure 4.7: Rutting, alligator cracks and shoving (29-Nov-15)	60
Figure 4.8: Edge cracking (29-Nov-15)	60
Figure 4.9 Grain size distribution of sub grade material.	63
Figure 4.10Grain size distribution of Sub base material	63
Figure 4.11Wash gradation result for four boreholes of base course material.	64
Figure 4.12 Gradation result for four boreholes and non-damage asphalt	64
Figure 4.13 The Laboratory Test Result for OMC & MDD of Subgrade Layer	65
Figure 4.14 The Laboratory Test Result for OMC and MDD of Sub base Layer	66
Figure 4.15 The Laboratory Test Result for OMC and MDD of Base course Layer	66
Figure 4.16 Dynamic cone penetration results at three boreholes	69

List of Tables

Table.2.1 properties of unbound materials.	. 36
Table 2-2: Grading Limits for Graded Crushed Stone Base Course Materials (GB1).	. 37
Table 2.3: Recommended Particle Size Distributions for Mechanically Stable Natural Gravels an	nd
Weathered Rocks for Use as Base Course Material (GB2, GB3)	. 39
Table 2-4: Recommended Plasticity Characteristics for Granular Sub-Bases (GS)	. 41
Table 2-5: Typical Particle Size Distribution for Sub-Bases (GS) Which Will Meet Strength	
Requirements	. 41
Table 2-6: Sub-grade strength class	. 43
Table 2-7: Level of severity of Type A damage	. 45
Table 2-8: Level of severity of Type B damage	. 45
Table 4.1 Pavement condition survey	. 57
Table 4.2.Summary of actual pavement thickness	. 61
Table 4.3 Field density test	. 61
Table 4.4 Atterberg limits of pavement layers	. 62
Table 4.5Summarized Modified proctor test laboratory result	. 65
Table 4.6Three point California bearing ratio Laboratory Test result	. 67
Table 4.7 Laboratory result of Bitumen content and sieve analysis of Asphalt	. 68
Table 4.8 Rating of road failure in Agaro town.	. 69
Table 4.9: Specification limits for sub-grade/fill material for road	. 71
Table 4.10 The Relation between Laboratory result obtained with road pavement failure along	
Agaro Town	. 75
Table 4.11 Summery of relationship obtained between soil properties and road failures and	
suggested maintenance.	. 78

Acronyms

- AACRA-Addis Ababa city road authority
- AASHTO- American Association of State Highway and Transportation Officials
- ASTM-American Society for Testing Materials
- BH- Boreholes
- CBR- California Bearing ratio
- CC-Coefficient of curvature
- CORD-Catalogue of Road Defects
- CU-Coefficient of uniformity
- DCP- Dynamic Cone Penetration
- DS3-Design standard three
- ERA Ethiopian Road Authority
- ERA- Ethiopian Road Authority
- GB- Granular base course,
- GC Granular capping layer
- GM-Medium graded gravel
- GS Granular sub-base,
- GS-Granular Sub base layer
- GW Well graded gravel
- JIT- Jimma Institute of Technology
- LL- Liquid limit
- MDD- Maximum dry Density

- MH-Inorganic silt
- NDOR-note defect of road
- OMC- Optimum Moisture content
- PCC-Portland cement concrete
- PI-Plastic index
- PL-Plastic limit
- TRRL-Transport and Road Research Laboratory
- USCS-Unified Soil Classification System

CHAPTER ONE

INTRODUCTION

1.1 Background

Asphalt pavements provide an excellent material for roadways; when designed and constructed properly these roads deliver a smooth, quiet, and durable solution. However, the success of any asphalt pavement is dependent on the paving material being designed for its environment, construction methodology, and Drainage and work man ship. Road network is considered very important in the economies, especially in the developing countries that require roads and highways for transportation of most goods and services. [27]

Road failure is defined as the inability of a normal road to carry out its functional service by not providing smooth running surface for operating vehicles. Factors that affect the pavement performance are Climate, Construction material properties, Work man sheep, structure and Traffic load. Movement of sub grade is the major causes of road pavement failure which makes road network unsafe and not suitable to road users. [29]

Most asphalt concrete pavement road damages are characterized by failure of all kinds like Cracking, Surface deformation, Disintegration (potholes) and Surface defects (bleeding).

Due to the huge lump sum of investment being made for Asphalt concrete pavement road and due to high safety requirements, continuous improvements and advances on pavement maintenance and management technologies are being made. Based on the level of accuracy achieved by various approaches and tools available, frequent design defects, discrepancies and work redundancy are obvious in road design project which ultimately leads to damages and deterioration. Due to those mentioned problems, the government and road user in general is suffering from loss of huge sum of money due to pavement damages and deterioration. Pavement damages and deterioration are the challenge for road user in Agaro town and affect the vehicle operating cost.

This study determine the causes of asphalt concrete damages and its remedial measures along the route "Bulbulo Kebele-Koye Ber" in Agaro town with estimated length of 15km.

1.2 Statement of the Problem

The present condition of most of the roads in the south western Ethiopia and the sedimentary terrain of the region has stimulated the interest of various stakeholders in the usage and maintenance of our road ways. Rehabilitating these roadways has become a financial burden on the Federal, State, and Local Governments. The Jimma to Bedele road is a typical example of Ethiopians roads whose failure bugs the mind of regular users. Almost every section of the road has failed, resulting to;

- · Loss of lives and properties, human injuries etc. through accidents,
- Retardation of the rate of economic growth and development in affected areas,
- Environmental pollution and degradation,
- · Impedance of human movement and the flow of economic activities and
- Numerous cases of armed robbery attacks along affected areas.

In the light of the foregoing therefore, some questions constantly come to mind: what exactly is the cause of this problem? Again, since not all sections of the road failed, or at least failed equally, does a geotechnical property, road thickness, workman ship play any role in the durability of the roads. Considering the cost of constructing and maintaining this road, the answers to these questions have become a necessity particularly now that the impacts are multiplying. It is to this effect that a need to investigate on the place of the geotechnical characteristics of the soil on which the road is built arises.

The pavement industry has invested millions of birr in search for remedies to pavement distress. Theses remedies included the improvement in the design of asphalt mixes, development of new and engineering asphalt binders, using new materials and establishment of new research efforts and also the properties of asphalt materials in the laboratories. However these improvements did not appear in the field performance of asphalt roads.

In the road from "Bulbulo Kebele- Koye Ber" in Agaro town were constructed in 2008GC and year by year the road have been experiencing different types of damages and deterioration and causing traffic accident, increase vehicle operation cost and travel time and decrease comfort to passengers. Therefore it is crucial to investigate the causes of asphalt pavement damages and assess its remedial measures.

1.3 Research Questions

- 1. Which locations in the study area are mostly affected or severely damaged including the factor that causes defects?
- 2. What are the existing engineering properties of pavement layers and how much it deviated from the standard specifications?
- 3. What are the remedial measures to improve the existing condition of the asphalt pavement?

1.4. Objective of the Study

General Objective

The general objective of study is to investigate the causes of pavement defects and its remedies on asphalt concrete pavement in Agaro town.

Specific Objectives

- To identify the locations of severely damage asphalt pavement and the factors which causes defects.
- To determine the existing engineering properties of pavement layers and compare with the standard specifications.
- To suggest remedial measures to improve the existing condition of the asphalt pavement.

1.5 Significance of the Study

The findings of the research will be expected:

- Provide information to Agaro Town Administration and ERA regarding the location of the most damaged asphalt pavement, the causes of defects and recommend the possible remedial measures for different type of pavement damage.
- Determines the existing engineering properties of pavement layers and compare with the standard specifications.

1.6 Scope of the Study

The study was conducted in Agaro town a route from "Bulbulo Kebele-Koye Ber" cover around 15km length. Based on the existing theories and principles this research study addresses to investigate the causes of asphalt concrete pavement failures/defects and its remedial measures. For this planned purpose, the samples from sub grade layer, sub base layers, base course layers and asphalt layer disturbed and undisturbed samples were collected from the worst road failure location of the road. These samples were analyzed based on Geotechnical analysis. The most important works to be done are outlined in the Methodology section.

CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

This chapter discusses various types of Asphalt pavements damages and the most common causes of each. Asphalt concrete damage can be a result of load associated (e.g. traffic) and others are non-load associated (e.g. environmental, material properties, construction methodology, poor construction practice, utility cut and poor drainage).

2.1.1 What is pavement?

Pavement is that with which anything is paved; a floor or covering of solid material, laid so as to make a hard and convenient surface for travel; a paved road or sidewalk; a decorative interior floor of tiles colored bricks. The pavement consists of the higher quality (usually imported/borrowed) material above the sub-grade including the wearing coarse, the base course, and the sub base [13].

2.1.2 Types of pavement

Pavements are typically divided into the following three general categories: flexible, rigid and unpaved (gravel or dirt [13].

Flexible (Bituminous Pavements)

Flexible pavements are constructed of several layers of natural granular material covered with one or more water proof bituminous surface layers, and as the name imply, are considered to be flexible. A flexible pavement will flex (bend) under the load of a tyre. The objective with the design of a flexible pavement is to avoid the excessive flexing of any layer, failure to achieve this will result in the over stressing of a layer, which ultimately will cause the pavement to fail. In flexible pavements, the load distribution pattern changes from one layer to another, because the strength of each layer is different. The strongest material (least flexible) is in the top layer and the weakest material (most flexible) is in the lowest layer. The reason for this is that at the surface the wheel load is applied to a small area, the result is high stress levels, deeper down in the pavement, the wheel load is applied to larger area, and the result is lower stress levels thus enabling the use of weaker materials [13].

2.3 Pavement Functions:

The primary functions of a pavement are to:

• Provide A Reasonably Smooth Riding Surface:

A smooth riding surface (Low Roughness) is essential for riding comfort, and over the years it has become the measure of how road users perceive a road. Roughness can arise from a number of causes, most often however it is from pavement distress due to structural deformation.

• Provide Adequate Surface Friction (Skid Resistance):

In addition to a riding comfort, the other road user requirement is that of safety. Safety, especially during wet conditions can be linked to a loss of surface friction between the tyre and the pavement surface. A pavement must therefore provide sufficient surface friction and texture to ensure road user safety under all conditions.

• Protect The Subgrade:

The supporting soil beneath the pavement is commonly referred to as the subgrade, should it be over-stressed by the applied axle loads it will deform and lose its ability to properly support these axle loads. Therefore, the pavement must have sufficient structural capacity (strength and thickness) to adequately reduce the actual stresses so that they do not exceed the strength of the sub grade. The strength and thickness requirements of a pavement can vary greatly depending on the combination of sub grade type and loading condition (magnitude and number of axle loads).

• Provide Waterproofing:

The pavement surfacing acts as waterproofing surface that prevent the underlying support layers including the sub grade from becoming saturated through moisture ingress. When saturated, soil loses its ability to adequately support the applied axle loads, which will lead to premature failure of the pavement [13].

2.4. Factors Influencing the Performance of a Pavement

I. Traffic:

The performance of pavements is mostly influenced by the loading magnitude, configuration and the number of load repetitions by heavy vehicles. According to The damage caused per pass to a pavement by an axle is defined relative to the damage per pass of a standard axle load, which is defined as a 80kN single axle load (E80). Thus a pavement is designed to withstand a certain number of standard axle load repetitions (E80's) that will result in a certain terminal condition of deterioration. The idea of traffic factor which affects the performance of pavement is also supported by ERA [2].

II. Moisture (Water)

Moisture can significantly weaken the support strength of natural gravel materials, especially the sub grade. Moisture can enter the pavement structure through cracks and holes in the surface, laterally through the sub grade, and from the underlying water table through capillary action. The result of moisture ingress is the lubrication of particles, loss of particle interlock and subsequent particle displacement resulting in pavement failure [2].

III. Sub grade

The sub grade is the underlying soil that supports the applied wheel loads. If the sub grade is too weak to support the wheel loads, the pavement will flex excessively which ultimately causes the pavement to fail. If natural variations in the composition of the sub grade are not adequately addressed by the pavement design, significant differences in pavement performance will be experienced [2].

IV. Construction Quality

Failure to obtain proper compaction, improper moisture conditions during construction, quality of materials, and accurate layer thickness (after compaction) all directly affect the performance of a pavement. These conditions stress the need for skilled staff and the importance of good inspection and quality control procedures during construction [2].

V. Maintenance

Pavement performance depends on what, when, and how maintenance is performed. No matter how well the pavement is built, it will deteriorate over time based upon the mentioned factors. The timing of maintenance is very important, if a pavement is permitted to deteriorate to a very poor condition Thus, postponing maintenance because of budget constraints will result in a significant financial penalty within a few years.

"Pavement maintenance is not easy to define. Maintenance departments generally agree what it is, but there are some minor differences. Some call pavement improvement "Maintenance". Others include only the work that keeps the pavement in its as constructed condition. Taking all these into consideration, the definition that seems to fit best is: Pavement maintenance is work performed from time to time to keep a pavement, under normal conditions of traffic and forces of nature, as nearly as possible in its as-constructed condition. Distinctions are usually made between forms of maintenance, based on their required frequency. The International Road Maintenance Handbook [29] uses the grouping of "routine" and "periodic" maintenance, while other sources. TRRL [31] use "routine", "recurrent", "periodic" and "urgent".

There are four categories:

• Routine maintenance, required continually on every road, whatever its engineering characteristics or traffic volume

• **Recurrent** maintenance, required at intervals during the year with a frequency that depends on the volume of traffic using the road

• Periodic maintenance, required only at intervals of several years

• Urgent maintenance, needed to deal with emergencies and problems calling for immediate action when a road is blocked.

Pavement maintenance is the key to pavement preservation. An effective pavement preservation program integrates many maintenance strategies and treatments. There are three types of pavement maintenance:

Preventive Maintenance: Planned strategy of cost-effective treatments to an existing roadway system and its appurtenances that preserves the system, retards future deterioration, and maintains or improves the functional condition of the system (without increasing the structural capacity)

Corrective Maintenance: Performed after a deficiency occurs in the pavement, such as moderate to severe rutting, raveling or extensive cracking. This may also be referred to as "reactive" maintenance.

Emergency Maintenance: Performed during an emergency situation, such as a blowup or severe pothole that needs repair immediately. This could also include temporary treatments that hold the surface together until a more permanent treatment can be performed [29].

2.5 Types of Pavement Damages and Deterioration:

Pavement deterioration or damages or distress is the process by which distress (defects) develop in the pavement under the combined effects of traffic loading and environmental conditions. A defect refers to the visible evidence of an undesirable condition in the pavement affecting serviceability, structural condition or appearance. Correct diagnosis of the cause of defects can only be made after careful inspection of the pavement by an observer on foot, and can be seen the defects at various angles, heights and distance [11], [32].

The four major categories of common asphalt pavement surface distresses are:

- 1. Cracking
- 2. Surface deformation
- 3. Disintegration (potholes, etc.)
- 4. Surface defects (bleeding, etc.)

2.5.1 Cracking:

The most common types of cracking are:

- i. Fatigue cracking
- ii. Longitudinal cracking
- iii. Transverse cracking
- iv. Block cracking
- v. Slippage cracking

- vi. Reflective cracking
- vii. Edge cracking

i. Fatigue Cracking (Alligator Cracking):

Cracking is commonly called alligator cracking. This is a series of interconnected cracks creating small, irregular shaped pieces of pavement. It is caused by failure of the surface layer or base due to repeated traffic loading (fatigue). Eventually the cracks lead to disintegration of the surface. The final result is potholes. Alligator cracking is usually associated with base or drainage problems. Small areas may be fixed with a patch or area repair. Larger areas require reclamation or reconstruction. Drainage must be carefully examined in all cases. Factors which influence the development of alligator cracking are the number and magnitude of applied loads, the structural design of the pavement (layer materials and thicknesses), the quality and uniformity of foundation support, the consistency of the asphalt cement, the asphalt content, the air voids and aggregate characteristics of the asphalt concrete mix, and the climate of the site (i.e., the seasonal range and distribution of temperatures).drainage effect is not considered.

Figure 2.1: Alligator cracks (Pavement Distress Identification Manual, July 2011)

ii. Longitudinal Cracking:

Longitudinal cracks are long cracks that run parallel to the center line of the roadway. These may be caused by frost heaving or joint failures or they may be load induced. Understanding the cause is critical to selecting the proper repair. Multiple parallel cracks may eventually form from the initial crack. This phenomenon, known as deterioration, is usually a sign that crack repairs are not the proper solution. Non wheel path longitudinal cracking in an asphalt pavement may reflect up from the edges of an underlying old pavement or from edges and cracks in a stabilized base, or may be due to poor compaction at the edges of longitudinal paving lanes. Longitudinal cracking may also be produced in the wheel paths by the application of heavy loads or high tire pressures.

Figure 2.2. Longitudinal cracks (Pavement Distress Identification Manual, July 2011).

iii. Transverse Cracking:

Transverse cracks form at approximately right angles to the centerline of the roadway. They are regularly spaced and have some of the same causes as longitudinal cracks. Transverse cracks will initially be widely spaced (over 20 feet apart). They usually begin as hairline or very narrow cracks and widen with age. If not properly sealed and maintained, secondary or multiple cracks develop, parallel to the initial crack. The reasons for transverse cracking, and the repairs, are similar to those for longitudinal cracking. In addition, thermal issues can lead to low-temperature cracking if the asphalt cement is too hard.

Figure 2.3. Transverse cracks (Catalogue of Road Defects (CORD) January 2013).

iv. Block Cracking:

Block cracking is an interconnected series of cracks that divides the pavement into irregular pieces. This is sometimes the result of transverse and longitudinal cracks intersecting. They can also be due to lack of compaction during construction. Low severity block cracking may be repaired by a thin wearing course. As the cracking gets more severe, overlays and recycling may be needed. If base problems are found, reclamation or reconstruction may be needed, in other hand according to [16]. Block cracking is the cracking of an asphalt pavement into rectangular pieces ranging from about 1 ft to 10 ft on a side. Block cracking occurs over large paved areas

such as parking lots, as well as roadways, primarily in areas not subjected to traffic loads, but sometimes also in loaded areas.

Figure 2.4. Block cracks (Catalogue of Road Defects (CORD) January 2013).

v. Slippage Cracking:

Slippage cracks are half-moon shaped cracks with both ends pointed towards the oncoming vehicles. They are created by the horizontal forces from traffic. They are usually a result of poor bonding between the asphalt surface layer and the layer below. The lack of a tack coat is a prime factor in many cases.

Figure 2.5. Slippage cracks (Catalogue of Road Defects (CORD) Division January 2013).

Vi. Reflective Cracking:

Reflective cracking occurs when a pavement is overlaid with hot mix asphalt concrete and cracks reflect up through the new surface. It is called reflective cracking because it reflects the crack pattern of the pavement structure below. As expected from the name, reflective cracks are actually covered over cracks reappearing in the surface. They can be repaired in similar techniques to the other cracking noted above. Before placing any overlays or wearing courses, cracks should be properly repaired.

Figure 2.6. Reflective cracking (Pavement Distress Identification Manual, July)

vii. Edge Cracking:

Edge cracks typically start as crescent shapes at the edge of the pavement. According to Shahin, M. Y.,1994. They will expand from the edge until they begin to resemble alligator cracking. This type of cracking results from lack of support of the shoulder due to weak material or excess

moisture. They may occur in a curbed section when subsurface water causes a weakness in the pavement. At low severity the cracks may be filled. As the severity increases, patches and replacement of distressed areas may be needed. In all cases, excess moisture should be eliminated, and the shoulders rebuilt with good materials.

Figure 2.7. Edge cracks (Pavement Distress Identification Manual, July 2011)

2.5.2 Surface Deformation:

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The deformation may be accompanied by cracking. Surface distortions can be a traffic hazard. The basic types of surface deformation are:

- i. Rutting
- ii. Corrugations
- iii. Shoving
- vi. Depressions
- v. Swell

i. Rutting

Rutting is the displacement of pavement material that creates channels in the wheel path. Very severe rutting will actually hold water in the rut. Rutting is usually a failure in one or more layers in the pavement. The width of the rut is a sign of which layer has failed. A very narrow rut is usually a surface failure, while a wide one is indicative of a subgrade failure. Inadequate compaction can lead to rutting. Minor surface rutting can be filled with micro paving or paver-placed surface treatments. Deeper ruts may be shimmed with a truing and leveling course, with an overlay placed over the shim. If the surface asphalt is unstable, recycling of the surface may be the best option. If the problem is in the sub grade layer, reclamation or reconstruction may be needed. This type of surface deformation is also explained according toMiller,J.S.,Rogers,R.b. 1993. Rutting is the formation of longitudinal depression of the wheel paths, most often due to consolidation or movement of material in either the base or sub grade or in the asphalt concrete layer. Another, unrelated, cause of rutting is abrasion due to studded tires and tire chains.

Figure 2.8.Rutting (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)

ii. Corrugation

Corrugation is referred to as wash boarding because the pavement surface has become distorted like a washboard. The instability of the asphalt concrete surface course may be caused by too

much asphalt cement, too much fine aggregate, or rounded or smooth textured coarse aggregate. Corrugations usually occur at places where vehicles accelerate or decelerate. Minor corrugations can be repaired with an overlay or surface milling. Severe corrugations require a deeper milling before resurfacing. According to Shahin, M. Y.,1994 Shoving and corrugation are produced by traffic loading, but are indicative of an unstable liquid asphalt mix (e.g., cutback or emulsion)

Figure 2.9. Corrugation and Shoving. (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)

iii. Shoving

Shoving is also a form of plastic movement in the asphalt concrete surface layer that creates a localized bulging of the pavement. Locations and causes of shoving are similar to those for corrugations. Figure above shows an example of shoving. Repair minor shoving by removing and replacing. For large areas, milling the surface may be required, followed by an overlay.

iv. Depressions

Depressions are small, localized bowl-shaped areas that may include cracking. Depressions cause roughness, are a hazard to motorists, and allow water to collect. Depressions are typically caused by localized consolidation or movement of the supporting layers beneath the surface course due to instability. Repair by excavating and rebuilding the localized depressions.

Reconstruction is required for extensive depressions. According to Transportation Research Board, Guide to Earthwork Construction, 1990. Settlements/depressions in asphalt pavements may be due to frost heave, swelling or collapsing soil, or localized consolidation (such as that which occurs in poorly compacted backfill material at culverts and bridge approaches). Frost heave, soil swelling, and soil collapsing produce longer-wavelength surface distortions than localized consolidation.

Figure 2.10.Depressions (Catalogue of Road Defects (CORD) January 2013).

v. Swell

According to Dr.J.J.Magdum,1990. A swell is a localized upward bulge on the pavement surface. Swells are caused by an expansion of the supporting layers beneath the surface course or the sub grade. The expansion is typically caused by frost heaving or by moisture. Sub grades with highly plastic clays can swell in a manner similar to frost heaves (but usually in warmer months). Repair swells by excavating the inferior sub grade material and rebuilding the removed area. Reconstruction may be required for extensive swelling.

2.5.3 Disintegration

The progressive breaking up of the pavement into small, loose pieces is called disintegration. If the disintegration is not repaired in its early stages, complete reconstruction of the pavement may be needed. The two most common types of disintegration are: i. Potholes

ii. Patches

i. Potholes

Potholes are bowl-shaped holes similar to depressions. They are a progressive failure. First, small fragments of the top layer are dislodged. Over time, the distress will progress downward into the lower layers of the pavement. Potholes are often located in areas of poor drainage. Potholes are formed when the pavement disintegrates under traffic loading, due to inadequate strength in one or more layers of the pavement, usually accompanied by the presence of water. Most potholes would not occur if the root cause was repaired before development of the pothole. Repair by excavating and rebuilding. Area repairs or reconstruction may be required for extensive potholes .This idea is also supported by Shahin, M. Y., 1994. Potholes begin to form when fragments of asphalt concrete are displaced by traffic wheels, e.g., in alligator-cracked areas. Potholes grow in size and depth as water accumulates in the hole and penetrates into the base and subgrade, weakening support in the vicinity of the pothole.

Figure 2.11:- Potholes (Catalogue of Road Defects (CORD) January 2013).

ii. Patches:

Patch is defined as a portion of the pavement that has been removed and replaced. Patches are usually used to repair defects in a pavement or to cover a utility trench. Patch failure can lead to a more widespread failure of the surrounding pavement. Some people do not consider patches as a pavement defect. While this should be true for high quality patches as is done in a semipermanent patch, the throw and roll patch is just a cover. The underlying cause is still under the pothole. To repair a patch, a semi-permanent patch should be placed. Extensive potholes may lead to area repairs or reclamation. Reconstruction is only needed if base problems are the root source of the potholes.

Figure: 2.12 patch(Catalogue of Road Defects (CORD) January 2013).

2.5.4 Surface Defects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are:

- i. Ravelling
- ii. Bleeding
- iii. Polishing
- iv. Delamination

i. Ravelling:

Ravelling is the loss of material from the pavement surface. It is a result of insufficient adhesion between the asphalt cement and the aggregate. Initially, fine aggregate break loose and leaves small, rough patches in the surface of the pavement. As the disintegration continues, larger aggregate breaks loose, leaving rougher surfaces. Ravelling can be accelerated by traffic and freezing weather. Some ravelling in chip seals is due to improper construction technique. This can also lead to bleeding. Repair the problem with a wearing course or an overlay. According to Roberts, F. L., Kandahl, P. S., Brown, E. R., Lee, D.-Y., and Kennedy, T. W., 1991.and Shahin, M. Y., 1994. Ravelling and weathering occur as a result of loss of bond between aggregates and the asphalt binder. This may occur due to hardening of the asphalt cement, dust on the aggregate which interferes with asphalt adhesion, localized areas of segregation in the asphalt concrete mix where fine aggregate particles are lacking, or low in-place density of the mix due to inadequate compaction. High air void contents are associated with more rapid aging and increased likelihood of raveling

Figure: 2.13Ravelling (Catalogue of Road Defects (CORD) January 2013).

ii. Bleeding:

Distress Identification Manual for the Long-Term Pavement Performance Project, third edition, and 1993.Bleeding is defined as the presence of excess asphalt on the road surface which creates patches of asphalt cement. Excessive asphalt cement reduces the skid-resistance of a pavement, and it can become very slippery when wet, creating a safety hazard. This is caused by an excessively high asphalt cement content in the mix, using an asphalt cement with too low a viscosity (too flowable), too heavy a prime or tack coat, or an improperly applied seal coat. Bleeding occurs more often in hot weather when the asphalt cement is less viscous (more flowable) and the traffic forces the asphalt to the surface.[17]

Figure:2.14 Bleeding(Catalogue of Road Defects (CORD) January 2013).

iii. Polishing:

Polishing is the wearing of aggregate on the pavement surface due to traffic. It can result in a dangerous low friction surface. A thin wearing course will repair the surface[2].

Figure: 2.15Polishing (Catalogue of Road Defects (CORD) January 2013).
iv. Delamination

Delamination is the localized loss of the entire thickness of an overlay. It is caused by the lack of a bond between the overlay and the original pavement. Water again is the culprit when it gets between the two layers of pavement. Delamination is usually confined to the wheel path area and takes several years after the overlay to become a serious problem. Once they occur, they are difficult to properly patch.

Cleaning the old surface and applying a light asphalt emulsion tack coat will go a long way toward alleviating this problem. A tack coat is especially helpful when the overlay thickness is two inches or less.

Figure 2.16: Delamination of an overlay (Miller, J. S., Rogers, R. B. and Rada, G. R., 1993)

2.6 Granular Pavement Materials

2.6.1 General

Granular pavement material is one of the important components of a flexible pavement structure. This material includes crushed rock, semi-crushed, mechanically stabilized, and modified or naturally occurring gravel "as dug" or "pit run". The suitability of rocks for road construction depends on their mineral, chemical and physical properties.

2.6.2 Properties of unbound Pavement Materials

Unbound granular materials are generally used in road pavement as base and sub-base courses, which are an important component of roads as the surface compositions and foundation. As a base course, they play a structurally important role, especially on medium and low volume roads. As a sub-base, they protect the soil and act as a working platform and an insulating layer against frost action. According to the ERA pavement design manual, the main categories of unbound pavement materials with a brief summary of their characteristics are shown in Table below.

