

JIMMA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

JIMMA INSTITUTE OF TECHNOLOGY (JIT) FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHNICAL ENGINEERING STREAM

Causes of Asphalt Pavement Distresses and their Remedies; A Case Study of Mekenajo-Nejo Asphalt Road; Ethiopia.

A thesis submitted to the School of Graduate Studies of Jimma University in Partial fulfillment of the requirements for the Degree of Masters of Science in Civil Engineering (Geotechnical Engineering).

BY: FIKRU BENTI

January, 2018 Jimma, Ethiopia.

JIMMA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

JIMMA INSTITUTE OF TECHNOLOGY (JIT)

FACULTY OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHNICAL ENGINEERING STREAM

Causes of Asphalt Pavement Distresses and their Remedies; A Case Study of Mekenajo-Nejo Asphalt Road; Ethiopia.

A thesis submitted to the School of Graduate Studies of Jimma University in Partial fulfillment of the requirements for the Degree of Masters of Science in Civil Engineering (Geotechnical Engineering).

BY: FIKRU BENTI

Adviser: **Dr. Siraj Mulugeta** (Assistant Professor) Co-Adviser: **Mr. Jemal Jibril** (Msc/PhD Student)

> January, 2018 Jimma, Ethiopia

Declaration

This thesis is my original work and has not been presented for a degree in any other university.

Fikru Benti Dinsa		///
Researcher	Signature	Date

This thesis has been submitted for examination with my approval with university supervisors.

1. Dr. Siraj Mulugeta (Assistant Professor)		//
Principal advisor	Signature	Date
2. Mr. Jemal Jibril (PhD Student)		//
Co-advisor	Signature	Date
3. Mr. Damtew Tsige (PhD Student)		//
Chairperson	Signature	Date
4. Mr. Tadese Abebe (MSc)		//
Internal Examiner	Signature	Date
5. Dr. Argaw Asha (PhD)		//
External Examiner	Signature	Date

Acknowledgements

First of all, I would like to thank the almighty God to get the chance to this program and for letting everything to happen in better way. Then I would like to give my honorable thanks to my Adviser **Dr. Siraj Mulugeta** and co-adviser **Mr. Jemal Jibril** for their initiation as well as support on providing necessary advice and material. Also my deepest thanks go to my families for their unlimited support during all my time.

I wish to express my sincere gratitude to all who have contributed directly or indirectly to the success of this thesis work, without their constant support and help, the study would never have been accomplished on time. For the Ethiopian Roads Construction Cooperation Nekempte District laboratory (Mr.Efrem and his assistants), Ethiopian Road Authority Road Asset Management and professionals of the sector who have extended their genuine support and devoted their golden time, are also on the front line to receive my appreciation.

Finally, my deepest appreciation goes to Jimma University, School of Graduate Studies, Jimma Institute of Technology, School of Civil and Environmental Engineering and Geotechnical Engineering Stream for well organizing and managing the program.

Abstract

This study has been conducted on Mekenajo-Nejo Road segment which is located in west Wollega zone of Oromiya regional state to identify causes of pavement distresses and to recommend remedial measures. A pavement distresses that occurs at the surface can have a number of different causes which must be properly identified before corrective action is taken. The objective of this study is to examine the causes and remedial measures for asphalt pavement distresses. It is also intended to compare the engineering properties of the existing pavement layers with the standards and finally, recommendations on how to address possible problems associated with the different types of pavement distresses and deterioration. This research mainly focus on making assessment of asphalt pavement condition, identifying causes of pavement distresses and proposing remedial measures for the Mekenajo-Nejo roads in west Wollega. Visual distress assessment, DCP tests and other necessary laboratory investigations were carried out on selected test sections in order to have better understanding of the pavement response and come up with identification of probable causes. During condition surveying some localized pavement distresses like potholes, alligator cracks, raveling, Corrugation, rutting and poor drainage condition was observed. The average thickness of each layers were measured and Asphalt 3.9cm, Base 14.5cm, and Sub-base 18.0cm. From field investigation and laboratory test result, the AASHTO and Unified Soil Classification are Subgrade A-7 and SC, subbase A-2-4 and GP and base course A-1-a and GW. Average liquid limit (LL), and plasticity index(PI) in percent were base course (5,5), sub-base(23,7) and subgrade(47,15) and compaction, MDD(g/cc) and OMC(%), base course(1.86,6.63), sub base(1.81,8.26) and sub-grade(1.64,17.77), CBR% were base course 94%, sub-base 86% and sub-grade14% obtained. Based on the laboratory test result and condition survey the following are cause of pavement damages; Subgrade soil, degree of compaction, improper pavement layer thickness, and Poor drainage. Finally surface treatments, Fill cracks with asphalt emulsion slurry, full- depth patching, and removing vegetation close to the ditches are some of the recommendation forwarded.

Keywords:-Pavement distresses, Causes of distresses, remedial measures

Table of Contents
Declarationi
Acknowledgementsii
Abstractiii
Lists of Tables viii
Lists of Figuresix
Lists of Abbreviationsx
CHAPTER ONE
INTRODUCTION
1.1 Background1
1.2 Statement of the Problem
1.3 Objectives
1.3.1 General objective
1.3.2 Specific Objectives
1.4 Research Questions
1.5 Significant of the study
1.6 Scope of the Study
1.7 Structure of the thesis4
CHAPTER TWO5
LITERATURE REVIEW
2.1 Introduction
2.2 Definition of pavement
2.2.1 Types of pavement
2.2.1.1 Flexible (Bituminous Pavements)
2.3 Pavement Functions:
2.4 Factors influencing the performance of a pavement
2.5 Pavement deterioration and its types:7
2.5.1 Cracking:

2.5.2 Surface deformation:	11
2.5.3 Disintegration	13
2.5.4 Surface defects:	14
2.6 Causes of pavement deterioration	
2.7 Performance and Failure Criteria of Asphalt pavement	
2.8 Pavement Evaluation Guidelines	17
2.8.1 Inspection and evaluation plan	17
2.8.2 Documents and literature review	17
2.8.3 Pavement condition survey	17
2.8.4 Experimental work	
2.8.5 Determine probable cause(s) of failure	
2.8.6 Selection of the best maintenance option	
2.8.7 Report on outcomes	19
2.9 Subgrade Soils	19
2.9.1 General Properties Subgrade Soils	19
2.9.2 General Strength- Density-moisture relationship	19
2.9.3 Estimated design moisture content of the sub grade	19
2.9.4 Representative density	20
2.10 Granular pavement materials	20
2.10.1 General property of Granular Materials	20
2.10.2 Properties of unbound pavement materials	21
2.11 Description of Dynamic Cone Penetration Test (DCPT)	25
2.12 Traffic Load	27
2.12.1 Determination of cumulative traffic volumes	27
2.12.2 Axle Load	
CHAPTER THREE	29
RESEARCH METHODOLOGY	29
3.1 Introduction	
3.2 Study setting/Area	
3.3 Climate Condition	

3.4 Population:
3.5 Sampling procedure:
3.6 Study period:31
3.7 Data collection technique:31
3.8 Study design:
3.9 Data process and analysis
3.10 Instruments or Material Used
3.11 Data Collection Process
3.11.1 Field work
3.11.2 Pavement condition survey
3.11.3 Field investigation of the existing pavement thickness
CHAPTER FOUR
RESULTS AND DISCUSSIONS
4.1 Field Test results 38
4.1.1 Pavement Condition Survey results
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions47
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey47
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder49
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder494.3.3 Grain size Analysis49
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder494.3.4 Atterberg Limits50
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder494.3.4 Atterberg Limits504.3.5 Compaction Test50
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder494.3.4 Atterberg Limits504.3.5 Compaction Test504.3.6 California Bearing Ratio (CBR) Test51
4.1.1 Pavement Condition Survey results384.2 Laboratory Test results404.2.1 Grain Size Analysis404.2.2 Atterberg's limit test results444.2.3 Laboratory Compaction test results444.2.4 California Bearing Ratio (CBR) Tests464.2.5 Dynamic Cone penetration test results464.3 Discussions474.3.1 Discussion on Pavement condition Survey474.3.2 Drainage and shoulder494.3.4 Atterberg Limits504.3.5 Compaction Test504.3.6 California Bearing Ratio (CBR) Tests514.3.7 Dynamic Cone penetration test results analysis:51

CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
5.2 Recommendation
5.3 Proposed for future research
REFERENCES
Appendix A: Grain size analysis data
Appendix B: Atterberg limit test
Appendix C: Modified Proctor Test
Appendix D: California Bearing Ratio Test105
Appendix E: Traffic Data Analysis141
Appendix F: Dynamic Cone penetration test result
Appendix G: Photographs of Laboratory and Field during test149

Lists of Tables

Table 2.1 Subgrade strength classes .	20
Table 2.2 Properties of unbound materials	21
Table 2.3 Grading limits for graded crushed stone base course materials (GB1)	22
Table 2.4 Recommended particle size of rocks for use as base course material (GB2,	
GB3),	23
Table 2.5 Recommended plasticity characteristics for granular sub-bases (GS)	
Table 2.6 Typical particle size distributions for sub-bases (GS).	25
Table 3.1 Existing thickness of the materials of the road layers	38
Table 4.1 Test pits location of distress and non-distress	38
Table 4.2 Comparison with ERA specification of Base Course Material.	40
Table 4.3 Comparison with ERA Pavement design manual specification of Sub-base	
course	41
Table 4.4 Wash gradation and hydrometer results of sub-grade soil materials	42
Table 4.5 Atterberg's limit test results	44
Table 4.6 Compaction Tests Result	44
Table 4.7 California Bearing Ratio (CBR) Test results	46
Table 4.8 Dynamic Cone penetration test results	47
Table 4.9 Rating of road failure on Mekenajo to Nejo road	48
Table 4. 10 Soil classifications according to AASHTO and Unified soil classification	
system.	52
Table 4.11 Summary of laboratory test results of soil samples of distress type's	
boreholes with base, sub-base and sub-grade layers	53
Table 4.12 Summery of relationship obtained between soil properties and road	
failures and suggested maintenance	54

Lists of Figures

Figure 2.1: Load distribution of flexible pavement
Figure 2.2: Alligator Cracking
Figure 2.3 Longitudinal cracking
Figure 2.4 Transverse cracks
Figure 2.5 Block cracks
Figure 2.6 Slippage cracks
Figure 2.7 Reflective cracking
Figure 2.8 Edge cracks
Figure 2.9 Rutting
Figure 2.10.Corrugation and Shoving
Figure 2.11 Potholes
Figure: 2.12 patch
Figure 2.13: Raveling of asphalt surface
Figure: 2.14 Bleeding
Figure: 2.15Polishing
Figure 2.16: Delamination of an overlay
Figure 3.1 Project Location Area Map
Figure 3.2 Borehole(BH-1) at station 129+400
Figure 3.3 Borehole (BH-3) at station 150+300
Figure 3.4 Borehole (BH-2) at station 140+700
Figure 3.5 Borehole(BH-4) at station 165+200
Figure 36 Borehole BH-5 at station 172+300
Figure 3.7 Borehole (BH-6) at station 126+400
Figure 4.1: Pothole (a) and Patching (b)
Figure 4.2: Raveling (a) and stripping (b)
Figure 4.3 Potholes (a) and Corrugation (b)
Figure 4.4 Rutting (a) and Wearing (b)
Figure 4.5 Potholes (a) and Edge failure (b)
Figure 4.6 Wash gradation results of Base Course materials
Figure 4.7Wash gradation results of sub-base course materials
Figure 4.8 Wash gradation results of subgrade soil materials

Lists of Abbreviations

- AASHTO: American Association of State Highway and Transportation Officials;
- **ASTM:** -American Society for Testing Materials;
- **BH: -** Boreholes;
- **CBR:** California Bearing Ratio
- CC: Coefficient of Curvature
- **CU:** -Coefficient of Uniformity
- **DCP:** Dynamic Cone Penetration
- ERA: -Ethiopian Road Authority
- GB: Granular Base course,
- GC: Granular Capping layer
- $\ensuremath{\textbf{GS:}}\xspace$ Granular Sub base layer
- $\ensuremath{\textbf{GW:}}-\ensuremath{\textbf{Well}}$ graded gravel
- JIT: Jimma Institute of Technology
- LL: Liquid Limit
- **MDD: -** Maximum Dry Density
- **OMC: -** Optimum Moisture Content
- PI: -Plastic Index
- PL: Plastic Limit
- SC: Sandy Clay soil
- TRRL: -Transport and Road Research Laboratory;
- USCS: -Unified Soil Classification System;

CHAPTER ONE INTRODUCTION

1.1 Background

Asphalt pavements provide a smooth surface over which vehicles may safely pass under all climatic conditions for the specific performance period of the pavement. At the age of globalization, transportation is fundamental to the development and operation of any society. It permits that geographically distant resources to become accessible, connect people, exchange of technology and also goods needed in different places. This make evident that the economic growth of any society in any part of the world is directly related to the availability of transportation. Road improvements bring immediate and sometimes dramatic benefits to road users. Therefore, a society without an advanced transportation system remains backward from the rest of the world, [4].

Road failure is defined as the inability of a normal road to carry out its functional service by not providing smooth running surface for operating vehicles. Factors that affect the pavement performances are climate, construction material properties, Workmanship, structure and Traffic load. Movement of subgrade is the major causes of road pavement failure which makes road network unsafe and not suitable to road users, [5].

Due to the Economic growth of a country the movement of traffic volume and loads on roads are going on increasing from year to year with alarming rate all over the world. Such heavy traffic growth demands need better performance roads for efficient transport of agricultural, commercial and industrial products without delay from one location to others. Factors affecting the pavement performance are climate, material properties, structure and traffic load. The repetitive traffic loading that the road experiences during its service life combined with environmental factors causes deformation, fatigue cracking, instability and other forms of deterioration which ultimately degrade/reduces the serviceability and durability of pavement structures, [6].

The researcher would like to ascertain whether certain types of pavement distress are progressive, lead to eventual failure of the road. Excessive movement of flexible pavements, which eventually result in uneven riding qualities, may mostly be caused by poor qualities of the sub-grade, sub-base, base course or wearing course and due to improper drainage system, [7]. Considering remedial measures for defects or reconstruction or overlay, it is imperative that the engineer takes into account, various parameters that are necessary for proper evaluation of the existing pavement condition.

This study determined the causes of asphalt pavement distresses and their remedial measures along the route "Mekenajo to Nejo Towns" in West Wollega with estimated length of 61km through Visual distress assessment, DCP tests and other necessary laboratory investigations on selected test sections.

1.2 Statement of the Problem

There is no doubt that the quality and efficiency of roads affect the quality of life, the health of the social system and the continuity of economic and business activity. Deterioration and catastrophic failure of these roads may occur because of aging, overuse, misuse and/or mismanagement. Therefore, their maintenance and preservation should have a great national interest.

Among the national roads network of Ethiopia, Mekenajo-Nejo road segment is currently under severely damaged condition so that the communities leading their life by selling coffee cash crop to market as well as the general public travelling through this route has been affected. There are a significant number of asphalt pavement damages along Mekenajo-Nejo road and this pavement road suffers from a series of distresses and the pavement surface is not comfortable for riding.

This problem decreases its efficiency and safety, loss of life, property, increase vehicles operation cost, and human injuries through accidents, environmental pollution and degradation, Impedance of human movement and the flow of economic activities and numerous cases of armed robbery attacks along affected areas. The road has been experiencing different types of distresses and deterioration and causing traffic accident, increase vehicle operation cost and travel time and decrease comfort to passengers. Therefore, it is crucial to investigate the causes of asphalt pavement distresses and assess their remedial measures.

1.3 Objectives

1.3.1 General objective

To investigate the causes of pavement distresses on Mekenejo-Nejo asphalt road and their remedial measures.

1.3.2 Specific Objectives

- > To identify type of distresses occurred in the study area.
- > To identify major causes of asphalt pavement distresses and subgrade failure.
- To estimate the engineering performance of the existing pavement layers and compare with the standard specifications.
- To suggest remedial measures for improving the existing condition of the asphalt pavement.

1.4 Research Questions

- 1. What are the major asphalt pavement distresses on Mekenejo-Nejo road?
- 2. How do you identify major causes of distresses on pavement with relation to condition of Subgrade, sub-base, base, pavement, drainage, poor specification and poor compaction?
- 3. What are the remedial measures to improve the existing condition of the asphalt Pavement?

1.5 Significant of the study

- Provide detail information on how the geotechnical properties of sub-grade/subbase/base/pavement layer or any other affect pavement performance.
- Be helpful for stakeholders that directly involving in roads construction work and professionals evaluating similar project and Provide useful information in order to solve problems of failure and create safe government budget and transportation with proper designing period for ERA and any other agency who out score and control road projects.

1.6 Scope of the Study

The study was conducted about specifically on the paved roads along Mekenejo-Nejo road of 61km in West Wollega and a program of field and laboratory testing was performed to identify the causes of distresses and prevention for each of the distress types. Based on the

existing theories and principles this research addresses the general objectives to investigate the causes of damages on the pavement and their remedies on asphalt pavement road. For this intended purpose, Soil samples were collected from the worst road failure locations and nondistress pavement location; the soil samples collected were analyzed based on geotechnical analysis and field test were carried out in order to compare the results. The most important works to be done are outlined in the research method. Tests were conducted and analyzed; the results of Laboratory and field tests were compared with ERA Standard Specifications. The following tests were done on pavement layers:- Particle size distribution/Grain size analysis, Atterberg Limit, Moisture - Density Relation of Soil (compaction test), CBR (both disturbed and DCP), Natural moisture content, Soil classification, and thickness measurement.

1.7 Structure of the thesis

This research study comprised of five chapters and their contents are outlined below: In the first chapter an overview of the background of the research, statement of the problem, research questions, objective, significance of the study and scope of the study was discussed. The second chapter deals with the literature review about characteristics of pavement condition and Properties of subgrade, sub-base course and base course materials, discussion was made about pavement materials especially subgrade materials related to subsurface courses material strength, stiffness and finally about the pavement distress types. The third chapter deals with the research methods. The fourth chapter deals with assessments of test results that are gathered from field and laboratory tests and analysis and discussion was carried out, whether it satisfies the requirements set in the specification of the Ethiopian Road Authority Manual and remedial measure to be taken on the failure section of a road. The last chapter five, a conclusions and recommendations are derived from results and discussions.

CHAPTER TWO LITERATURE REVIEW

2.1 Introduction

This chapter provides a review of literature on the damages and its causes on asphalt pavement and proposed remedial measures. The main purpose of a literature review is to establish the academic and research areas that are relevant to the subject under study.

2.2 Definition of pavement

Pavement is that with which anything is paved; a floor or covering of solid material, laid so as to make a hard and convenient surface for travel; a paved road or sidewalk; a decorative interior floor of tiles colored bricks. The pavement consists of the higher quality (usually imported/borrowed) material above the sub-grade including the wearing course, the base course, and the sub base, [8].

2.2.1 Types of pavement

Pavements are typically divided into the following three general categories: flexible, rigid and unpaved (gravel or dirt), [8].

2.2.1.1 Flexible (Bituminous Pavements)

A flexible pavement are constructed of several layers of natural granular material covered with one or more waterproof bituminous surface layers, and as the name imply, is considered to be flexible. A flexible pavement will flex (bend) under the load of a tire. The objective with the design of a flexible pavement is to avoid the excessive flexing of any layer, failure to achieve this will result in the over stressing of a layer, which ultimately will cause the pavement to fail. In flexible pavements, the load distribution pattern changes from one layer to another, because the strength of each layer is different. The strongest material (least flexible) is in the top layer and the weakest material (most flexible) is in the lowest layer materials, [8].

Figure 2.1: Load distribution of flexible pavement. [8]

2018

2.3 Pavement Functions:

The functions of the pavement are:-

a) Provide a reasonably smooth riding surface:

A smooth riding surface (Low Roughness) is essential for riding comfort, and over the years it has become the measure of how road users perceive a road. Roughness can arise from a number of causes, most often however it is from pavement distress due to structural deformation. Provide Adequate Surface Friction (Skid Resistance): Safety, especially during wet conditions can be linked to a loss of surface friction between the tire and the pavement surface. A pavement must therefore provide sufficient surface friction and texture to ensure road user safety under all conditions.

b) Protect the Subgrade:

The supporting soil beneath the pavement is commonly referred to as the subgrade, should it be over-stressed by the applied axle loads it will deform and lose its ability to properly support these axle loads. Therefore, the pavement must have sufficient structural capacity (strength and thickness) to adequately reduce the actual stresses so that they do not exceed the strength of the Subgrade. The strength and thickness requirements of a pavement can vary greatly depending on the combination of sub grade type and loading condition (magnitude and number of axle loads).

c) Provide waterproofing:

The pavement surfacing acts as waterproofing surface that prevent the underlying support layers including the sub grade from becoming saturated through moisture ingress. When saturated, soil loses its ability to adequately support the applied axle loads, which will lead to premature failure of the pavement [8].

2.4 Factors influencing the performance of a pavement

1) **Traffic:** Traffic is the most important factor influencing pavement performance. The performance of pavements is mostly influenced by the loading magnitude, configuration and the number of load repetitions by heavy vehicles. The damage caused per pass to a pavement by an axle is defined relative to the damage per pass of a standard axle load, which is defined as an 80 KN single axle load (E80). Thus a pavement is designed to withstand a certain

number of standard axle load repetitions (E80's) that will result in a certain terminal condition of deterioration, [9].

- 2) Moisture (water): Moisture can significantly weaken the support strength of natural gravel materials, especially the subgrade. Moisture can enter the pavement structure through cracks and holes in the surface, laterally through the subgrade, and from the underlying water table through capillary action. The result of moisture ingress is the lubrication of particles, loss of particle interlock and subsequent particle displacement resulting in pavement failure, [9].
- **3) Subgrade:** The subgrade is the underlying soil that supports the applied wheel loads. If the subgrade is too weak to support the wheel loads, the pavement will flex excessively which ultimately causes the pavement to fail. If natural variations in the composition of the subgrade are not adequately addressed by the pavement design, significant differences in pavement performance will be experienced [9].
- 4) Construction quality: Failure to obtain proper compaction, improper moisture conditions during construction, quality of materials, and accurate layer thickness (after compaction) all directly affect the performance of a pavement. These conditions stress the need for skilled staff and the importance of good inspection and quality control procedures during construction, [9].
- 5) Maintenance: Pavement performance depends on what, when, and how maintenance is performed. No matter how well the pavement is built, it will deteriorate over time based upon the mentioned factors. The timing of maintenance is very important, if a pavement is permitted to deteriorate to a very poor condition, as illustrated by point B in Error! Reference source not found, then the added life compared with point A, is typically about 2 to 3 years, [9].

2.5 Pavement deterioration and its types:

Pavement deterioration is the process by which distress (defects) develop in the pavement under the combined effects of traffic loading and environmental conditions. A defect refers to the visible evidence of an undesirable condition in the pavement affecting serviceability, structural condition or appearance. Correct diagnosis of the cause of defects can only be made after careful inspection of the pavement by an observer on foot, and can be seen the defects at various angles, heights and distance, [10].

2018

The four major categories of common asphalt pavement surface distresses are:

- 1) Cracking,
- 2) Surface deformation,
- 3) Disintegration (potholes, etc.), and
- 4) Surface defects (bleeding, etc.).

2.5.1 Cracking:

The most common types of cracking are: Fatigue cracking, Longitudinal, cracking Transverse cracking, Block cracking, Slippage cracking, Reflective cracking, and Edge cracking.

1. Fatigue cracking (Alligator cracking): Fatigue cracking is commonly called alligator cracking. This is a series of interconnected cracks creating small, irregular shaped pieces of pavement. It is caused by failure of the surface layer or base due to repeated traffic loading (fatigue). Eventually the cracks lead to disintegration of the surface, as shown in Figure. The final result is potholes. Alligator cracking is usually associated with base or drainage problems. Small areas may be fixed with a patch or area repair, [17].

Figure 2.2: Alligator cracking, [From study Area].

2. Longitudinal cracking: Longitudinal cracks are long cracks that run parallel to the center line of the roadway. These may be caused by frost heaving or joint failures or they may be load induced. Understanding the cause is critical to selecting the proper repair. Multiple parallel cracks may eventually form from the initial crack. This phenomenon, known as deterioration, is usually a sign that crack repairs are not the proper solution, [17].

Figure 2.3 Longitudinal cracking, [11].

4. Transverse cracking: Transverse cracks form at approximately right angles to the centerline of the roadway. They are regularly spaced and have some of the same causes as longitudinal cracks. Transverse cracks will initially be widely spaced (over 20 feet apart). They usually begin as hairline or very narrow cracks and widen with age. If not properly sealed and maintained, secondary or multiple cracks develop, parallel to the initial crack. The reasons for transverse cracking, and the repairs, are similar to those for longitudinal cracking. In addition, thermal issues can lead to low-temperature cracking if the asphalt cement is too hard, [17].

Figure 2.4 Transverse cracks, [17].

5. **Block cracking:** Block cracking is an interconnected series of cracks that divides the pavement into irregular pieces. This is sometimes the result of transverse and longitudinal cracks intersecting. They can also be due to lack of compaction during construction. Low severity block cracking may be repaired by a thin wearing course. As the cracking gets more severe, overlays and recycling may be needed. If base problems are found, reclamation or reconstruction may be needed, [13].

Figure 2.5 Block cracks, [13].

6. **Slippage cracking:** Slippage cracks are half-moon shaped cracks with both ends pointed towards the oncoming vehicles. They are created by the horizontal forces from traffic. They are usually a result of poor bonding between the asphalt surface layer and the layer below. The lack of a tack coat is a prime factor in many cases. Repair requires removal of the slipped area and repaving. Be sure to use a tack coat in the new pavement.[13]

Figure 2.6 Slippage cracks [13].

7. **Reflective cracking:** Reflective cracking occurs when a pavement is overlaid with hot mix asphalt concrete and cracks reflect up through the new surface. It is called reflective cracking because it reflects the crack pattern of the pavement structure below. As expected from the name, reflective cracks are actually covered over cracks reappearing in the surface. They can be repaired in similar techniques to the other cracking noted above. Before placing any overlays or wearing courses, cracks should be properly repaired, [14].

Figure 2.7 Reflective Cracking [14].

8. **Edge cracking:** Edge cracks typically start as crescent shapes at the edge of the pavement. They will expand from the edge until they begin to resemble alligator cracking. This type of cracking results from lack of support of the shoulder due to weak material or excess moisture. They may occur in a curbed section when subsurface water causes a weakness in the pavement. At low severity the cracks may be filled. As the severity increases, patches and replacement of distressed areas may be needed, [14].

Figure 2.8 Edge cracks, [14].

2.5.2 Surface deformation:

Pavement deformation is the result of weakness in one or more layers of the pavement that has experienced movement after construction. The deformation may be accompanied by cracking. Surface distortions can be a traffic hazard. The basic types of surface deformation are: Rutting, Corrugations, Shoving, Depressions and Swell.

1. **Rutting:** Rutting is the displacement of pavement material that creates channels in the wheel path. Very severe rutting will actually hold water in the rut. Rutting is usually a failure in one or more layers in the pavement. The width of the rut is a sign of which layer has failed.

Figure 2.9 Rutting, [15].

2. Corrugation: Corrugation is referred to as wash boarding because the pavement surface has become distorted like a washboard. The instability of the asphalt concrete surface course may be caused by too much asphalt cement, too much fine aggregate, or rounded or smooth textured course aggregate. Corrugations usually occur at places where vehicles accelerate or decelerate. Minor corrugations can be repaired with an overlay or surface milling. Severe corrugations require a deeper milling before resurfacing, [16].

Figure 2.10 Corrugation and Shoving, [16].

- **3.** Shoving: Shoving is also a form of plastic movement in the asphalt concrete surface layer that creates a localized bulging of the pavement. Locations and causes of shoving are similar to those for corrugations. Figure shows an example of shoving. Repair minor shoving by removing and replacing. For large areas, milling the surface may be required, followed by an overlay, [16].
- 4. **Depressions:** Depressions are small, localized bowl-shaped areas that may include cracking. Depressions cause roughness, are a hazard to motorists, and allow water to collect. Depressions are typically caused by localized consolidation or movement of the supporting layers beneath the surface course due to instability. Repair by excavating and rebuilding the localized depressions. Reconstruction is required for extensive depressions, [16].
- **5. Swell:** A swell is a localized upward bulge on the pavement surface. Swells are caused by an expansion of the supporting layers beneath the surface course or the subgrade. The expansion is typically caused by frost heaving or by moisture. Subgrades with highly plastic clays can swell in a manner similar to frost heaves (but usually in warmer months). Repair swells by excavating the inferior subgrade material and rebuilding the removed area, [16].

2.5.3 Disintegration

The progressive breaking up of the pavement into small, loose pieces is called disintegration. If the disintegration is not repaired in its early stages, complete reconstruction of the pavement may be needed. The two types of disintegration are: Potholes and Patches.