Table.2.1 properties	of unbound	materials.
----------------------	------------	------------

Code	Description	Summary of Specification
GB1	Fresh, crushed rock	Dense graded, un weathered crushed stone, on-plastic parent fines
GB2	Crushed weathered rock, gravel or boulders	Dense grading, $PI < 6$, soil or parent fines
GB3	Natural coarsely graded granular material, including processed and modified gravels	Dense grading, $PI < 6$ CBR after soaking > 80
GS	Natural gravel	CBR after soaking > 30
GC	Gravel or gravel-soil	Dense graded; CBR after soaking > 15

Notes: 1. These specifications are sometimes modified according to site conditions, material type and principal use.

2. GB = Granular base course, GS = Granular sub-base, GC = Granular capping layer.

I. Base Course Materials

Materials such as crushed quarried rock, crushed and screened, mechanically stabilized, modified

or naturally occurring "as dug" or "pit run" gravels can be used as base course material.

According to the ERA pavement design manual the properties for base course materials is given below.

a. Graded crushed stone (GB1)

This material is produced by crushing fresh, quarried rock (GB1) and may be an all-in product, usually termed a 'crusher-run', or alternatively the material may be separated by screening and recombined to produce a desired particle size distribution, as per the specifications. Alternate gradation limits, depending on the local conditions for a particular project, are shown in Table below.

	Percentage by mass of total	aggregate passing test			
Test	sieve				
sieve(mm)	Nominal maximum particle size				
	37.5mm	28mm	20mm		
50	100	-	-		
37.5	95-100	100	-		
28	-	-	100		
20	60-80	70-85	90-100		
10	40-60	50-65	60-75		
5	25-40	35-55	40-60		
2.36	15-30	25-40	30-45		
0.425	7-19	12-24	13-27		
0.075	5-12	5-12	5-12		

Table 2-2: Grading Limits for Graded Crushed Stone Base Course Materials (GB1).

Source: ERA Standard Technical Specification – 2002

Note 1. For paver-laid materials a lower fine content may be accepted.

The fine fraction of a GB1 material should be non-plastic. The in situ dry density of the placed material should be a minimum of 98% of the maximum dry density obtained in the ASTM Test Method D 1557 (Heavy Compaction). The compacted thickness of each layer should not exceed 200mm.Crushed stone base courses constructed with proper care with the materials described

above should have CBR values well in excess of 100 per cent. There is usually no need to carry out CBR tests during construction.

b. Naturally Occurring Granular materials, Boulders, Weathered Rocks

Normal requirements for natural gravels and weathered rocks (GB2, GB3). A wide range of materials including lateritic, calcareous and quartzitic gravels, river gravels, boulders and other transported gravels, or granular materials resulting from the weathering of rocks can be used successfully as base course materials. Table 2-2 contains three recommended particle size distributions for suitable materials corresponding to maximum nominal sizes of 37.5 mm, 28 mm and 20 mm. Only the two larger sizes should be considered for traffic in excess of 1.5 million equivalent standard axles. To ensure that the material has maximum mechanical stability, the particle size distribution should be approximately parallel with the grading envelope.

To meet the requirements consistently, screening and crushing of the larger sizes may be required. The fraction coarser than 10 mm should consist of more than 40 per cent of particles with angular, irregular or crushed faces. The mixing of materials from different sources may be warranted in order to achieve the required grading and surface finish. This may involve adding fine or coarse materials or combinations of the two. The fines of these materials should preferably be non-plastic but should normally never exceed a PI of 6. When used as a base course, the material should be compacted to a density equal to or greater than 98 per cent of the maximum dry density achieved in the ASTM Test Method D 1557 (Heavy Compaction). When compacted to this density in the laboratory, the material should have a minimum CBR of 80% after four days immersion in water (ASTM D 1883).

	Percentage by mass of total age	gregate passing test sieve		
Test sieve(mm)	Nominal maximum particle size			
	37.5mm	28mm	20mm	
50	100	-	-	
37.5	80-100	100	-	
20	60-80	80-100	100	
10	45-65	55-80	80-100	
5	30-50	40-60	50-70	
2.36	20-40	30-50	35-50	
0.425	1025	1227	1230	
0.075	515	515	515	

Table 2.3: Recommended	Particle Size Distrib	outions for Mechanically	Stable Natural	Gravels
and Weathered Rocks for	Use as Base Course	Material (GB2, GB3)		

Source: ERA Standard Technical Specification - 2002

II. Sub-Base(GS)

The sub-base is an important load spreading layer in the completed pavement. It enables traffic stresses to be reduced to acceptable levels in the subgrade, it acts as a working platform for the construction of the upper pavement layers and it acts as a separation layer between subgrade and base course.. According to the ERA pavement design manual the requirements to use as sub-base material is discussed below.

a. Bearing Capacity

A minimum CBR of 30 per cent is required at the highest anticipated moisture content when compacted to the specified field density, usually a minimum of 95 per cent of the maximum dry density achieved in the ASTM Test Method D 1557 (Heavy Compaction). Under conditions of good drainage and when the water table is not near the ground surface the field moisture content under a sealed pavement will be equal to or less than the optimum moisture content in the ASTM Test Method D 698 (Light Compaction). In such conditions, the sub-base material should be tested in the laboratory in an unsaturated state. Except in arid areas, if the base course allows water to drain into the lower layers, as may occur with unsealed shoulders and under conditions

of poor surface maintenance where the base course is pervious, saturation of the sub-base is likely. In these circumstances, the bearing capacity should be determined on samples soaked in water for a period of four days. The test should be conducted on samples prepared at the density and moisture content likely to be achieved in the field. In order to achieve the required bearing capacity, and for uniform support to be provided to the upper pavement, limits on soil plasticity and particle size distribution may be required.

b. Use As a Construction Platform

In many circumstances the requirements of a sub-base are governed by its ability to support construction traffic without excessive deformation or ravelling. A high quality sub-base is therefore required where loading or climatic conditions during construction are severe. Suitable material should possess properties similar to those of a good surfacing material for unpaved roads. The material should be well graded and have a plasticity index at the lower end of the appropriate range for an ideal unpaved road wearing course under the prevailing climatic conditions. These considerations form the basis of the criteria given in Tables 2-4 and 2-5. Material meeting the requirements for severe conditions will usually be of higher quality than the standard sub-base (GS). If materials to these requirements are unavailable, trafficking trials should be conducted to determine the performance of alternative materials under typical site conditions. In Ethiopia, laterite is one of the widely available materials and can be used as a sub-base material. Laterite meeting the gradation requirements of Table 2-5 can be used for traffic keyels up to 3x106 ESA provided the following criteria is satisfied:

Plasticity Index (%) < 25

Plasticity Modulus (PM) < 500

CBR (%) > 30

Climate	Typical Annual Rainfall	Liquid Limit	Plasticity Index	Shrinkage
Moist tropical and wet tropical	>500mm	<35	<6	<3
Seasonally wet trop	>500mm	<45	<12	<6
Arid and semi-arid	<500mm	<55	<20	<10

Table 2-4: Recommended	Plasticity	Characteristics	for Gran	nular Su	b-Bases	(GS)
------------------------	------------	-----------------	----------	----------	---------	------

Source: ERA Standard Technical Specification - 2002

Table 2-5: Typical Particle Size Distribution for Sub-Bases (GS) Which Will Meet Strength Requirements

Test Sieve (mm)	Percentage by mass of total aggregate passing test sieve (%)
50	100
37.5	80-100
20	60-100
5	30-100
1.18	17-75
0.3	9-50
0.075	5-25

Source: ERA Standard Technical Specification - 2002

III. Selected Subgrade Materials and Capping Layers (GC)

IV. These materials are often required to provide sufficient cover on weak subgrades. They are used in the lower pavement layers as a substitute for a thick sub-base to reduce costs, and a cost comparison should be conducted to assess their cost effectiveness.

As an illustrative example, approximately 30 cm of "GC" material (as described below) placed on an S1 or S2 subgrade will allow to select a pavement structure as for an S3subgrade. An additional 5 cm of "GC" material may allow to consider an S4 subgrade class.

The requirements are less strict than for sub-bases. A minimum CBR of 15 per cent is specified at the highest anticipated moisture content measured on samples compacted in the laboratory at the specified field density. This density is usually specified as a minimum of 95 per cent of the maximum dry density in the ASTM Test Method D 1557(Heavy Compaction).

In estimating the likely soil moisture conditions, the designer should take into account the functions of the overlying sub-base layer and its expected moisture condition and the moisture conditions in the subgrade. If either of these layers is likely to be saturated during the life of the road, then the selected layer should also be assessed in this state. Recommended grading or plasticity criteria are not given for these materials. However, it is desirable to select reasonably homogeneous materials since overall pavement behavior is often enhanced by this. The selection of materials which show the least change in bearing capacity from dry to wet is also beneficial.

Class	Range (CBR %)
S1	2
S2	34
S3	57
S4	814
S5	1529
S6	30+

Table 2-6: Sub-grade strength class

2.7 ERA Classification and Quantification of Damages.

According to [6] The damage classified in the VIZIR method is relevant primarily to flexible pavements with Bituminous surfacing's. This damage is divided into two categories:

Type A damage

This characterizes the structural condition of a pavement, affecting either all of its courses and the ground or the surfacing only. This damage is caused by a structural deficiency of the pavement, and its identification is used in the search for a solution in conjunction with other criteria, in particular the bearing capacity as characterized by the static deflection.

Type damage includes four types:

- Deformation
- rutting
- (fatigue) cracking
- crazing

Type B damage

This damage leads to repairs that are generally unrelated to the pavement's structural capacity. Itnmay be caused by defective placement, by deficient product quality, or by some special local condition, possibly aggravated by traffic.

Type B damage includes:

• Cracking other than fatigue cracking, i.e. longitudinal joint cracks, transverse thermal shrinkage cracks, and longitudinal and transverse clay shrinkage (desiccation) cracks,

• Potholes,

• Raveling and, more generally, all surfacing defects such as fretting, bleeding, etc.

• Survey and Grading of Damage

- The survey is intended to record, for any damage:
 - its type
 - its severity
 - its extent, i.e. the length of road affected, or, as appropriate, the area
- The survey can be done manually, while travelling along the road on foot or by car.
- The operator in this case enters his observations (identification of damage and estimate of its severity) on a route diagram, a document representing the route as a straight line, the scale and precision of which are appropriate to the type of study
- In the route diagram, damage is represented by a rectangle of which the background (white, grayish, or black) indicates the level of severity, while the two sides represent the co-ordinates of the beginning and end of the damaged zone, or in other words, its extent.

Severity Damage	1	2	3
Deformation rutting	Perceptible to user but small f < 2 cm	Severe deformations, localised subsidence or rutting 2 ≤ f ≤ 4 cm	Deformation severely affecting safety or travel time f ≥ 4 cm
Cracking Hair line cracks in wheel tracks or centerline		Open and / or branching cracks	Markedly branched and/or wide open cracks: edges sometimes damaged
Crazing	Fine crazing with no loss of materials large mesh (> 50 cm)	Tighter crazing (< 50 cm) sometimes accompanied by loss of materials, stripping, and inciplent potholes	Very open crazing forming blocks (< 20 cm), sometimes accompanied by loss of materials
Patching and Repair	Either rebuilding of part or all of pavement	Surface work relat	ed to type A defects
	Or surface work related to type B defects	□ Repair has stood up well	☐ Visible damage to repair itself

Table 2-7: Level of severity of Type A damage

 Table 2-8: Level of severity of Type B damage

Severity Damage	1	2	3	
Longitudinal joint crack	Hair line isolated	 Wide (1 cm or more) without stripping or Hair line & branching 	 Wide with spalling of edges or Wide and branching 	
Pothole	 Number < 5 Dia, not more than 30 cm 	5 to 10 <5 cr Dia. 30 cm Dia. 100 cm	> 10 5 to 10 or Dia. 30 cm Dia. 100 cm	
		Fer 100 m of pavement		
Movement of material Ravelling, fretting, bleeding, etc.	Localised. Roadbase not visible	Continuous cr localised but roadbase visible	Continuous and roadbase visible	
	Localised.	Continuous in one wheel track	Continuous and "marked in one wheel track	

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Study Area

The research was conducted in Agaro town which is located in Oromia National Regional State and situated390km from Addis Ababa. It sits at latitude and longitude of 7°51′N36°35′Eand 7°51′N36°35′E, and an elevation of 1560 meters above sea level. Regarding infrastructure the town has asphalt and gravel roads connecting it to different weredas in the zone and surrounding zones. In the town, there are four main roads but the asphalt concrete road covers on the way from Jimma to Bedele town.

Recently most of the existing Asphalt has been deteriorated and damaged badly and besides the city has been experiencing a continuous growth and change. Economically the city is transforming from a predominantly administrative and service center in to a financial and trade center. Due to rapid economic growth and change, there is high mobility of goods and passengers which leads to high transportation demand.

Investigations were carried out from "Bulbulo Kebele-Koye Ber" in Agaro town which is around 15km and more attention were given to more damage section of the road. In this study the researcher carried out in-situ test and laboratory tests from the worst road failure section pits from the existing road on different layers (Asphalt Concrete, Base course, sub base and subgrade). The latest traffic count was performed previously and presented under this report which has been done from ERA, In this section all the test results were presented in tables and charts in order to quick understanding of the properties of the materials used along with the project specification and the latest traffic count data analysis were discussed at the end of this chapter

Figure.3.1.Agaro map (Google Earth accessed on April19, 2015)

3.2 Research design

The research strategies adapted for this research were qualitative and quantitative research of exploratory type. The overall approach was four stages process; the basis of the research was established, necessary data collected, analyzed, and conclusions and recommendations had been made based on the findings. The methods of data collections employed for the research was case study (cross-sectional study), desk study, and Laboratory test. The case study and desk study were analyzed in relation to theoretical propositions, and the laboratory test results were compared with standards set by national and international highway manuals.

3.3 Study Variables

The research variables are both the independent and dependent variables.

Dependent variable:

Causes of Defects

Independent variables:

- Distress Types
- Gradation
- Atterberg's Limit
- Natural moisture content
- CBR
- Thickness measurement
- traffic loading
- locations of severely pavement damage
- Remedial measures

3.4 Test Sample collection and Process of Results

The scope of this detail investigation for failed section of the road is to addresses the general objectives to investigate the causes of asphalt concrete pavement failures/defects and its remedial measures. For this planned purpose, the samples from sub grade layer, sub base layers, base course layers and asphalt layer disturbed and undisturbed were collected, observations and the corresponding engineering assessment were done by Geotechnical Engineering principles. Therefore in this research the researcher basically identify the causes of Asphalt pavement damages and its remedial measures to minimize the maintenance cost and support the economic growth of our country.

Some localized pavement distresses like shoving or corrugations, potholes, alligator cracks, block cracks, edge cracks, longitudinal cracks, Ravelling deformation and Rutting were observed.

Major pavement distresses observed on this road section are as a result of the pavement structure failure. This road section suffers a pavement failure as clearly shown during the condition survey. The sub base is entirely saturated with water and loses its strength and changes its grading as well. Refer the attached pictures in Figure 19-26 which shows the pavement failure type.

3.5 Sampling Frame

The research was coveronly15km Asphalt concrete pavement from "Bulbulo Kebele-KoyeBer" in Agaro town. In order to attain the purpose of this research work the following three sampling frames were adopted during the study period.

i. Cracking

The most common types of cracking are Fatigue cracking, longitudinal cracking, transverse cracking, block cracking Slippage cracking, Reflective cracking and Edge cracking.

ii. Surface Deformation

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The Deformation May be accomplished by cracking. The basic types of surface deformation are Rutting, corrugation or shoving, Depression and swell.

iii. Disintegration

The progressive breaking up of the pavement into small, loose pieces is called disintegration. If the disintegration is not repaired in its early stages, complete reconstruction of the pavement may be needed. The two most common types of disintegration are potholes and patches.

iv. Surface Defects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are:

- i. Ravelling
- ii. Bleeding
- iii. Polishing
- iv. Delamination

3.6 Sampling Size and Procedure

For the effective distribution of the research instruments, it was focused on purposive sampling. The sample size covered route from "Bulbulo Kebele-Koye Ber" which contains the most damaged and non-damaged Asphalt concrete pavement in Agaro town. The list of pavement damages and deterioration were obtained from these routes. In this method from medium damage to highly sever damaged were analyzed.

During field observation quantitative and qualitative data were collected from the worst failure portions of road based on standards. The qualitative data refers to the existence of poor road making materials on different layers, construction quality, and drainage related problems and pavement maintenance. While the quantitative data refers to the disturbed soil samples which are collected at different locations of the road showing with worst failure rates for laboratory test. To determine the relation between Asphalt, base course, sub base and sub grade with road pavement failure the following tests were done in the laboratory.

i. Sub grade

The sub-grade is the under most layer of a pavement and as such is one of the main concerns of a pavement design. Many pavement failures could be traced to insufficient consideration given to the natural sub-grade material, especially in the case of problematic soils, the identification of which is of paramount importance and half the solution towards the mitigation measures.

The pavement sub-grade material was investigated using test pitting to a depth up to 1.2m from the top surface[8]. The result of the analysis is used to identify problematic soils along the study road stretch, classify the whole road stretch into uniform sections of identical sub-grade strength only on most damaged part of the roads. The following tests were done on sub grade layers:-

- Particle size distribution/Grain size analysis
- Atterberg Limit

- Moisture Density Relation of Soil (compaction test)
- CBR(both disturbed & DCP)
- Natural moisture content
- Soil classification
- Thickness measurement

ii. Sub base

All the tests done for the sub-grade described above are also carried out on the sub-

base of the failed pavement

iii. Base course

The following tests were done on base course layers:-

- Wet & dry Density
- Moisture Density Relation of Soil (compaction test)
- CBR
- Natural moisture content
- Gradation
- Thickness measurement

iv. Asphalt

• Asphalt extraction from non-damaged part

3.7 Data Collection Process

In order to attain the purpose of this research work ethical considerations were considered and official letter were collected from JIT and Regional ERA office to collect the actual data and to perform laboratory tests.

In order to generate data for the general and specific objective, field survey, laboratory test and reconnaissance survey were carried out on selected route. To collect the primary data the following samples are taken from different boreholes at the location where most damaged asphalt.

Figure 3.1 Borehole BH-1 at station 385+000(Nov-15)

Figure 3.2 Borehole (BH-2) at station 398+000 (29-Nov-15)

Figure 3.3 Borehole BH-3 at station 386+000 (30-Nov-15)

Figure 3.4 Borehole BH-4 at station 397+000 (30-Nov-15)

Figure 3.5 Borehole BH-5 at station 396+000 none damaged Asphalt for comparisons. (30-Nov-15)

Figure 3.6: Borehole Number BH-6 (Lat7°51′12.5568''N & Lon. 36°35′46.1859''E) DCP test (9 December 2015)

3.7.1 Field observation

i. Pavement condition survey

The main objective of the pavement condition survey was to evaluate the state of the existing pavement by assessing the physical conditions of the existing pavement. Before the commencement of the detail pavement evaluation, the entire road length was visually assessed and it is attempted to identify the type of failure occurred on the road surface.

ii. Existing pavement thickness and roadway width

The width of the existing road surface is measured using a meter tape and during pit excavation and sampling in some areas the pavement edges were difficult to establish, as the camber of the road is changed due to repetitive raveling and erosion .Hence the width of the road is established mostly by judgment and measurement. The thickness of the road material is measured in each test pit using a meter tape. The width of the road is around 7m and the thickness of the road material is given in the result part.

3.7.2 Laboratory Tests

Samples were obtained from the most failed section of the road at different layers. These samples were collected from 4 different location of the road with worst failure rates and then brought to the laboratory using a rented vehicle for testing. These samples were first air dried under the sun to allow moisture to escape before basic test were performed. Basic tests were performed in the laboratory, these are Atterbergs limit (for comparison and determination of liquid limit and plastic limit), Grain size analysis (for determination of percentage of clay, silt and, sand and determination of coefficient of uniformity & curvature), Compaction test (for determination of Maximum dry density and optimum moisture contents), California Bearing ratio (CBR) test (for evaluation of mechanical strength of different layers), Natural Moisture content, Soil classification, Gradation, and Asphalt extraction test.

Enough samples (50kg samples from each layer) were collected from each test pit for every pavement layer to perform the necessary tests. The tests are performed according to AASHTO specification. The necessary tests were conducted for all the samples and the summary of the result is presented in a tabulated form.

CHAPTER FOUR

Result and Discussion

4.1 Field Test Result

4.1.1 Condition Survey

Before the commencement of the detail pavement evaluation, the entire road length was visually assessed and identified. The pavement condition survey was carried out on the study section of the road in order to identify areas showing pavement defects and to assess causes of defects and its level of severity.

No.	Station	Failure Type	Test pit	Level of severity	Remark
1	385+000	Block cracks	BH-1	Severity level 3	Visual inspection & measurement, ERA type B damage
2	398+000	Edge cracks	BH-2	Severity level 3	Visual inspection & measurement, ERA type B damage
3	386+000	Alligator carracks	BH-3	Severity level 3	Visual inspection & measurement, ERA type A damage
4	397+000	Alligator cracks	BH-4	Severity level 3	Visual inspection & measurement, ERA type A damage
5	396+500	Non damaged	BH-5	Non damaged	For comparisons

Table 4.1 Pavement condition survey

The severity level is determined according to ERA manuals, actual measurement of defects and visual inspection (APPENDIX H)

The following representative photographs can show the type and extent of failure along the road.

Figure 4.1: Shoving or Corrugations (29-Nov-15)

Figure 4.2: Alligator cracks (29-Nov-15)

Figure 4.3: Edge cracking (29-Nov-15)

Figure 4.4: Potholes (29-Nov-15)

Figure 4.5 longitudinal cracks and edge cracks (29-Nov-15)

Figure 4.6: Ravelling (29-Nov-15)

Figure 4.7: Rutting, alligator cracks and shoving (29-Nov-15)

Figure 4.8: Edge cracking (29-Nov-15)

4.1.2 Field Investigation Result

Based on the actual pavement measurement at different pit location the following result were obtained.

DILNo	Station	Failure Turc	Thickness	Domode		
БП №0.	Station	Fanure Type	Asphalt	Base	Sub base	Kemark
BH-1	385+000	Block cracks	4	13	20	
BH-2	398+000	Edge cracks	3.5	12	19	
BH-3	386+000	Alligator carracks	4.3	13.5	18	
BH-4	397+000	Alligator cracks	4	15	20	
BH-5	396+500	Non damaged	4.5	15	20	

Table 4.2.Summary of actual pavement thickness

4.1.3 Field Density Test

Table	4.3	Field	density	test
-------	-----	-------	---------	------

		Pavement layers												
Samul		Bas	se Course			Sub base			Damada					
e No.	Station	Moisture content %	Bulk density (g/cc)	Dry density (g/cc)	Moisture content %	Wet density(g/cc)	Dry density (g/cc)	Moisture content %	Bulk density(g/cc)	Dry density(g/cc)	Remark			
BH-1	385+000	5.30	2.86	2.70	11.40	1.85	1.64	14.60	1.54	1.31				
BH-2	398+000	4.80	2.78	2.63	15.00	1.97	1.71	13.50	1.60	1.41				
BH-3	386+000	3.80	2.18	2.09	5.90	2.10	1.98	14.40	1.58	1.38				
BH-4	397+000	4.80	2.93	2.78	7.90	1.90	1.80	14.70	1.75	1.53				

4.2 Laboratory Tests

4.2.1Atterberg Limits Test Results

Atterberg limit test was made on Base course, Sub base and Sub grade on each boreholes. The testing procedure was done according to AASHTO T89, T90 and M145. The plastic limits, liquid limits and plastic index are summarized and tabulated below.

			Atterberg limits											
Sample	Station	Type of Failure	Ba	ase Cou	rse		Sub base	•		Remark				
No.			LL	PL	PI	LL	PL	Ы	LL	PL	PI			
BH-1	385+000	Block cracks	3.00	0.0	3.00	43.02	20.06	22.96	59.0	28.00	31.00			
BH-2	398+000	Edge cracks	3.00	0.0	3.00	34.00	27.00	7.00	38.0	25.00	13.00			
BH-3	386+000	Alligator carracks	6.00	0.0	6.00	8.00	4.00	4.00	57.0	28.00	29.00			
BH-4	397+000	Alligator carracks	4.00	0.0	4.00	23.00	5.00	18.00	62.0	53.00	9.00			
	Average			0.0	4.00	27.00	14.01	12.99	54.0	33.50	20.50			

Table 4.4Atterberg limits of pavement layers

4.2.2 Grain size Analysis Result

The distribution of particles of different size in the soil mass is called Grading and the grading of soil can be obtained from the particle size distribution curve. The mechanical analysis consists of determination of the amount and portion of coarse material by the use of sieve. The grain size analysis results are plotted below and the data is given in Appendix.

Figure 4.9 Grain size distribution of sub grade material.

Figure 4.10Grain size distribution of Sub base material.

Remark: Average Uniformity coefficient(Cu) and Coefficient of curvature(Cc) of the fourborholes of sub base materila are 0.03 and 16.68 respectively.

Figure 4.11Wash gradation result for four boreholes of base course material.

Remark: Average Uniformity coefficient(Cu) and Coefficient of curvature(Cc) of the four borholes of base course materila are 0.11 and 10.62 respectively.

Figure 4.12 Gradation result for four boreholes and non-damage asphalt.

4.2.3 Compaction Tests

Compaction of a soil may be defined as the process of closely packing the soil particles together by reducing the air voids in the soils, by mechanical means.

The soil to be tested is thoroughly mixed with measured quantity of water and is then filled in the mold in five layers of approximately equal thickness .Each layer is compacted by 56 blows of a modified rammer weighing 44.5N which is allowed to drop freely from a height of 46cm at each blow. After compaction of five layers the soil is trimmed to the top of the mold. The result of maximum dry density and optimum moisture content are given in the table and figures below.

Sampl e No.	Location /Station	Type of Failure	Base Co	ourse	Sub	base	Sub	Remark	
			MDD(g/c c)	OMC (%)	MDD(g /cc)	OMC (%)	MDD(g /cc)	OMC (%)	
BH-1	385+000	Block cracks	2.77	6.80	1.69	11.79	1.56	14.32	
BH-2	398+000	Edge cracks	2.73	6.40	1.82	14.50	1.59	16.83	
BH-3	386+000	Alligator carracks	2.21	5.23	1.98	6.13	1.48	14.55	
BH-4	397+000	Alligator carracks	3.09	6.40	1.85	6.26	1.80	12.84	
	Average		2.70	6.21	1.83	9.67	1.61	14.64	

Table 4.5Summarized Modified proctor test laboratory result

Figure 4.13 The Laboratory Test Result for OMC & MDD of Subgrade Layer

Figure 4.15 The Laboratory Test Result for OMC and MDD of Base course Layer

4.2.4 California Bearing Ratio (CBR) Tests

The California Bearing Ratio (CBR) was used for evaluating the suitability of sub-grade and the materials used in sub-base and base course. Both disturbed sample method and Undisturbed (DCP) methods were performed to evaluate the CBR of each layer. Three point CBR test is made

for all of the samples. The CBR for 65 blows is determined from the graph for maximum dry density. The following result were obtained during CBR test and summarized below as.