1. **Potholes**: Potholes are bowl-shaped holes similar to depressions. They are a progressive failure. First, small fragments of the top layer are dislodged. Over time, the distress will progress downward into the lower layers of the pavement. Potholes are often located in areas of poor drainage, as seen in Figure. Potholes are formed when the pavement disintegrates under traffic loading, due to inadequate strength in one or more layers of the pavement, usually accompanied by the presence of water. Most potholes would not occur if the root cause was repaired before development of the pothole. Repair by excavating and rebuilding. Area repairs or reconstruction may be required for extensive potholes, [13].

Figure 2.11 Potholes, [From study site].

2. **Patches:** A patch is defined as a portion of the pavement that has been removed and replaced. Patches are usually used to repair defects in a pavement or to cover a utility trench. Patch failure can lead to a more widespread failure of the surrounding pavement. Some people do not consider patches as a pavement defect. While this should be true for high quality patches as is done in a semi-permanent patch, the throw and roll patch is just a cover. The underlying cause is still under the pothole. To repair a patch, a semi-permanent patch should be placed. Extensive potholes may lead to area repairs or reclamation. Reconstruction is only needed if base problems are the root source of the potholes, [13].

Figure: 2.12 patch, [13].

2.5.4 Surface detects:

Surface defects are related to problems in the surface layer. The most common types of surface distress are: Raveling, Bleeding, Polishing and Delamination.

1. **Raveling:** Raveling is the loss of material from the pavement surface. It is a result of insufficient adhesion between the asphalt cement and the aggregate. Initially, fine aggregate breaks loose and leave small, rough patches in the surface of the pavement. As the disintegration continues, larger aggregate breaks loose, leaving rougher surfaces. Raveling can be accelerated by traffic and freezing weather. Some raveling in chip seals is due to improper construction technique. This can also lead to bleeding. Repair the problem with a wearing course or an overlay, [17].

Figure 2.13: Raveling of asphalt surface, [From study road].

2. Bleeding: Bleeding is defined as the presence of excess asphalt on the road surface which creates patches of asphalt cement. Excessive asphalt cement reduces the skid-resistance of a pavement, and it can become very slippery when wet, creating a safety hazard. This is caused by an excessively high asphalt cement content in the mix, using an asphalt cement with too low a viscosity (too flow able), too heavy a prime or tack coat, or an improperly applied seal coat. Bleeding occurs more often in hot weather when the asphalt cement is less viscous (more flow able) and the traffic forces the asphalt to the surface, [13].

Figure: 2.14 Bleeding, [13].

3. **Polishing:** Polishing is the wearing of aggregate on the pavement surface due to traffic. It can result in a dangerous low friction surface. A thin wearing course will repair the surface, [13].

Figure: 2.15 Polishing, [13].

4. Delamination: Loss of a large area of pavement surface, usually there is a clear separation of the pavement surface from the layer below. Slippage cracking may often occur as a result of poor bonding or adhesion between layers, [15].

Figure 2.16: Delamination of an overlay, [15].

2.6 Causes of pavement deterioration

- Sudden increase in traffic loading especially on new roads where the design is based on lesser traffic is a major cause of cracking. After construction of good road, traffic of other roads also shifts to that road. This accelerates the fatigue failure (Alligator Cracking).
- Temperature variation ranging from 50° C to below zero conditions in the plain areas leads to bleeding and cracking.
- Provision of poor shoulders leads to edge failures.
- Provision of poor clayey subgrade results in corrugation at the surface and increase in unevenness.
- Poor drainage conditions especially during rainy seasons, force the water to enter the pavement from the sides as well as from the top surface. In case of open graded bituminous layer, this phenomenon becomes more dangerous and the top layer gets detached from the lower layers
- .If the temperature of bitumen/bituminous mixes is not maintained properly, and then it also leads to pavement failure. Overheating of bitumen reduces the binding property of bitumen.

2.7 Performance and Failure Criteria of Asphalt pavement

Pavement performance evaluation is an important activity in the maintenance and rehabilitation works. It includes evaluation of existing distresses, road roughness, structural

adequacy, traffic analysis, material testing and study of drainage condition. This section deals with types of bituminous surfaces, types and causes of distresses, [18].

2.8 Pavement Evaluation Guidelines

The objective of this study is to establish guidelines describing systematic method for inspection and evaluation of pavement failures and to find out the possible causes of these failures. The proposed method has some basic steps are: (I) Inspection and Evaluation plan, (II) Documents and literature review, (III) Pavement condition survey (IV) Experimental work, (V) Determine probable cause(s) of failure (VI) Select the best maintenance option and (VII) Report on outcomes.

2.8.1 Inspection and evaluation plan

Planning is important to ensure that inspection and evaluation of pavement failures were carried out their intended tasks within a reasonable time frame and at the lowest cost. When planning the evaluation program, a general review of the problem should first be conducted, along with the possible scope of inspection and maintenance work that may need to be carried out. This plan should be drafted, addressing goals, budgeting constraints, operations planning and the investigative synthesis. The technical team should be decided upon, [19].

2.8.2 Documents and literature review

Reviewing documents and literature may involve the inspection of plans, pavement history, drainage design, pavement materials information and specifications, previous materials tests results, construction and previous maintenance records, testing methods and frequencies, and other relevant information such as traffic volumes and composition, soil or geological records, and temperature, weather or rainfall data. These collected data are very important for both the field survey task and the evaluation of pavement failures.

2.8.3 Pavement condition survey

The pavement condition survey may include visual examination of pavement failures, the effectiveness of drainage structures and other details such as topography and alignment should be recorded, and the soil and geology of the surrounding areas may also be of importance in determining the causes of the pavement failure. An effective visual survey of pavement failures is essential, to ensure that the cause of the failure can be diagnosed efficiently and it is a guide to what testing should be carried out and where. In addition, it will

provide valuable site information that may have an influence on the best maintenance operation. Distress surveying should be carried out on failed pavement sections to find out the amount, type, and condition or severity level of distress, as well as the condition or effectiveness of any previously applied distress treatments, [20].

2.8.4 Experimental work

The experimental work includes filed and laboratory testing. Field testing program can assess the strength of the pavement materials. The conventional field tests may be carried out include Dynamic Cone Penetration (DCP) test,. Coring on pavement structure may be used to provide material samples for laboratory testing, and also allows visual examination of pavement layers. Laboratory testing should be conducted on representative samples taken from pavement layers to determine physical characteristics of the materials. The tests on soils and aggregates may aim to measure the index properties by particle size and shape, the plasticity and specific gravity and to assess the strength by the compaction and California Bearing Ratio (CBR) tests. [20].

2.8.5 Determine probable cause(s) of failure

It is quite important to find out the probable cause(s) of the pavement failure being investigated. The probable causes are normally stated, and there are often multiple factors that contributed to the failure. The first stage in determining the failure cause(s) is the investigative synthesis, where all the information gathered is listed. From this listed information, it is then necessary to determine which information supports or refutes each of the possible failure hypotheses. This may be initially done by considering general failure causes, such as those related to construction, materials, design, or the environment.

2.8.6 Selection of the best maintenance option

To select the best maintenance option, it is necessary to list a variety of alternatives that may be feasible, from an initial examination of the conditions. These possible alternatives can then be subjected to much more detailed examination of economic, design and construction factors. Other factors to consider include whether the treatment is accepted local practice, and whether a long lasting or simply an economical short-term treatment is required. Treatments may include surface treatments, overlays, in-situ stabilization, or any other maintenance treatments, [20].

2.8.7 Report on outcomes

A report on the outcomes of the pavement evaluation should be produced, as this enables others to learn from the failures, and should help reduce the chances of similar failures in the future. Information that should be included a general description of the project and its location, failures details, a description of any testing carried out, the probable cause(s) of failures expected, how it could be prevented in the future, and possible maintenance options

2.9 Subgrade Soils.

2.9.1 General Properties Subgrade Soils

Although a pavement's wearing course is important component of a road, the success or failure of a pavement is dependent on sub grade material upon which the pavement structure is built. Thus, the sub grade must be able to support the loads transmitted from the pavement structure without progressing excessive settlement. Its performance generally depends on its load bearing capacity, moisture content and volume changes. Moreover, its load bearing capacity depends on the degree of compaction, moisture content and soil type. Hence, the relationships among the strength, density and moisture content should be studied thoroughly, [21].

2.9.2 General Strength- Density-moisture relationship

Desirable properties that the sub grade should possess include strength, drainage, effortlessness of compaction, permanency of compaction, and permanency of strength. Since sub grades vary considerably, it is necessary to make a thorough study of the soils in place and, from this, to determine the design of the pavement. The determination of the sub grade strength in order to use for the design of the road pavement requires ascertaining the density-moisture content strength relationships specific to the sub grade soils encountered along the road under study. It is a must to select the density which will be representative of the compacted sub grade and the moisture content during and after construction, [21].

2.9.3 Estimated design moisture content of the sub grade

Moisture conditions in the sub grade are controlled primarily by the local environment. Since design concepts for flexible pavements are based upon model-prototype principles, wherein samples of soil are tested in the laboratory simulated field condition, it is necessary to predict the optimum moisture content of the sub grade so that this value can be used in the testing schedule, [21].

2.9.4 Representative density

The strength of the road sub grade for flexible pavements is commonly assessed in terms of the California Bearing Ratio (CBR) and this is dependent on the type of soil, its density, and its moisture content. Direct assessment of the likely strength or CBR of the sub grade soil under the completed road pavement is often difficult to make. Its value, however, can be inferred from an estimate of the density and moisture content of the sub grade together with knowledge of the relationship between strength, density and moisture content for the soil in question. This relationship must be determined in the laboratory. The density of the sub grade soil can be controlled within limits by compaction at suitable moisture content at the time of construction. According to the ERA Pavement Design Manual, [21], It is recommended that the top 25cm of all sub grades should be compacted to a relative density of at least 100% of the maximum dry density achieved by ASTM Test Method D 698 (light or standard compaction). The structural manual catalog given in the ERA Pavement Design Manual Volume I, requires that the sub grade strength for design be assigned to one of six strength classes reflecting the sensitivity of thickness design to sub grade strength.

Class	Range (CBR %)
S1	2
S2	3-4
\$3	5-7
S4	8-14
S5	15 - 29
S6	30+

Table 2.1 Subgrade strength classes [21].

2.10 Granular pavement materials

2.10.1 General property of Granular Materials

Granular pavement material is one of the important components of a flexible pavement structure. This material include crushed rock, semi-crushed, mechanically stabilized, and modified or naturally occurring 'as dug' or 'pit run' gravels. The suitability of rocks for road construction depends on their mineral, chemical and physical properties, [21].

2.10.2 Properties of unbound pavement materials

Unbound granular materials are generally used in road pavements as base and sub-base courses, which are as important a component of roads as the surface composition and foundations. As a base course, they play a structurally important role, especially on medium and low volume roads. As a sub-base, they protect the soil, and act as a working platform and an insulating layer against frost action. Pavement failure due to inadequate support of upper layers, or to rutting, will usually necessitate complete pavement reconstruction, and not just the repair of the pavement surface where the problem is visible. According to the ERA Pavement Design Manual, the main categories of unbound pavement materials with a brief summary of their characteristics are shown in Table 2.2, [21]

Code	Description	Summary of Specification
GB1	Fresh, crushed rock	Dense graded, unweather crushed
		stone, non-plastic parent fines
GB2	Crushed weathered rock, gravel or	Dense grading, PI<6, soil or parent
	boulders	fines
GB3	Natural coarsely graded granular material, including processed and modified gravels.	Dense grading, PI < 6 CBR after soaking > 80
GS	Natural gravel	CBR after soaking > 30
GC	Gravel or gravel- soil	Dense graded; CBR after soaking>15

Fable 2.2 Properties	of unbound	l materials,	[23].
-----------------------------	------------	--------------	-------

Note:-These specifications are sometimes modified according to site conditions, material type and principal use. Legend: GB = Granular base course, GS = Granular sub-base, GC = Granular capping layer.

i. Base course materials

The materials used for base courses such as crushed quarried rock, crushed and screened, mechanically stabilized, modified or naturally occurring "as dug" or "pit run" gravels can be used as a base course material. According to the ERA Pavement Design Manual the properties for base course materials is given below.

a. Crushed stone Graded crushed stone (GB1). This material is produced by crushing fresh, quarried rock (GB1) and may be an all-in product, usually termed a 'crusher-run', or alternatively the material may be separated by screening and recombined to produce a desired

2018

particle size distribution, as per the specifications. Alternate gradation limits, depending on the local conditions for a particular project, are shown in Table 2.3, [21].

Table 2.3 Grading limits for graded crushed stone base course materials (GB1), [2	23].
---	------

	Percentage by mass of total aggregate passing test sieve			
Test sieve(mm)	Nominal maximum particle size			
	37.5mm	28mm	20mm	
50	100	-	-	
37.5	95-100	100	-	
28	-	-	100	
20	60-80	70-85	90-100	
10	40-60	50-65	60-75	
5	25-40	35-55	40-60	
2.36	15-30	25-40	30-45	
0.425	7-19	12-24	13-27	
0.075	5-12	5-12	5-12	

Note. For paver-laid materials lower fines content may be accepted. The fine fraction of a GB1 material should be non-plastic. The in situ dry density of the placed material should be a minimum of 98% of the maximum dry density obtained in the ASTM Test Method D 1557 (Heavy Compaction). The compacted thickness of each layer should not exceed 200mm. Crushed stone base courses constructed with proper care with the materials described above should have CBR values well in excess of 100 percent. There is usually no need to carry out CBR tests during construction, [21].

b. Naturally occurring granular materials, boulders, weathered rocks

Normal Requirements for natural gravels and weathered rocks (GB2, GB3). A wide range of materials including lateritic, calcareous and quartzite gravels, river gravels, boulders and other transported gravels, or granular materials resulting from the weathering of rocks can be used successfully as base course materials. Table 2.4 contains three recommended particle size distributions for suitable materials corresponding to maximum nominal sizes of 37.5 mm, 20 mm and 10 mm. Only the two larger sizes should be considered for traffic in excess of 1.5 million equivalent standard axles. To ensure that the material has maximum mechanical stability, the particle size distribution should be approximately parallel with the grading

envelope. To meet the requirements consistently, screening and crushing of the larger sizes may be required. The fraction coarser than 10 mm should consist of more than 40 percent of particles with angular, irregular or crushed faces. The mixing of materials from different sources may be warranted in order to achieve the required grading and surface finish. This may involve adding fine or course materials or combinations of the two. The fines of these materials should preferably be non-plastic but should normally never exceed a PI of 6, [21]. Table 2.4 Recommended particle size of rocks for use as base course material (GB2, GB3), [21].

Test sieve(mm)	Percentage by mass of total aggregate passing test sieve			
	Nominal maximum particle size			
	37.5mm	28mm	20mm	
50	100	-	-	
37.5	80-100	100	-	
20	60-80	80-100	100	
10	45-65	55-80	80-100	
5	30-50	40-60	50-70	
2.36	20-40	30-50	35-50	
0.425	10-25	12-27	12-30	
0.075	5-12	5-15	5-15	

ii. Sub-bases (GS)

The sub-base is a pavement layer which enables traffic stresses to be reduced to acceptable levels in the sub-grade. According to the ERA Pavement Design Manual the requirements to use as a sub-base material is discussed below.

A. Bearing capacity

A minimum CBR of 30 percent is required at the highest anticipated moisture content when compacted to the specified field density, usually a minimum of 95 percent of the maximum dry density achieved in the ASTM Test Method D 1557 (Heavy Compaction). Under conditions of good drainage and when the water table is not near the ground surface the field moisture content under a sealed pavement will be equal to or less than the optimum moisture content in the ASTM Test Method D698 (Light Compaction).

The test should be conducted on samples prepared at the density and moisture content likely to be achieved in the field. In order to achieve the required bearing capacity, and for uniform support to be provided to the upper pavement, limits on soil plasticity and particle size distribution may be required. Materials which meet the recommendations of Table 2.5 and 2.6 will usually be found to have adequate bearing capacity, [21].

B. Use as a construction platform

In many circumstances the requirements of a sub-base are governed by its ability to support construction traffic without excessive deformation or raveling. A high quality sub-base is therefore required where loading or climatic conditions during construction are severe. Suitable material should possess properties similar to those of a good surfacing material for unpaved roads. In Ethiopia, laterite is one of the widely available materials and can be used as a sub-base material. Laterite meeting the graduation requirements of Table 2.5: can be used for traffic levels up to 3×10^6 ESA provided the following criteria is satisfied, [21].

Plasticity Index (%)	<25
Plasticity Modulus (PM)	<500
CBR (%)	>30

Table 2.5 Recommended	plasticity	characteristics fo	r granular	sub-bases	(GS),	[21].
-----------------------	------------	--------------------	------------	-----------	-------	-------

Climate	Typical annual rainfall	Liquid Limit	Plasticity Index	Linear shrinkage
Moist tropical	>500mm	<35	<6	<3
and wet tropical				
Seasonally wet	>500mm	<45	<12	<6
Tropical				
Arid and semi-	<500mm	<55	<20	<10
arid				
Test sieve (mm)	Total Mass of aggregate passing test sieve (%)			
-----------------	--			
50	100			
37.5	80-100			
20	60-100			
5	30-100			
1.18	17-75			
0.3	9-50			
0.075	5-25			

Table 2.6 Typical particle size distributions for sub-bases (GS), [21].

iii) Selected subgrade materials and capping layers (GC)

These materials are often required to provide sufficient cover on weak subgrades. They are used in the lower pavement layers as a substitute for a thick sub-base to reduce costs, and a cost comparison should be conducted to assess their cost effectiveness. As an illustrative example, approximately 30 cm of "GC" material placed on an S1 or S2 subgrade will allow selecting a pavement structure as for an S3 subgrade. An additional 5cm of "GC" material may allow considering an S4 subgrade class. The requirements are less strict than for subbases. A minimum CBR of 15 percent is specified at the highest anticipated moisture content measured on samples compacted in the laboratory at the specified field density. This density is usually specified as a minimum of 95 percent of the maximum dry density in the ASTMT test Method D 1557 (Heavy Compaction. The selection of materials which show the least change in bearing capacity from dry to wet is also beneficial, [21].

2.11 Description of Dynamic Cone Penetration Test (DCPT)

The dynamic cone penetration test (DCPT) was originally developed as an alternative for evaluating the properties of flexible pavement or subgrade soils. The conventional approach to evaluate strength and stiffness properties of asphalt and subgrade soils involves a core sampling procedure and a complicated laboratory testing program such as resilient modulus, Marshall tests and others (Livneh et al. 1994). Due to its economy and simplicity, better understanding of the DCPT results can reduce significantly the effort and cost involved in the evaluation of pavement and subgrade soils. Figure 2.17 shows a typical configuration of the

dynamic cone penetrometer (DCP). As shown in the figure, the DCP consists of upper and lower shafts. The upper shaft has an 8 kg (17.6 lb) drop hammer with a 575 mm (22.6 in) drop height and is attached to the lower shaft through the anvil. The lower shaft contains an anvil and a cone attached at the end of the shaft. The cone is replaceable and has a 60 degree cone angle. As a reading device, an additional rod is used as an attachment to the lower shaft with marks at every 5.1 mm (0.2 in).

In order to run the DCPT, three operators are required. One person drops the hammer, the second handle up the instrument and other records measurements. The first step of the test is to put the cone tip on the testing surface. The initial reading is not usually equal to 0 due to the disturbed loose state of the ground surface and the self-weight of the testing equipment. The value of the initial reading is counted as initial penetration corresponding to blow. Hammer blows are repeated and the penetration depth is measured for each hammer drop. This process is continued until a desired penetration depth is reached. DCPT results consist of number of blow counts versus penetration depth. Since the recorded blow counts are cumulative values, results of DCPT in general are given as incremental values defined as follows,

$$PI = \frac{\Delta D_p}{\Delta BC} \tag{1}$$

Where PI = DCP penetration index in units of length divided by blow count;

 ΔD_p = Penetration depth; BC = blow counts corresponding to penetration depth ΔDp . As a result, values of the penetration index (PI) represent DCPT characteristics at certain depths, [21].

Figure 2.17 Structure of Dynamic Cone Penetrometer

2.12 Traffic Load

The deterioration of paved roads caused by traffic as a result of the magnitude of the individual wheel loads and the number of times these loads are applied. It is necessary to Consider not only the total number of vehicles that will use the road but also the wheel loads (or, for convenience, the axle loads) of these vehicles. Equivalency factors are used to convert traffic volumes into cumulative standard axle loads. Classes are defined for paved roads, for pavement design purposes, by ranges of cumulative Traffic number of equivalent standard axle's load, [21].

2.12.1 Determination of cumulative traffic volumes

In order to determine the cumulative number of vehicles over the design period of the road, the following procedure should be followed, [21].

1. Determine the initial traffic volume $(AADT_0)$ using the results of the traffic survey and any other recent traffic count information that is available. For paved roads, detail the AADT in terms of car, bus, truck, and truck-trailer.

- 2. Estimate the annual growth rate "i" expressed as a decimal fraction, and the anticipated number of years "x" between the traffic survey and the opening of the road.
- 3. Determine $AADT_1$ the traffic volume in both directions on the year of the road opening by:

$$AADT_1 = AADT_0 (1+i)^x$$
 (2)

4. The cumulative number of vehicles, T over the chosen design period N (in years) is obtained $T = 365 \text{ AADT}_1 \left[(1+i)^N - 1 \right] / (i).....(3)$

2.12.2 Axle Load

The damage that vehicles do to a paved road is highly dependent on the axle loads of the vehicles. For pavement design purposes the damaging power of axles is related to a "standard" axle of 8.16 metric tons using empirical equivalency factors. In order to determine the cumulative axle load damage that a pavement will sustain during its design life, it is necessary to express the total number of heavy vehicles that will use the road over this period in terms of the cumulative number of equivalent standard axles (ESAs), [21].

Axle loads can be converted and compared using standard factors to determine the damaging power of different vehicle types. A vehicle's damaging power, or Equivalency Factor (EF), can be expressed as the number of equivalent standard axles (ESAs), in units of 80 kN. Finally, the cumulative ESAs over the design period (N) are calculated as the products of the cumulative one-directional traffic volume (T) for each class of vehicle by the mean equivalency factor for that class and added together for each direction. The relationship between a vehicle's EF and its axle loading is normally considered in terms of the axle mass measured in kilograms. The relationship takes the form [21].

Equivalency factor = $\left(\frac{axle\ load\ i}{8160}\right)^{n}$(4)

Where; axlei= mass of axle i,n = a power factor that varies depending on the pavement construction type and subgrade but which can be assumed to have a value of 4.5 and the standard axle load is taken as 8 160kg with the summation taken over the number of axles on the vehicle in question.

CHAPTER THREE RESEARCH METHODOLOGY

3.1 Introduction

This chapter presents and describes the approaches and techniques used to collect data and investigate the research problem. They include the research design, study population, sample size and selection, sampling techniques and procedure, data collection methods, procedure of data collection, and data analysis.

3.2 Study setting/Area

The study area undertaken was Mekenejo -Nejo road section which was found in West Wollega Zone in Oromiya Regional state. It was located approximately 450km from Addis Ababa and approximately 61km length from Mekenejo-Nejo Road section. The Road connects Gimbi woredas and Nejo town passes through different kebeles between the starting and end points of location.

A Mekenejo-Nejo road was constructed in 2002E.C by Chinas contractor. The pavement type Double Bituminous Surface Treatment (DBST) and the road width was7m. The estimated road length is 61 km along the Road section. The road traverses areas having significant natural resources, and intensive cultivation of cash crop, particularly coffee and cereals. This road provides a key link in the route from Addis Ababa to Assosa via Gimbi and Nejo.

This road is Part of secondary/link road connecting Assosa Town, the capital city of Region 6 (Beni Shangul Gumuz Regional state) to the primary road from Addis Ababa connecting the Town of Ambo, Nekempte and Gimbi. The total length of the road is 61 km. The road Mekenejo-Nejo starts off at the junction at 126km from Nekempte Town to Mekenajo, which is located on Nekempte - Gimbi - Hena – Nejo – Mendi – Bambasi - Assosa Road and goes in western direction to Nejo. Nekempte is 330 km west of Addis Ababa while Mekenajo and Nejo are located 126 km and 187 km from Nekempte respectively, [1].

The route between Mekenajo and Nejo passes through the western high lands characterized generally by high elevation and dissected terrain with rolling, rolling to hilly areas and steep Valley sides. The road traverses through flat and rolling terrain. The proportion of the terrain category is about 20% level, 75% rolling, and 5% Mountainous

The road from Mekenajo to Nejo town is the first section of Mekenajo -Mendi Road Upgrading Project. It is entirely in the Western highland of country in the national regional state of Oromiya as shown in map below.

Figure 3.1 Project Location Area Map,[30]..

3.3 Climate Condition

The study area lies in medium to high rainfall area average annual rainfall of around 1614 mm, and about 80% of mean annual rainfall occurs during the period of four months, From June to September climate of the study area as shown below.

Figure 3.2: Monthly Average climate of the study areas.

3.4 Population: - Pavement damages were served as a population for the study Sample Size.

3.5 Sampling procedure: - Samples were collected from six test pits at a depth 1.5m of each borehole for details laboratory testing to determine geotechnical characteristics of the Soil. The pits are excavated manually with the size of the $1m\times1m$ with the depth range of 0.4 to 1.5m. The excavation started to top and continued layer by layer properly during the stating of excavation of pavement from top layer, bituminous layer were removed carefully to avoid disturbance of the layer below and the thickness of each layer recorded and 45kg sample were taken from each test pits to Ethiopian Road Authority Nekepte Road Network Branch Directorate laboratory.

3.6 Study period:-The study was conducted from March to January, 2018.

3.7 Data collection technique:-Purposive collection technique was used by selecting particular parameters to make it sure that the parameters have certain characteristics as

applied for this study. It is projected to be normally targets at particular geotechnical parameters.

3.8 Study design: The research study was conducted by using both experimental and analytical methods. Qualitative and quantitative studies were employed in this study area. Qualitative study gives impression on the findings where a quantitative study was used to describe the numerical aspects of the research findings, based on laboratory results.

3.9 Data process and analysis

By conducting laboratory tests, filed test, literature reviews, books, journals, articles and lecture notes the data were gathered. After sorting out the effective data the quantitative or numerical part of the data analyzed using different software's like excel.

3.10 Instruments or Material Used

The following instruments and software were used for this study: Meter tape, plastic bags, manual hand auger equipment, laboratory equipment's, GPS and field test instrument DCP test, Camera for documentation, and Excel to analysis laboratory data and display research data were used in this study.

3.11 Data Collection Process

In order to attain the purpose of this research work ethical considerations was concentrating on in the context of quantitative and qualitative research. Before starting any data collection formal letter was obtained from JIT and an official permission was obtained from ERA regional Nekempte district office. Quantitative and qualitative data were utilized based on the necessary input parameters for the analysis by comparing with ERA manuals. Data collection process included field visual inspection, Field investigation, sampling representative samples along study area, field test; Field measurements and laboratory tests were conducted. The surface of a Road distress along the Road section classified as according to their extent or rates of damages. To collect the primary data the samples were taken from different boreholes at the location where most damaged asphalt as shown below.

Figure 3.2 Borehole (BH-1) at station 129+400

Figure 3.3 Borehole (BH-2) at station 140+700

Figure 3.4 Borehole (BH-3) at station 150+300

JIT, Geotechnical Engineering Stream

2018

Figure 3.5 Borehole (BH-4) at station 165+200

Figure 3.6 Borehole (BH-5) at station 172+300

Figure 3.7 Borehole (BH-6) at station 126+100 Non-damaged Asphalt for comparisons

Figure 3.8 DCP Tests (a) and (b

3.11.1 Field work

Preliminary visual survey was undertaken along Mekenajo-Nejo Road section. Field observations, Field tests and measurements were carried out and representative samples were taken to laboratory tests. Results from field tests and measurements were compared with the

results from laboratory tests. Moreover, results from laboratory tests were compared with ERA Standard Specifications.

During the field observation, it was necessary to begin by conducting visual inspection and site inventory of the whole stretch of the Mekenajo-Nejo Road section. The initial site visit was taken on the whole portion of the road and at the same time the damaged and non-damage sections were identified for further detailed site observation. After finishing the initial visual inspection and categorizing the conditions of the road failures with that of non-failures along the road section. The next step was then to select the representative locations for sampling based on their failure conditions and non-failure location; the researcher selected six (6) samples test pits that represents the types of failures observed along the Road section and one non-distress samples from study area. For each condition test pits was extracted for laboratory testing as well as field tests. For each layer layers of embankment of Road section Approximately 45 Kg were collected for tested in the laboratory.

3.11.2 Pavement condition survey

In order determine the extent/rate of damage observed from the visual inspection would become reliable, proper identification was made to select representative sections and to evaluate the state of the existing pavement by assessing the physical conditions of the existing pavement along a road. Before the beginning of the detail pavement evaluation, the entire road length was visually assessed and it is attempted to identify the types of failures occurred on the road surface.