										Pav	ement	layers	;							
					Base	Course			Sub base						Sub grade					
Sampl e No.	Stati on	Type of	Type of Failure		2.54mm		5.08mr	n	2.54mm 5.08mm			n	2.54mm			5.08mm				
		Failure	Ν	lo. blov	vs	N	o. blov	vs	No	. blow	/S	N	o. blov	vs	N	o. blov	/S	I	No. blov	vs
			10	30	65	10	30	65	10	30	65	10	30	65	10	30	65	10	30	65
BH-1	385+ 000	Block cracks	36. 0	74. 4	173. 5	44. 4	14 8.5	275. 3	42.6	51. 7	48. 0	112 .7	12 0.1	83. 1	7.4	14. 8	15 .0	9.2	36.9	17.7
BH-2	398+ 000	Edge cracks	25. 4	90. 5	122. 2	37. 1	15 4.1	319. 6	36.8	75. 9	17 7.0	45. 3	15 1.5	28 0.8	5.9	14. 2	10 .0	7.8	17.0	16.1
BH-3	386+ 000	Alligat or carrac ks	69. 0	106	140.	133	15	205.	43.6	56. 0	61. 9	72.	91. 1	11	33	45	7.	53	69	13.2
BH-4	397+	Alligat	15	.2	147	.0	0.0	,	43.0	5	5	117	12	96	5.5	4.5	7	5.5	0.5	13.2
	000	ks	15. 9	33. 9	147. 6	28. 4	98. 0	287. 9	44.4	53. 7	51. 7	.1	4.8	80. 4	3.1	4.3	7. 4	4.5	6.3	11.8
	Aver		36. 6	76. 3	145. 9	60. 9	13 8 7	272.	41 8	59. 3	84. 7	86. 9	12 1 8	14 1 3	49	95	10 1	6.7	16.8	14 7

Table 4.6Three point California bearing ratio Laboratory Test result

4.3 Extraction of Bitumen & Mechanical Analysis of Extracted Aggregate

The mechanical extraction of bituminous content from both the damaged and non-damaged asphalt were done according to AASHTO-T 30-06, T164 test procedure. The extracted aggregates were washed with Solvent Benzene to remove fines smaller than 0.075mm and the remaining aggregates were used for sieve analyses. The extracted aggregate soaked for 24hours using solvent and Centrifuge extractor were used to detach the aggregates from the bitumen. The following results were obtained from the Extraction test.

EXT	EXTRACTION OF BITUMEN & MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE										Test Method- AASHTO T 30-06				
	Non-Da	amage	B	H-1	В	SH-2	BI	I-3	BF	I-4	E	ERA			
Sieve(mm)	% passing	Bitum en Conte nt (%)	% passing	Bitumen Content (%)	% passin g	Bitumen Content (%)	% passin g	Bitum en Conte nt (%)	% passing	Bitum en Conte nt (%)	Spec. L. Limit	Spec. U. Limit	Remar k		
26.5	100.00		100.00		100.00		100.00		100.00		100	100			
19	97.17		86.93		100.00		90.74		96.04		85	100			
13.2	78.33		61.19		69.39		68.95		65.27		71	100			
9.5	61.07		51.76		57.54		57.62		53.33		62	76			
4.75	41.95		36.56		40.15		41.79		35.73		42	60			
2.36	31.05	5.00	27.34	3.12	29.95	2 64	31.89	2.16	27.54	2 29	30	48			
1.18	24.56	5.00	21.62	5.12	24.13	2.04	25.50	2.10	22.36	2.2)	22	38			
0.6	20.35		17.98		20.29		21.23		19.22		16	28			
0.3	17.38		15.29		17.55		18.21		17.31		12	20			
0.15	15.31		13.2		15.02		15.70		14.92		8	15			
0.075	13.31		10.96		12.42		13.06		12.94		4	10			
Pan	9.58		6.21		7.97		8.83		9.53						
Total			1465.71												

Table 4.7 Laboratory result of Bitumen content and sieve analysis of Asphalt

4.4 Dynamic Cone Penetration (DCP)

Dynamic cone peneteration (DCP) has been widely used as a simple, but effective means of determing the insitu shear strength of sub grade materials and pavemnt layers. California Bearing Ratio (CBR) is the most commonly used measure of soil bearing capacity. The DCP test provide an indication of material in-situ resistance to peneteration. If the DCP cone peneterates quickly in to the soil, it indicates the material has poor strength or insufficent compaction.

Figure 4.16 Dynamic cone penetration results at three boreholes

5. Discussions

5.1 Road Surface defects

From the pavement condition survey, the road is in bad conditions. Shoving or corrugation, alligator cracks, edge cracks, potholes, longitudinal cracks, deformation, raveling and rutting are the most common defects observed along the study area. The Table below shows the different types of failures obtained in Agaro road and rating of defects.

Table 4.8 Rating of road failure in Agaro town.

	5.		Exist	ence	Lev	el of Sever Rating	rity	Remark
NO.	Dis				high Medium			
		Yes	No					
		Estima encluina						Visual evaluation & Type
		Taugue Clacking	V		V			A damage
		Longitudinal						Visual evaluation & Type
1	Cracking	cracking	V			V		B damage
		Transverse						Visual evaluation & type
		cracking		V				B damage
		Block cracking	V		٧			Measurements5x5mm &

							type B damage
		Slippaga araalzing					Visual evaluation & type
		Suppage cracking		V			B damage
		Reflective					Visual evaluation & type
		cracking		V			B damage
							Visual evaluation & type
		Edge cracking	V		v		B damage
							Measurements 4cm
		Rutting					height & 4m length &
			V		v		type A damage
		Corrugations					Visual evaluation length
		Confugations	V		v		& type A damage
2	Surface	Chaving					Visual evaluation length
	deformation	Shoving	V		v		& type A damage
		Dennessions					Visual evaluation length
		Depressions		V			& type A damage
		Swoll					Visual evaluation length
		3 WCII		V			& type A damage
							Measurements 0.95cm
		Potholes					width & 25cm depth &
3			V		V		type B damage
		Patches					Visual evaluation length
	Disintegration	1 defies	V			V	& type A damage
		Ravelling					Visual evaluation length
		Ravening	V			V	& type B damage
		Dlaadina					Visual evaluation length
4		Dieeding		V			& type B damage
	Surface	Polishing		V			Visual evaluation
	defects	Delamination		V			Visual evaluation

From the traffic and sub grade strength analysis, the subgrade strength class is S4 and the traffic class is T5 (Appendix G). Hence according to ERA pavement design manual, the thickness of the base course and sub base should be 20cm and 25cm respectively. From table 4.2 it can be seen that the average thickness of the base course is 13.7 and sub base is 19.4cm therefore the sub base and base will not able to carry the traffic loading at its service time.
5.2 Grain size Analysis

Comparing the laboratory test results for gradation with that of the specification for Base, and sub base materials and to determine the percentage of gravel and sand from grain size curve depending on percentage of fines (fraction smaller than 75micron sieve size)coarse grained soils are classified as follows: less than 5%: GW,GP,SW and SP. And more than 12%: GM, GC, SM, and SC. 5%-12% border line case required use of dual symbols. According to Unified soil classification system the base course has Cu is greater than 4, Cc less than 3 and average PI is 4% which is Silty gravel GM and according to AASHTO classification A-2-4. For the sub-base material at all boreholes the average Cu greater than 4 and Cc less than 3 with average PI 12.9% so it is classified as well graded gravel GW.The sub grade materials of all bore holes are classified as MH inorganic silts of high plasticity.

The comparisons of particle size distribution curve of the laboratory test results and the recommended particle size distribution for mechanically stable natural gravels and weathered rocks for use as Base course material (GB2, GB3) Table 2.3, and for granular sub-base material (GS) (Table 2.5) given by ERA Pavement Design Manual it can be seen that the gradation of Base course and Sub base at all borehole station almost near to the recommended range.

Material/layer	Test	Specified limits	Desired limits
	Plasticity test		
	a) LL	≤ 80%	≤ 50%
	b) PI	≤ 55%	≤ 30%
	Grading test		
	a) Sieve analysis	≤ 35% passing 200 sieve	
Sub-grado/fill	Density moisture content		
Sub-grade/iii	a) Compaction test	B.S. Compaction	
	In situ dry density test		
		≥ 100% of the MDD in BS	
	top 600mm	compaction	
		≥ 95% of the MDD in BS	
	After 600mm	compaction	

Table 4.9: Specification limits for sub-grade/fill material for road

		≥ 100% of the MDD in BS									
	Next to structure	compaction									
Unsuitable	a) peat, logs ,stumps, roots, and other) peat, logs ,stumps, roots, and other perishable or combustible materials									
	b) Material from swamps marshes & bogs										
	c) Top soil and highly organic clay & s	ilts									
	d) clay having a LL exceeding 80% or PI exceeding 55%										
Source: Extracted from General specification for Roads and Bridges F.M.W.(1997)											

5.3 Atterberg Limits

From the laboratory results, it can be seen that the average liquid limit of sub grade is 54, sub base is 27 and base course 4 and also the average plastic index of the sub grade is 20.5, sub base is 12.98 and base course 4.

From Table 4.4 it is observed that both LL and PI values are less than the respective specified values (i.e. $LL \le 80\%$ and $PI \le 55\%$) for the sub grade material in all boreholes sampling point locations thus meet the required specification for the sub-grade material. AASHTO soil classification system BH1&3 grouped in to A-2-7, BH-2 as A-2-6 and BH-4 as A-2-5 and based on Unified soil classification system sub grade is classified as MH.

From Table 5.2 it also observed that both LL and PI values are lower than the respective values (i.e. LL \leq 45% and PI \leq 12%) for sub base material of BH-2& BH-4 and does not satisfy the required PI value for BH1&3. In general the average value of PI for sub base is within the recommended specification.

According to ERA standard technical specification the Base Course is Crushed stone material the PI shall not exceed 6 and base material shall be non-plastic or shall have a maximum PI of 6 when determined in accordance with AASHTO T-90. Thus this shows all base course material satisfy the requirement.

5.4 Compaction Test

From Table 5.3 the average value of MDD and OMC for base course is 2.7gm/cc and 6.21% respectively which meet the specification (i.e. MDD>2gm/cc). For sub base material OMC & MDD varied between 6.26% to 15.5% and 1.69gm/cc to 1.98gm/cc respectively. The MDD values of all sub base don't meet the specified value (i.e. MDD>2gm/cc). For sub grade material OMC & MDD varied between 12.84% and 16.83% and 1.48gm/cc 1.8gm/cc respectively. The MDD values of all sub grade except BH4, they don't meet the specified value (i.e. MDD>1.76gm/cc).

5.5 California Bearing Ratio (CBR) Test

From the recommendation given in Table 2.1 taken from ERA Pavement Design Manual Volume I, for naturally coarsely graded granular material, including processed and modified gravel GB3, the CBR after soaking should be greater than 80%. According to the laboratory result given in Table 5.4 the average CBR of base material is 145.9% which is greater than 80% therefore it is suitable to use as base course when compacted at optimum moisture content & its maximum dry density.

When we see the case of sub-base layer, the recommendation given ERA is CBR>30% after soaking and the result obtained from Table 5.4 CBR value for sub base ranges from 48% to 177% which satisfy ERA requirements. From Table 2.1, it is observed that the average soaked CBR value of sub grade material which is greater than 10.1%, in which it satisfies the requirement because of it is greater than the ERA specification (i.e. soaked CBR \geq 5%). From Table 2.5, the sub-grade strength class for CBR ranges from 8%-14% is S4. Since the average CBR value of sub grade is within this range it is classified as S4.

5.6 Drainage conditions

As we all know the drainage is the most important part of Pavement management system and plays important role in extending the design life of a highway. During the rains, part of the rain water flows on surface and part of it percolates through the soil mass as gravitational water until it reaches the ground water. Some water is retained in the pores of the soil mass and on the surface of soil particles which cannot be drained by normal gravitational methods and this retained water is termed Held water. It is required that the surface water from the carriageway and shoulder should effectively be drained off without allowing it percolate the sub grade. The surface water from adjoining land should also be prevented from entering the roadway. The side drains should have sufficient capacity and longitudinal slopes to carry away all the surface water collected. This improper drainage system causes the failure of road pavements due to many reasons such as increase in moisture content, decrease in strength, mud pumping, and formation of waves and corrugations, stripping of bitumen, cutting of edges of pavement and frost action. Poor drainage system causes soils swelling which intern result different type of defects. During site investigation, the researcher observe problem on longitudinal and transverse drainage and waters are allowed to travel a long distance. In general there is a poor drainage system in the town.

5.7 The relation between Road failures with test result

The table below shows the relationship between the types of distress with the result obtained from Laboratory.

Sample No.	Type of Failure	Result Obtained	Relationships	Remark			
		Gradation					
		• GM,GW and MH for Base, sub base and subgrade	The laboratory result obtained meet the specification for base, sub-base & subgrade layers				
		Atterberg limits					
		• LL& PI Base course (3,3), Sub base (43,22.96) and sub grade(59,31) respectively	The laboratory results obtained from sub base do not meet the requirement. LL \leq 35% and PI \leq 12%)				
		Compaction					
1	Block Cracks	• MDD and OMC for Base course (2.77gm/cc,6.8%),Sub base (1.69gm/cc,11.79%) and sub grade(1.56gm/cc,14.32%)	The laboratory result obtained for sub grade and sub base does not meet the requirement MDD≥2gm/cc and this cracks occurs the sub grade and sub base are not well compacted due to these there is higher air voids	BH-1			
		<u>CBR Test</u>	CBR Test				
		• CBR for base course 173.4%,sub base 48% and Sub grade 15%	The laboratory result obtained meet the specification for base, sub-base & subgrade layers				
		Layer thickness					
		Asphalt 4cm,base 13cm and sub grade 20cm					
		Asphalt extraction					
		Bitumen Content is 3.12 (%)	The laboratory result obtained does not meet the specification for Asphalt bitumen content (4-5%)				
		Gradation					
		• GM,GW and MH for Base, sub base and subgrade	The laboratory result obtained almost meet the specification for base, sub-base & subgrade layers				
2	Edge	Atterberg limits		BH-2			
2	cracks -	• LL, & PI Base course (3,3), Sub base (34,7) and sub grade(38,13) respectively	The laboratory result obtained meet the specification for base & sub-base but the subgrade layers does not meet and the problem is high plastic sub grade soil				

Table 4.10 The Relation	between Laboratory	result obtained	with road pavement	failure along Agaro Town
-------------------------	--------------------	-----------------	--------------------	--------------------------

		Compaction				
		• MDD and OMC for Base course (2.77gm/cc,6.8%),Sub base (1.69gm/cc,11.79%) and sub grade(1.56gm/cc,14.32%)	The laboratory result obtained for sub grade and sub base does not meet the requirement MDD≥2gm/cc and this cracks occurs because of absence of shoulder support in most part of the road , poor compaction and drainage system			
		CBR Test				
		• CBR for base course 122.24%, sub base 176.9% and Sub grade 10%	The laboratory result obtained meet the specification for base, sub-base & subgrade layers			
		Layer thickness				
		Asphalt 3.5cm,base 12cm and sub grade 19cm				
		<u>Asphalt extraction</u>				
		Bitumen Content 2.64 %	The laboratory result obtained does not meet the specification for Asphalt bitumen content (4-5%)			
		Gradation test				
		• GM,GW and MH for Base, sub base and subgrade	The laboratory result obtained almost meet the specification for base, sub-base & subgrade layers			
		Atterberg limits test				
		• LL, & PI Base course (6,6), Sub base (8,4) and sub grade(57,29.5) respectively	The laboratory result obtained almost meet the specification for base, sub-base & subgrade layers			
		Compaction Test				
3	Alligator cracks	• MDD and OMC for Base course (2.21gm/cc,5.23%),Sub base (1.98gm/cc,6.13%) and sub grade(1.48gm/cc,14.55%)	and OMC for Base course (cc,5.23%),Sub base (cc,6.13%) and sub 48gm/cc,14.55%)The laboratory result obtained for sub grade and sub base does not meet the requirement MDD≥2gm/cc and this cracks occurs because of absence of shoulder support in most part of the road , poor compaction and drainage system			
		<u>CBR Test</u>				
		• CBR for base course 140.35%, sub base 61.93% and Sub grade 7.79%	The laboratory result obtained meet the specification for base, sub-base & subgrade layers			
		Layer thickness				

		Asphalt 4.3cm,base 13.5cm and sub grade 18cm	The basic problem is the thickness of each layers and the bituminous		
		Asphalt extraction Test	content which is less than the standard		
		Bitumen Content is 2.16 %			
		Gradation test			
		• GM,GW and MH for Base, sub base and subgrade	The laboratory result obtained almost meet the specification for base, sub-base & subgrade layers		
		Atterberg limits test			
		• LL, & PI Base course (4,4), Sub base (23,18) and sub grade(62,9) respectively	The laboratory result obtained does not meet the specification for sub- base which is high plastic in nature and when sub grade soil saturated due to poor drainage during rainy season the dry density will decrease.		
		Compaction Test		BH-4	
4	Alligator carracks	• MDD and OMC for Base course (3.09gm/cc,6.4%),Sub base (1.85gm/cc,6.126) and sub grade(1.8gm/cc,12.84%)	The laboratory result obtained for sub grade and sub base does not meet the requirement MDD≥2gm/cc and this cracks occurs because of absence of shoulder support in most part of the road , poor compaction and drainage system		
		CBR Test			
		• CBR for base course 147.59%, sub base 51.7% and Sub grade 7.42%	The laboratory result obtained meet the specification for base, sub-base & subgrade layers		
		Layer thickness			
		Asphalt 4cm,base 15cm and sub grade 20cm	the basic problem is the thickness of each layers and the bituminous		
		Asphalt extraction Test	content which is less than the		
		Bitumen Content is 2.29%	standard		

sugge		· ·			
Sample No.	Station	Type of Failure	Causes of Failure obtained	Main source of failure obtained	Maintenance Suggestions
BH-1	385+000	Block Cracks	 Poor drainage Compaction problem, Bitumen content of asphalt, Expansive sub grade soil 	•Surface course layer •Sub grade layer,	✓ Improve drainage. Remove vegetation close to edge& removing the source that traps the water \sqrt{Any} surface treatment or thin overlay
BH-2	398+000	Edge cracks	 Poor drainage shoulder support Compaction problem of sub grade & sub base, Bitumen content of asphalt, Expansive sub grade soil 	 Surface course layer Sub grade layer, Sub base layer 	✓ Improve drainage. Remove vegetation close to edge. Fill cracks with asphalt emulsion slurry or emulsified asphalt Crack seal/fill
BH-3	386+000	Alligator carracks	 Poor drainage Compaction problem of sub grade & sub base, Bitumen content of asphalt, 	 Surface course layer Sub grade layer, Sub base layer 	 ✓ Improve drainage. Remove vegetation close to edge& removing the source that traps the water √Full-depth patch
BH-4	397+000	Alligator carracks	 Poor drainage Compaction problem of sub grade & sub base, Bitumen content of asphalt, High plastic sub base material 	 Surface course layer Sub grade layer, Sub base layer 	✓ Improve drainage. Remove vegetation close to edge& removing the source that traps the water Full-depth patch

Table 4.11 Summery of relationship obtained between soil properties and road failures and suggested maintenance.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1. Conclusions

The work conducted in this study is to investigate the causes of pavement defects and it's remedial on asphalt concrete pavement in Agaro town. The objectives of the study were analyzed and the following conclusions are given based on the field survey and laboratory test results.

- From the pavement condition survey, shoving or corrugation, alligator cracks, edge cracks, potholes, longitudinal cracks, deformation, raveling and rutting are the most common defects observed along the study area.
- Based on the data collected from laboratory test and condition survey on highly severed damaged section of the road the following are cause of pavement damages on the area.
 - ✓ The sub grade soil is classified as MH inorganic silt which is poor as a sub grade material.
 - ✓ Proctor test for all sub base and sub grade layer shows that the MDD is below the specified value given by ERA technical specification. These results in cracks (Block, Edge and Alligator)due to sub grade and sub base layers are not well compacted and there is higher air voids.
 - ✓ Pavement material thickness of all bore holes shows below the specified value given by ERA Technical Standard specification for sub grade strength S4 and Traffic class T5 (base course and sub base should be 20cm and 25cm respectively), these results to a serious of block, alligator and edge cracks.

- ✓ Improper bitumen content on asphalt concrete mix causes pavement damage in all boreholes and creates a chance water to penetrate beneath the surface course layer.
- Because of the absence of good drainage structure, the impact on road pavement is very high. It is causes pavement distresses and deterioration which also affect the safety and riding quality on.
- Due to pavement damages and deteriorations vehicle operation cost and travel time increased and creates traffic congestion, accident and delay.

5.2. Recommendations

Based on this thesis work, I have come up with the following recommendations which may be vital to note for further implementations.

✓ Recommendation to the Client

- Immediate improvement of drainage is required by removing concentrated weed growth in ditch line or edge of pavement and Standing water in ditch lines
- The client is recommended to maintain the existing severely damaged part located on BH1,BH2 and BH3
- ERA should follow proper pavement maintenance and management practice in order to reduce pavement failure.
- Careful choice of consulting engineers and prosecution of corrupt consulting engineers and ministry officials
- It is also recommended to carry out such a study in other parts of Ethiopia especially in regions where Pavement damages and deterioration is a concern.

✓ Recommendation to the Contractor

- Knowledge of soil geotechnical characteristics and underlying geology of an area is very essential before any construction project commence as the stability of the foundation layers particularly depends on this.
- Due to complex characteristics of road construction projects, the contractor should follow the standard procedure while construction on progress.

✓ Recommendation to the Consultant

Fill materials must be tested and treated before use to avoid problems after the construction

- ERA and the consultant should carefully revise the design and the Geotechnical property of road making material before rushing in to construction stage.
- During construction stage, continuous supervision should be implemented by the client and consultant engineers.
- Good drainage should be provided to avoid the entrance of water in to the road pavement.
- 100% compaction must be observed during construction to avoid failure after construction due to Settlement
- A guaranteed period of use before affecting repairs and before final payment is made.
- Evaluation on the effectiveness of different construction and design techniques which are currently in use for road construction can be area of further research in order to avoid Pavement damages and deterioration.

REFERENCES

- [1]. AASHTO (1988) Manual of sub surface investigation.
- [2]. Ankit Gupta (2004). Report on Case Studies on Failure of Bituminous Pavements Report Submitted to PWD, Aligarh. 2004. pp-1-14
- [3]. Dr.J.J.Magdum College of Engineering, Jaysingpur
- [4]. Dr.K.R.ARORA (2003). Soil mechanics and foundation engineering, sixth edition
- [5]. Estimating Highway Pavement Damage Costs Attributed to Truck Traffic
- [6]. Federal Democratic Republic Of Ethiopia, Ethiopian Road Authority Standard technical specifications 2002
- [7]. Federal Democratic Republic Of Ethiopia, Ethiopian Road Authority (2002).Pavement Design manual, Volume I&II
- [8]. Federal Democratic Republic Of Ethiopia, Ethiopian Road Authority(ERA) Pavement Rehabilitation And Asphalt Overlay Manual
- [9]. Final report forensic investigation of pavement distress: old airport road in Bristol, Virginia by Thomas e. freeman, p.e. senior research engineer
- [10]. Finn, F. N., Nair, K., and Hilliard, J. M., Minimizing Premature Cracking in Asphaltic Concrete Pavement, NCHRP Report No. 195, Transportation Research Board, Washington, D.C., 1978
- [11]. Guidance Notes Catalogue of Road Defects (CORD) Research & Development Division January 2013
- [12]. Hall, K. T. and Darter, M. I., "Rehabilitation Performance and Cost-Effectiveness: A Ten-Year Case Study," Transportation Research Record No. 1215, 1990.

- [13]. Highway materials, soils, and concrete 3rd edition by Harold N. Atkins,PE
- [14]. Investigation of Conditions for Moisture Damage in Asphalt Concrete and Appropriate Laboratory Test Methods by Qing Lu
- [15]. Maintenance Solutions For Bleeding And Flushing Pavements By Texas Department Of Transportation Malaysia By: Hjh. Juraidah Ahmad Prof. Madya Ir. Dr. MohdYusof Abdul Rahman Jezan Mohd Diah Sabariah Arbai December 2004
- [16]. Miller, J. S., Rogers, R. B. and Rada, G. R., Distress Identification Manual for the Long-Term Pavement Performance Project, third edition, 1993.
- [17]. NDOR Nebraska department of roads pavement maintenance manual
- [18]. Pavement Deterioration and its Causes by Sharad.S.Adlinge, Prof.A.K.Gupta.
- [19]. Pavement Distress Evaluation and Characterization Institute Penyelidikan, Pembangunan Dan Pengkomersilan (Irdc) Universiti Teknologi Mara 4040 Shah Alam, Selangor
- [20]. Pothole Identification, Assessment and Repair Guidelines August 2012 Commissioned by: Communities of Tomorrow Leveraged Municipal Innovation Fund Prepared by: Clifton Associates Ltd. Sponsoring Municipalities: Prince Albert, Saskatoon
- [21]. Praveen Kumar (2004), Case Studies on Failure of Bituminous Pavements. Paper from first international conference on pavement preservation (paper 52). Pp-1-5.
- [22]. Road Deterioration in Developing Countries Causes and Remedies By World bank policy study

- [23]. Road Sector Development and Economic Growth in Ethiopia by Ibrahim Worku
- [24]. Stark, D., "Field and Laboratory Studies of the Effects of Sub base Type on the Development of D-Cracking," Highway Research Record No. 342, 1970
- [25]. Study of the Causes and Remedies of Premature Surface Cracking of Asphalt Pavement EPAM3- 3rd European Pavement and Asset Management Conference Coimbra, Portugal,7-9 July,2008
- [26]. Study of Water Effects on Asphalt and Porous Asphalt Report Nr 5 June 2010
- [27]. Superior Performing Asphalt Pavements (Superpave)'. The Product Of The SHRP Asphalt Research Program Thomas W. Kennedy University Of Texas At Austin Gerald A. Huber Heritage Research Group
- [28]. The International Road Maintenance Handbook
- [29]. The Place of Soil Geotechnical Characteristics in Road Failure, a Study of the Onitsha-Enugu Expressway, Southeastern Nigeria by Onuoha, David Chijioke1 and Onwuka, Shalom Udeagha
- [30]. Transport and Road Research Laboratory (TRRL)
- [31]. WSDOT Maintenance Manual M 51-01.05, August 2013
- [32]. Yield General Specification for Roads and Bridges F.M.W. (1997)

APPENDEX A. PARTICLE SIZE DISTRIBUTION

Partiele size distribution													
			Part	icie size di	stributio	<u>n</u>							
		Sieve An	alysis(Tes	st Method	AASHT	0 T- 11/T	- 27)						
	(Nominal Size 37.5 mm)												
Sampling Station :		385+000			Materia	l Type :	Base-	Coarse					
Sampling Date :		29-Nov	-15	AVERAG	GE of Tri	al 1&2 for B	H-1						
Testing Date :		21-Dec	-15	_	Source	Source BH-1				_	-		
Sieve Sizes		50.00	37.50	20.00	10.00	5.000	2.36	0.425	0.075	Pan	Total		
Weight Retained(gm)		0.0	0.0	353.0	815.0	532.0	346.0	358.0	122.0	18.0	2544.0		
% Retained		0.00	0.00	13.88	32.04	20.91	13.60	14.07	4.80	0.71			
% Passing		100.0	100.0	86.12	54.09	33.18	19.58	5.50	0.71	0.00			
Specification Limits		100	95100	6080	4060	2540	1530	719	512				
Upper Limit	Imper Limit 100.00 100.00 80.00 60.00 40.00 30.00 19.00 12.00												
Lower Limit		100.00	95.00	60.00	40.00	25.00	15.00	7.00	5.00				
Grading Modulus :	2.74												

			<u>Particl</u>	e size dis	tribution	Sieve Ai	nalysis(1	est Meti	hod AASH	TO T- 1	1/T - 27	<u>')</u>			
						(Nomin	al Size	37.5 mm	<u>e)</u>						
Sampling St	ation :		385+0	00		Mater Type :	ial	Sub	Base						
Sampling Date : 29-Nov-15							&2 Average								
Testing Dat	e :		17-1	Dec-15	_	Sourc	e	BH-	1						
Total Weight (gm)= 1427															
Sieve Sizes 26.50 19.0					13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained	l(gm)		334.5	150.5	165.5	168.5	189.0	144.0	95.5	67.0	60.0	38.0	9.5	4.5	1426.5
% Retained			23.45	10.55	11.60	11.81	13.25	10.09	6.69	4.70	4.21	2.66	0.67	0.32	
% Passing			76.6	66.0	54.4	42.6	29.34	19.24	12.55	7.85	3.65	0.98	0.32	0.00	
Specification Li	mits	-	100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	1220	815	410		
Upper Limit			100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lower Limit			100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus :		2.77													