3.11.3 Field investigation of the existing pavement thickness.

Based on the field observation and investigation the width of the existing road surface is measured using a meter tape during test pitting and sampling. The road is on average of 7m carriage way, while the pavement edges were difficult to establish as the camber of the road had changed due to repetitive raveling and erosion. Hence the width of the road is established mostly by judgment and measured. The thickness of the road materials is measured in each test pit using a meter tape.

3.11.4 Laboratory tests

Laboratory tests are useful in providing reliable data for calculating ultimate bearing capacity of soil, stability and settlement behavior of foundation and for determining physical characteristics of soils. Most of the engineering properties of soil and granular materials are determined by laboratory testing. The samples were transported to the laboratory of Ethiopian Road Construction Cooperation Nekemte District Laboratory. Before starting Laboratory test, these samples were first air dried under the sun to allow moisture to evaporate before starting the required test. The tests were performed according to AASHTO Specification [23], [24] and ASTM following the procedures that have been discussed on the soil mechanics laboratory manual by Braja, M. D., [25]. The following tests were undertaken such as Atterberg Limits, Grain size Analysis, Compaction Tests, and California Bearing Ratio (CBR) Tests were made to understand the general behavior of the road materials of the failure section and Field test such as DCP test. The laboratory data analysis was given in their respective appendices.

i. Atterberg Limits

Most of the methods for soil identification and classification are based on certain physical properties of the soils. The commonly used properties for the classification are the grain size distribution, liquid limit and plasticity index. These properties have also been used in empirical design methods for flexible pavements, and in deciding the suitability of subgrade soils. Tests were undertaken on base course, sub-base, and subgrade fill materials at selected test pits of the three sections. The testing procedure was done according to ASTM D 4318, [26].

ii. Grading analysis

The mechanical analysis consists of the determination of the amount and proportion of coarse material by the use of sieves; and the analysis for the fine grained fraction by sedimentation method. For the materials passing 75 microns, hydrometer method was used. The combined grading of the material shall be a smooth continuous curve falling within the grading limits. When determined in accordance with the requirements of AASHTO T-27. The mass of material passing the 0.075 mm sieve shall be determined in accordance with the requirements of AASHTO T-11, [27].

iii. Soil compaction

This laboratory test is performed to determine the relationship between the moisture content and the dry density of a soil for a specified comp active effort. The comp active effort is the amount of mechanical energy that is applied to the soil mass. The Compaction tests are designed to simulate the density of soils compacted by field methods. Modified Proctor Test was used for this study area. The soil tested was thoroughly mixed with measured quantity of water and, it was then filled in the mold in five layers of approximately equal thickness. Each layer was subjected to 25 numbers of blows using modified hammer weighing 44.5 N, which was allowed to drop freely from a height of 46 cm. After compaction of five layers, the soil was trimmed at the top of the mold. The mold with its content was removed from the base plate and weighed. Moisture content determination was undertaken on a sample of soil and the dry density was then calculated. This procedure was repeated with addition of water content and a compaction curve was drawn.

The co-ordinates of the curve that represents peak gave the maximum dry density and the optimum moisture content [22]. The compaction curve is shown in Appendix C.

 $\rho_d = \rho/1 + w.$ (5)

Where: w= moisture content in percent divided by 100, ρ = wet density in grams per centimeter cubic. The moisture content of each compacted soil specimen was calculated using the average of the two water contents. To compute the wet density in grams per cubic centimeter of the compacted soil sample was divided the wet mass by the volume of the mold used, then the dry density computed using the wet density and the water content, [28].

iv. California Bearing Ratio (CBR)

California Bearing Ratio is a measure of shearing resistance of the material under controlled density and moisture conditions. The test consisted of causing a cylindrical plunger of 50 mm diameter to penetrate a pavement component material at 1.25 mm/minute. The loads for 2.54 mm and 5.08 mm were recorded. This load is expressed as a percentage of standard load value at a respective deformation level to obtain CBR value. The equation to be compute the CBR vale is as follows [28].

2018

CHAPTER FOUR RESULTS AND DISCUSSIONS

4.1 Field Test results

4.1.1 Pavement Condition Survey results

Before the commencement of the detail pavement evaluation, the entire road length was visually assessed and identified. The pavement condition survey was carried out on the study section of the road in order to identify areas showing pavement defects and to assess causes of defects and its level of severity. The pavement condition surveys investigation along the study area shows that different types of distress observed along the Road section such as surface defect, surface deformation, disintegration and cracks failures along route section during pavement condition survey on the route was identified.

Test Pit	Station(km)	Samples Location	Severity level	Dominant failure types
BH-1	129+400	9°16'24.7''N, 35°41'21.7''E	Severity level 3	Pothole and Patching
BH-2	140+700	9°12'23.7''N, 35°'43'47''E	Severity level 3	Raveling and stripping
BH-3	150+300	9°12.0'06''N, 35°43'54''E	Severity level 3	Corrugation
BH-4	165+200	9°16'24.6''N, 35°41'21.8''E	Severity level 3	Rutting and Wearing
BH-5	172+300	9°12'13.2''N, 35°44'20.2''E	Severity level 3	Alligator crack
BH-6	126+100	9°18'37.4''N, 35°43v'12.1''E	Severity level 3	Non-distress

Table 4.1 Test pits location of distress and non-distress

Table 4.2 Existing thickness of the materials of the road layers.

Test	Stations	Average thick layers(cm)	kness of ro	ad	Dominant failure types
Pit	Stations	Asphalt	Asphalt Base Sub-base		
BH-1	129+400	3.4	14.6	17.5	Pothole and Patching
BH-2	140+700	4.2	14.4	18.2	Raveling and stripping
BH-3	150+300	3.5	14.0	17.7	Corrugation
BH-4	165+200	4.1	14.3	18.2	Rutting and Wearing
BH-5	172+300	4.4	14.7	17.4	Alligator crack
BH-6	126+100	3.5	14.8	19.0	Non-distress
Averag	ge thickness	3.9	14.5	18.0	

2018

The following representative photographs can show the type and extent of failure along the road.

Figure 4.1: Pothole (a) and Patching (b)

Figure 4.2: Raveling (a) and stripping (b)

Figure 4.3Potholes (a) and Corrugation (b)

Figure 4.4 Rutting (a) and Wearing (b)

Figure 4.5 Alligator Crack (a) and (b)

Figure 4.6 Potholes (a) and Edge failure (b)

4.2 Laboratory Test results

4.2.1 Grain Size Analysis

The mechanical analysis consists of the determination of the amount and proportion of coarse material by the use of sieves analysis. The grain size analysis results are plotted below and the data is given in appendix A.

	Grain Size Analysis results of Base Course Material											
Material type:	Base Cou	urse		Date of S	Sampling:	12-06-2	017					
Failure ty	pe: All T	ypes of Fai	ilures	Sam	pled by: F	ikru Bent	i					
Failure	Pothole	Douoling	Corrugation	Rutting	Alligator	Non-	ERA	ERA				
types.		Kavening			Crack	Defect	Grading	Grading				
Test Dit No	BH-1	рцγ	рц 2	BH-4	BH-5	BH-6	Lower	Upper				
Test Fit No.		D11-2	DII-3				Limit	Limit				
sieve size,	%	%	%	%	%	%	%	%				
mm	passing	passing	passing	passing	passing	Passing	passing	Passing				
28	100	100	100	100	100	100	100	100				
20	70.6	69.9	84.9	77.7	75.2	78.7	80	100				
10	45.5	48.4	55.3	53.8	53.8	56.5	55	80				
5	27.2	31.0	34.4	37.1	37.0	46.8	40	60				
2.36	17.0	17.9	22.7	26.0	23.0	31.7	30	50				
0.425	6.4	7.9	13.0	13.6	7.8	15.4	12	27				
0.075	4.6	5.0	6.0	4.4	4.1	2.6	5	15				
Pan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0				

Table 4.2 Wash gradation results of **Base Course** Material with ERA specification.

2018

Figure 4.7 Wash gradation results of Base Course materials

Note: Average Uniformity Coefficient (Cu) and Coefficient Curvature (Cc) of all samples of Base Course materials are 32.4 and 3.45.

	Grain	size Analy	sis results of	Sub-base	course with	ERA specific	cation	
Material	type: sub-	base Cours	e	Failure ty	pe: All Types	of Failures		
Failure					Alligator	Non-defect	ERA	ERA
Types	Pothole	Raveling	Corrugation	Rutting	Crack		Gradin	Grading
Types.							g	Upper
Test nits							Lower	Limit
	BH-1	BH-2	BH-3	BH-4	BH-5	BH-6	Limit	
sieve	%	%	%	%	%	%	%	%
size,mm	passing	passing	passing	passing	passing	Passing	passing	Passing
50	100	100	100	100	100	100	100	100
37.5	95.8	87.8	88.6	93.8	90.2	87.8	95	100
28	81.1	68.5	77.8	79.9	75.7	75.9	80	95
20	68.8	57.9	62.2	69.4	62.6	60.4	60	80
10	41.4	45.2	48.7	46.0	41.3	41.6	40	60
5	25.9	27.3	37.6	29.3	27.1	30.1	25	40
2.36	17.3	19.7	26.8	22.1	18.4	18.8	15	30
0.425	12.0	11.9	14.0	17.9	14.6	12.2	7	19
0.075	10.1	5.2	5.6	7.1	5.3	4.5	5	12
Pan	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 4.3 Wash	gradation results	with ERA	specification	of Sub-base	course
1 auto 4.5 Wash	gradation results	with LINA	specification	01 Sub-base	course

Figure 4.8Wash gradation results of sub-base course materials

Note: Average Uniformity Coefficient (Cu) and Coefficient Curvature (Cc) of all samples of Sub- base materials are 66.8 and 7.6

Test pit No.	%	%	%	D ₁₀	D ₃₀	D ₆₀	Cu	Cc
	Gravel	Sand	Fines	mm	mm	mm		
BH-1	72.8	22.6	4.5	0.9	6.0	15	16.7	2.7
BH-2	69.0	26.0	4.9	0.7	5.0	16	22.9	2.2
BH-3	65.6	28.4	5.9	0.2	4.0	11	55.0	7.2
BH-4	62.9	32.7	4.5	0.2	3.0	11	55.0	4.1
BH-5	63.0	32.9	4.2	0.6	4.0	12	20.0	2.2
BH-6	52.2	45.2	2.8	0.2	2.2	4.6	25.0	2.5

Table 4.4 Parameters from base coarse sieve analysis curve.

Table 4.5 Parameters from sub-base sieve analysis curve.

Test pit No.	%	%	%	D ₁₀	D ₃₀	D ₆₀	Cu	Cc
-	Gravel	Sand	Fines	Mm	Mm	Mm		
BH-1	74.1	15	10.3	0.3	6.0	17	56.7	7.0
BH-2	72.7	22.1	2.8	0.3	6.0	20	66.0	6.0
BH-3	62.4	32.0	5.5	0.2	3.0	19.0	95.0	2.4
BH-4	70.7	22.2	7.0	0.1	5.0	15.0	150	9.3
BH-5	72.9	21.8	4.1	0.2	6.1	20.0	100	9.3
BH-6	69.9	25.6	4.5	0.3	5.0	20.0	66.7	4.2

2018

Gr.Size	Gr.Size	Gr.Size	Gr.Size	Gr.Size	Gr.Size	%pass	%pass	%pass	%pass	%pass	%pass
BH-1	BH-2	BH-3	BH-4	BH-5	BH-6	bh-1	bh-2	bh-3	bh-4	bh-5	bh-6
5.00	5.00	5.00	5.00	5.00	5.00	100	100	100	100	100	100
4.75	4.75	4.75	4.75	4.75	4.75	95.2	94.3	95.7	95.6	95.6	94.4
2.36	2.36	2.36	2.36	2.36	2.36	92.8	92.4	83.2	85.7	86.1	86.6
1.18	1.18	1.18	1.18	1.18	1.18	88.2	91.3	80	83.4	84.4	85
0.425	0.425	0.425	0.425	0.425	0.425	71.9	84.6	76.6	81.5	82.8	83.5
0.3	0.3	0.3	0.3	0.3	0.3	66.3	81.6	74.1	77.5	75.2	76.8
0.075	0.075	0.075	0.075	0.075	0.075	55.8	73.5	60.9	64.5	63.8	66.8
0.02549	0.0279	0.02729	0.02885	0.02555	0.02724	48.9	54.5	48.8	46.1	57.9	57.6
0.01709	0.01872	0.01837	0.01837	0.01686	0.01811	42.2	43.4	37.8	41.7	53.7	48.6
0.01014	0.01124	0.01106	0.01124	0.01018	0.01084	39	36.8	31.7	33.6	47.3	43.2
0.00748	0.00819	0.00813	0.00825	0.00738	0.00785	34.3	30.9	26.8	29.3	42.6	39.2
0.00545	0.00585	0.0058	0.00598	0.00556	0.00564	29.1	26.9	23.5	21.9	32.3	34.1
0.00399	0.00427	0.00428	0.00426	0.00419	0.00416	23.5	22.1	19.2	18.5	25.2	28.7
0.00291	0.00309	0.00303	0.00307	0.00302	0.00304	19.9	18.7	17	14.6	20.1	21.6
0.00211	0.00221	0.00221	0.00224	0.00221	0.00219	19.5	15.8	13.1	11.6	16.6	17.6
0.0015	0.0016	0.0016	0.001607	0.00159	0.00157	14.3	9.8	10.2	8.7	12.8	13.5
0.00128	0.00132	0.00133	0.001144	0.00132	0.00131	7.1	6.9	6.6	7.4	8.2	8.1

Table 4.4 Wash gradation and hydrometer results of sub-grade soil

Figure 4.9 Wash gradation results of subgrade soil materials

Note: Average Uniformity Coefficient (Cu) and Coefficient Curvature (Cc) of all samples of Subgrade materials are 29.9 and 1.37.

4.2.2 Atterberg's limit test results

The Plasticity of base course, sub-base and sub-grade materials is tabulated below. The laboratory data analysis is attached in Appendix B.

Test Pit	Base-course			Sub	Sub-base Course			Sub-grade Soil		
No.	(km)	LL%	PL%	PI%	LL%	PL%	PI%	LL%	PL%	PI%
BH-1	129+400	4.0	0.0	4.0	31	24	7	43	31	12
BH-2	140+700	4.0	0.0	4.0	29	23	6	45	33	12
BH-3	150+300	4.0	0.0	4.0	28	22	7	50	27	23
BH-4	165+200	4.0	0.0	4.0	24	18	7	53	33	20
BH-5	172+300	5.0	0.0	5.0	24	18	7	44	32	12
BH-6	126+100	6.0	0.0	6.0	24	20	4	47	33	14

Table 4.5	Atterberg's	limit test results
-----------	-------------	--------------------

4.2.3 Laboratory Compaction test results

The soil was thoroughly mixed with measured quantity of water and then filled in the mold in five layers of approximately equal thickness. Each layer is compacted by 56 blows of a modified rammer weighing 44.5N which is allowed to drop freely from a height of 46cm at each blow. After compaction of five layers, the soil was trimmed to the top of the mold. The results of the maximum dry density and the optimum moisture contents are given in the Table below.

		Base-course		Sub-base		Sub-grade	
Test Pit	Station	OMC	MDD	OMC	MDD	OMC	MDD
No.	(km)	(%)	(g/cm^3)	(%)	(g/cm^3)	(%)	(g/cm^3)
BH-1	129+400	6.4	1.79	7.7	1.75	25.0	1.74
BH-2	140+700	6.9	1.75	7.2	1.78	24.8	1.67
BH-3	150+300	5.9	1.92	9.3	1.75	13.5	1.51
BH-4	165+200	6.7	1.73	9.1	1.84	15.5	1.37
BH-5	172+300	4.8	1.87	8.0	1.78	13.0	1.50
BH-6	126+100	5.8	2.00	8.3	1.88	12.9	1.84

Table 4.6 Summarized Compaction Tests Results

2018

Summarized Modified proctor test laboratory result curves.

Figure 4.11 The Laboratory Test Result for OMC & MDD of Sub-base Layer

Figure 4.12 The Laboratory Test Result for OMC & MDD of Subgrade soil.

4.2.4 California Bearing Ratio (CBR) Tests

The California Bearing Ratio (CBR) was used for evaluating the suitability of sub-grade and the materials used in sub-base and base course. Both disturbed sample method and Undisturbed (DCP) methods were performed to evaluate the CBR of each layer. Three point CBR test is made for all of the samples. The following result were obtained during CBR test and summarized as below.

			Base	e Co	urse		Average ⁶		I	Sub-t	oase			Average ⁽	Sub-grade			e soil			Average ⁶
Station		2.54	mm	5.	.08m	m	% of swell	2.5	54mm	1	5	5.08m	m	% of swell	2	.54m	m	5.	.08mı	n	% of swell
	N <u>o</u> Blo	ows	of	N <u>o</u> (of Bl	ows		N <u>o</u> of	f Blov	WS	N <u>o</u> o	f Blo	WS		N <u>o</u> c	of Blo	ws	N <u>o</u> o	of Blo	ws	
	10	30	65	10	30	65		10	30	65	10	30	65		10	30	65	10	30	65	
129+400	23	40	93	22	45	99	0.66	16	24	40	18	46	49	0.99	9	11	12	8	10	12	1.15
140+700	20	49	64	23	68	91	0.44	18	60	73	27	64	90	0.62	9	10	16	9	10	16	1.18
150+300	23	40	93	25	47	99	0.44	15	62	91	18	65	99	0.48	10	11	14	10	10	14	1.04
165+200	24	45	60	27	65	85	0.56	23	45	60	30	65	85	0.39	10	11	13	9	10	13	1.08
172+300	23	60	75	25	65	90	0.59	19	59	77	22	65	96	0.66	8	10	13	9	11	15	0.99
126+100	16	35	65	27	68	99	0.02	14	43	61	24	70	97	0.51	8	8	15	10	11	15	0.53

Table 4.7 California Bearing Ratio (CBR) Test results

4.2.5 Dynamic Cone penetration test results

Dynamic cone penetration (DCP) has been widely used as a simple, but effective means of determining the in situ shear strength of sub grade materials and pavement layers. California

Bearing Ratio (CBR) is the most commonly used measure of soil bearing capacity. The DCP test provides an indication of material in-situ resistance to penetration. If the DCP cone penetrates quickly in to the soil, it indicates the material has poor strength or insufficient compaction.

Test Pits	Stations		Av. rate DCP	
No.	(K m)	Layer Types	(mm/blow)	CBR (%)
		Base Course	4.00	83
BH-1	129+400	Sub-Base	5.00	63
		Subgrade	22.00	10
		Base Course	4.00	84
BH-2	140+700	Sub-Base	6.00	62
		Subgrade	21.00	9
	150+300	Base Course	4.00	80
BH-3		Sub-Base	5.00	65
		Subgrade	19.00	10
		Base Course	4.00	80
BH-4		Sub-Base	5.00	66
	165+200	Subgrade	19.00	11
		Base Course	4.00	82
BH-5	172+300	Sub-Base	5.00	72
		Subgrade	18.00	18
		Base Course	4.00	85
BH-6	126+100	Sub-Base	4.00	74
		Subgrade	17.00	12

Table 4.8 Dynamic Cone penetration test results

4.3 Discussions

4.3.1 Discussion on Pavement condition Survey

From the pavement condition survey, the road is in bad conditions. The pavement condition surveys investigation along the study area shows that different types of distress observed

r

2018

along the Road section such as surface defect, surface deformation, Disintegration, cracks and problems related to road failures along route section during pavement condition survey on the route was identified.

				Lev	vel of Seve	erity		
Distr	ess Type	Existe	ence		Rating	r	Remark	
Disu				high	Medium	Low		
	1	Yes	No					
	Alligator Crack	\checkmark					Measurements mean width 21mm > 19mm &TypeA damage.	
	Longitudinal cracking				\checkmark		Measurements mean width7mm >6mm< 19mm type B damage	
	Transverse cracking		\checkmark				Visual evaluation & type B damage	
1)Cracking	Block cracking					\checkmark	Measurements 2x3mm & type B damage	
	Slippage cracking		\checkmark				Visual evaluation & type B damage	
	Reflective cracking		\checkmark				Visual evaluation & type B damage	
	Edge cracking				\checkmark		Visual evaluation & type B damage	
	Rutting						Measurements 4cm height & 5m length & type A damage	
2)Surface	Corrugations			\checkmark			Visual evaluation length & type A damage	
deformation	Shoving					\checkmark	Visual evaluation length & type A damage	
	Depressions		\checkmark				Visual evaluation length & type A damage	
	Potholes						Measurements 0.95cm width & 25cm depth & type B damage	
3)Disintegratio n	Patches						Visual evaluation length & type A damage	
	Raveling			\checkmark			Visual evaluation length & type B damage	
	Bleeding						Visual evaluation length & type B damage	
4)Surface	Polishing	\checkmark		\checkmark			Visual evaluation	
defects	Delamination						Visual evaluation	

4.3.2 Drainage and shoulder

Based on ERA Geometric Design Manual – 2002 Shoulders participate in the structural function of a road pavement, providing lateral support for the pavement layers. They should help in removing surface water from the road surface and facilitate the internal drainage of the pavement. They are especially important when unbound materials are used in the pavement. From a functional point of view a minimum width of 1m is recommended. If surface water penetrates in to the road body, it reduced the load carrying capacity of the pavement which may cause further damage to the road, but in this project area the shoulder width for some area is less than 0.5m in some place there is no constructed shoulder not only in rural area even if at town. In addition the shoulder missing problems as we can observe from pavement condition survey photos there are drainage problems.

Basically Pavement design depends on the expected level of traffic. From the traffic analysis made, the cumulative Standard Axle is 2.47 million. According to the ERA pavement design manual, the Traffic Class is " T_4 " with ESAs ranging from 1.5-3 million. The thickness of each layer of embankment of road section is a function of the ESAs and the CBR of the subgrade layer. From the CBR test, the sub-grade strength class can be classified as S_5 with CBR ranges 8%-16%. Hence, according to ERA road design manual, the thickness of the base course and sub-base course for traffic class T_4 with ESAs of 1.5-3million should be 15cm and 20cm respectively. From Table 3-1 it can be seen that the average thickness of the base course is 14.5 cm and that of the sub-base course is 18 cm. Hence this shows that the base and the sub-base course will not be able to carry the traffic loading at its service time. The result implies that majority of flexible pavement defects were exist in the study area this show that study project road is in bad condition

4.3.3 Grain size Analysis

Comparing the laboratory test results for gradation with that of the specification for Base, and sub base materials and to determine the percentage of gravel and sand from grain size curve depending on percentage of fines (fraction smaller than 75micron sieve size)coarse grained soils are classified as follows: less than 5%: GW,GP,SW and SP. And more than 12%: GM, GC, SM, and SC. 5%-12% border line case required use of dual symbols. According to Unified soil classification system:-

- In case of base course materials Cu =32.4, which is greater than 4 shows a wide variation of size particles. Cc =3.00, indicates well graded gravels particles, According to USCS, base material is classified as well graded gravels with sandy.
- For the sub-base materials Cu =66.8, which is greater than 4 shows a wide variation of size particles, Cc =7.6, indicates poor graded particles. According to USCS, the % of sand retained above 2mm was greater than 15% so; sub-base material at is classified as poor graded gravels with silt..
- > The subgrade materials are classified as clay sand (SC) and sandy silt (ML).

4.3.4 Atterberg Limits

From the laboratory results, it can be seen that the average liquid limit of sub grade is 47, sub base is 26 and base course 4.5 and also the average plastic index of the sub grade is 15.5, sub-base is 5.8 and base course 4.5. According to AASHTO and USCS soil classification system:-

- In base course (i.e. Sieve analysis percent passing No. 10 < 50 max, No. 40 <30 max, No. 200<15 max and PI <6%) it satisfies the AASHTO specification; thus grouped into A-l-a in AASHTO soil classification system and USCS as poorly graded gravels with sand silt (GP).
- In sub-base course (i.e. LL < 40% and PI <10%) and percent passing No. 200<35 it satisfies the specification; thus grouped into A-2-4 in AASHTO soil classification system and USCS as poorly graded gravels with sand silt (GP).
- In subgrade soil (i.e. LL > 41% min and PI >11% min) it satisfies the specification; grouped into A-7-6 in AASHTO soil classification system and USCS as Clay sand with gravel (SC).

4.3.5 Compaction Test

From Table 4.5 the average value of MDD and OMC for base course is 1.86 gm/cc and 6.67% respectively which don't meet the specification (i.e. MDD>2gm/cc). For sub-base material OMC &MDD varied between 7.12% -9.61 % and 1.75gandcm³ - 1.88g/m3 respectively. The MDD values of all sub-base don't meet the specified value (i.e. MDD>2gm/cc). For sub-grade material OMC & MDD varied between 12.7% -25% and 1.37gandcm³ - 1.84g/m3 respectively. Except BH-5 the MDD values of all sub grade don't meet the specified value (i.e. MDD>1.76gm/cc).

4.3.6 California Bearing Ratio (CBR) Test

From the recommendation given in Table 3.1 taken from ERA Pavement Design Manual volume I, for natural coarsely graded granular material, including processed and modified gravels (GB3), the CBR after soaking should be greater than 80%. The laboratory test results given in Table 4.6, the CBR of the base material use ranges from 64%-93%. When we see the case of sub-base course, the recommendation given in Table 3.1 for natural gravel (GS), the CBR after soaking should be greater than 30. And the result obtained from the laboratory is all greater than the specified values ranging from 40%-91%. From Table 3.1, it is observed that the soaked CBR values for sub-grade course materials varied between 8% and 16% in all the boreholes, which is in range of specified value (i.e. Soaked CBR >5%). From table 4.6, the subgrade strength class for CBR range on average 8%-16%. Since most of the laboratory results lay on the range 8%-16% it can be classified as S4.

4.3.7 Dynamic Cone penetration test results analysis:

- ✓ Average rate of DCP test for base courses 4mm/blow and CBR value 80% -85% satisfies the specification (i.e. CBR > 80%).
- ✓ Average rate of DCP test for Sub-base 4mm/blow-6mm/blow and CBR value 62%-74% satisfies the specification (i.e. CBR >30%).
- ✓ Average rate of DCP test for Sub grade soil 17mm/blow-22mm/blow and CBR value 9%-12%, less than the specification requirement of sub-grade strength class S4.

Remark: TRL DCP => Log10 (CBR) =2.632-1.28Log10 (mm/blow)

 $=> CBR = 10^{2.632} / (mm/blow)^{1.28}$

4.3.8 Subgrade Soil Classification:

Soil classification is the arrangement of soils into different group in order that the soils in a particular group would have similar behavior. The method of classification used in this study was the AASHTO System. The AASHTO Classification system is useful for classifying soils for highways. The particle size analysis and the plasticity characteristics are required to classify a soil. The soils with the lowest number, A-1, is the most suitable as a highway material or sub grade. Thus according to the AASHTO Classification system the sub-grade material is classified as A-7. The table below shows the soil classification according to AASHTO standard and unified soil classification system.