	į	Particle s	<u>size distri</u>	<u>bution Si</u>	eve Analy	sis(Test M	lethod A	ASHTO 2	T- 11/T -	27)(Nomi	inal Size	<u>37.5 mm</u>)		
Sampling Statio	n:		385+00	00		Materia Type :	al	Sub (Grade						
Sampling Date :			29-N	lov-15	AVER	AGE Tr	ial 1&2								
Testing Date :			9-De	ec-15		Source BH1						_			
			Total We	ight (gm)=	1324								-		
Sieve Sizes			26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retain	ned(gm))	0.0	134.0	302.5	165.0	230.0	144.0	93.0	62.0	44.0	36.5	38.5	74.0	1323.5
% Retain	ned		0.00	10.12	22.86	12.47	17.38	10.88	7.03	4.68	3.32	2.76	2.91	5.59	
% Passin	ıg		100.0	89.9	67.0	54.6	37.17	26.29	19.27	14.58	11.26	8.50	5.59	0.00	
Specification	Limits		100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	1220	815	410		
Upper Limit	Upper Limit 100.00 100.00 100.00		100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00				
Lower Limit			100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus :		2.57													

<u>Part</u>	icle size d	istributi	on Sieve A	Analysis(T	est Metho	od AAS	<u>HTO T- 11</u>	//T - 27) (N	ominal S	Size 37.	<u>5 mm)</u>	
Sampling Station	:		398+000			Materi	ial Type :	Base-Co	oarse			
Sampling Date : 29-Nov-15					Average Trial 1&2							
Testing Date :			3-Jan-16			Source	•	BH-2				
Sieve Sizes		50.00	37.50	20.00	10.00	5.000	2.36	0.425	0.075	Pan	Total	
W eight Retained	Weight Retained(gm)			0.0	337.0	911.0	649.5	449.0	515.5	185.5	10.5	3058.0
% Retained			0.00	0.00	11.02	29.79	21.24	14.68	16.86	6.07	0.34	
% Passing			100.0	100.0	88.98	59.19	37.95	23.27	6.41	0.34	0.00	
Specification Lin	Specification Limits			95100	6080	40 60	2540	1530	719	512		
	er Limit	100.00	100.00	80.00	60.00	40.00	30.00	19.00	12.00			
	Lower Limit				60.00	40.00	25.00	15.00	7.00	5.00		
Grading Modulus		2.70										

	<u>Particle</u>	size distri	bution Sieve	Analysis(Test Me	thod AA	SHTO T	- 11/T -	27) (Noi	ninal Si	ze 37.5	<u>mm)</u>		
Sampling Station	:	398+000			Materia	al Type :	Sub Base							
		20 Nov 15												
Sampling Date :		29-Nov-15			Trial		Avera	ige 1&2						
Testing Date :		29-Dec-15			Source		BH2							
													-	-
		Total V	Weight (gm)=	1610										
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retaine	ed(gm)	50.0	126.0	195.0	115.0	283.0	277.0	185.0	131.0	108.0	87.0	42.0	11.0	1610.0
% Retaine	d	3.11	7.83	12.11	7.14	17.58	17.20	11.49	8.14	6.71	5.40	2.61	0.68	
% Passing	g	96.9	89.1	77.0	69.8	52.24	35.03	23.54	15.40	8.70	3.29	0.68	0.00	
Specification I	imits	100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	1220	815	410		
Upper Limit		100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lo	wer Limit	100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus :	2.56													

	<u>Pa</u>	article size d	listribution	Sieve Analy	sis(Test M	ethod AAS	SHTO T- 1	(1/T - 27)	(Nominal	Size 37	.5 mm)			
Sampling Station •		398+000			Mataria	l Type •	SubG	Irade						
Sampling Date :		29-N	ov-15		Materia	ii iype .	Avera	ge Trial 18	&2					
Testing Date :		25-D	ec-15	_	Source		Agaro	o town BH	-2				_	_
		Total Wei	ght (gm)=	1335										
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained	(gm)	0.0	29.0	449.0	174.0	256.0	134.5	80.5	51.0	34.0	36.0	33.5	57.5	1335.0
% Retained		0.00	2.17	33.63	13.03	19.18	10.07	6.03	3.82	2.55	2.70	2.51	4.31	
% Passing		100.0	97.8	64.2	51.2	31.99	21.91	15.88	12.06	9.51	6.82	4.31	0.00	
Specification Li	nits	100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	12 20	815	410		
Սթլ	oer Limit	100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Low	Lower Limit 100.00 85.00 71.00		71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00			
Grading Modulus :	2.64													

Particle size distribution Sieve Analysis(Test Method AASHTO T- 11/T - 27) (Nominal Size 37.5 mm)											
Sampling Station :		386+000			Material	Fyne :	Base-C	oarse		-	
Sampling Date :		30-Nov	-15		Trial		Averag	e 1&2			
Testing Date :		15-Jan-	-16		Source		BH-3			<u>-</u>	_
Ta	otal Weight (g	<u>m)=</u>	I	3003							
Sieve Siz	zes	50.00	37.50	20.00	10.00	5.000	2.36	0.425	0.075	Pan	Total
AVG. Weight Retained(gm)		0.0	0.0	981.5	660.7	570.4	354.8	212.8	210.5	12.0	3002.6
AVG % Ret	ained	0.00	0.00	32.69	22.00	19.00	11.82	7.09	7.01	0.40	
AVG % Pas	ssing	100.0	100.0	67.31	45.31	26.31	14.49	7.41	0.40	0.00	
Specification	Limits	100	95100	6080	4060	2540	1530	719	512		
Upper Limit 100.00 100.00			100.00	80.00	60.00	40.00	30.00	19.00	12.00		
Lower Limit 100.00 95.00			60.00	40.00	25.00	15.00	7.00	5.00			
Grading Modulus :	2.78										

<u>Partic</u>	Particle size distribution Sieve Analysis(Test Method AASHTO T-11/T - 27)(Nominal Size 37.5 mm)													
Sampling Station	:	386+000)		Material	l Туре :	SubB	ase						
Sampling Date :		30-No	v-15		Trial		Averag	ge 1&2						
Testing Date :		11-Ja	n-16		Source		BH3							
	r	Fotal Weig	ght(gm.)=	1466										
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained(gm.)	34.1	117.4	185.0	115.0	276.0	279.0	168.0	78.0	98.0	66.0	35.0	15.0	1466.5
% Retained		2.32	8.01	12.62	7.84	18.82	19.03	11.46	5.32	6.68	4.50	2.39	1.02	
% Passing		97.7	89.7	77.1	69.2	50.39	31.37	19.91	14.59	7.91	3.41	1.02	0.00	
Specification Li	mits	100	85-100	71-100	62-76	42-60	30-48	22-38	16- 28	1220	815	410		
Upper Limit	t	100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lower Limit	Lower Limit 100.00 85.00		71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00			
Grading Modulus	2.60													

	<u>Pa</u>	urticle size o	<u>distribution</u>	sieve Ana	ulysis(Test_	<u>Method A</u>	AASHTO T	<u>- 11/T - 2</u>	27)(Nomin	1al Size_3	7.5 mm)			
Sampling Station :		386+000)		Materia	l Type :	Sub G	rade						
Sampling Date :		30-N	ov-15		Trial		Avera	ıge 1&2					<u> </u>	
Testing Date :		7-Ja	ın-16		Source		BH-3						<u> </u>	<u> </u>
		Total Wei	ght (gm.)=	1383										
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained(gr	m.)	0.0	136.3	307.3	192.0	233.4	146.1	94.3	73.0	48.0	37.0	39.0	76.7	1383.2
% Retained		0.00	9.85	22.21	13.88	16.87	10.56	6.82	5.28	3.47	2.68	2.82	5.54	
% Passing		100.0	90.1	67.9	54.1	37.18	26.61	19.79	14.51	11.04	8.37	5.54	0.00	
Specification Limi	its	100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	1220	815	410		
Upper Limit		100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lower Limit	•	100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus:	3.48													

Particle	size distributio	on Sieve Ai	nalysis(Test N	lethod AASH	ITO T- 11/2	T - 27) (Nom	inal Size 3	87.5 mm)		
Sampling Station :	397+000		1	Material T	ype :	Base-Co	arse			
Sampling Date :	30-Nov-1	30-Nov-15		Trial		Average	1&2			
Testing Date :	27-Jan-1	6	<u> </u>	Source	r	BH-4		r	<u> </u>	<u> </u>
	Total Weig	<u>ht (gm.)=</u>	3201							
Sieve Sizes	50.00	37.50	20.00	10.00	5.000	2.36	0.425	0.075	Pan	Total
AVG. Weight Retained(gm.)	0.0	0.0	345.5	935.0	683.5	426.5	527.0	196.5	9.0	3123.0
AVG % Retained	0.00	0.00	11.06	29.94	21.89	13.66	16.87	6.29	0.29	
AVG % Passing	100.0	100.0	88.94	59.00	37.11	23.46	6.58	0.29	0.00	
Specification Limits	100	95100	6080	4060	2540	1530	719	512		
Upper Limit	100.00	100.00	80.00	60.00	40.00	30.00	19.00	12.00		
Lower Limit	100.00	95.00	60.00	40.00	25.00	15.00	7.00	5.00		
Grading Modulus :	2.70									

	<u>Pa</u>	urticle size d	listributior	Sieve Analy	sis(Test Me	thod AASH	ITO T- 1	1/T - 27) (1	Nominal	Size 37.5	<u>mm)</u>			
Sampling Station :		397+000			Material	Type :	Sub	Base						
Sampling Date :		30-No	v-15		Trial		Aver	age Trial 1	&2					
Testing Date :		23-Jan	1-16		Source		BH4							
	7	otal Weig	ht (gm.)=	1477										
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained(g	m.)	37.7	111.3	165.8	117.2	253.2	260.5	179.6	133.8	100.9	79.7	31.6	5.4	1476.6
% Retained		2.55	7.54	11.23	7.94	17.14	17.64	12.16	9.06	6.83	5.40	2.14	0.37	
% Passing		97.4	89.9	78.7	70.7	53.60	35.96	23.79	14.73	7.90	2.50	0.37	0.00	
Specification Limi	ts	100	85-100	71-100	62-76	42-60	30-48	22-38	16- 28	1220	815	410		
Upper Limit		100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lower Limit		100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus :	2.56													

<u>Particle size distri</u>	bution S	lieve Analy	sis(Test M	lethod AAS	SHTO T-	<u>11/T - 27)(</u>	Nominal	Size 37.5	<u>mm)</u>	_		_		_
Sampling Station .	:	397+000			Materi	al Type :	Sub (Frade						
Sampling Date :		30-No)v-15		Trial		Avera	age trial 1 <i>8</i>	<u>&</u> 2					
Testing Date :		19-Ja	n-16	_	Source		BH4						_	
Sieve Sizes		26.50	19.00	13.20	9.50	4.750	2.36	1.180	0.600	0.300	0.150	0.075	Pan	Total
Weight Retained	(gm)	0.0	139.9	289.0	170.1	239.2	186.0	102.0	65.1	48.3	45.0	40.9	69.0	1394.5
% Retained		0.00	10.03	20.72	12.20	17.15	13.34	7.31	4.67	3.46	3.23	2.93	4.95	
% Passing		100.0	90.0	69.2	57.0	39.89	26.56	19.24	14.57	11.11	7.88	4.95	0.00	
Specification Li	mits	100	85-100	71-100	62-76	42-60	30-48	22-38	16-28	1220	815	410		
Upper Limit		100.00	100.00	100.00	76.00	60.00	48.00	38.00	28.00	20.00	15.00	10.00		
Lower Limit		100.00	85.00	71.00	62.00	42.00	30.00	22.00	16.00	12.00	8.00	4.00		
Grading Modulus :	3.50													

APPENDEX B. ATTERBERG LIMIT

Material Turpe :	F	Rase-Coarse		Date sampled	29-Nov-10				
Source : Station		385+000		Sate tested :	23-Dec-15				
				Sample No.	DU1				
				Sample No	БПІ				
		ATTERBERG	LIIVII ن						
		AASHTO T-89	& T- 90						
	· · ·	LIQUID L	IMIT	I	1				
Container No.		1	2	3	MB				
Wt of wet soil +		107 40	101.00	100 70					
Wt of dry soil +	$\left \right $	107.40	101.00	108.70					
container. gm		106.40	99.60	99.60 106.20					
Wt of water		1.00	1.40	2.50					
Wt of container		51.00	52.00	51.00					
Wt of dry soil, gm	of dry soil, gm 55.40 47.60 55.20								
Water content, %		1.81	2.94	4.53					
No. of blows	29	25	19						
				•					
			-						
6.00			Sample preparation						
5.00	┝╋┽╋╋╋		As received						
			Washed on 0	.425mmsieve	✓				
4.00			Air dried at30°C						
3.00			Oven dried a	t 110 ℃					
		 N			<u></u>				
2.00		++++ ! ++ ! N+++++	Proportion reta	lined on 0.425mm slev	е %				
1.00			Liquid Limit	3	%				
			Plastic Limit	0	%				
0 5 10	15	20 25 30 35	Disatisity		70				
			Index	3					
		PLASTIC	LIMIT		•				
Container No.	1	2		Average					
Wt of wet soil +									
container, gm									
Wt of dry soil +									
Wt of wotor	\vdash								
Wt of containor	$\left \right $								
Wt of dry soil am									
Water content %					0.0				
water content, 70			0.						

Material Type: Sub Base Date sampled : 2					
Source :	385+000		tested date :	19-Dec-15	
			Sample No	BH1	
	ΛΤΤΈΡΒΙ		Sumple 110	2	
	ATTERD				
		<u>1-89 & 1-90</u> D LIMIT			
Container No	MS	GO	А		
Wt of wet soil +					
container, gm	46.60	49.40	49.70		
Wt of dry soil +	20.40	40.20	10,10		
container, gm	38.40	40.30	40.40		
Wt of water	8.20	9.10	9.30		
Wt of dry soil gm	18.00	19.10	19.60		
Water content %	19.00	42.02	20.80		
No. of blows	32		19		
	52	20	17		
48.00		Sample	preparation		
46.00 +++++++++++++++++++++++++++++++++++					
\leq		As received			
		Washed on 0.425mmsieve			
		Air dried at30°C			
142.00 1000 1000 1000 1000 1000 1000 1000		Oven dried at 110 °C			
₹ _{40.00}		Proportion retained on 0.425mn	nsieve %		
	↓			I	
38.00		Liquid Limit	43	%	
36.00 15 17 19 21 23 25	27 29 31 33	Plastic Limit	20.1	%	
		Plasticity Index	23		
No. of		Trastienty macx			
blows					
	PLAST	IC LIMIT			
Container No.	1	2		Average	
Wt of wet soil +					
container, gm	13.20	12.40			
wt of dry soll + container gm	12.80	11.90			
Wt of water	0.40	0.50	+		
Wt of container	10 50	9.70	1		
Wt of dry soil, gm	2.30	2.20	1		
Water content, % 17.39 22.73 20.1				20.1	

	C I		Date	20 N. 15
Material Type :	385 - 000	Grade	sampled :	29-Nov-15
Source :	385+000		Sale lested :	15-Dec-15
			Sample No	BHI
	ATTE	RBERG LIMIT		
	AASH	ГО Т-89 & Т- 90		
	LIC	UID LIMIT		
Container No.	23	14	09	
Wt of wet soil +				
container, gm	62.30	64.20	66.60	
Wt of dry soil +	51.00	52.00	54.40	
container, gm	51.80	53.80	54.40	
Wt of water	10.50	10.40	12.20	
Wt of container	33.60	35.80	34.10	
Wt of dry soil, gm	18.20	18.00	20.30	
Water content, %	57.69	57.78	60.10	
NO. OI DIOWS	31	21	24	
1				
70.00 -		Sample	preparation	
65.00		As received		
		Weshed on 0.425 mmsiave		
60.00		washed on 0.425mms leve		
	┯┯┿ ┥││││	Air dried at30°C		
55.00		Oven dried at 110 °C		
50.00		Proportion retained on 0.425	mm sieve %	
			1	
45.00		T · · · · · ·	50	
			58.	52
40.00		Plastic Limit	27	40
20 25	30 35		27.	-10
Number of blows		Plasticity Index	31.	12
		U U		
	PLA	STIC LIMIT		
Container No.	1	2		Average
Wt of wet soil +				-
container, gm	15.20	14.30		
Wt of dry soil +	14.20	12.20		
with a formation	14.20	15.50		
wt of water	1.00	1.00		
Wt of drugoil are	10.50	9.70		
Weten content of	3.70	3.00		27.4
water content, %	27.03	21.18		<i>41.</i> 4

Material Type :	Ba	ase-Coarse		Date sampled :	29-Nov-15
Source :		398+000		Sate tested :	5-Jan-16
				Sample No	BH2
		ATTERBERG	LIMIT		
		AASHTO T-89 &	& T- 90		
		LIQUID LI	MIT		
Container No.		1	2	3	MB
Wt of wet soil +					
container, gm		107.40	101.00	108.70	
Wt of dry soil +		106.40	00.00	106.20	
Wt of water		100.40	99.60	2.50	
Wt of container		51.00	52.00	51.00	
Wt of dry soil gr		55.40	32.00	55.20	
Water content %		1.81	2.94	4.53	
No. of blows		29	2:54	19	
	<u>i I</u>		25	17	
6.00	Sample preparati	on			
5.00					
4.00			As received		
L ┿┼┼┼┼┼┼	┟┼┼┼┼┼	HN	Washed on 0.4	425mmsieve	✓
3.00			Air dried at	30°C	
2.00	$\left \right $		Oven dried at	110 °C	
			Proportion reta	ined on 0.425 mm sieve	%
1.00	╎┼┼┼┼┼			T	Γ
0.00			Liquid Limit	3	%
0 5 10	15 2	20 25 30 35	1		
Number of Blows			Plastic Limit	0	%
			Plasticity Index	3	
		PLASTIC LI	MIT		
Container No.		1	2		Average
Wt of wet soil +					
container, gm					
Wt of dry soil +					
Wt of water	┝──┼──				
Wt of container					
Wt of dry soil om					
Water content %					0.0
mater content, /0			1		0.0

Material Type : Sub Base Date 29-No					
Source :	<u>398+000</u>		Sate tested :	2-Jan-16	
			Sample No	BH2	
I	ATTERBE	ERG LIMIT	Sumple 110		
	AASHTO	T-89 & T- 90			
	LIQUI	D LIMIT			
Container No.	B1	A-66	TT		
Wt of wet soil +					
container, gm	43.90	42.20	41.30		
wt of dry soil +	38.10	36.70	35.60		
Wt of water	5.80	5.50	5.70		
Wt of container	20.10	20.50	19.30		
Wt of dry soil, gm	18.00	16.20	16.30		
Water content, %	32.22	33.95	34.97		
No. of blows	32	28	20		
39.00		Sample	preparation		
37.00					
35.00		As received			
- 33.00		Washed on 0.425mmsieve	✓		
		Air dried at30°C			
- 31.00		Oven dried at 110 °C			
29.00 +++++++++++++++++++++++++++++++++++		Proportion retained on 0.425mm	sieve %		
27.00		Liquid Limit	34	%	
15 17 19 21 23	25 27 29 31 33 35	-			
		Plastic Limit	26.7	%	
		Plasticity Index		7	
No ble	o. of ows				
	PLAST	IC LIMIT	I	I	
Container No.	16	20		Average	
Wt of wet soil +		-			
container, gm	23.20	22.20	ļ		
Wt of dry soil +	22.10	20.90			
Wt of water	1 10	1 30			
Wt of container	17 50	16.50			
Wt of dry soil, gm	4.60	4.40			
Water content, %	23.91	29.55		26.7	

Material Type :		Subgrade		Date sampled :	29-Nov-15
Source :		398+000		Sate tested :	27-Dec-15
				Sample No	BH2
ATTERBERG LIMIT					
AASHTO T-89 & T- 90					
LIQUID LIMIT					
Container No.		121	23	15A	
Wt of wet soil +					
container, gm		65.80	66.40	63.30	
Wt of dry soil +		00	10	- 4 00	
container, gm		57.90	57.40	54.80	
Wt of water		7.90	9.00	8.50	
Wt of container		36.50	33.60	32.80	
Wt of dry soil, gm	_	21.40	23.80	22.00	
Water content, %		36.92	37.82	38.64	
No. of blows		33	27	21	
40.00		Sample preparation			
38.00					
37.00	╎┼╎╢┼		As received		
36.00	╎┼╎╢┼		Washed on 0.425mmsieve		
35.00			Air dried at30°C		
34.00			Oven dried at 110 °C		
32.00			Proportion retained on 0.425mm sieve %		
				1	1
30.00			Liquid Limit	38	%
10 15 20	25	30 35 40	Plastic Limit	24.7	%
			Plasticity Index	13	
PLASTIC LIMIT					
Container No.		1	2		Average
Wt of wet soil +					
container, gm		13.20	12.20		
wt of dry soil +		12 70	11.67		
Wt of water		0.50	0.53		
Wt of container		10.50	9.70		
Wt of dry soil, gm		2.20	1.97		
Water content, %		22.73	26.71		24.7

APPENDEX C. MODIFIED PROCTOR TEST
Material Type	Base course					Date sampled :	29-No	ov-15
Source	385+0)00		Sample No	BH1	Test date	22-De	ec-15
	MO	DISTURE - D	ENSITY F	RELATION O	FSOIL			
			AASHTO	T 180				
No. of blows :	56				Weightof	hammer, kg :	4.5	
No. of layers :	5				Volume	of mold,cm ³ :	1572.7	
Proportion retained on 19mm sieve size:					Single sample / <u>Separate batches</u> :			
(pass 50mm sieve sieve)	and retained on 19mm				Apparent spe	cific gravity :		
Α	Mold	No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil	grams	10357.0	10619.0	10786.0	10811.0		
С	Wt. of Mold	grams	6143.0	6143.0	6143.0	6143.0		
D	Wt. Wet Soil	grams	4214.0	4476.0	4643.0	4668.0		
E	Volume of Mold	cu.cm.	1572.7	1572.7	1572.7	1572.7		
F	Wet Density	gr/cu.cm.	2.679	2.846	2.952	2.968		
G	Container	No.	5	23	142	9		AL
Н	Wt. Cont + Wet soil	grams	197.1	239.2	233.8	231.5		338.2
I	Wt. Cont + Dry soil	grams	191.3	228.2	221.3	216.0		333.6
J	Weight of Water	grams	5.8	11.0	12.5	15.5		4.6
K	Weight of Container	grams	34.4	33.6	36.2	33.9		66.9
L	Weight of Dry Soil	grams	156.9	194.6	185.1	182.1		266.7
М	Moisture Content	%	3.7	5.7	6.8	8.5		1.7
Ν	Dry Density	gr/cu.cm.	2.584	2.694	2.765	2.735		
		3.000 2.900						
Maximum Dry Density (MDD):		2800						
Density (MDD).		2,200						
MDD (gm/cc)=	2.765	2 5 600						
		ğ _2≩00						
Optimum Moisture Content (OMC)		2.400	3 4 4	1 5 5	6 6 . 7 7	.8 . 8 9	9 10	
:				-	ivioisture c	ontent,%	-	
OMC(%) =	6.8							

								29-Nov-15	
Material Type	Sub I	Base		a l	Date	sampled :			10 D 15
Source	385+	000		Sample No	BH1	Date t	ested :		18-Dec-15
		MOIS TURE	- DENST	FY RELATIC	N OF SC)IL			
			AAS H'	ТО Т 180					
Α	Mold	No.	1	2	3	4	5	6	NMC
В	Wt. of Mold + Wet Soil	grams	9435.0	9599.0	9684.0	9837.0	10061.0	10036.0	
С	Wt. of Mold	grams	5681.0	5681.0	5681.0	5681.0	5681.0	5681.0	
D	Wt. Wet Soil	grams 3754.		3918.0	4003.0	4156.0	4380.0	4536.0	
Е	Volume of Mold	cu.cm. 2124		2124.0	2124.0	2124.0	2124.0	2124.0	
F	Wet Density	gr/cu.cm. 1.76'		1.845	1.885	1.845	1.885	1.845	
		gr/cu.cm. 1.767							
G	Container	No. 50		14	10	25	44	15	BC-1
Н	Wt. Cont + Wet soil	grams 215.4		219.2	208.1	202.8	201.8	172.5	393.0
I	Wt. Cont + Dry soil	grams 213.4 grams 204.1		202.3	189.7	183.7	178.8	150.0	382.1
J	Weight of Water	grams 11.3		16.9	18.4	19.1	23.0	22.5	10.9
K	Weight of Container	grams	34.8	35.8	33.7	32.7	33.5	32.8	78.5
L	Weight of Dry Soil	grams	169.3	166.5	156.0	151.0	145.3	117.2	303.6
М	Moisture Content	%	6.7	10.2	11.8	12.6	15.8	19.2	3.6
Ν	Dry Density	gr/cu.cm.	1.657	1.675	1.686	1.638	1.627	1.548	
Maximum Dry Density (MDD): MDD (gm/cc)= Optimum Moisture Content (OMC) : OMC(%) =	1.686	1.800 1.750 3 700 1.600 1.550 1.500 6				Moisture 2 13 14	content,%		

Material Type	s	ub grade				Date sampled	29-1	Nov-15
Source	7°51′12.69'	'N 36°36'09.4	821''E			Date tested :	12-I	Dec-15
						Sample No	B	BH1
	M	O ISTURE - D	ENSITY RE	LATION	OFSOIL			
		I	ааѕнто т	180				
No. of blows :	56				Weight	of hammer, kg :	4.5	
No. of layers :	5				Volur	ne of mold, cm ³ :	2124	
Proportion retained on 19mm sieve size:				Singles	ample / <u>Sep</u> a	arate batches :		
(pass 50mm sieve and retained	d on 19mm sieve)				Apparent s	specific gravity :		
Α	Mold	No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil	grams	5742.0	5745.0	6082.0	5779.0		
С	Wt. of Mold	grams	4287.0	4287.0	4287.0	4287.0		
D	Wt. Wet Soil	grams	1455.0	1458.0	1795.0	1492.0	ļ	
E	Volume of Mold	cu.cm.	1005.0	1005.0	1005.0	1005.0		
F	Wet Density	gr/cu.cm.	1.448	1.451	1.786	1.485	ļ	
							ļ	
G	Container W4 Contai	No.	10	25	44	50		AE
Н	Wet soil	grams	166.1	185.4	189.2	191.6	ļ	316.2
Ι	Wt.Cont+Dry soil	grams	138.3	162.3	169.7	174.2		311.7
Т	Weight of Water	grams	27.8	23.1	19.5	17.4		4.5
J	Weight of	grams	27.0	25.1	17.5	17.4		
K	Container Weight of Dry	grams	32.7	33.5	33.5	34.8		81.7
L	Soil	grams	105.6	128.8	136.2	139.4		230.0
М	Moisture Content	%	26.3	17.9	14.3	12.5		2.0
Ν	Dry Density	gr/cu.cm.	1.146	1.230	1.562	1.320		
			2.000					
			1.900					
MaximumDry Density (MDD):		-	1.800					
(122)		:	1. ट् 00 -					
MDD (gm/cc)=	1.562	:	1. 💑 0					
			1. ਛੋ 00		X			
OptimumMoisture Content		:	1.500		N			
		1.200						
O MC % =	14.3	1.200						
		1.100						
		1.000			<u></u>	10 21 22	2 75 7	7 20
			11	ст	1.5 1/	Moisture co	ntent,%	, 23 -