Test Pit No	Pavement		Atterbe	erg limit	AASHTOSoil	Unified Soil
Test I it No	Layers	LL%	PL%	PI%	Classification	Classification
	Base	4.34	0.00	4.34	A-1-a	GW
BH-1	Sub-base	31.0	24.30	6.70	A-2-4	GP-GM
	Sub-grade	42.30	30.95	11.35	A-7-5	ML
	Base	4.26	0.00	4.26	A-1-a	GW
BH-2	Sub-base	29.00	23.30	5.70	A-1-a	GP-GM
	Sub-grade	44.80	32.93	11.87	A-7-5	SM
BH-3	Base	4.21	0.00	4.21	A-1-a	GW
	Sub-base	28.00	21.40	6.60	A-2-4	GW-GM
	Sub-grade	49.80	26.87	22.93	A-7-6	CL
	Base	4.10	0.00	4.10	A-1-a	GP
BH-4	Sub-base	23.65	17.15	6.50	A-2-4	SP-SC
	Sub-grade	53.00	32.94	20.06	A-7-5	MH
	Base	5.10	0.00	5.10	A-1-a	GW
BH-5	Sub-base	23.80	17.30	6.50	A-2-4	GP-GC
	Sub-grade	44.80	32.41	12.39	A-7-5	ML
	Base	5.80	0.00	5.80	A-1-a	GP
BH-6	Sub-base	24.00	19.60	4.40	A-1-a	GP
	Sub-grade	39.00	28.03	10.97	A-7-6	SC

Table 4.10 Soil classifications according to AASHTO and Unified soil classification system.

hase sub-base and sub-grade layers	
Table 4.11 Summary of laboratory test results of soil samples of distress type's	boreholes with

Test Pit	Pavement	Layer	AASHTO	Unified	Parameters analyzed					
N <u>o</u>	Layer	thickne	Classificat	Classificat	Atterb	erg Lim	it	Comp	action	CBR
		ss(cm)	ion of soil	ion of soil	LL%	PL%	PI%	OMC	MDD	2.54
BH-1	Base	14	A-1-a	GW	4.34	0.00	4.34	6.40	1.79	93
	Sub-base	11	A-2-4	GP-GM	31.0	24.30	6.70	8.30	1.88	40
	Sub-grade	-	A-7-5	ML	42.30	30.95	11.35	25.00	1.74	12
BH-2	Base	16	A-1-a	GW	4.26	0.00	4.26	6.91	1.75	64
	Sub-base	12	A-1-a	GP-GM	29.00	23.3	5.70	7.20	1.78	73
	Sub-grade	-	A-7-5	SM	44.80	32.93	11.87	24.80	1.67	23
BH-3	Base	14	A-1-a	GW	4.21	0.00	4.21	5.90	1.92	93
	Sub-base	11	A-2-4	GW-GM	28.00	21.40	6.60	9.30	1.75	91
	Sub-grade	-	A-7-6	CL	49.80	26.87	22.93	13.50	1.51	23
BH-4	Base	13	A-1-a	GP	4.10	0.00	4.10	5.80	2.00	60
	Sub-base	12	A-2-4	SP-SC	23.65	17.15	6.50	9.10	1.84	60
	Sub-grade	-	A-7-5	MH	53.00	32.94	20.06	15.50	1.37	13
BH-5	Base	15	A-1-a	GW	5.10	0.00	5.10	4.80	1.87	75
	Sub-base	13	A-2-4	GP-GC	23.80	17.30	6.50	8.00	1.78	77
	Sub-grade	-	A-7-5	ML	44.80	32.41	12.39	12.90	1.84	20
BH-6	Base	16	A-1-a	GP	5.80	0.00	5.80	6.74	1.73	65
	Sub-base	13	A-1-a	GP	24.00	19.60	4.40	7.68	1.75	61
	Sub-grade	-	A-7-6	SC	39.00	28.03	10.97	13.00	1.50	14

Table 4.12 Summery of relationship obtained between soil properties and road failures and suggested maintenance

Test Pits	Station (km)	Dominant Failure Types	Causes of Failure Obtained	Maintenance Suggestions
BH-1	129+400	Pothole	 Poor bonding to base Poor drainage Excessive Moisture 	 Improve drainage. Full-depth patch Reconstructing the road. Square patching
BH-2	140+700	Raveling and Stripping	 loss of asphalt binder Separation of bituminous film from aggregates Disintegration of aggregates. 	 surface dressing or thin overlay Cold mill and resurfacing. Square patching
BH-3	150+300	Corrugation	•Low in service stability of bituminous Road.	 Corrugated layers removed by cold milling and resurfacing with modified materials.
BH-4	165+200	Rutting and Wearing	 Inadequate compaction in surfacing or base. Settlement of underlying courses and sub grade under traffic. Excessive loading 	 Dig down to bottom of distress material and replace by stiffer material. Leveling the pavement by regulating course and followed by a bituminous overlay
BH-5	172+300	Alligator crack	 Insufficient slab thickness Settlement of sub-base or subgrade Vehicle damage 	 Filling the cracks for narrow crack. Full-depth repair for wide crack.

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Based on pavement condition survey, visual inspection, laboratory, field test out puts and the monthly progress report document of the road during construction the following conclusions are drawn from the study:

- The pavement condition survey along the study area affected by different failures types such as cracks, deformation, disintegration and surface defect failures were identified during field investigation; this indicates that lack of routine and periodic maintenance along on a road section.
- The results of the sub grade soils investigation along Mekenajo-Nejo road showed that the road pavement structures are underlined by A-7-5 and A-7-6 category of soils which shows that the soils fair to poor sub-grade materials according to AASHTO and USCS shows that the soil categorize in to Clay sand (SC). The liquid limit varies from 42.92% -53.13% and Plasticity index from 11.98% - 23.49%. The soaked CBR values of sub-grade soil materials are between 8% - 16% compared with 15% minimum specified, therefore, the failures observed on the road surface are significantly influenced by sub-grade soil.
- Insufficient thickness of sub-base and base material used to distribute the wheel load stress to a safe value on the sub-grade soil. Compared to the ERA standard for base and sub-base material layer thickness, which depend on CBR value and sub-grade soil strength, the pavement layer thicknesses are too thin to support the traffic load. From the CBR value of sub-grade soil, value ranges 8%-16% according to ERA road design manual from chart-2 granular road base, the thickness of the base course and sub-base course for traffic class T₄ with ESAL of 2.47 million and S₄ should be 15cm and 20cm respectively. Average thickness of the existing road layer of the base course is 14.5 cm and that of the sub-base course is 18 cm; this shows that the base and the sub-base course will not be able to carry the traffic loading at its service time; therefore traffic load with insufficient layer thickness is one of the major causes of road failures along study area.
- Lack of properly managed water flow causes road deteriorates seriously and occurs more rapidly. Based on laboratory test result of liquid limit and moisture content there is high

water content and liquid limit. This excess moisture in the subgrade soil resulted to degradation of material quality, strength reduction, deformation increase, and loss of bond between pavement layers of the pavement.

Proctor test for all base, sub-base and sub grade layer shows that the MDD is below the specified value given by ERA technical specification, which causes road failures along study area. These results in cracks and deformations due to sub-grade, sub-base and base layers are not well compacted and there is higher air voids.

5.2 Recommendation

The following recommendations are suggested based on the result of the study.

- The sections with various sizes of potholes should be patched with good quality asphalt and distress sections of pavement with poor material due to drainage problems should be removed and replaced to required depth. Adequate longitudinal drainage, cross drainages and other drainage facilities should be provided in order to control the drainage problem.
- Existing road base and sub-base thickness of pavement shall be modified based on the CBR value of sub grade and expected traffic load.
- > The material should be compacted with suitable depth until well enough to support the pavement and attainable compressive strength value based on standard specification limit
- ERA should follow proper pavement maintenance and management practice in order to reduce pavement failure.

5.3 Proposed for future research

• For future research, it is recommended that detailed in-depth investigation should be carried out on related project; compliance with quality of materials and construction methods in accordance with ERA Standard Specifications in order to avoid future failure.

REFERENCES

- [1]. ERA Nekempte district, Progress report of Mekenejo-Nejo road project March-2005..
- [2]. Ethiopian Roads Authority Golden Jubilee, Amharic Journal Special Edition, April 5, 2001.
- [3]. Ethiopian Roads Authority:" Pavement Management system, Vol-1 (2002).
- [4]. Thomas W. Kennedy Superior Performing Asphalt Pavements (Super pave)'. The Product Of the SHRP Asphalt Research Program University Of Texas At Austin Gerald A. Huber Heritage Research Group (2010).
- [5]. Onuoha, David, Chijioke1 and Onwuka, the Place of Soil Geotechnical Characteristics in Road Failure, a Study of the Onitsha-Enugu Expressway, Southeastern Nigeria (2009).
- [6]. Praveen Kumar, Case Studies on Failure of Bituminous Pavements. Paper from first international conference on pavement preservation (2004) (paper 52). Pp-1-5.
- [7]. S. Madanat, M. Ben-Akiva, "Optimal inspection and repair policies for infrastructure facilities," Transportation Science, Vol. 28, pp. 55-62, 1994.
- [8]. P. Kumar, A. Gupta, "Cases studies of bituminous pavements," Compendium of Papers from the First International Conference on Pavement Preservation. Chapter 7, paper 52, pp 505 – 518, 2010.
- [9]. Ankit Gupta. Report on Case Studies on Failure of Bituminous Pavements Report Submitted to PWD, Aligarh. 2004. pp-1-14
- [10]. Guidance Notes Catalogue of Road Defects (CORD) Research & Development Division January 2013.
- [11]. David P. Orr Pavement Maintenance Engineer Cornell Local Roads Program. Cornell Local Roads Program. (2006) Pp-17-40.
- [12]. Norman R, Extending Pavement Life by Forestalling Crack Reflection, Compendium of Papers from the First International Conference on Pavement Preservation (2009). pp -2-8.
- [13]. Catalogue of Road Defects (CORD) January 2013.
- [14]. Pavement Distress Identification Manual, July 2011
- [15]. Miller, J. S., Rogers, R. B. and Rada, G. R., Distress Identification Manual for the Long-Term Pavement Performance Project, third edition, 1993
- [16]. Pavement Distress Evaluation and Characterization Institute Penyelidikan, Pembangunan Dan Pengkomersilan (Irdc) University Technology Mara 4040 Shah Alam, Selangor

- [17]. Dr.J.J.Magdum, Jaysingpur Pavement Deterioration and its Causes Second International Conference on Emerging Trends in Engineering (SICETE) College of Engineering, (2009).
- [18]. Norman R, Extending Pavement Life by forestalling Crack Reflection, Compendium of Papers from the First International Conference on Pavement Preservation (2009). pp -2-8.
- [19]. Praveen Kumar, Case Studies on Failure of Bituminous Pavements. Paper from first international conference on pavement preservation (2004) (paper 52). Pp-1-5.
- [20]. Caltrans, Flexible Pavement Rehabilitation Manual, California Department of Transportation, Sacramento, CA, June, 2001
- [21]. ERA. Ethiopian Roads Authority Standard Manuals. Pavement Design Manual: Flexible Pavements and Gravel Roads, Volume I. 2002.
- [22]. Hagos G. Assessment of Road Failures Constructed on Red Clay Soils of Western Ethiopia and their Remedial Measures. A Master's Thesis, Addis Ababa University. 2006.
- [23]. Ethiopian Roads Authority Standard Manuals. Pavement Rehabilitation and Asphalt Overlay Manual. 2002
- [24]. AASHTO, ISBN A Policy on Geometric Design of Highways and Streets, Fourth Edition, Washington DC. 2001.
- [25]. Jiménez, L. A. and Mrawira, D., "Bayesian Regression in Pavement Deterioration Modeling: Revisiting the AASHO Road Test Rut Depth Model". Infrastructural volume, November 2012, pp-25.
- [26]. Department of Transportation, Flexible Pavement Design Manual, State of Florida. 2002 (pp10)
- [27]. Patil Abhijit, D.Y.Patil Prathisthan's Y.B.Patil Polytechnic, Akurdi, "Effects of Bad Drainage on Roads." Civil and Environmental Research, Vol 1, No.1, 2011.
- [28]. Awoke S. Further Investigation of Road Failures Constructed on Expansive Soils of Central Ethiopia Addis Ababa-Jimma Road as a Case Study. A Master's Thesis, Addis Ababa University. 2005.
- [29]. Stark, D., "Field and Laboratory Studies of the Effects of Sub base Type on the Development of D-Cracking," Highway Research Record No. 342, 1970.
- [30]. <u>WWW.Google.com</u> Ethiopian road network map (2017).

2018

Appendix A: Grain size analysis data

i) Grain size analysis data: Base Course

PART	PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)									
Type o Failu Sourc Metho	f Material: - Base Course re type:-Pothole e :- BH-1 od of sieving: - wet sieving	Date of Sampled:-12/06/2017 Date of Tested: - 20/06/2017 Sampled by: - Fikru Benti Nominal maximum particle size 20 mm								
80 70 60	BH-1	Sieve Opening , mm	Wt. Retained ,gm	% Retaine d	Cumulati ve %Retaine d	% Pass				
5 0		20	1410	29.4	29.4	70.6				
uiss 40		10	1205	25.1	54.5	45.5				
BB 8 30		5	880	18.3	72.8	27.2				
20		2.36	490	10.2	83.0	17.0				
10		0.425	510	10.6	93.6	6.4				
0		0.075	90	1.8	95.4	4.6				
0.0	01 1 100	Pan	215	4.5	100.0	0.0				
	Sieve Size(mm)	Total Wt.	4800							

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)									
Type of Material: - Base Course		Date of Sampled:-12/06/2017							
Failure type:- Raveling & strippi	ng	Date of Tes	ted: - 20/06/	2017					
Source :- BH-2		Sampled by: - Fikru Benti							
Method of sieving: - wet sieve	t sieve Nominal maximum particle size 20			icle size 20	mm				
→ BH-2	Sieve	Wt.		Cumula					
80	Opening,	Retained	%	tive	%				
70	mm	,gm	Retained	Retaine	Pass				
60				d					
.딸 50	20	1540	30.1	30.1	69.9				
	10	1100	21.5	51.6	48.4				
× 30	5	890	17.4	69.0	31.0				
10	2.36	670	13.1	82.1	17.9				
	0.425	510	10.0	92.1	7.9				
0.01 1 100	0.075	147	2.9	95.0	5.0				
Sieve Size(mm)	Pan	250	4.9	100	0.0				
PARTICLE SIZE	DISTRBUT	ION: (AAS	HTO T-11 /	Γ27)					

Type of Material: - Base CourseDate of Sampled:-12/06/2017							
Failure type:- Corrugation		Date of Tested: - 20/06/2017					
Source :- BH-3		Sampleo	l by: - Fikr	u Benti			
Method of sieving: - wet sieve		Nominal	maximum	particle size	e 20 mm		
90 BH-3 90 80 70 60	Sieve Opening, mm	Wt. Retaine d,gm	% Retaine d	Cumul ative Retaine d	% Pass		
δ0 	20	890	15.1	15.1	84.9		
sed 40 % 30	10	1745	29.6	44.7	55.3		
20	5	1230	20.9	65.6	34.4		
	2.36	690	11.7	77.3	22.7		
0.01 1 100	0.425	569	9.7	87.0	13.0		
	0.075	410	7.0	94.0	6.0		
	Pan	350	5.9	100	0.0		
	Total Wt.	5890					