		Sample				Date		
Material Type	Base course	No	BH2			sampled :	29-No	ov-15
Source	398+000					Date tested :	4-Jai	n-16
	MO	DISTURE - DE	NSITY RELATION	ONOFS	OIL			
		AA	<u>SHTO T180</u>	1	1			1
No. of blows :	56				Weight	of hammer, kg :	4.5	
No. of layers :	5				Volu	ne of mold,cm ³ :	1572.7	
19mm sieve size:				Sin	gle sample / <u>Separat</u>	e batches :		
(pass 50mm sieve and retai	ned on 19mm sieve)				Apparent	specific gravity :		
Α	Mold	No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil	grams	10080.0	10257.0	10558.0	10540.0		
С	Wt. of Mold	grams	5995.0	5995.0	5995.0	5995.0		
D	Wt. Wet Soil	grams	4085.0	4262.0	4563.0	4545.0		
Е	Volume of Mold	cu.cm.	1572.7	1572.7	1572.7	1572.7		
F	Wet Density	gr/cu.cm.	2.597	2.710	2.901	2.890		
G	Container	No.	9	121	140	141		СМ
Н	Wt. Cont + Wet soil	grams	229.0	215.0	199.4	194.6		356.9
I	Wt. Cont + Dry soil	grams	223.4	207.6	189.4	182.2		352.9
J	Weight of Water	grams	5.6	7.4	10.0	12.4		4.0
K	Weight of Container	grams	34.0	36.5	33.9	37.8		78.2
L	Weight of Dry Soil	grams	189.4	171.1	155.5	144.4		274.7
М	Moisture Content	%	3.0	4.3	6.4	8.6		1.5
Ν	Dry Density	gr/cu.cm.	2.800					
Maximum Dry Density (MD	D):		2.750	•				
			2.700					
MDD(gm/cc) =	2.726		2.650					.
			2.600					
Optimum Moisture Conten	t (OMC) :		2.550					
			2.500					2
OMC% -	6.4		2.450					
	0.4		2.400	<u>л</u> г	5 6 6		·····	<u> </u>
			4	4 5	ססכ	Moisture co	ntent,% ⁹	9 10

Material Type	Sub Base	Sample No	Sample No			Date Sampling :	29-Nov-15			
Source		398+000				Date tested :		30-I	Dec-15	
		MOISTURE	- DENSITY R	RELATION	OFSOIL					
			AASHTO	T 180	_		-			
No. of blows :	56				Weighto	f hammer, kg :	4.5			
No. of layers :	5			Volui		e of mold, cm ³ :	2124			
Proportion retained on 19mm sieve size:				Single s	ample / <u>Sepa</u> i	rate batches :				
(pass 50mm sieve and reta)	ained on 19mm sieve				Apparent s	pecific gravity :				
Α	Mold	No.	1	2	3	4	5		NMC	
В	Wt. of Mold + Wet Soil	grams	10062.0	10558.0	10327.0					
С	Wt. of Mold	grams	6142.0	6142.0	6142.0					
D	Wt. Wet Soil	grams	3920.0	4417.0	4186.0					
E	Volume of Mold	cu.cm.	2124.0	2124.0	2124.0					
F	Wet Density	gr/cu.cm.	1.846	2.080	1.971					
G	Container W4 Cont / Wat	No.	01	02	20				AB	
Н	soil	grams	231.0	225.2	184.1				378.9	
Ι	Wt. Cont+Dry soil	grams	213.5	201.0	158.2				368.6	
J	Weight of Water	grams	17.5	24.2	25.9				10.3	
К	Weight of Container	grams	33.2	34.1	33.4				78.2	
L	Weight of Dry Soil	grams	180.3	166.9	124.8				290.4	
М	Moisture Content	%	9.7	14.5	20.8				3.5	
N MaximumDry Dancity (M	Dry Density	gr/cu.cm.	1 900		<u> </u>	<u> </u>				
Waxini un Di y Density (W			1.500							
			1.850							
MDD (gm/cc)=	1.816		3							
Optimum Moisture Conte	nt (OMC) :		1 5 750							
			p ∧t							
OMC(%) =	14.5						X			
			1.650							
						Maicture	conten	t %		
			1.600 + 9	11	13 15	5 17	19	21	23	25
		L	_							

	MOISTUR	RE - D	ENSITY F	RELA	ΓΙΟΝ	OF SOIL			
			AASHTO T	. 180					
No. of blows :	56					Weight of hamme	er,kg:	4.5	
No. of layers :	5		BH2			Volume of mold	l,cm ³ :	2124	
Proportion retained on 19mm sieve size:			Subgrade		Single sample / <u>Separate</u> <u>batches</u> :				
(pass 50mm sieve and	retained on 19mm sieve)		5		А	pparent specific an	avitv :		
A	Mold		No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil		grams	5820.0	6163.0	5735.0			
С	Wt. of Mold		grams	4294.0	4294.0	4294.0			
D	Wt. Wet Soil		grams	1526.0	1869.0	1441.0			
E	Volume of Mold		cu.cm.	1005.0	1005.0	1005.0			
F	Wet Density		gr/cu.cm.	1.518	1.860	1.434			
							40		
G			NO.	14	2	9	12		AE
н	Wt. Cont + Wet soll		grams	254.3	201.5	249.2			311.7
			grams	236.9	177.4	221.0			303.7
J			grams	17.4	24.1	28.2			8.0
ĸ	Weight of Container		grams	35.8	34.2	34.1			78.2
L	weight of Dry Soli		grams	201.1	143.2	186.9			225.5
М	Moisture Content		%	8.7	16.8	18.0			3.5
Ν	Dry Density		gr/cu.cm.	1.397	1.592	1.215			
			2.000	+					
			1.900						
Maximum Dry			1.800						
Density (WDD).			1,700						
MDD =	1.592	am/cc	1.600						
		gn/cc							
Optimum Meisture			1 2 2 2 2						
Content (OMC) :			1300						
			- 1.200						
OMC =	16.8	%							
			8	9 10	11 12	13 14 15 16	17 1	8 19	20
						Moisture content,	%		

Material Type	s	uh Base				Date sampled :	30-Nov-15		
Source	386+000			внз		Date tested :	12-J	an-16	
Source		MOISTURE - DEN	ISITV DE		SOIL	Date tested.	<u>.</u>		
		AA	SHTO T	180	SOIL				
No. of blows :	56				Weighto	f hammer, kg :	4.5		
No. of layers :	5				Volum	e of mold, cm ³ :	2413.0		
Proportion retained on 1	9mm sieve size:			Single s	sample / <u>Separat</u>	e batches :			
(pass 50mm sieve and re	tained on 19mm sieve)				Apparent s	pecific gravity :			
Α	Mold	No.	1	2	3	4	5	NMC	
В	Wt. of Mold + Wet Soil	grams	9458.0	10424.2	10036.8	10199.3			
С	Wt. of Mold	grams	4964.0	4964.0	4964.0	4964.0			
D	Wt. Wet Soil	grams	4494.0	5460.2	5072.8	5235.3			
Ε	Volume of Mold	cu.cm.	2413.0	2413.0	2413.0	2413.0			
F	Wet Density	gr/cu.cm.	1.862	2.263	2.102	2.170	ļ		
							<u> </u>		
G	Container	No.	5	9	7	15	ļ	G	
Н	Wt. Cont+Wetsoil	grams	213.5	241.7	229.5	244.8	ļ	397.8	
Ι	Wt. Cont + Dry soil	grams	210.0	235.3	219.3	.3 224.4		387.0	
J	Weight of Water	grams	3.5	6.4	10.2	10.2 20.4		10.8	
K	Weight of Container	grams	51.0	53.0	53.0	51.0		78.2	
L	Weight of Dry Soil	grams	159.0	182.3	166.3	173.4		308.8	
Μ	Moisture Content	%	2.2	3.5	6.1	11.8	ļ	3.5	
Ν	Dry Density	gr/cu.cm.	1.822	2.186	1.981	1.941			
		2.500							
MaximumDry Density		2.400							
		2 ;300							
MDD(gm/cc) =	1.981								
O ptimum Moisture		25100							
Content (OMC) :		君 000							
		1.900							
OMC %=	6.1	1 800							
		1.000			Maietu	ire content %			
		1.700	0 1	2 2	4 5 6 7	/ <u>8</u> 0 1	0 11 1		
				2 5					

Material	Type	Sub-Grade	Sample No	BH3		Date sampled :	30-No	v-15	
Source	386+0	00	~~~ .			Date tested :	8-Jar	n-16	
Source	00010	MOISTURE	- DENSITY R	FLATION O	FSOIL	Dure tostar			
			AASHTO	Г 180					
No. of blows :	56				Weightof	hammer, kg :	4.5		
No. of layers :	5				Volume	ofmold,cm ³ :	2413		
Proportion retained				Single sa	mple / <u>Separat</u>	te batches :			
(pass 50mm sieve and r	re tained on 19mm								
sieve)	Mold	No	1	2	Apparent sp	ecific gravity :	5	NMC	
A	Wit. of Mold +	INO.	1	2	3	4	5	NNIC	
В	WetSoil	grams	8321.8	8506.0	9054.0	9081.0	8916.0		
С	Wt. of Mold	grams	4964.0	4964.0	4964.0	4964.0	4964.0		
D	Wt. Wet Soil	grams	3357.8	3542.0	4090.0	4117.0	3952.0		
E	Volume of Mold	cu.cm.	2413.0	2413.0	2413.0	2413.0	2413.0		
F	Wet Density	gr/cu.cm.	1.392	1.468	1.695	1.706	1.638		
G	Container Wt. Cont Wot	No.	5	8	9	10	21	AE	
Н	soil	grams	242.6	223.6	246.2	231.0	207.3	314.5	
I	Wt. Cont+Dry soil	grams	235.0	209.1	221.4	205.0	174.0	309.5	
J	Weight of Water	grams	7.6	14.5	24.8	26.0	33.3	5.0	
К	Weight of Container	grams	52.0	50.0	51.0	52.0	52.0	80.0	
L	Weight of Dry Soil	grams	183.0	159.1	170.4	153.0	122.0	229.5	
М	Moisture Content	%	4.2	9.1	14.6	17.0	27.3	2.2	
N	Dry Density	gr/cu.cm.	1.336	1.345	1.480	1.458	1.287		
		2.000							
MaximumDry									
Density (MDD):		1.500							
	1.490	- 2							
MDD(gm/cc)=	1.480	- 1 ²⁰					·····		
Ontimum Maistura		- ž 000							
Content (OMC) :		de							
OMC5 =	14.6	0.500							
		0.000							
		0	2 4 6	8 10	12 14 16	18 20 22	24 26	28 30	
					Moisture	content,%			

	1		Sample	1				
Material Type	Base course	L	No	BH-3	Da	te sampled :	30-N	ov-15
Source		397+000			I	Date tested :	28-Ja	an-16
		MO ISTURE - DI	ENSITY RELA	ATION OF S	OIL			
	· · · · · · · · · · · · · · · · · · ·	А	ASHTO T18	30				
No. of blows :	56				Weightofh	ammer, kg :	4.5	
No. of layers :	5				Volume o	fmold,cm ³ :	2123.0	
Proportion retained on 1	19mm sieve size:			Singlesam	ple / <u>Separat</u>	<u>e batches</u> :		
(pass 50mm sieve and r	e tained on 19mm sieve)			A	Apparent spec	tific gravity :		
Α	Mold	No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil	grams	10545.0	10849.0	11162.0	11093.0		
С	Wt. of Mold	grams	5995.0	5995.0	5995.0	5995.0		
D	Wt. Wet Soil	grams	4550.0	4854.0	5167.0	5098.0		
E	Volume of Mold	cu.cm.	2123.0	1572.7	1572.7	1572.7		
F	Wet Density	gr/cu.cm.	2.143	3.086	3.285	3.242		
		<u> </u>	_	ļ				
G	Container	No.	9	121	140	141		СМ
Н	Wt. Cont+Wetsoil	grams	229.0	215.0	199.4	194.6		356.9
I	Wt. Cont + Dry soil	grams	223.4	207.6	189.4	182.2		352.9
J	Weight of Water	grams	5.6	7.4	10.0	12.4		4.0
К	Weight of Container	grams	34.0	36.5	33.9	37.8		78.2
L	Weight of Dry Soil	grams	189.4	171.1	155.5	144.4		274.7
М	Moisture Content	%	3.0	4.3	6.4	8.6		1.5
Ν	Dry Density	gr/cu.cm.	2.082	2.958	3.087	2.985		
		2.4						
		2.35						
MaximumDry Density		2.3						
(MDD):		2.25						
MDD(am/aa) =	3.087	2.2						
(gm/cc) =	5.007	2.1		/				
Optimum Moisture		2.05						
Content (OMC) :		2 -						
		1.95						
O MC % =	6.4	1.9	<u> </u>		10	12	1.4	
		4	6	ð	10	12	14	TO 0
		I						

Material Type	Sub	Base				Date sampled :	30-Nov-15		
Source	397+000		Sample No	BH4		Date tested :	24-Ja	an-16	
		MOISTURE -	DENSITY RE	LATION OF S	oп				
			AASHTO 1	T180	·				
No. of blows :	56				Weighto	f hammer, kg :	4.5		
No. of layers :	5				Volum	e of mold, cm ³ :	2413.0		
Proportion retained	on 19mm sieve size:			Single sa	mple / <u>Separat</u>	<u>e batches :</u>	-		
(pass 50mm sieve a	nd retained on 19mm sieve)				Apparent s	pecific gravity :	-		
Α	Mold	No.	No. 1		3	4	5	NMC	
В	Wt. of Mold + Wet Soil	grams	9265.0	9705.0	9788.0	9752.0			
С	Wt. of Mold	grams	4952.0	4952.0	4952.0	4952.0			
D	Wt. Wet Soil	grams	4313.0	4753.0	4836.0	4800.0			
E	Volume of Mold	cu.cm.	2413.0	2413.0	2413.0	2413.0			
F	Wet Density	gr/cu.cm.	1.8	2.0	2.0	2.0			
G	Container	No.	07	05	09	15.0		X	
<u>H</u>	Wt. Cont+Wetsoil	grams	242.0	248.0	240.0	226.8		397.8	
I	Wt. Cont+Dry soil	grams	234.0	236.4	222.0	210.3		387.0	
J	Weight of Water	grams	8.0	11.6	18.0	16.5		10.8	
K I	Weight of Dry Soil	grams	52.0	51.0	51.0	52.5		78.2	
L M	Moisture Content	grams 0/	102.0	6.3	10.5	10.5		300.0	
N	Dry Density	gr/cu.cm	4.4	1 854	1 813	1 801		3.5	
	DiyDensiy	gi/cu.chi.	1./12	1.034	1.015	1.001			
			_						
MaximumDry		2.500							
Density (MDD):									
		2.000)	•••••				+++++++++++++++++++++++++++++++++++++++	
MDD(gm/cc) =	1.854								
Ontimum Moisture		1500) +						
Content (OMC) :		<u>م</u> de							
		1.00) +++++++++++++++++++++++++++++++++++++					++++	
O MC % =	6.3								
		0.500)						
								+++++++++++++++++++++++++++++++++++++++	
		0.000)		Mois	ture content,	%		
			0 1	2 3 4	567	8 9 10 1	1 12 13	14 15	

Material Type	Sub gra	ıde			I	Date sampled :	30-N	ov-15
Source	397+000	Sample No	F	3H4		Date tested :	20-Ja	an-16
	MOISTU	RE - DENSITY	RELATI	ONOFSO	IL			
		AASHT	O T 180		-			•
No. of blows :	56				Weighto	f hammer, kg :	4.5	
No. of layers :	5				Volum	e of mold, cm ³ :	2124	
Proportion retained on 19mm sieve size:				Single sa	mple / <u>Separ</u>	ate batches :		
(pass 50mm sieve and retain	ned on 19mm sieve)				Apparent sp	ecific gravity :		
Α	Mold	No.	1	2	3	4	5	NMC
В	Wt. of Mold + Wet Soil	grams	5856.8	5917.4	6325.3	6068.0		
С	Wt. of Mold	grams	4287.0	4287.0	4287.0	4287.0		
D	Wt. Wet Soil	grams	1569.8	1630.4	2038.3	1781.0		
E	Volume of Mold	cu.cm.	1005.0	1005.0	1005.0	1005.0		
F	Wet Density	gr/cu.cm.	1.562	1.622	2.028	1.772		
G	Container	No.	10	25	44	50		AE
Н	Wt. Cont+Wetsoil	grams	169.4	191.0	196.8	201.2		328.8
Ι	Wt. Cont + Dry soil	grams	148.0	168.8	178.2	184.7		327.3
J	Weight of Water	grams	21.4	22.2	18.6	16.5		1.6
K	Weight of Container	grams	32.7	33.5	33.5	34.8		81.7
L	Weight of Dry Soil	grams	115.3	135.3	144.7	149.9		245.6
М	Moisture Content	%	18.6	16.4	12.8	11.0		0.6
N	Dry Density	gr/cu.cm.	1.317	1.394	1.797	1.596		
	Γ	2 000						<u> </u>
		1 000						
MaximumDry Density		1.900						
(MDD):		1.800						
MDD(gm/cc) =	1.797	1,700						
		1.9900						
O ptimum Moisture		1.500						
Content (OMC) :		1.90						
		1.500						
O MC % =	12.8	1.200						
		1.100						
		1.000						
		5	79	11 13	15 17	19 21 23	25 27	29
					Moistu	re content,%		

APPENDIX D. CALIFORNIA BEARING TEST

				CALIFO	RNIAN	BEARI	NG RA		CBR) AA	SHTC) T-1	180								
Project:		Causes of Defe	ects on Aspl	alt Paveme	nt and Its	Remedi	es: Case	Study in	n Agaro To	wn										
Client:		-			Samp	e of:			Base cour	se			Dat	te Sam	pled:			29-Nov-15		
Station:		385+000			Depth	:			-				Dat	te Star	ted:			24-Dec-15		
Testpit(Sam	ple) No:	BH-1			Mater	ial Desc.	:		Base cour	se			Dat	te com	pleted	:		27-1	ec-15	
				MOISTU	RE CONI	ENT A	NDUNI	r weig	HT OF TI	EST SA	MPLI	ES								
Mould No.																				
No. of layers					:	5					5			:				5		
No. of blows	per layer				1	0					30						65	5		
CONDITION	N OF SAMPLE			Before s	soaking	Α	fter soak	ing	Before	soaking	ç	After so	ıking	Be	efore so	oaking	5	After	soaking	
Wt.of wet sar	mple+mould			109	005		11246		12	350		1249	7		1219	94		12	370	
Wt.ofmould				65	86	6587			76	45		764	5		733	9		7	340	
Wt.of wet sar	mple			43	19		4659		47	05		485	l		485	5		5	030	
Volume of m	ould			157	2.7		1573.7		1574.7 1575.			.7		1576	5.7		15	77.7		
Wet unit wei	ght			2.7	75		2.96		2.	99		3.08			3.08	8		3	.19	
					Μ	OISTU	RE DET	ERMIN	ATION											
Can No.				1	1		5			8		9			21				23	
Wt.wet samp	le + can			20		240.7		20	1.4		242.	2		209	.9		2	8.5		
Wt.dry sampl	le +can			19		216.1		19	1.7		225.	2		199	.9		2)4.6		
Wt.of water				8	.1		24.6		9.7			17	17		10			1	3.9	
Wt.of can				34	.2		34.4		34.7		34	34		34.4	4	33.6		3.6		
Wt.dry sampl	le			165.1		181.7			1	57		191.	191.2		165.5			1		
% Moisture c	content			4	.9		13.5		6	.2		8.9			6.0)			8.1	
Dry unit wei	ght			2.0	52		2.61		2.	81		2.83			2.90	0		2	.95	
				SWEI			WELL	DATA												
			Elapse		Mo	ld 1			Mold 2		2				molo	13				
	Day of month		time (day)	gaugei	eading		swell		gauge reading			swell		ga	auge re	ading		S	vell	
			(uay)	00	8		mm	%				mm	%					mm	%	ó
	12/24/2015			4.9	96	(0.01	0.01	1	.99		0.01	0.0	1	1	.1		0.0018	0.00	016
	12/27/2015			5.3	17				2	2.9					1.	.28				
							CBR D	ATA											r	
D	0.11.1		10 Blows		6	-	30 Blo	ws		0		65	Blows							
(mm)	(KN)	Gauge	test load	Corr.CBR	readin	g test	load	co	rr.CBR	read	ige ing	test load		corr.	.CBR					
		reading	KN	KN	%		I	KN	KN	%			KN		KN		%			
0		0	0			0		0			(0	0							
0.64		45	1.09			135	3	.26			3	10	7.49							
1.27		61	1.47			270	6	.52			54	40	13.04							
1.96		85	2.05			300	7	.25			79	90	19.08							
2.54	13	199	4.81	4.81	37.0) 411 9.93		9.93	76.4	95	58	23.14		23.1	17	78.0				
3.18	20	214	5.17	5.17	25.8	530 12.80		12.80	64.0	11	100	26.57		26.6	13	32.8				
3.81		230	5.55			631 15.24				12	249	30.16								
4.45		235	5.68			680 16.42				13	381	33.35								
5.08		245	5.92	820 19.80					15	520	37									
Blows/Layer		10/5		30/5 65/5							I								<u> </u>	
Socked C.B.F	R in%	37.0		64.0 178.0										1						

					C	ALIFO	RNIAN B	EARIN	G RAT	10(0	CBR) A	ASHTO) T-18	0								
Project:		Cau	ses of D	Defects (on Asph	alt Pave	mentandl	lts Rem	edies: (CaseS	Study ir	Agaro	lown									<u> </u>
Client:		-					Sample	of:		Sub	base			D	ate Sa	nplee	d:		29-1	Nov-15	i	
Station:		385+	-000				Depth:			-				D	ate Sta	rted	:		20-1	Dec-15		
Testpit(Sa	mple) No:	BH-1					Materia	l Desc.:		Sub	base			D	ate cor	nplet	ted:		23-1	Dec-15		
					MOIS	STURE	CONTEN	TAND	UNIT	WEI	GHTO	FTEST	SAMI	PLES								
Mould No.																						
No. of layer	rs					5						5						4	5			
No. of blow	s per layer					10	-					30						6	5			
CONDITIC SAMPLE	ONOF		E	Before	soaking		After	r soakir	ıg	Be	efore so	aking	Afte	r soak	ing	Befo soaki	ore ing		After	soakir	ıg	
Wt.of wet s	ample+moul	d		1145	0.25		114	470.92			1259	7	12	746.94	4 1	2437	7.88		12	617.4		
Wt.ofmould	1			65	86		6	5587			7645	5	,	646		733	9		7	340		
Wt.of wet s	ample			4864	4.25		48	383.92			4952	2	51	00.94	4	6098.	.88		52	77.4		
Volume of r	nould			157	2.7		1:	573.7			1574.	7	1	575.7		1576	5.7		15	77.7		
Wet unit we	eight			3.0)9			3.10			3.14			3.24		3.23	3		3	.34		
							MOI	STURE	E DEIE	RMIN	NATIO	N										
Can No.	an No. /t.wet sample + can							12			11			JB		15				6		
Wt.wet sam	't.wet sample + can 't.dry sample + can				7.3		2	42.3			203.5	5	2	42.2		211.	.2		2	18.5		
Wt.dry sam	/t.dry sample +can /t.of water				3.6		2	217.2			192.8	3	2	25.2		198.	.8		2	03.6		
Wt.of water	t.dry sample +can t.of water t.of can				.7			25.1			10.7			17		12.4	4		1	4.9		
wt.of can	t.of water t.of can						1	34.4			150		1	34 01.2		34.4	4		1	34 (0.6		
wt.dry sam	pie			184	4.6		1	12.7			158.	l		91.2		164.	.4		1	69.6		
% Moisture	ight			42	17			2 72			0.8			8.9 2.07		2.0	1		2	8.8 07		
Diy unit we	Igiit			2.1	1 /			2.75 CW		A TA	2.95			2.91		5.0	1		2	.07		
							Mold	<u> </u>	ELL D	AIA			Mol	12					mold	3		
Da	v of month		El	laps			Mold		swel	1	σ	auge read	ling	. 2	swell		091100 F	anding	nioia	SWE	-11	
24	<i>y</i> or month		(d	lay)	g	auge rea	ıding	r	nm	%		auge rea		m	n 9	<i>6</i>	guuge I	caung	1	nm	%)
11	2/20/2015					1.76		0	0.4	0.0	2	1.82		0.0	0	0	1.	.4	0	00.20	0.00	02
11	2/23/2015					5.66		0	.04	0.0	3	2.7		0.0	1		1.	68	0.	0028	4	
								С	BR DA	TA												
				10 Blo	WS			30 B	lows				65 B	lows								
Penetratio n (mm)	Std load (KN)	Gaug readi	n te	st load	corr.	CBR	Gauge readin g	test lo	ad	c	corr.CB R	Gaug readir	e to ng lo	est oad	corr	.CBR	Ł					
		g		KN	KN	%			KN		KN	%			KN	KN	V 9	6				
0			0	0				0	0					0	0							
0.64		5	52	1.26				46	1.11	1				51	1.23							
1.27		9	2	2.22				112	2.71	1				92	2.22							
1.96	1.27 92 2.2 1.96 173 4.1							194	4.68	3				184	4.43							
2.54	2.54 13 235 5.68				5.6 8	43.7		286	6.90)	6.90	53.1		265	6.40	6.4	4 49	9.3				
3.18	3.18 20 388 9.36 9 3.81 400 11.82 11.82				9.3 6	46.8		398	9.61	1	9.61	48.0		347	8.38	8.4	4 41	.9				
3.81		49	0 1	11.82				500	12.0	7				367	8.87							
4.45	4.45 571 13.79 5.08 c22 15.03							571	13.7	9				388	9.36							
5.08	5.08 622 15.03							663	16.0	1				459	11							
Blows/Layer 10/5					30)/5		65/5														
Socked C.B.R in% 43.7					48	3.0		49.3														
Density gm	Socked C.B.R in% 43.7 Density gm/cm3 2.168					945	3	3.007														

				CAL	IFO RNIAN	N BEA	RING	RATI	O(CBI	R) AAS	внто	T-180								
	Project: Causes of Client: -																			
Project:		Causes	of Defects	on Asphalt Pav	ement and]	lts Ren	nedies:	Case	Study i	n Agar	o Towi	n						1	1	
Client:		-			Sample	of:			Sub	Grade				Date	Sample	ed:		29-N	ov-15	
Station:		385+000)											Date	Started	l:		16-D	ec-15	
Test pit(Samp	le)No:	BH-1			Layer D	esc.:			Sub	Grade				Date	comple	ted:		19-D	ec-15	
				MOIST	JRECON	IENT A	ND U	NIT W	EIGH	TOFT	ESTS	AMPI	.ES							
Mould N	0.																			
No. of lay	vers				5						5							5		
No. of blo	ws per l	ayer			10						30)			D.	e	<u> </u>	65		
CONDIT	IONOF	SAMPLE	E	Before so	aking	Afte	r soal	king	Befo	re soak	ing	After	r soak	ing	soa	tore	g	After s	oakin	ıg
Wt.of we	tsample	+mould		1135	0		11842		1	12680]	2861		124	37.88	8	12	619	
Wt.ofmo	uld			6586	<u> </u>		6587			7645			7646		7.	339		73	40	
Wt.of we	tsample			4764	-		5255			5035			5215		509)8.88 	;	52	79	
Volumeo Wetunit	of mould weight			3.03		-	3.34			3.20		1	575.7 3.31		15	.23		<u> </u>	35	
,, et and				0.00	Μ	OIST	URED	EIER	MINAT	ION	I		0101							
Can No.				CB1			СК			JR			MN]	РТ]	K	
Wt.wet sa	V t.wet sample + can V t.dry sample +can			404.	5		353.7			416			442		4	51		4	58	
Wt.dry sa	V.of water			356.2	1		322			370			378		3	576		3	90	
Wt.of wa	V t.of y sample + can V t.of water V t.of can			48.4			31.7			46			64			75		6	8	
Wt.of car	/t.of water /t.of can			67			63			65			64.8			64		6	0	
Wt.dry sa	ample			289.1	1		259			305			313.2		3	512		3.	30	
% Moistu	ire cont	ent		16.7			12.2			15.1			20.4		2	4.0		20).6	
Dry unit	weight			2.59			2.98			2.78			2.75		2	.61		2.	77	T 1
			-		Mould	1					Мон	ld 2					mo	SWE1	LL DA	IA
Dav	ofmor	nth	Elaps e time		mouru	-	swell				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>.</u>	well				mo	sw	ell	
Duj	01 11101		(day)	gauge rea	ading	m	m	%	gaug	e read	ing	mn	1	%	ga rea	uge ding	;	mm	<u>%</u>	,
12	/16/201	5		8		0.0)1	0.0		1.82		0.0	1	0.01	1	l .4		0.0028	0.00	24
12	/19/201	5		9.39		•••	, 1	1		2.7		0.0	•	0.01	1	.68		0.0020	0.00	
							CBI	R DAT	А								<u> </u>			
Denotrot	Std		10 Blo	ows	Cango	30	Blows					65	Blow	S					1	
ion (mm)	load (KN	Gauge readin	test loa	d Corr.CB R	readin	test	load	corr	.CBR	Ga rea	uge ding	testl	oad	Co	orr.CB	R				
)	g	KN	KN	%		K	N	KN	%			K	N	KN	9	6			
0		0.0	0			0	()			1	5	0.36	<u>695</u>						
0.64		28.4	0.69		ļ	18	0.	44			4	1	0.9	9				ļ		\square
1.27		32.5	0.78			23	0.	57			6	3	1.5	53					<u> </u>	\parallel
1.96		36.5	0.88		 	61	1.4	48	10	15	6	6	1.6	50						+
2.54	13	40.6	0.98	0.98	7.5	82	1.	97	1.9 7	15. 2	8	3	2.0)0	2.0	15	5.4			
3.18	20	45.7	1.10	1.10	5.5	12 2	2.	96	2.9 6	14. 8	8	5	2.0)5	2.1	10	.3			
3.81		54.8	1.32			14 8	3.	57			8	7	2.1	10						
4.45		48.7	1.18			18 4	4.	43			9	2	2.2	22						
5.08		50.8	1.23			20 4	4.	93			9	8	2	2						
Blows/La	yer	1	10/5	30/5	(65/5														
Socked C.B.R 7.5			7.5	14.8	1	15.4														
Density g	5000000000000000000000000000000000000		.595	2.778	2	.607							-							

					1		I		L		1		I		I	
10 blows		-		Loa	.d-pene	tration	chart(Base Co	ourse)							
0	0.00	6.00	гтт		111		ттт					ттт				1
0.64	0.69															.
1.27	0.78	5.00														
1.96	0.88	- 5.00								30	blows					
2.54	0.98															ΙΓ
3.18	1.10	4.00														1 [
3.81	1.32	_														
4.45	1.18	N 2 00														
5.08	1.23	. 00.6														
											. h 1 a m a					
		2.00								00	DIOWS					
30 blows																
0	0.00	1 00 -							<mark><mark>∼⊦</mark></mark>) blows	┸┠╋				
0.64	0.44	1.00										┯┥┼				
1.27	0.57															łĿ
1.96	1.48	0.00		Ц			Ц	ШΠ			Щ		\Box	Щ		
2.54	1.97		0	1		2	3	4		5	6		7	8	9	9
3.18	2.96							Pe	netratio	on mm						
3.81	3.57		i								;		i		i	
4.45	4.43						D	ensitv-C	BR char	t						
5.08	4.93									•						
		3.50				25144									62.00	
65 blows										10						
0	0.37									310						
0.64	0.99	3.00							a sector a	1						
1.27	1.53					-				1450		-				
1.96	1.60	/cc3	-		4	11.				SEL			X			
2.54	2.00	<u></u> <u>5</u> 2.50 -	-		¥					1						$ \rightarrow $
3.18	2.05		1		-24	1 ares	MITTY			311	1 CADI	1		- 2.1		$ \rightarrow $
3.81	2.10	der	-	-					and the second							
4.45	2.22	<u><u> </u></u>				1.1.1				2						-+
5.08	2.36				10000					3112				100000		
			31-4-							210						$ \rightarrow$
		1.50 -			-11-11-1				1.80	14			1213			
D 11 14 00		5	06	.0 7	. <mark>b 8</mark>	.0 9	.0 1(0.0 11	1.0 12.	.0 13	.0 14	1.0 1	.0 1	6.0 1	7.0 18.0)
Density Vs CE	SK 0.52				<u> </u>				% CBR							
7.5	2.59	L														
14.8	2.78				<u> </u>											
15.4	2.61		1				1		1							

				<u>C</u>	ALIFO	RNIAN BI	EARING F	RATIO(CH	BR) AAS	НТО Т-18	<u>30</u>				
Project:		С	auses of I	Defects on As	phalt	Pavement a	nd Its Rem	edies: Cas	eStudy ir	n Agaro To	wn				
Client:		-				Sample of:			Base co	ourse		D	ate Sampled:	11/29	9/15
Station:		39	98+000			Depth:			-			D	ate Started:	6-Jar	n-16
Testpit(San	nple) N	o: B	H-2			Material D	esc.:			Base cou	irse	D	ate completed:	9-Jar	n-16
		•		MOIS	TURI	ECONTEN	ΓAND UN	NIT WEIGI	HTOFT	ESTSAM	PLES				
Mould No.															
No. of layers	S					5				5				5	
No. of blows	s per lay	ver				10				30	0			65	
CONDITIO	NOFS	AMPLE		Bef	ore so	aking	After	soaking	Before	e soaking	After so	aking	Before soaking	After s	oaking
Wt.of wet sa	ample+1	nould			1066	3	10)866	12	2118	123	30	12563	126	97
Wt.ofmould					643	1	6	431	7.	412	741	2	7610	76	10
Wt.of wet sa	ample				4232	2	4.	435	4	706	491	8	4953	508	87
Volume of m	nould				1572.	.7	15	73.7	15	74.7	1575	5.7	1576.7	157	7.7
Wet unit wei	ight				2.69)	2	.82	2	.99	3.1	2	3.14	3.2	22
						MOIS	STURE DE	EIERMINA	TION						
Can No.					A2		14	40	A	J	141		BG1	12	1
Wt.wet samp	ple + ca	n			351.3	3	21	5.1	371	1.4	205.3	3	338.4	215	5.7
Wt.dry samp	ple +car	ı			336.7	7	19	9.1	353	3.8	190.7	1	323.1	202	2.9
Wt.of water					14.6		1	6	17	.6	14.6		15.3	12	.8
Wt.of can					67.8		3	34	76	.3	37.8		76.8	36	.6
Wt.dry samp	ple				268.9)	16	5.1	277	7.5	152.9)	246.3	166	5.3
% Moisture	content				5.4		9	.7	6.	3	9.5		6.2	7.	7
Dry unit wei	ght				2.55		2.	.57	2.8	31	2.85		2.96	2.9	99
							SWEL	L DATA							
			Elapse			Mould 1				Mou	ld 2		m	ould 3	
Day o	of mont	h	time	gai	uge rea	ading	SV	well	gauge r	eading	swell		gauge	SWG	ell
			(day)	8			mm	%	88.	8	mm	%	reading	mm	%
1/6	/2016				7.9		0.000	0.0002	3.2	23	0.0006	0.00	2.1	0.0003	0.0
1/9	/2016				7.92	2	2	0.0002	3.2	29	0.0000	05	2.13	0.0005	3
							CBR	DATA							
	Std		10 Blov	VS			30 Blow	s			65 B	lows			
Penetratio n (mm)	load (K	Gaug e	test load	corr.CBR	Gau	ige reading	test load	corr.	CBR	Gauge reading	test load	c	orr.CBR		
	N)	readin g	KN	KN	%		KN	KN	%		KN	KN	%		
0		0	0			0	0			0	0				
0.64		69	1.67			159	3.84			89	2.15				
1.27		110	2.66			274	6.62			255	6.16				
1.96	1.27 110 2.66 1.96 124 2.99					410	9.90			469	11.33				
2.54	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				26.	0 500	12.08	12.08	92.9	675	16.30	16.3	125.4		
3.18	3.18 20 152 3.67 3.81 173 4.18				18.	4 604	14.59	14.59	72.9	1035	25.00	25.0	125.0		
3.81		173	4.18			682	16.47			1270	30.67				
4.45		191	4.61			760	18.35			1515	36.59				
5.08		205	4.95			851	20.55			1765	43				
Blows/Layer	r	10	0/5	30/5		65/	5								
Socked C.B.	R in%	20	5.0	72.9		125	.4								
Density gm/	/cm3	2.5	552	2.810		2.95	8								

					CALIF	ORNIAN	BEARI	NG RATI	0(CI	BR) A	ASHT	0 1	<u>-180</u>						
Project:			Ca To	auses of D wn	efects on A	Asphalt Pa	avement	and Its R	emedi	ies: C	aseStu	dy ir	n Agaro)					
Client:			-			San	ple of:			Su	b base				Date	Sample	d:	29-N 1	Nov- 5
Station:			39	8+000		Dep	th:			-					Date	Started	:	2-Ja 1	an- 6
Test pit(Sampl	e) No:	Bŀ	H-2		Mat	e rial De	esc.:			Sub	base	e		Date	complet	ted:	5-Ja 1	an- 6
				М	OISTUR	ECONT	ENT ANI	D UNIT W	EIG	нто	F TES 1	ΓSA	MPLE	S		n			
Mold No	0.																		
No. of bl	yers	rlovor					5 10					3	, 0				5		
110.01.01	ows pe	1 layer					10	After	r	B	efore		0				03	Aft	er
		JFSAM	PLE	E	Be	fore soak	ing	soakii	1g	so 1/	aking		After s	oak	ing 7	Befor	e soaking	soal	king
Wt.of we	etsamp	ole+mou	ld			11014.05	,	11358.	46		2473.5		1262	46	7	123	15.94	124	93.7
Wt of w	otcom	ماد				0380		058/ /771/	16	1	7045 828 5		/0	40 5 07	7	/.	559 76 94	515	40
Volume	ofmor	ıld				1572.7		1573.	7	1	574.7		157	5.7		15	76.7	157	7.7
Wetuni	t weigh	t				2.82		3.03			3.07		3.	16		3	.16	3.2	27
					•	MC	DISTUR	E DEIER	MINA	ТО	N					•			
Can No.						13		2			6		8			-	11	9	9
Wt.wets	sample	+ can				209.474		243.1	07	20	3.414		244.0	<u>522</u>		211	1.999	220.	.685
Wt of we	ampie	+can				199.5		210.	1	11	91./ 714		19.4	. <u>2</u> 22		12	79.9 099	16 (4.0 185
Wt.of ca	n					35		34.4	4	3	4.6		34			3	4.3	34	.4
Wt.dry s	ample					164.3		181.	7	1	57.1		191	.2		10	65.6	170).2
% Moist	ture co	ntent				6.2		14.9)	,	7.5		10.	2		7	7.3	9.	5
Dry unit	t weigh	t				2.65		2.64	1	2	.85		2.8	7		2	.94	2.9	98
						M	<u>SV</u>	VELL DA	TA	1		۸	1.1.0				1	1.2	
				Elapse		IVI		swell				lou	10 2 SW0	11			moure	I S SW	۵ <u>۱۱</u>
Day	of mo	onth		time (dav)	gauge	e reading		mm	%	ga rea	uge ading		 mm		%			m	%
1	/2/201	6				1 76			, 0	1	80				/0	gauge	reading	m	<u>, , , , , , , , , , , , , , , , , , , </u>
1	1/2/201	.0				1./0			0		.07					1	.23	0.0	0. 0
1	1/5/201	6				2.63		0.01	0. 01	2	2.78		0.01		0.0 1	1	.45	02 2	0 1 9
						n	(CBR DAT	Ά		1								
	St		1	0 Blows			30 1	Blows			C		65	Blo	ws				
Penetr ation	loa	Gaug	e	load	CBR	Gauger	reading	load		orr. CBR	Gau readi	ge ng	load	l		corr.C	BR		
(mm)	a (K N)	readin	ng	KN	KN	%		KN	I	KN	%			ŀ	٤N	KN	%		
0		0		0			0	0				İ	0		0				L
0.64		45.9		1.11			137.7	3.33				3	16.2	7.	.64				
1.27		62.22		1.50			275.4	6.65				5	50.8	13	.30				
1.96	12	86.7	0	2.09	4.00	27.7	306	7.39	1/	0.13	77.0	8	05.8 77.16	19	.46	22.6	101 5		
2.54	13 20	202.98	8	4.90	4.90	26.4	419.22 540.6	10.12	1	0.12 3.06	65.3	1	1122	<u>23</u> 27	.00 .10	25.0	135.5		
3.81		234.6	;	5.67		2017	643.62	15.54			5010	1	274	30	.77				
4.45		239.7	,	5.79			693.6	16.75				1	408.6	34	.02		1		
5.08		<u>2</u> 49.9		6.04			836.4	20.20				1	550.4	3	37				
Blows/La	ayer		10/	5	30/5		65/5												
Socked (in%	C.B.R		37.	7	65.3		181.5					_		_	_				
Density gm/cm3			2.65	51	2.854		2.942											·	

				CALIF	ORNI	AN BEARI	NG RATI	O(CBR) AAS H	ITO T-18	<u>81</u>				
Project:			(Causes	of Def	ects on Aspl	halt Pavem	ient an	d Its Rei	medies: (Case Study	y in Ag	aro Town		
Client:		-				Sample	of:		Sub	Grade		Date	Sampled:	29-No	ov-15
Station:		398+0	000			Depth:			-			Date	Started:	28-De	ec-15
Testpit(Samp	le) No:	BH-2				Layer D	esc.:		Sub	Grade		Date	completed:	31-De	ec-15
									Sub	Grade					
				MO	ISTURE	CONTENT A	ND UNIT WE	EIGHT O	F TEST S	AMPLES					
Mould No.									_						
No. of layers							5				5			5	
No. of blows	per layer						10		п	Pofono	30		Pofono	65	
CONDITION	OF SAME	PLE				Before soaki	ing Afte	er soakinş	g so	oaking	After soa	king	soaking	After s	oaking
Wt.of wet san	nple+moul	d				10168		10592	1	0883	1101	1	11066	111	.99
Wt.ofmold						6736		6737		6797	6798		6813	68	14
Wt.of wet san	nple					3432		3855		4086	4213		4253	43	85
Volume of me	ould					1572.7		1573.7	1	574.7	1575.	7	1576.7	157	7.7
Wet unit weig	ht					2.18		2.45		2.59	2.67		2.70	2.3	78
Corr No						MOISTU	RE DETERM	INATIO	N .	10	10		2		
Can No.						22	22	0	20	10	217.5	0	2	2	
Wt.day.comp	le + can					1920	218. 191	0 6	20	(7.6	176.0	9	1964	19	1.5
Wt of water	ie +can					36.6	101.	0)	10	5 5	1/0.2		180.4	10.	2.5
Wt of con						56.5	53.2	2	5	3.3	528		52	51	.2
Wt dry samn	le					126.4	128	3	11	14.3	123.4		134.4	13	
% Moisture c	ontent					29.0	29.0)	3	1.1	33.5		31.9	30	.0
Dry unit weig	ht					1.69	1.90	,)	1	.98	2.00		2.04	2.1	4
;							SWELL DAT	A	-						
						Ν	Mold 1			Мо	ld 2			mold 3	
Day	y of month		Elapse	time (day)	, –	gallge	swel	1			swell			sw	ell
						reading	mm	%	gauge	reading	mm	%	gauge reading	mm	%
12	2/28/2015					1.6	0.04	0.0	1.8	8564	0.01		1.428	0.0020	
12	2/31/2015					5.35	0.04	3	2.	754	0.01	0.01	1.7304	0.0030	####
							CBR DATA								
_	Std		10 Blow	8			30 Blow	8			65 Blo	ws			
Penetration (mm)	load	Gauge	test load	corr.	CBR	Gauge	test load	Corr	CBR	Gauge	test load	col	r.CBR		
		reading	KN	KN	%	reading	KN	KN	%	reading	KN	KN	%		
0		11	0.28		ļ	21	0.5			11	0.2776				
0.64		21	0.50			63	1.51			21	0.50				
1.27		25	0.61			68	1.64			29	0.71				
1.96		29	0.71			75	1.82			38	0.91				
2.54	13	32	0.78	0.78	6.0	78	1.89	1.89	14.6	55	1.34	1.3	10.3		
3.18	20	34	0.83	0.83	4.2	82	1.97	1.97	9.8	67	1.62	1.6	8.1		
3.81		38	0.91			84	2.02			75	1.82				
4.45		41	0.98			95	2.30			82	1.97				
5.08		43	1.03			94	2.27			89	2				
Blows/Layer		1)/5	30	/5	65	/5								
Socked C.B.R	Socked C.B.R in% 6.0 9.8 Density gm/gm2 1.602 1.020						.3								
Density gm/cr	m3	1.	592	1.9	80	2.0	45								

				1	1		I	T	1
10 blows			Load	⊢penetration c	hart(Base Cours	se)			
0	0.28	0.50							
0.64	0.50	2.50							
1.27	0.61	-		<u> </u>				++++++	
1.96	0.71	2.00							
2.54	0.78	7 -	++++++		┼┼┼┟┿┼┼┤		++++++	++++++	++-
3.18	0.83	1 1							
3.81	0.91	1. 50 -	┽┼┢┦┼┼┤	┽┼┼┼┼┾	30blows		++++++	++++++	++-
4.45	0.98	KN							
5.08	1.03	ad		┽┽┽┝┿	+++++++		+++++	┼┼┼┼┼┼	++-
			┦┼┼┼┼	┽┾╇┼┼┼	65 hlows			+++++	++-
30 blows) 			
0	0.50			┭┼┼┼┼┼	++++++		+++++	┼┼┼┼┼┼	++-
0.64	1.51	0. 50							
1.27	1.64	1 🖞		++++++			10 blows	 s	
1.96	1.82		+++++++	++++++	+++++++		┤╎┝┯┯┯	╺┯╼┙╎╎╎╎╎	++-
2.54	1.89	- 0.00 +	<u> </u>	2	3 4	5	6 7	8	
3.18	1.97	-			Donota	notion mm			
3.81	2.02	-			reneti	Tat IOIT IIIII			
4.45	2.30			1				1	1
5.08	2.27				Density-CBR	chart			1
		2.50				KAR IVE	a second role of the		4
65 blows						2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
0	0.28	2.30							
0.64	0.50								
1.27	0.71	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				ALC: NO	A DECK	111 1112	
1.96	0.91						2		-
2.54	1.34								
3.18	1.62	1.90 I							
3.81	1.82	γ λ		/			Eise Jak		
4.45	1.97	6 1.70					Little Barbart		
5.08	2.15			1 4 4 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1		51 22	113 14 1		
		1.50		AND					
Density Vs C	BR	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0
6.0	1.69				% (Cl	BK		<u> </u>	1
9.8	1.98								1
10.3	2.04								1

Project:		Ca	iuses of 1	Defects of	n Aspnait	ravement	and its Ke	medles: Ca	ise Stud	yin Agaro	Lown					
Client:	Client: - Station: 386+000 Fest pit(Sample) No: B					Sample	of:		Base	course		Date S	Sampled:		11/3	0/15
Station:		38	6+000			Depth:			-			Date S	Started:		18-Ja	an-16
Test pit(San	ple) No	:		BH-3		Layer D	esc.:			Base cours	e	Date of	completed:		21-Ja	an-16
				Μ	OISTURI	E CONTEN	NT AND U	NIT WEIG	HT OF	TEST SAN	IPLES		1			
Mold No.							1			2				3		
No. of layers	s						5			5				5		
No. of blows	s per laye	er				1	10			30)			65	;	
CONDITIO	N OF SA	MPLE			Before	soaking	After	soaking	Befo	re soaking	Aft soak	ter ting	Before soaking		After s	oaking
Wt.of wet sa	mple+m	ould			103	786.5	108	327.8	1	1231.9	1126	55.5	11209.6		112	77.6
Wt.ofmold					6	656	65	546		6663	66	55	6155		61	59
Wt.of wet sa	mple				41	30.5	423	81.8	4:	568.92	4610).52	5054.55		5118	8.62
Volume of n	nold				15	72.7	15'	73.7	1	574.7	157	5.7	1576.7		157	7.7
Wet unit we	ight				2	.63	2.	.72		2.90	2.9	3	3.21		3.	24
						MOI	STURE D	ETERMIN	ATION							
Can No.						2		5		9	V	G	QS		D	E
Wt.wet sam	ple + car	1			25	57.7	24	1.1		266.8	254	4.0	262.3		24	4.8
Wt.dry sam	ple +can				24	11.8	23	8.25		266.5	245	5.2	245.6		23	0.5
Wt.of water	it.of water				15	5.94	2.	.83		0.256	8.	8	16.7		14	1.3
Wt.of can	/t.of can				5	0.5	5	51		51	50	.5	50.3		5	1
Wt.dry sam	t.of can t.dry sample				19	91.3	18	7.25	1	215.5	194	1 .7	195.3		17	9.5
% Moisture	t.dry sample Moisture content				1	3.3	1	.5		0.1	4.	5	8.6		8.	.0
Dry unit wei	ght				2	.42	2.	.68		2.90	2.8	80	2.95		3.	00
							SWEL	L DATA								
						Mo	old 1			Mole	12			mold	d 3	
Day o	of month	ı	Elaps	e time			sv	vell			sw	ell			sw	ell
			(u	ay)	gauge	reading	mm	%	gaug	e reading	mm	%	gauge reading		mm	%
1/1	8/2016				j	1.6				1.25	0.013	0.01	1.35	0	0.011	0.009
1/2	1/2016				7	.92	0.0632	0.0545		2.56	1	13	2.5		5	9
							CBF	R DATA								
	G (1)		10 I	Blows			30 B1	ows			65 B	lows				
Penetratio	load	Gau	test	Cor	CBR	Gauge	test	corr (BR		test	c01				
n (mm)	(KN	ge	load	Con		readin	load		J N	Gauge	load					
)	ing	KN	KN	%	g	KN	KN	%	reauing	KN	KN	%			
0		0	0			0	0			0	0					
0.64		186	4.49			375	9.06			497	12.00					
1.27		277	6.69			483	11.66			591	14.27					
1.96		334	8.07			525	12.68			682	16.47					
2.54	13	381	9.20	9.20	70.8	586.5	14.16	14.16	109 .0	775	18.72	18.7	144.0			
3.18	20	521	12.5 8	12.5 8	62.9	678	16.37	16.37	81. 9	802	19.37	19.4	96.8			
3.81		588	14.2 0			687	16.59			866	20.91					
4.45		663	16.0 1			748.5	18.08			978	23.62					
5.08	5.08 738 17.8 2 Plane/Lever 10/5				851	20.55			1136	27						
Blows/Laye	Blows/Layer 10/5 Socked C.B.R in% 70.8			3	0/5	65	5/5									
Socked C.B.	Socked C.B.R in% 70.8			8	1.9	14	4.0									
Density gm/	Socked C.B.R in% 70.8 Density gm/cm3 2.424			2.	898	2.9	953									

<u>CALIFORNIAN BEARING RATIO(CBR) AASHTO T-181</u> Causes of Defects on Asphalt Pavement and Its Remedies: Case Study in Agaro Town

				CA	LIFOR	NIAN BEA	RING RAT	TIO(C	BR) A	ASHTO T-1	<u>81</u>					
Project:		Causes	of Defects o	n Aspl	nalt Pav	rement and I	ts Remedie	s: Cas	e Stud	yin Agaro T	own					
Client:		-				Sample	of:		Sub	base		Date	e Sampled	:	30-N	ov-15
Station:		386+00	0			Depth:			-			Date	e Started:		12-Ja	an-16
Testpit(S	Sample) No	: BH-3				Materia	l Desc.:		Sub	haca		Date	e inleted:		15-Ja	an-16
									Sub	base		com	ipreteu.			
•			Ν	IOIST	URE C	CONTENT A	AND UNIT	WEIG	HT O	F TEST SAN	IPLES					
Mould N	No.						1			2	2				3	
No. of la	yers						5			5	5				5	
No. of bl	ows per lay	/er				-	10			3	0				65	
CONDIT	TION OF S	AMPLE				Before soaking	After soa	king	Bef	ore soaking	After soa	king	Before soaking	e g	After s	oaking
Wt.of we	t sample+1	nould				11224	1130	5		12041	12198	3	12039		12	018
Wt.ofmo	ould					6428	6431			6855	6891		6856		68	22
Wt.of we	t sample					4796	4875			5186	5307		5183		51	96
Volume	of mould					1572.7	1573.	7		1574.7	1575.	7	1576.7		157	77.7
Wet unit	weight					3.05	3.10			3.29	3.37		3.29		3.	29
					1	MOISTU	JRE DETER	RMINA	ATIO	N	1		1			
Can No.						JK	MN			Q	R		C		1	F
Wt.wet s	ample + ca	n			2.	36.138	244.4	2		267.953	240		269.67		225	5.23
Wt.dry s	ample +car	n			2	16.648	231.5	4		237.15	209		238		202	.164
Wt.of co	nter					52	12.88	i		50.5	51		31.67 52		23.	000
Wt dry e	ampla				1	52	180.5	4		186.65	158		186		150	164
% Moist	ure content	ł				11.8	7.1	•		16.5	136		17.0		150	5.4
Drv unit	weight	-				2.73	2.89			2.83	2.82		2.81		2.	85
															SWELI	DATA
						Mou	ld 1			Mou	ıld 2			n	nould 3	
:	Day of mor	nth	Elapse t	ime			swell				swell				sw	ell
			(uuy)		gaug	ge reading	mm	%	gau	ige reading	mm	%	gauge reading	ş	mm	%
	1/12/201	6				2.56	0.03	0.		2.35	0.06	0.	2.39		0.052	0.045
	1/15/201	6				5.67	0.05	03		8.6	0.00	05	7.64		5	3
							CBR DA'	ГА								
Penetr	Std		10 Blows				30 Blows				65 Blow	8				
ation	load	Gauge	test load	C C	orr. BR	Gauge	test load	CI CI	orr. BR	Gauge	test load	Co	rr .CBR			
(mm)	(KN)	reading	KN	K N	%	reading	KN	K N	%	reading	KN	K N	%			
0		0	0			0	0			0	0					
0.64		153.5	3.71			167	4.03			191	4.61					
1.27		175	4.23			213	5.14			248	5.99					
1.96		196	4.73			241	5.82			301	7.27					
2.54	13	241	5. 82	44. 8	309	7.46	7. 46	57 .4	342	8.26	8. 3	63.5				
3.18	20	273	6. 59	33. 0	382	9.23	9. 23	46 .1	395	9.54	9. 5	47.7				
3.81		328	7.92			371	8.96	-		462	11.16					
4.45	1	353	8.52			456	11.01			506	12.22					
5.08	t i	401	9.68			503	12.15			635	15					
Blows/L	ayer	10	3	0/5	65	5/5									1	
Socked C.B.R 44.8					6.1	63	3.5									
Density s	in% 44.5 Density gm/cm3 2.727					2.8	809								<u> </u>	
				1							I		I			

					CALI	FORNIAN	BEARING RA	TIO(CI	BR) AA	SHTO T-18	1					
Project:		Causes of	f Defects on A	sphalt Pa	vement :	and Its Rem	redies: Case St	udyin A	garo To	own						
Client:		-				Sample o	f:		Sub (Grade		Date S	Sampled:		30-N	ov-15
Station:		386+000				Depth:			-			Date S	Started:		10-J	an-16
Test pit(San	mple)	BH-3				Layer Des	sc.:		G-1 (2 1 .		Date o	completed	:	13-J	an-16
110.									Sub C	Frade						
	I	I		M	DISTUR	RE CONTE	NT AND UNIT	WEIG	HT OF	TEST SAM	PLES					
Mold No.																
No. of laye	rs						5				5				5	
No. of blow	vs per laye	r					10				30				65	
CONDITIO	ON OF SA	MPLE			Befor	re soaking	After soal	king	Befo	re soaking	After soal	king	Befor soakin	e Ig	Afters	oaking
Wt.of wet s	ample+m	ould			1	0264	10796.	8	1	0310	10310		10729)	110	14.5
Wt.of mou	ld					6587	6587			6759	6759		6385		63	85
Wt. of wet	sample					3677	4209.8	3	:	3551	3551		4344		46	29.5
Volume of	mould				1	572.7	1573.7	1	1	574.7	1575.7		1576.	7	15	77.7
Wet unit w	eight					2.34	2.68			2.26	2.25		2.76		2.	93
						MO	ISTURE DETE	ERMINA	TION							
Can No.						6	5			19	22		25		2	8
Wt. wet sau	mple + car	1			1	219.6	218.5			214	201.2		218.6		2	23
Wt. dry sai	mple +can					171	192.3		1	179.6	166.8		182.9		20	3.4
Wt. of wate	er					48.6	26.2			34.4	34.4		35.7		1	9.6
Wt. of can						51.5	52			50	50.5		52		5	3
Wt. dry sai	mple					119.5	140.3			129.6	116.3		130.9		15	0.4
% Moistur	e content					40.7	18.7			26.5	29.6		27.3		1	3.0
Dry unit we	eight					1.66	2.25			1.78	1.74		2.16		2.	60 LL DATA
							f old 1				(a) J 2				SWE	LL DATA
Do	v of mont	h	Elongo tim	o (dov)		14	amall			N	ioiu 2				moru 3	
Da	y or mon		Liapse tim	e (uay)	gaug	e reading	mm	0/2	gaug	e reading	mm	0/2	gauge	è	mm	%
1	/10/2016					7		70		1.95		70	1.65	g		70
1	/13/2016					8.5	0.02	0.01		2.8	0.01	0.01	1.86		0.0021	0.0018
							CBR DA	ATA								
D ()	G ()		10 Blows	8			30 Blows				65 Blow	5				
on	load	Gauge	test load	Corr.	CBR	Gauge	test load	corr.	CBR	Gauge	test load	Cori	CBR			
(mm)	(KN)	reading	KN	KN	%	reading	KN	KN	%	readin g	KN	KN	%			
0		0.0	0			0	0			12	0.2898					
0.64		12.0	0.2898			8	0.19			21	0.5072					
1.27		14.0	0.3381			12	0.29			27	0.6521					
1.96		16.0	0.3864			20	0.48			34	0.8211					
2.54	13	18.0	0.4347	0.43	3.3	25	0.6	0.60	4.6	43	1.0385	1.0	8.0			
3.18	20	19.0	0.45885	0.46	2.3	31	0.75	0.75	3.7	52	1.2558	1.3	6.3			
3.81		21.0	0.50715			33	0.8			58	1.4007					
4.45		26.0	0.6279			35	0.85			68	1.6422					
5.08		29.0	0.70035			38	0.92			73	1.763					
Blows/Lay	er	1	10/5	30	/5		65/5									
Socked C.E	Socked C.B.R in% 3.3						8.0									
Density gm	Socked C.B.R in% 3.3 Density gm/cm3 1.662					2	2.165									

					CALIFO	RNIAN BEAR	ING RATIO	(CBR) A	ASHTO	T-181						
Project:			Causes of	of Defects or	n Asphalt F	Pavement and I	ts Remedies: (Case Stu	dy in Ag	aro Town						
Client:				-		Sample of:			Base	course		Date S	Sampled:		30-N	ov-15
Station:			397+000)		Depth:			-			Date S	Started:		30-J	an-16
Testpit(Samp	ole) No:		BH-4			Material Des	sc.:		Base	course		Date of	completed:		2-Fe	eb-16
			•	MO	DISTURE	CONTENT AN	ND UNIT WE	IGHT O	F TEST	SAMPLES						
Mould No.																
No. of layers						5					5			5		
No. of blows	per layer					10				3	30			65	5	
CONDITION	NOF SAM	IPLE			Befor	re soaking	After soa	king	Befo	re soaking	After soa	king	Before soaking		Af soal	'ter king
Wt.of wet sau	mple+mo	uld			1	2188	12430)		12395	12565	5	12730		12	851
Wt. of mould	1					7720	7720			7520	7520		7625		76	25
Wt. of wet sa	mple					4468	4710			4875	5045		5105		52	26
Volume of m	ould					2121	2121			2121	2121		2121		21	.21
Wet unit weig	ght					2.11	2.22			2.30	2.38		2.41		2.	.46
						MOISTU	RE DETERMI	NATIO	N							
Can No.						5	10			5	22		5			7
Wt. wet sam	ple + can				2	44.68	307		1	244.68	298.8	;	244.68		28	1.39
Wt. dry sam	ple +can				2	30.09	279.57	7	1	230.59	276.0	9	230.59		262	2.66
Wt. of water	-				1	14.59	27.43			14.09	22.71		14.09		18	.73
Wt. of can					1	83.76	83.32			83.76	83.15	;	83.76		84	.07
Wt. dry sam	ple				1	46.33	196.25	5		146.83	192.94	4	146.83		178	8.59
% Moisture o	content					10.0	14.0			9.6	11.8		9.6		10	0.5
Drv unit weig	zht					1.92	1.95			2.10	2.13		2.20		2.	.23
							SWELI	DATA				Ini	tial height o	f san	nple = 1	16mm
						Moul	d 1			Mo	uld 2			moul	ld 3	
Dav	of montl	1	Elapse t	ime (dav)			swell				swell				sw	vell
					gaug	e reading	mm	%	gau	ge reading	mm	%	gauge		mm	%
1/	30/2016					327	0.18	0.16		436	0.14	0.12	212		0.28	0.24
2	/2/2016					345	0.10	0.10		450	0.14	0.12	240		0.20	0.24
-						0.10	CBR DATA									L
			10 E	lows			30 Blows				65 Blov	vs				
Penetration	Std load	Gauge	test	corr.(CBR	Cauga	test load	corr	.CBR	Cauga	test load	co	rr.CBR			
(mm)	(KN)	reading	load KN	KN	%	reading	KN	KN	%	reading	KN	KN	%			
0		0	0			0	0			0	0					
0.64		40	0.97			45	1.09			170	4.11					
1.27		60	1.45			95	2.29	1	1	420	10.14					
1.91		76	1.84			145	3.50	1	1	630	15.21					
2.54	13	88	2.13	2.13	16.3	187	4.52	4.52	34.7	815	19.68	19.7	151			
5.08	20	125	3.02	3.02	15.1	371	8.96	8.96	44.8	1235	29.83	29.8		i i		
6.35		142	3.43			460	11.11	1	1	1410	34.05					
7.62		157	3.79			541	13.07			1590	38.40					
Blows/Laver		1()/5	30	(5	65	5/5	MDD	1	1	2.17		OMC		10	.00
Socked C R I	Blows/Layer 10/5					15	14	Denci	ty requir	rement•	05%		Target		20	06
Socken C.D.I	X III /0		U.W	44	.0	15	1.7	Densi	ey requi	cinent;	73%		Target		2.	00

JIT, Highway Engineering Stream

					CALIFO	RNIAN BEA	ARING RA	ATIO(C	BR) AASH	HTO T-181						
Project:		C	auses of Defe	cts on Asp	halt Paven	ent and Its	Remedies:	Case St	udy in Aga	aro Town						
Client:		-				Sample of	f:		Sub bas	e		Date	Sampled:		30-N	ov-15
Station:		39	7+000			Depth:				-		Date	Started:		26-Ja	an-16
Testpit(Samp	ole) No:	B	H-4			Material	Desc.:			Sub bas	e	Date	completed:		29-Ja	an-16
				МО	ISTURE	CONTENT .	ANDUNI	r weig	HT OF TH	EST SAMPI	LES		1			
Mould No.						1	1				2				3	
No. of layers						5	5				5				5	
No. of blows	per layer					1	0			3	30		D . 6	-	65	
CONDITION	OF SAN	IPLE			Befo	re soaking	After so	aking	Before	soaking	After soal	king	soaking		After s	oaking
Wt.of wet sar	nple+mo	uld				11238	113	06	12	011	12035		12004		120	026
Wt.ofmould						6431	643	81	6	846	6846		6826		68	26
Wt.of wet sar	nple					4807	487	5	5	165	5189		5178		52	00
Volume of m	ould				1	1572.7	1573	3.7	15	74.7	1575.7	'	1576.7		157	7.7
Wet unit weig	ght					3.06	3.1	0	3	.28	3.29		3.28		3.	30
~ ~	Can No.					MOIST	URE DETI	ERMINA	ATION							-
Can No.	Can No. Wt.wet sample + can					5	8	-		9	13		44		2	3
wt.wet samp	Vt.wet sample + can Vt.dry sample +can					51	202		2	./0	100.2		278.5		20	5.9
Wt.dry samp	Vt.dry sample +can					4.3 < 7	189	 2	2:	05.5	199.2		258.5		19	5.2
Wt of con					10	5./ :1	13.	2	2	52	51		52			2
Wt.of can	1.0				10	2.2	120	2	20	55 D2 5	149.2		32		3	2
% Moisturo	ontont				18	1	139		20	0.1	146.2		200.3	_	14	5.2 5
Dry unit woig	bt				, ,	80	28	3	2	0.1	3.05		2.00	_	3	
Diy unit weig	,nt				2.	00	SWELL	DATA			5.05		200		5.	07
						Mold	1			Ma	ld 2			m	nold 3	
Day	of month	1	Elapse	time			swe	11			swell				sw	ell
			(day	<i>(</i>)	gauge	reading	mm	%	gauge	reading	mm	%	gauge reading		mm	%
1/2	26/2016				1.	89	0.01	0.04	2	2.1			1.25			0.001-
1/2	29/2016				2.	76	0.01	0.01	2	2.3	0.00	0.00	1.45		0.0020	0.0017
							CBR D	ATA								
	Sta		10 Bl	ows			30 Blo	ws			65 Blow	/S				
Penetration (mm)	load (KN)	Gauge	test load	Corr	.CBR	Gauge	test load	cor	r.CBR	Gauge	test load	Co	rr.CBR			
		Teauing	KN	KN	%	Teauing	KN	KN	%	reaung	KN	KN	%			
0		0	0			0	0			0	0					
0.64		54.06	1.31			47.7	1.15			53	1.28					
1.27		95.4	2.30			116.6	2.82			95.4	2.30					
1.96	1.96 180.2 4.35 1.51 1.0 2.15 5.00					201.4	4.86			190.8	4.61					
2.54	2.54 13 245 5.92 5 3.18 30 403.8 0.73 403.8				45.5	296.8	7.17	7.17	55.1	285.5	6.89	6.9	53.0			
3.18	3.18 20 402.8 9.73 9 3.81 508.8 12.29 1				48.6	413.4	9.98	9.98	49.9	360.4	8.70	8.7	43.5			
3.81	3.81 508.8 12.29 4.45 593.6 14.34					519.4	12.54			381.6	9.22					
4.45	4.45 593.6 14.34 5.08 6.46.6 15.62					593.6	14.34	ļ		402.8	9.73					
5.08	5.08 646.6 15.62 Blows/Layer 10/5					689	16.64			477	12			_		
Blows/Layer 10/5 Socked C B P ip% 45.5				3	J/5	65	/5									
Socked C.B.F	Socked C.B.R in% 45.5 Density on /org2 2.801				9.9 070	53	.0							_		
Density gm/cr	Density gm/cm3 2.801				9/8	2.9	71									

1					

CALIFORNIAN BEARING RATIO(CBR) AASHTO T-181																
Project:		Causes of	lt Pav	ementand	l Its Remedi	es: Cas										
Client:		-	Sample of:					Sub Grade			Sampled	:	30-N	ov-15		
Station:		397+000	Depth:							Date	Started:		22-Jan-16			
Test pit(Sample) No: BH-4						Materia	al Desc.:		ՏոՒ	Grade		Date completed:			25-Jan-16	
Mold No			MC	DISTUR	ECO	ONTENT A	AND UNIT	WEIGI	нто	FIESTSA	AMPLES					
No of lavers																
No. of blows	ner laver				10				30	65						
CONDITION	OF SAM	PLE			E	efore	After soaking		Before Af		After soal	After soaking			After soaking	
Wt.of wet sar	nple+mou	ld			10	0467.2	11011.9		soaking 10514.2		11024.2		10941.5	0941.5 112		36.3
Wt.of mold						6587	6587			6759 6759		6385			6385	
Wt.of wet sar	nple				3	880.2	4424.9		3	3755.2 4265.2		2	4556.5		4851.3	
Volume of m	old				1	572.7	1573.	1574.7		574.7	1575.7		1576.7		1577.7	
Wet unit weig	ght					2.47	2.81			2.38	2.71		2.89		3.07	
						MOIST	URE DETER	MINAT	TION				-			
Can No.					5		6		8		12		14		99	
Wt.wet samp	le + can				223.0		221.6		216.2		203.6		221.4		458.0	
Wt.dry samp	le +can				173.706		194.31		1	182.172 167.892		2	186.558		206.958	
Wt.of water					49.266		27.336		3	34.068 35.7			34.884		251.042	
Wt.of can					51.5		52			50.1 50.5			52.3		49.8	
Wt.dry samp	le				12	22.206	142.3	l	1	32.072	117.39	2	134.258		157	.158
% Moisture o	content					40.3	19.2			25.8	30.4		26.0		15	9.7
Dry unit weig	ht					1.76	2.36			1.90	2.08	2.29			1.	18
							SWELL DA	ТА								
			Flanca	timo		Μ	lold 1			Μ	old 2	1			mold 3	
Da	y of mont	h	(day	y)	gaug	e reading	swell		gaug	e reading	swell	gauge			sw	ell
							mm	%		, 0	mm	%	reading	; mm		%
2	22-Jan-16				4.5		0.05	0.04		1.57	0.04	0.03	2		0.0450	0.0388
25-Jan-16						9.5			5.6				6.5			
10.01							20 Plow	A			xe					
Penetration	Std	td ad Gauge N) reading	test CBB		BD		JU BIOWS	Corr	CRD		tost load	s		-		
(mm)	10ad (KN)		load	UII.C		Gauge reading	test load	UNI UNI	0/	Gauge reading	USI IUAU IVN	UN UN	1.CBK			
0				KIN	70	0	N N	NN	70		NN 0.2(57	KIN	70	_		
0		0.0	0			0	0			11	0.2657			_		
0.04		11.0	0.27			9 14	0.22			21	0.51			+		
1.4/		15.0	0.31		14		0.34			21	0.05			-		
1.90	12	15.0	0.30	0.41	2.2	24	0.40	0.50	45	35	0.00	1.0	76	-		
2.04	13	10.0	0.41	0.41	3.2	24	0.50	0.50	ч.Э Э.5	-1	1.11	1.0	7.0	-		
3.18	20	18.0	0.43	0.43	2.2	29	0.70	0.70	3.5	40	1.11	1.1	5.0	-		
3.81		20.0	0.48			31	0.75			49	1.18					

4.45		22.0	0.5	3	33	0.	80		55	1.33					
5.08		25.0	0.6	0	35	0.	85		65	2					
Blows/La	ayer	10/5		30/5		65/5									
Socked C	C.B.R in%	3.2	2	3.5		7.6									
Density g	Density gm/cm3 1.758		1.896		2.294										
	10 k	olows													
	0	0.	00												
	0.64	0.	27			Load-ne	enetra	tion cha	art (Base Co	urse)					
	1.27	0.	31			Louis p									F
	1.96	0.	36	1.80 -											∃∣
	2.54	0.	41	1.60 -											ŧ ŀ
	3.18	0.	43	1 40 -						65	hlows				Ēŀ
	3.81	0.	48	1. 10							010#3	┍┫╡╪╪			
	4.45	0.	53	1. 20 -											╡ [
	5.08	0.	60	Z 1.00 -										┋	目 [
				- 08 0 a						3	Oblows				EL
				Lo Lo											┋╽
	30 k	olows		0.60 -											╡╽
	0	0.	00	0.40 -				∎		1	0 blows				E
	0.64	0.	22	0.20											┋╽
	1.27	0.	34	0.20											₿ŀ
	1.96	0.	46	0.00			2	3		5	6			8	╘
	2.54	0.	58	-	J .	L	2	5	Penet	ration mm	0	'		0	
	3.18	0.	70						1 0.000						
	3.81	0.	75												
	4.45	0.	80	1										<u> </u>	
	5.08	0.	85		1			C	ensity-CBR	chart					
				-	┘┌───										
	65 h l			3.50			- 11								
	o a lows	. 0	27												
⊢	0 64	0.	21 51	3.00											
⊢	1 07	0.	65	2 50											
\vdash	1.96	0.	85	2.50								-			
-	2 54	0.	99	<u>ູ້</u> 2.00				A							
⊢	3 18	1	11	 				- Contraction of the second se							
⊢	3.81	1.	18	<u>े</u> <u>ह</u> े 1.50											
\vdash	4.45	1.	33	der											
	5.08	1.	57	<u><u></u> <u></u> </u>									I.I.I.		
				<u> </u>											
⊢				0.50											
⊢															
	CBR Vs I	Dry density		0.00	0 1.0	2.0	5	3.0	4.0 5.0) 6.0	7.0	8.0	9	0 10	0.0
⊢	3.2	1.	76			2.	<u> </u>		0/ OT			0.0	0.		
L		I		+			I		% C			1		L	
3.5	1.90														
-----	------	--	--	--	--										
7.6	2.29														

APPENDIX E. ASPHALT EXTRACTION TEST

PRO JECTNAME: - Causes and Remedial for Asphalt Concrete Pavement Damages a Case Study in Agaro Town from "BulbuloKebele to Koye Ber"													
Host		Program Laboratory gy HIGH WAY ENGINEERING STREAM Jimma Roads Maintenance Laboratory											
Jimma Institute of Techno	logy	HIG	H WAY E	NGINEE	RING S	TREAM	Jiı	mma Ro	ads Main	tenance Labora	tory		
Placing Station :-		<u>396</u>	+500			Sample	e Date:-	30-N	lov-15				
Aggregate Source:-	<u>Avg</u> .	NON ASPI	-DAMA HALT	AGE		Test Da	ate:-	7-D	ec-15				
AVERAGE XTRACTION OF BI EXTRAC	TUMEN & TED AGG	MECHA REGATE	NICAL ANA 2	ALYSIS ()F		Test M	lethod-A	ASHTO T	30-06			
BH-1.Trial -A	Wt.(g	Sieve (mm	Wt.Ret	% Ref.	% passi ng	IMF	Spec. L.Li mit	Spec. U.Li mit	Tolera nce L.Limi t	ToleranceU. Limit	Tolera nce From JMF	Remar k	
Mass of Sample(am) (A)	1524.	26.5	0.0	0.0	1000	100.0	100.0	100.0	100.0	100.0	01.12		
Mass of Aggregate in bowl after Extraction(gm) (B)	1350. 5	19.0	41.0	2.8	97.2	97.2	85.0	100.0	92.2	102.2	±5		
Mass of Filler + Filter (gm) (C)	4.1	13.2	273.0	18.8	78.3	89.7	71.0	100.0	84.7	94.7	±5		
Mass of Filter(gm) (D)	3.7	9.5	250.0	17.3	61.1	71.2	62.0	76.0	66.2	76.2	±5		
Mass of Filler(gm) (E=C-D)	0.4	4.8	277.0	19.1	42.0	43.4	42.0	60.0	38.4	48.4	±4		
Mass of Total Aggregate(gm) (F=B+E+K)	1448. 8	2.4	158.0	10.9	31.0	32.3	30.0	48.0	28.3	37.3	±4		
Mass of Bitumen(gm) (G=A-F)	75.7	1.2	94.0	6.5	24.6	10.0	22.0	38.0	7.0	13.0	±3		
Bitumen Content (%) (H=G/A*100)	5.0	0.6	61.0	4.2	20.3	5.4	16.0	28.0	4.4	6.4	±1		
Total Volume Extracted(ml)	5.0	0.3	43.0	3.0	17.4		12.0	20.0					
Mass of Filler per 100ml of Extraction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						8.0	15.0					
Mass of Filler per Total Volume Extracted (K)	0.2	0.1	29.0	2.0	13.3		4.0	10.0					
		Pan	54.0	3.7	9.6								
		Tan 54.0 5.7 9.0 Tota 1 1448.8 1 1											

PROJECT NAME:-Cause	s and Remedi	al for Asph	alt Concrete	Pavement D	amages a	Case Stud	ly in Agar	o Town fro	om "Bulbulo)Kebele to KoyeBer"	
Host			F	rogram					Labo	oratory	
Jimma Institute of Technolo	gy	HIG	H WAY EN	GINEERIN	G STREA	м		Jimma	Roads Mai	ntenance Laboratory	7
Placing Station :-		<u>396+500</u>			Sample	Date:-	3	0-Nov-15			
Aggregate Source:-	BH5 NON	DAMAGE	ASPHALT		Test Dat	e:-		7-Dec-15		Trial-1	
EXTRACTION OF BITUMEN &	MECHANIC	AL ANALY	SIS OF EXT	RACTED A	GGREG	ATE		Tes	t Method- A	ASHTO T 30-06	
BH-1,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret.(gm)	% Ret.	% passin g	JMF	Spec. L.Lim it	Spec. U.Lim it	Toleran ce L.Limit	ToleranceU.Limi t	Toleranc e From JMF
Mass of Sample(gm) (A)	1544.00	26.5	0.00	0.00	100.00	100.0 0	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1341.00	19	41.00	2.81	97.19	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.10	13.2	273.00	18.71	78.48	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.70	9.5	250.00	17.13	61.35	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.40	4.75	277.00	18.98	42.37	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1459.20	2.36	158.00	10.83	31.54	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	84.80	1.18	94.00	6.44	25.10	10.04	22	38	7.04	13.04	±3
Bitumen Content(%) (H=G/A*100)	5.49	0.6	61.00	4.18	20.92	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3100	0.3	43.00	2.95	17.97		12	20			
Mass of Filler per 100ml of Extraction	3.8	0.15	30.0	2.06	15.91		8	15			
Mass of Filler per Total Volume Extracted (K)	117.80	0.075	29.00	1.99	13.93		4	10			
		Pan	54.00	3.70	10.22						
		Total	1459.20								

PROJECT NAME:-Caus	es and Remed	lial for Asph	alt Concrete	Pavement D	amages a Ca	se Study in	n Agaro To	own from "B	ulbulo Keb	ele to Koye Ber"	
Host				Program					Labor	ratory	
Jimma Institute of Technolog	y	HI	GH WAY EN	IGINEERI	NG STREAN	4		Jimma R	Roads main	tenance Laboratory	
Placing Station :-	396+500				Sample Da	te:-		30-Nov-15		Trial-2	
Aggregate Source:-	BH5 NO	N DAMAGE	ASPHALT		Test Date:-			7-Dec-15			
EXTRACTION OF BITUMEN &	MECHANIC	CAL ANALY	GGREGAT	E		Test	Method- AASHTO T 30-06				
BH-1,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret.(gm)	% Ret.	% passing	JMF	Spec. L.Limi t	Spec. U.Limit	Tolera nce L.Limi t	ToleranceU.Li mit	Toleranc e From JMF
Mass of Sample(gm) (A)	Wt.(gm) m) gm) 1505.00 26.5 0.00			0.00	100.00	100.0 0	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1360.00	19	80.00	5.56	94.44	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.10	13.2	296.00	20.58	73.86	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.70	9.5	203.00	14.11	59.75	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.40	4.75	265.00	18.42	41.32	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1438.40	2.36	151.00	10.50	30.83	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	66.60	1.18	92.00	6.40	24.43	10.04	22	38	7.04	13.04	±3
Bitumen Content(%) (H=G/A*100)	4.43	0.6	59.00	4.10	20.33	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3120	0.3	42.00	2.92	17.41		12	20			
Mass of Filler per 100ml of Extraction	2.5	0.15	35.0	2.43	14.97		8	15			
Mass of Filler per Total Volume Extracted (K)	78.00	0.075	38.00	2.64	12.33		4	10			
		Pan	87.00	6.05	6.28						
		Total	1438.40								

PROJECT NAME:-Caus	ses and Remedi	al for Asphal	t Concrete Pave	ement Dam	ages a Cas	e Study in A	.garo To	wn from "B	ulbuloKeb	ele to KoyeBer"	
Host			P	rogram					Lab	oratory	
Jimma Institute of Technolo	gy	HI	GH WAY ENG	INEERIN	G STREA	М		Jimma	Roads ma	intenace Laborator	y
Placing Station :-	<u>385+000</u>					Sample Date:-		29-No	v-15		
Aggregate Source:-	BH1 Tı	rial -1				Test Date:-		6-Dec	-15		
EXTRACTION OF BITUMEN	& MECHANIC	CAL ANALYS	SIS OF EXTRA	CTED AG	GREGAT	ТE		Test	Method-	AASHTO T 30-06	
BH-1,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret.(g m)	% Ret.	% passin g	JMF	Spec L.Li mit	Spec. U.Limit	Toler ance L.Lim it	Tolerance U. Limit	Toleranc e From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.00	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1369.10	19	190.00	12.96	87.04	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.70	13.2	374.00	25.51	61.53	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.90	9.5	137.00	9.35	52.18	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.80	4.75	221.00	15.08	37.10	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1465.90	2.36	134.00	9.14	27.96	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	34.10	1.18	83.00	5.66	22.30	10.04	22	38	7.04	13.04	±3
Bitumen Content(%) (H=G/A*100)	2.27	0.6	53.00	3.62	18.68	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3200	0.3	39.00	2.66	16.02		12	20			
Mass of Filler per 100ml of Extraction	3	0.15	31.0	2.11	13.91		8	15			
Mass of Filler per Total Volume Extracted (K)	96.00	0.075	32.00	2.18	11.73		4	10			
		Pan	69.00	4.71	7.02						
		Total	1465.90								

PROJECT NAME:-Ca	uses and Reme	dial for Aspl	halt Concret	e Paveme	nt Damages	s a Case S	Study in A	garo Town fi	rom "Bulbulo	Kebele to KoyeBer	"
Host			P	rogram					Labora	tory	
Jimma Institute of Techn	ology	HIGH	H WAY ENG	GINEERI	NG STREA	М		Jimma	Roads mainte	nance Laboratory	
Placing Station :-	<u>398+000</u>			Sample	Date:-		29-1	Nov-15			
Aggregate Source:-	BH1 T	rial -2		Test Da	te:-		6-1	Dec-15			
EXTRACTION OF BITUMEN &	& MECHANIC	AL ANALY	SIS OF EXT	RACTE	DAGGRE	GATE		Test	Method- AAS	бНТО Т 30-06	
BH-1,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret. (gm)	% Ret.	% passin g	JMF	Spec. L.Lim it	Spec. U.Limit	Tolerance L.Limit	ToleranceU.Li mit	Toleran ce From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.0 0	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1341.00	1500.00 26.5 0.00 1341.00 19 78.00			94.59	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.10	13.2	258.00	17.91	76.68	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.70	9.5	193.00	13.40	63.28	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.40	4.75	239.00	16.59	46.69	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1440.60	2.36	154.00	10.69	36.00	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	59.40	1.18	103.00	7.15	28.85	10.04	22	38	7.04	13.04	±3
Bitumen Content(%) (H=G/A*100)	3.96	0.6	71.00	4.93	23.92	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3100	0.3	49.00	3.40	20.52		12	20			
Mass of Filler per 100ml of Extraction	3.2	0.15	42.0	2.92	17.60		8	15			
Mass of Filler per Total Volume Extracted (K)	99.20	0.075	45.00	3.12	14.48		4	10			
		Pan	5.48	9.00							
		Total	1440.60								

PROJECT NAME:-Causes and Rem	edial for Asp	phalt Conc	rete Pavement	Damages a	ı Case Stu	dy in Aga	ro Tow	n from	"Bulbul	loKebele t	o KoyeBer"
Host				Msc Prog	ram				Labo	oratory	
Jimma Institute of Tecl	nnology		HIGHWAY	ENGINE	ERING ST	FREAM	Jim	ma Ro	ads mai	ntenance I	Laboratory
Placing Station :-	<u>398+000</u>				Sample	e Date:-		29-	Nov-15		
Aggregate Source:-		BH-2	Average		Test Da	ite:-		7.	-Dec-15		
EXTRACTION OF BITUMEN &	MECHANIC	ALANAL	YSIS OF EXT	FRACTED	AGGRE	GATE	,	Test M	ethod- A	ASHTO	Г 30-06
BH-1,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret. (gm)	% Ret.	% passi ng	JMF	Sp ec. L. Li mit	Sp ec. U. Li mi t	Tole ran ce L.Li mit	Toler ance U.Li mit	Tolerance From JMF
Mass of Sample(gm) (A)	f Sample(gm) (A) 1500.00 26.5 f Aggregate in bowl after		0.00	0.00	100.0	100.0	100	10 0	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	ggregate in bowl after (gm) (B) 1373.50 19 iller + Filter (gm) (C) 4.05 13.2		0.00	0.00	100.0 0	00.0 0 97.17		10 0 10	92.1 7 84.7	102.1 7	±5
Mass of Filler + Filter (gm) (C)	+ Filter (gm) (C) 4.05 13.2 (gm) (D) 3.75 9.5		447.00	30.61	69.39	89.71	71	0	1 66.1	94.71	±5
Mass of Filter(gm) (D)	iller(gm) (D) 3.75 9.5 iller(gm) (E=C-D) 0.30 4.75			11.85	57.54	71.19	62	76	9 38.3	76.19	±5
Mass of Filler(gm) (E=C-D) Mass of Total Aggregate(gm)	ller(gm) (E=C-D) 0.30 4.75 tal Aggregate(gm) 1460.36 2.36		254.00	17.39	40.15	43.38	42	60	8 28.3	48.38	±4
(F=B+E+K) Mass of Ritumen(gm) (G=A-F)	39.64	1.30	85.00	5.82	29.95	10.04	22	38	7 04	13.04	±4 +3
Bitumen Content(%)	264	0.6	56.00	2.02	29.10	5 29	16	30	4.20	13.04	
(H=G/A*100) Total Valume Extracted(ml)	2.04	0.0	40.00	2 74	20.29	5.38	10	28	4.38	6.38	±1
Mass of Filler per 100ml of Extraction	2.75	0.15	37.0	2.53	17.02		8	15			
Mass of Filler per Total Volume Extracted (K)	86.56	0.075	38.00	2.60	12.42		4	10			
		Pan	65.00	4.45	7.97	<u> </u>	<u> </u>	<u> </u>			
		Total	1460.36								
	JMF Tolerance										
60 -	limit - Tolerance Limit	Lower									sing (%
40											
0 + + + + + + + + + + + + + + + + + + +		****		╶╁──╁─┤	┍━╈╸╈╸╈	╈╁──			<u>+++++</u> , 🦉		
0.01	0.1		Sieve	e Size	s (m	m)		10			100

PROJECTNAME:-Causes and Remedial for Asphalt Concrete Pavement Damages a Case Study in Agaro Town from "BulbuloKebele to KoyeBer"													
Host			Ms	c Program	m				Labo	oratory			
Jimma Institute of Tech	nology	HIGH	I WAY EN	GINEER	ING STR	EAM	Ji	mma Roa	ds maiı	ntenance Labo	ratory		
Placing Station :-	<u>398+000</u>			Sample	Date:-			29-No	v-15				
Aggregate Source:-	B	BH-2 trial-1 Test Date:- & MECHANICAL ANALYSIS OF EXTRACTED						7-Dec	2-15				
EXTRACTION OF BITUM	CTED		Test Mo	ethod- A	AASHTO T 30-	06							
BH-1,Trial -A	Wt.(gm)	Sieve(mm)	Wt.Ret. (gm)	% Ret.	% passin g	JMF	Spec. L.Li mit	Spec. U.Limit	Toler ance L.Li mit	ToleranceU.Li mit	Tolerance From JMF		
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.00	100	100	100	100			
Mass of Aggregatein bowl after Extraction(gm) (B)	1386.00	19	0.00	0.00	100.00	97.17	85	100	92.17	102.17	±5		
Mass of Filler + Filter (gm) (C)	4.20	13.2	447.00	30.92	69.08	89.71	71	100	84.71	94.71	±5		
Mass of Filter(gm) (D)	3.80	9.5	173.00	11.97	57.11	71.19	62	76	66.19	76.19	±5		
Mass of Filler(gm) (E=C-D)	0.40	4.75	254.00	17.57	39.54	43.38	42	60	38.38	48.38	±4		
Mass of Total Aggregate(gm) (F=B+E+K)	1445.62	2.36	149.00	10.31	29.23	32.32	30	48	28.32	37.32	±4		
Mass of Bitumen(gm) (G=A-F)	54.38	1.18	85.00	5.88	23.35	10.04	22	38	7.04	13.04	±3		
Bitumen Content(%) (H=G/A*100)	3.63	0.6	56.00	3.87	19.48	5.38	16	28	4.38	6.38	±1		
Total Volume Extracted(ml)	2820	0.3	40.00	2.77	16.71		12	20					
Mass of Filler per 100ml of Extraction	2.1	0.15	37.0	2.56	14.15		8	15					
Mass of Filler per Total Volume Extracted (K)	59.22	0.075	38.00	2.63	11.53		4	10					
		Pan	65.00	4.50	7.03								
		Total 1445.62 7.00											

JECT NAME:-Causes	s and Remedial	l for Asphalt	Concrete Pave	ement Dam	ages a Case	e Study in A	Agaro To	wn from "B	ulbuloKebe	le to KoyeBer"	
Host			MS	e Program					Labor	atory	
Jimma Institute of Techno	logy	ню	GH WAY ENG	GINEERIN	IG STREA	м		Jimma R	toads main	tenance Laboratory	7
Placing Station :-	<u>398+000</u>			Sample	Date:-			2	29-Nov-15		
Aggregate Source:-		BH-2 trial-2		Test Dat	:e:-				7-Dec-15		
EXTRACTION OF BITUMEN	& MECHANI	CALANALY	SIS OF EXT	RACTED	AGGREGA	TE		Test I	Method- AA	SHTO T 30-06	•
Test Method- AASHTO T 30-06											
BH-2,Trial -A	Wt.(gm)	Sieve(m m)	Wt.Ret.(g m)	% Ret.	% passing	JMF	Spec. L.Li mit	Spec. U.Limit	Tolera nce Limit	ToleranceU.Li mit	Toleran ce From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.00	100	100	100	100	
Mass of Aggregatein bowl after Extraction(gm) (B)	1361.00	19	58.00	3.93	96.07	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	3.90	13.2	451.00	30.57	65.49	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.70	9.5	175.00	11.86	53.63	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.20	4.75	258.00	17.49	36.14	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1475.10	2.36	120.00	8.14	28.00	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	24.90	1.18	76.00	5.15	22.85	10.04	22	38	7.04	13.04	±3
Bitumen Content (%) (H=G/A*100)	1.66	0.6	46.00	3.12	19.73	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3350	0.3	28.00	1.90	17.84		12	20			
Mass of Filler per 100ml of Extraction	3.4	0.15	35.0	2.37	15.46		8	15			
Mass of Filler per Total Volume Extracted (K)	fass of Filler per Total Volume 113.90 0.075				13.50		4	10			
		Pan	50.00	3.39	10.11						
		Total	1475.10								
100 -											

PRO JECTNAME: - C auses and Remedial for Asphalt Concrete Pavement Damages a Case Study in Agaro Town from "BulbuloKebele to KoyeBer"													
Host			Pı	ogram					Laborato	ory			
Jimma Institute of Techn	ology	HIGH	I WAY ENG	GINEER	ING ST REA	AM		Jimma Road	ls maintena	ance Labora	itory		
Placing Station :-	<u>386+000</u>			Sampl	e Date:-		30-1	Nov-15					
Aggregate Source:-	внз 1	rial -1		Test D	ate:-		8-D	ec-15					
AVERAGE EXTRACTION	ON OF BI EXTRACT	IUMEN & FD AGGE	OF	Test Method- AASHTO T 30-06									
BH-3,Trial -1 Wt.(gm Siewe(m Wt.Ret.(% 0 m) gm) Ret. passing JM								Spec. U.Limit	Tolera nce L.Limi t	Toleran ceU.Li mit	Tolerance From JMF		
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100. 00	100	100	100	100			
Mass of Aggregate in bowl after Extraction(gm) (B)	1363.70	19	135.90	9.26	90.74	97.1 7	85	100	92.17	102.17	±5		
Mass of Filler + Filter (gm) (C)	4.30	13.2	319.74	21.7 9	68.95	89.7 1	71	100	84.71	94.71	±5		
Mass of Filter(gm) (D)	3.84	9.5	166.37	11.3 4	57.62	71.1 9	62	76	66.19	76.19	±5		
Mass of Filler(gm) (E=C-D)	0.46	4.75	232.21	15.8 2	41.79	43.3 8	42	60	38.38	48.38	±4		
Mass of Total Aggregate(gm) (F=B+E+K)	1467.55	2.36	145.34	9.90	31.89	32.3 2	30	48	28.32	37.32	±4		
Mass of Bitumen(gm) (G=A-F)	32.45	1.18	93.83	6.39	25.50	10.0 4	22	38	7.04	13.04	±3		
Bitumen Content(%) (H=G/A*100)	2.16	0.6	62.53	4.26	21.23	5.38	16	28	4.38	6.38	±1		
Total Volume Extracted(ml)	3100	0.3	44.39	3.02	18.21		12	20					
Mass of Filler per 100ml of Extraction	Dml of 3.1 0.15 36.81				15.70		8	15					
Mass of Filler per Total Volume Extracted (K)	96.10	0.075	38.82	2.65	13.06		4	10					
Pan 62.00 4					8.83								
		Total	1467.55										

PROJECTNAME:-Causes and Remedial for Asphalt Concrete Pavement Damages a Case Study in Agaro Town from "BulbuloKebele to KoyeBer"												
Host			Р	rogram					Labora	atory		
Jimma Institute of Tech	nology	HIGH	WAY EN	GINEER	ING ST	REAM	Jim	ma Roa	ds maint	enance Lab	oratory	
Placing Station .	386+000			Somn	Data		20	Nov. 15				
riacing Station	380+000			Samp	e Date		30-	100-15				
Aggregate Source:-	BH3 Trial -2			Test D	ate:-		8-	Dec-15				
EXTRACTION OF BITUMEN & MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE Test Method- AASHTO T 30-0												
BH-3,Trial -2	Wt.(gm)	Sieve(mm)	Wt.Ret .(gm)	% Ret.	% passi ng	JMF	Spe c. L.L imit	Spec. U.Li mit	Toler ance L.Lim it	Toleranc eU.Limit	Toleran ce From JMF	
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.0 0	100.0 0	100	100	100	100		
Mass of Aggregate in bowl after Extraction(gm) (B)	1352.00	19	78.00	5.38	94.62	97.17	85	100	92.17	102.17	±5	
Mass of Filler + Filter (gm) (C)	4.30	13.2	258.00	17.79	76.83	89.71	71	100	84.71	94.71	±5	
Mass of Filter(gm) (D)	3.80	9.5	193.00	13.31	63.52	71.19	62	76	66.19	76.19	±5	
Mass of Filler(gm) (E=C-D)	0.50	4.75	239.00	16.48	47.04	43.38	42	60	38.38	48.38	±4	
Mass of Total Aggregate(gm) (F=B+E+K)	1450.10	2.36	154.00	10.62	36.42	32.32	30	48	28.32	37.32	±4	
Mass of Bitumen(gm) (G=A-F)	49.90	1.18	103.00	7.10	29.32	10.04	22	38	7.04	13.04	±3	
Bitumen C ontent(%) (H=G/A*100)	3.33	0.6	71.00	4.90	24.42	5.38	16	28	4.38	6.38	±1	
Total Volume Extracted(ml)	3050	0.3	49.00	3.38	21.04		12	20				
Mass of Filler per 100ml of Extraction	3.2	0.15	42.0	2.90	18.14		8	15				
Mass of Filler per Total Volume Extracted (K)	nss of Filler per Total Volume tracted (K) 97.60 0.		45.00	3.10	15.04		4	10				
	Pan	79.00	5.45	9.59								
	Image: 1450.1 Image: 1450.1 Total 0											

PRO JECTNAME:-Causes and Remedial for Asphalt Concrete Pavement Damages a Case Study in Agaro Town from "BulbuloKebele to KoyeBer"											
Host				Program	1				Labo	ratory	
Jimma Institute of	Technology	HI	GH WAY	ENGINEE	RING ST	REAM	Jin	ıma Ro	ads main	tenance Lab	oratory
Placing Station :-	<u>386+000</u>				Sample	Date:-	30-No	ov-15			
Aggregate Source:-	BH3 AVERA	GE			Test Da	te:-	8-De	c-15			
AVERAGE EXTRACTION	ON OF BITUMEN A	& MECH REGAT	ANICAL A	ANALYSIS	S OF EXT	RACTED		Test N	fethod- A	ASHTO T 30)-06
		Siewe	Wt.Ret.		% passin		Spec. L.Lim	Spe c. U.Li	Tolera nce L.Limi	Tolerance	Tolerance From
BH-3-Avg	Wt.(gm)	(mm)	(gm)	% Ret.	g	JMF	it	mit	t	U.Limit	JMF
Mass of Sample(gm) (A) Mass of Aggregate in bowl after	1500.00	26.5	0.00	0.00	100.00	100.00	100	100	100	100	
Extraction(gm) (B)	1363.70	19	135.90	9.26	90.74	97.17	85	100	92.17	102.17	±5
(gm) (C)	4.30	13.2	319.74	21.79	68.95	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.84	9.5	166.37	11.34	57.62	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.46	4.75	232.21	15.82	41.79	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1467.55	2.36	145.34	9.90	31.89	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	32.45	1.18	93.83	6.39	25.50	10.04	22	38	7.04	13.04	±3
Bitumen Content(%) (H=G/A*100)	2.16	0.6	62.53	4.26	21.23	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3100	0.3	44.39	3.02	18.21		12	20			
Mass of Filler per 100ml of Extraction	3.1	0.15	36.81	2.51	15.70		8	15			
Mass of Filler per Total Volume Extracted (K)	96.10	0.075	38.82	2.65	13.06		4	10			
		Pan	62.00	4.22	8.83						
		Total	1467.55								
100 -											
80 -		Toleranc JMF	e upper lim	it							
60 -			e Lower Lir	nit							5
40 -		% Pass									
20 -		Ħ	*~*	* -	*			\mp			≓ ≣ ≣

Sieve Sizles (mm)

0.1

0 ∔

0.01

a00

10

PROJECT NAME:-Causes a	nd Remedial	for Asphalt Co	oncrete Pav	vement Da	amages a C	Case Study	y in Agar	o Town froi	m "Bulbul	oKebele to KoyeB	er"
Host			Msc	Program	l				Labor	atory	
Jimma Institute of Technol	ogy	HIGH	WAY ENG	INEERI	NG STRE	AM		Jimma R	oads main	tenance Laborato	ry
Placing Station :-		39	6+500			Sample	Date:-	30)-Nov-15		
Aggregate Source:-		AVER	AGE BH4	L		Test Da	te:-		8-Dec-15		
EXTRACTION OF BITUMEN &	MECHANIC	AL ANALYSIS	S OF EXT	RACTED	AGGRE	GATE		Test M	Alethod- A	ASHTO T 30-06	
Test Method- AASHTO T 30-06											
BH-4,Avg	Wt.(gm)	Sieve(mm)	Wt.R et.(g m)	% Ret.	% passin g	JMF	Spec L.Li mit	Spec. U.Limit	Tolera nce L.Lim it	ToleranceU.L imit	Toleranc e From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.0 0	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1374.00	19	58.00	3.96	96.04	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.00	13.2	451.0 0	30.77	65.27	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.73	9.5	175.0 0	11.94	53.33	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.28	4.75	258.0 0	17.60	35.73	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1465.71	2.36	120.0 0	8.19	27.54	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	34.30	1.18	76.00	5.19	22.36	10.04	22	38	7.04	13.04	±3
(H=G/A*100)	2.29	0.6	46.00	3.14	19.22	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3085	0.3	28.00	1.91	17.31		12	20			
Extraction	3.6	0.15	35.0	2.39	14.92		8	15			
Mass of Filler per Total Volume Extracted (K)	111.06	0.075	29.00	1.98	12.94		4	10			
		Pan	50.00	3.41	9.53						
		Total	1465. 71								
100 -										<u>M</u>	
	JM F	· · ·									
	- Tolera	nce upper lir	nit 📃								
	Tolera	nce Lower L	imit								##®
	🛶 % Pas	S									
											Ĕ
40											SS
							\blacksquare				a
20		~~~									<u> </u>
		,~,									<u>≡</u> ≣
0 + + + +	┟┟┟┟┟										+++++¦S
0.01	().1	Sie	eveS	Si zl es	(mn	n)		10		100

PROJECT NAME:-Causes and Remed	dial for Asp	halt Concre	ete Pavem	ent Dam	ages a Cas	e Study i	n Agaro T	Fown from	n "Bulbulo]	Kebele to Ko)yeBer"
Host			Msc	e Progran	n				Laborate	ory	
Jimma Institute of Technology	7	HIGH	WAY ENG	GINEER	ING ST RE	EAM	Ji	mma Roa	ds mainten	ance Labora	tory
Placing Station :-		397+000				Sample	Date:-	3	0-Nov-15		
Aggregate Source:-		BH4 TRIAL-1				Test D	ate:-		9-Dec-15		
EXTRACTION OF BITUMEN & MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE Test Method- AASHTO T 30-06)6			
BH-4,Trial -1	Wt.(gm	Sieve(m m)	Wt.Ret .(gm)	% Ret.	% passing	JMF	Spec. L.Lim it	Spec. U.Lim it	Toleran ce L.Limit	Toleranc e U. Limit	T oleranc e From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.00	100.0 0	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1392.00	19	0.00	0.00	100.00	97.17	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	4.30	13.2	438.06	29.9 7	70.03	89.71	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.95	9.5	171.27	11.7 2	58.32	71.19	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.35	4.75	251.46	0	41.11	43.38	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1461.81	2.36	150.49	10.2 9	30.82	32.32	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	38.19	1.18	87.55	5.99	24.83	10.04	22	38	7.04	13.04	±3
Bitumen Content (%) (H=G/A*100)	2.55	0.6	61.60	4.21	20.62	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3020	0.3	45.00	3.08	17.54		12	20			
Mass of Filler per 100ml of Extraction	2.3	0.15	39.0	2.67	14.87		8	15			
Mass of Filler per Total Volume Extracted (K)	69.46	0.075	40.10	2.74	12.13		4	10			
		Pan	54.00	3.69	8.43						
		Total	1461.8 1								

Г

Host			Msc	Program					Laboratory	7	
Jimma Institute of Technology	7	HIGH WAY ENGINEERING STREA				AM		Jimma Ro	ads maintenar	ice Laborat	ory
Placing Station :-		39	7+000			Sampl	e Date:-	Date:- 30-NOV-15			
Aggregate Source:-		BH4 TRIAL-2				Test Da	te:-		9-Dec-15		
EXTRACTION OF BITUMEN & ME	CHANICAL	ANALYSIS OI	FEXTRA	CTED AG	GGREGA	TE		Test Me	ethod- AASHT	ю т 30-06	
		Test	Method-	алѕнто	Т 30-06						
BH-4,Trial -2	Wt.(gm)	Sieve(mm)	Wt.R et.(g m)	% Ret.	% passi ng	JMF	Spec. L.Li mit	Spec. U.Lim it	Tolerance L.Limit	Tolera nceU.L imit	Toleran ce From JMF
Mass of Sample(gm) (A)	1500.00	26.5	0.00	0.00	100.0 0	100. 00	100	100	100	100	
Mass of Aggregate in bowl after Extraction(gm) (B)	1356.00	19	58.00	3.95	96.05	97.1 7	85	100	92.17	102.17	±5
Mass of Filler + Filter (gm) (C)	3.70	13.2	451.0 0	30.69	65.36	89.7 1	71	100	84.71	94.71	±5
Mass of Filter(gm) (D)	3.50	9.5	175.0 0	11.91	53.46	71.1 9	62	76	66.19	76.19	±5
Mass of Filler(gm) (E=C-D)	0.20	4.75	258.0 0	17.56	35.90	43.3 8	42	60	38.38	48.38	±4
Mass of Total Aggregate(gm) (F=B+E+K)	1469.60	2.36	120.0 0	8.17	27.74	32.3 2	30	48	28.32	37.32	±4
Mass of Bitumen(gm) (G=A-F)	30.40	1.18	76.00	5.17	22.56	10.0 4	22	38	7.04	13.04	±3
Bitumen Content (%) (H=G/A*100)	2.03	0.6	46.00	3.13	19.43	5.38	16	28	4.38	6.38	±1
Total Volume Extracted(ml)	3150	0.3	28.00	1.91	17.53		12	20			
Mass of Filler per 100ml of Extraction	3.6	0.15	35.0	2.38	15.15		8	15			
Extracted (K)	113.40	0.075	29.00	1.97	13.17		4	10			
		Pan	50.00	3.40	9.77						
		T - 4 - 1	1469.								

APPENDIX F. DYNAMIC CONE PENETERATION TEST

Layer Description :-	ALL lavers	First laver s	elected sub g	cade	Date of Test	9 Decemi	ber 2015
-		11150149013			1000	, 2000 m	
Chainage		Lat.7°51	'48.4704''N &	;			
(Km) :-		Long.36	°34'31.4539''E		DCP Zero	Reading :	<u>50 mm</u>
Test spot :-							
Test No. :-	1		1(BH-6)				
					1		
No. Blows	Cumulative No. Blows	Depth in mm	mm/Blow	CBR			
3	3	12	-	-			
13	16	21	1.3	226.6			
18	34	34	1.0	302.0			
22	56	48	0.9	355.4			
6	62	60	1.0	312.6			
37	99	77	0.8	393.9			
23	122	85	0.7	442.5			
7	129	97	0.8	408.2			
16	145	110	0.8	404.4			
9	154	125	0.8	376.5			
8	162	136	0.8	363.3			
10	172	148	0.9	354.0			
5	177	160	0.9	336.0			
8	185	172	0.9	326.2			
8	193	185	1.0	315.8			
7	200	198	1.0	305.2			
5	205	209	1.0	295.9			
11	216	224	1.0	290.6			
11	227	237	1.0	288.5			
12	239	250	1.0	288.0			
9	248	264	1.1	282.7			
10	258	275	1.1	282.3			
12	270	288	1.1	282.1			
4	274	320	1.2	256.3			
5	279	338	1.2	246.6			
3	282	353	1.3	238.2			
4	286	365	1.3	233.4			
2	288	380	1.3	225.3			
2	290	395	1.4	217.8			
1	291	410	1.4	210.2			
1	292	427	1.5	202.1			
1	293	439	1.5	197.0			
2	295	454	1.5	191.5			
2	297	470	1.6	185.9			
2	299	390	1.3	228.0			
1	300	505	1.7	174.2			
1	301	525	1.7	167.7			
1	302	540	1.8	163.4			
1	303	560	1.8	157.8			
1	304	580	1.9	152.6			

1	305	591	1.9	150.1			
2	307	602	2.0	148.2			
4	311	617	2.0	146.4			
6	317	630	2.0	146.1			
9	326	645	2.0	146.8			
10	336	658	2.0	148.4			
13	349	670	1.9	151.6			
14	363	681	1.9	155.3			
8	371	692	1.9	156.3			
Layer No.	Depth (mm)			Layer thickness (mm)	No. Blows	mm/blow	CBR
	From	То					
Layer 1	12	60.0		48.0	62	0.8	396
Layer 2	60	209.0		197.0	205	1.0	315
Layer 3	209	410.0		398.0	291	1.4	217
Layer 4	410	692.0		680.0	371	1.8	159
Remark:	$TRL DCP \Longrightarrow Log_{10} (CBR) = 2.4$	8-1.057Log ₁₀ (mm	/blow) => C	BR=10 ^{2.48} /(mm	1.057 (blow)		

	TRL DYNAMIC CONE PENETROMETER TEST												
Layer Descriptio n :-		First la	ayer selected	l sub grade	Date of Test:	9-Dec. 2015							
Chainage (Km) :-	Lat.7°51'13.2480"N & Long.36°36'10.2293"E			DCP Zero Reading	:	50 mm							
Test spot :-	<u> </u>												
Test No. :-			1(BH-7)										
			· · · · · ·										
No. Blows	Cumulative No. Blows	Depth in mm	mm/Blo w										
3	0	12	-										
6	6	23	3.8										
16	22	35	1.6										
17	39	50	1.3										
17	56	61	1.1										
23	79	76	1.0										
21	100	87	0.9										
13	113	98	0.9										
18	131	110	0.8										
17	148	121	0.8										
18	166	134	0.8										
9	175	220	1.3										
9	184	164	0.9										
8	192	1//	0.9										
/	199	190	1.0										
8	207	204	1.0										
10	217	219	1.0										
10	227	230	1.0										
7	244	258	1.0										
7	251	275	1.1										
5	256	288	1.1										
4	260	300	1.2										
3	263	320	1.2										
2	265	340	1.3										
2	267	365	1.4										
2	269	385	1.4										
2	271	405	1.5										
2	273	430	1.6										
2	275	455	1.7										
1	276	470	1.7										
1	277	490	1.8										
2	279	518	1.9										

TRL DYNAMIC C	ONE PENETROM ETER TEST	[
Layer Description		First 1	ayer selected s	sub grade		Date of Test :	9 Dec. 2015
Chain age (Km) :-	Lat.7°51'12.5568"N & Long.36°35'46.1859"E				DCP Ze :	ro Reading	<u>65</u> <u>mm</u>
Test spot :-							
Test No. :-			1(BH-8)				
		•					
No. Blows	Cumulative No. Blows	Depth in mm	mm/Blow				
2	0	13	-				
3	3	33	11.0				
3	6	45	7.5				
3	9	56	6.2				
18	27	67	2.5				
26	53	79	1.5				
53	106	90	0.8				
68	174	101	0.6				
40	214	114	0.5				
18	232	125	0.5				
12	244	135	0.6				
16	260	146	0.6				
6	266	160	0.6				
8	274	173	0.6				
5	279	278	1.0				
7	286	271	0.9				
7	293	278	0.9				
2	295	280	0.9				
2	297	281	0.9				
2	299	282	0.9				
2	301	283	0.9				
2	303	286	0.9				
2	305	302	1.0				
2	307	317	1.0				
2	309	333	1.1				
5	314	347	1.1				
2	316	364	1.2				
2	318	409	1.3				
2	320	436	1.4				
1	321	457	1.4				
1	322	495	1.5				
4	326	503	1.5				
7	333	530	1.6				
7	340	560	1.6				

9	349	573	1.6				
12	361	587	1.6				
15	376	602	1.6				
8	384	615	1.6				
5	389	630	1.6				
5	394	643	1.6				
7	401	655	1.6				
10	411	666	1.6				
10	421	677	1.6				
	Laver No.	Depth (mm)		Layer thickness	No.	mm/blow	CBR
	,	From	То	(mm)	Blows		
	Layer 1	13	677.0	677.0	421	1.6	183
TRL DCP => Log 10	0 (CBR)=2.48-1.057Log ₁₀ (r	nm/blow) => CBR	=10 ^{2.48} /(mm	1.057 //blow)			

APPENDIX G. TRAFFIC ANALYSIS

Traffic Year 2014

route	Length	Cars	Land Rover	Small Bus	Medium truck	Truck & Trailer	Total
Agaro- Bedele	93	6	67	146	111	55	385

Source: Annual Average Daily Traffic By Road Section Traffic Year 2014 ERA Asset Management Data

Traffic Analysis

Based on the given traffic data the following results are obtained and tabulated as below in the table

Category	2014AADT	TGR(%)	2016AADT	T = 365 AADT1 [(1+i)N - 1] / (i)(millions)	EF=[Axle;/8160] ⁴⁵	ESAs
Car	73.00	2.8	77.145	0.3198416	0	0
Bus	146.00	5	160.965	0.738979	0.48	0.35471
trucks	111.00	4	120.05	0.52608545	1.84	0.967997
Track & track trailer	55.00	2	57.22	0.2286871	7.8	1.783759
Total	385.00					3.106467

From ERA Pavement Design manual Volume I Flexible Pavements and Gravel Roads -2002, Table 2-5: Traffic Classes for Flexible Pavement Design the traffic class is categorized as **T5**

APPENDIX H. PHOTOGRAPHS OF FIELD INSPECTION AND LABORATORY TEST

Measurement of level of severity

Locating of Defects using GPS

Drainage problem

JIT, Highway Engineering Stream

Moisture condition on pavemnt layer

DCP test

JIT, Highway Engineering Stream

DCP test

Base course Gradation

Soaking of sample for CBR Test

After Soaking for 3days CBR Test is following

Marshall STABLITY CBR test machine ready for Testing

During centrifuging of aggregate bitumen sample

using benzene

Asphalt extraction using Centrifugal machine

CBR testing with the laboratory team

Preparation for three point CBR

Absence of shoulder support and drainage problem

Sieve analysis and ready for classification

Asphalt extraction test using filter paper

Soil classification before oven dry

Deep potholes

Less sever potholes

Collecting 50kg of samples from each layers

DCP test