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)									
Type of Material: - Base C	ourse	-	Date of Sampled:-12/06/2017						
Failure type:- Rutting and	l Wear		Date of Tes	ted: - 20/06/	2017				
Source :- BH-4			Sampled by	y: - Fikru Be	enti				
Method of sieving: - wet	sieve	No	minal maxin	num particle	size 20 mm				
90	Sieve Openin g, mm	Wt. Retained,g m	% Retained	Cumulat ive Retained	% Passing				
يم 60	20	1190	22.3	22.3	77.7				
	10	1280	23.9	46.2	53.8				
× 30	5	894	16.7	62.9	37.1				
20	2.36	592	11.1	74.0	26.0				
	0.425	660	12.4	86.4	13.6				
0.01 1 100	0.075	490	9.2	95.6	4.4				
Sieve Size(mm)	Pan	240	4.5	100	0.0				
	Total Wt.	5346							
PARTICLE S	SIZE DIST	RBUTION: (AASHTO T	-11 /T 27)					
Type of Material: - Base C	ourse	Date of	of Sampled:-1	2/06/2017					
PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)									
--	---	---	--	--	--	--	--	--	
Failure type:- Alligator C	Date of Tested: - 20/06/2017								
Source :- BH- 5 Sampled by: - Fikru Benti									
Method of sieving: - wet	sieve	Nomi	nal maximı	um particle s	ize 20 mm				
BH-5	Sieve	Wt.	%	Cumulat	0/				
80	Opening,	Retained,	Retaine	ive	70 Dessing				
70	mm	gm	d	Retained	r assing				
60	20	1490	24.8	24.8	75.2				
ø 50	10	1285	21.4	46.2	53.8				
40	5	1005	16.8	63.0	37.0				
20	2.36	840	14.0	77.0	23.0				
10	0.425	910	15.2	92.2	7.8				
	0.075	220	3.7	95.9	4.1				
0.01 1 100	Pan	250	4.2	100	0.0				
Sieve size(mm)	Total Wt.	6000.0							
	PARTICLE S Failure type:- Alligator C Source :- BH- 5 Method of sieving: - wet	PARTICLE SIZE DISTRE Failure type:- Alligator Crack Source :- BH- 5 Method of sieving: - wet sieve 80 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 70 60 20 10 5 2.36 0.01 1 0.01 1 10 10 10 10 10 10 10	PARTICLE SIZE DISTRBUTION: (AFailure type:- Alligator CrackDate of Source :- BH- 5Method of sieving: - wet sieveNomiMethod of sieving: - wet sieveNomiSieve NomiSieve Wt. Opening, mmRetained, mm20149010Older of Opening, mmColspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="	PARTICLE SIZE DISTRBUTION: (AASHTO T)Failure type:- Alligator CrackDate of Tested: -Source :- BH- 5Sampled by: - FiMethod of sieving: - wet sieveNominal maximu $\begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	PARTICLE SIZE DISTRBUTION: (AASHTO T-11 / T 27) Failure type:- Alligator Crack Date of Tested: - 20/06/2017 Source :- BH- 5 Sampled by: - Fikru Benti Method of sieving: - wet sieve Nominal maximum particle s $Method of sieving: - wet sieve$ Sieve Wt. % Cumulat $Method of sieving: - wet sieve Nominal maximum particle s Method of sieving: - wet sieve Nominal maximum particle s Method of sieving: - wet sieve Nominal maximum particle s Method of sieving: - wet sieve Nominal maximum particle s Method of sieving: - wet sieve Sieve Wt. % Method of sieving: - wet sieve Sieve Wt. % Cumulat Method of sieving: - wet sieve Sieve Wt. % Cumulat Method of sieving: - wet sieve Sieve Wt. % Cumulat Method of Sieve size(mm) O.01 Sieve size(mm) Method of Sieve size(mm)$				

PARTICLE	PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)								
Type of Material: - Base	Date of Sampled:-12/06/2017								
Failure type:- Non-defe	et	Date of	of Tested: -	20/06/2017					
Source :- BH-6		Samp	led by: - Fil	kru Benti					
Method of sieving: - we	t sieve	Nomi	nal maximu	um particle s	ize 20 mm				
→ BH-6	Sieve	Wt.	%	Cumulat	0/				
90	Opening,	Retained,	Retaine	ive	70 Deceing				
80	mm	gm	d	Retained	1 assing				
<u>هم</u> 60	20	1279	21.3	21.3	78.7				
50	10	854	14.2	35.5	64.5				
3 0	5	1004	16.7	52.2	63.0				
20	2.36	967	16.1	68.3	31.7				
	0.425	978	16.3	84.6	15.4				
0.01 1 100	0.075	767	12.8	97.4	2.6				
Sieve Size(mm)	169	2.8	100	0.0					
	Total Wt.	6018.0							

Type of Material: - Sub Failure type:- Pothol Source :- BH-1	-base Course e & Patching	Date of Sampled:-12/06/2017 Date of Tested: - 20/06/2017 Sampled by: - Fikru Benti				
Method of sieving: - w	vet sieve	Nomin	al maximum	n particle size	37.5 mm	
BH-1 100 90	Sieve Opening, mm	Wt. Retained,g m	% Retained	Cumulati ve Retained	% Passing	
70	37.5	150.0	4.2	4.2	95.8	
. <u>e</u> 60	28	530.0	14.7	18.9	81.1	
8 50	20	440.0	12.3	31.2	68.8	
30	10	990.0	27.4	58.6	41.4	
20	5	560.0	15.5	74.1	25.9	
	2.36	310.0	8.6	82.7	17.3	
0.01 100	0.425	190.0	5.3	88.0	12.0	
Grain size(mm)	70.0	1.9	89.9	10.1		
	Pan	370.0	10.3	100.0	0.0	
	Total weight	3610.0				

ii) Grain size analysis data: Sub-base Course

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)									
Type of Material: - Sub-b	ase Course	Date of Sampled:-12/6/2017							
Failure type:- Raveling	g & stripping	Date of	Tested: - 20/	/06/2017					
Source :- BH-2		Sample	d by: - Fikru	Benti					
Method of sieving: - we	t sieve	Nomina	l maximum j	particle size 3	37.5 mm				
100	Sieve size,	Wt.	%	Cumulati	%				
	mm	Retained,g	Retained	ve	Passing				
80		m		Retained					
6 0	37.5	612.0	512.0 12.2	12.2	87.8				
Jassi	28	965.0	19.3	31.5	68.5				
₩ 40	20	530.0	10.6	42.1 54.8 72.7 80.3	57.9				
20	10	636.0	12.7		45.2				
	5	897.0	17.9		27.3				
0.01 100	2.36	382.0	7.6		19.7				
Sieve Size(mm)	0.425	391.0	7.8	88.1	11.9				
	0.075	335.0	6.7	94.8	5.2				
	Pan	250.0	5.0	100	0.0				
PARTICLE	SIZE DISTRE	BUTION: (AA	SHTO T-11	(T 27)					
	Total Wt.	4998.0							

Type of Material: - Sub-base	Course		Date of Sampled:-12/06/2017				
Failure type:- Corrugation		Date of Tested: - 20/06/2017					
Source :- BH-3			Samj	pled by: - Fik	ru Benti		
Method of sieving: - wet sie	eve	Nomi	nal maximu	m particle siz	e 37.5 mm		
100	Sieve						
90	Opening, mm	Wt.	%	Cumulati	%		
80		Retained	Retained	ve	Passing		
70		,gm		Retained			
	37.5	594.0	11.4	11.4	88.6		
	28	563.0	10.8	22.2	77.8		
80 80	20	810.0	15.6	37.8	62.2		
30	10	703.0	13.5	51.3	48.7		
20	5	582	11.1	62.4	37.6		
10	2.36	563.0	10.8	73.2	26.8		
	0.425	667.0	12.8	86.0	14.0		
0.01 1 100	0.075	431	8.3	94.4	5.6		
Sieve Size(mm)	Pan	287.0	5.5	100.0	0.0		
	Total weight	5200.0					

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)							
Type of Material: - Sub-base	Course	Date of Sampled:-12/06/2017					
Failure type:- Rutting and	l Wear	Date o	f Tested: - 20)/06/2017			
Source :- BH-4		Samp	led by: - Fiki	ru Benti			
Method of sieving: - wet side	eve	Nomin	al maximum	particle size	37.5 mm		
	Sieve Opening, (mm)	Wt. Retained,g m	% Retained	Cumulati ve Retained	% Pass		
70	37.5	280.0	6.7	6.7	93.8		
1 1 1 1 1 1 1 1 1 1	28	540.0	13.4	20.1	79.9		
Se 50	20	420.0	10.5	30.6	69.4		
30	10	940.0	23.4	54.0	46.0		
20	5	670.0	16.7	70.7	29.3		
	2.36	290.0	7.2	77.9	22.1		
0.01 1 100	0.425	170.0	4.2	82.1	17.9		
Sieve Size(mm)	0.075	430.0	10.7	92.9	7.1		
	Pan	280.0	7.0	100.0	0.0		
PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)							
Type of Material: -Sub-base courseDate of Sampled:-12/06/2017							
Failure type:-Alligator Crac	ck .	Date of Te	ested: - 20/06	/2017			

Course + DIL 5	Sampled by: Filmu Renti							
Method of sieving: wet si	ng: wat sieve Nominal maximum particle size 27.5 r							
Wethou of sieving wet s		Nommai	maximum pa	article size 57.5	, 111111			
100	Sieve	Wt.	06	Cumulative	%			
90	Opening,	Retained,g	70 Retained	Retained	Passin			
80	mm	m	Retained		g			
70	37.5	360.0	9.8	9.8	90.2			
<u>in 60</u>	28	530.0	14.5	24.3	75.7			
	20	480.0	13.1	37.4	62.6			
30	10	780.0	21.3	58.7	41.3			
20	5	520.0	14.2	72.9	27.1			
10	2.36	320.0	8.7	81.6	18.4			
0	0.425	340.0	3.8	85.4	14.6			
0.01 1 100 Sieve Size(mm)	0.075	180.0	9.3	94.7	5.3			
	Pan	150.0	4.1	100.0	0.0			
	Total Wt.	3660						

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)							
Type of Material: - Sub bas	e course	Date of Sampled:-12/06/2017					
Failure type:-Non-defect		Date	of Tested: -	20/06/2017			
Source :- BH-6		Sam	pled by: - Fi	kru Benti			
Method of sieving: - wet s	ieve	Nominal	maximum pa	article size 37.	5 mm		
BH-6 100 90	Sieve Opening, mm	Wt. Retained,g m		Cumulativ e Retained	% Passing		
80	37.5	450.0	12.2	12.2	87.8		
	28	440.0 11.9 24.1			75.9		
ss 50	20	570.0	15.5	39.6	60.4		
4 0	10	693.0	18.8	58.4	41.6		
30	5	425.0	11.5	69.9	30.1		
10	2.36	415.0	11.3	81.2	18.8		
0	0.425	244.0	6.6	87.8	12.2		
0.01 1 100	0.075	285.0	7.7	95.5	4.5		
Sieve size(mm)	160.0	4.5	100.0	0.0			
	Total Wt.	3682					

iii) Grain size analysis data: Subgrade Soil

PARTICLE SIZE DISTRB	UTION: (AASHTO T-11 /T 27)
Type of Material: - Subgrade	Date of Sampled:-12/06/2017

Failure type:-Pothole	Date of Tested: - 20/06/2017						
Source :- BH-1	Sampled by: - Fikru Benti						
Method of sieving: - wet sieve	Non	Nominal maximum particle size 4.75 mm					
→ BH-1 100 95 90	Sieve Opening, mm	Wt. Retained, gm	% Retained	Cumulat ive Retained	% Passing		
85	4.75	120	4.8	4.8	95.2		
1 iii 80	2.36	60	2.4	7.2	92.8		
	1.18	120	4.8	12.0	88.2		
65	0.425	400	16.1	28.1	71.9		
60	0.3	140	5.6	33.7	66.3		
50	0.075	260	10.4	44.2	55.8		
0.01 1 100	Pan	1390	55.8	100	0.0		
Sieve Size(mm)	Total Wt.	2490					
PARTICLE SIZE	DISTRBUTION:	(AASHTO T	<u>-11 /T 27)</u>				
Type of Material: - Subgrade	Date Date	of Sampled:-1.	2/06/2017 20/06/2011	7			
Source BH-2	San	npled by: - Fik	ru Benti	/			
Method of sieving: - wet sieve	Non	ninal maximun	n particle si	ize 4.75 mm			
	Sieve	Wt.	%	Cumulat			
100 BH-2	Opening,	Retained,g	Retai	ive	% Pass		
95	mm	m	ned	Retained			
90	4.75	210	5.7	5.7	94.3		
	2.36	70	1.9	7.6	92.4		
	1.18	40	1.1	8.7	91.3		
° 80	0.425	250	6.7	15.4	84.6		
75	0.3	110	3.0	18.4	81.6		
70	0.075	300	8.1	26.5	73.6		
0.01 1 100	Pan	2730	73.6	100	0.0		
Sieve Size(mm)	Total Wt.	3710					

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)								
Type of Material: - SubgradeDate of Sampled:-12/06/2017								
Failure type:-CorrugationDate of Tested: - 20/06/2017								
Source :- BH-3		Sampled by	y: - Fikru Bei	nti				
Method of sieving: - wet si	ieve	Nominal ma	aximum parti	icle size 4.75 r	nm			
BH-3 110 100	Sieve Opening, mm	Wt. Retained,gm	Cumulative Retained	% Passing				
<u>w</u> 90	4.75	197	4.3	4.3	95.7			
80	2.36	570	12.5	16.8	83.2			
8 70	1.18	146	3.2	20.0	80.0			
60	0.425	154	3.4	23.4	76.6			
50	0.3	112	2.5	25.9	74.1			
0.01 100 Sieve Size(mm)	0.075	604	13.2	39.1	61.0			
	Pan	2783	61.0	100	0.0			
	Total Wt.	4566.0						
PARTICLE SI	ZE DISTRBU	JTION: (AASI	HTO T-11 /7	Г 27)	•			
Type of Material: - Subgrad	e	Date of Sam	pled:-12/06/2	2017				
Failure type:- Rutting and	d Wearing	Date of Test	ed: - 20/06/2	017				
Source :- BH-4		Sampled by	y: - Fikru Bei	nti				
Method of sieving: - wet si	leve	Nominal ma	aximum parti	icle size 4.75 r	nm			
110 BH-4	Sieve Opening, mm	Wt. Retained,g m	% Retained	Cumulati ve Retained	% Passing			
알 90	4.75	230	4.4	4.4	95.6			
assi	2.36	523	9.9	14.3	85.7			
80	1.18	120	2.3	16.6	83.4			
70	0.425	99	1.9	18.5	81.5			
60	0.3	212	4.0	22.5	77.5			
	0.075	688	13.0	35.5	64.6			
Sieve Size(mm)	Pan	3408	64.6	100	0.0			
	Total Wt.	5280.0						

PARTICLE SIZE DISTRBUTION: (AASHTO T-11 /T 27)										
Type of Material: - SubgradeDate of Sampled:-12/06/2017										
Failure type:-Alligator crackDate of Tested: - 20/06/2017										
Source :- BH-5			S	ampled	by: - F	Fikru	Benti			
Method of sieving: - wet	sieve	•	N	ominal	maxim	um p	particle	size 4.7	5 m	m
RH-5		Siev	e	W	⁷ t.		%	Cumu	lat	%
100		Opening,	mm	Retai	ned,g	Re	etaine	ive		Passing
95				n	n		d	Retain	ed	i ussing
90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4.75		267		4.4	ŀ	4.4		95.6
		2.36		570		9.5	5	13.9		86.1
% 75		1.18		100		1.7	7	15.6		84.4
70		0.425	5	94		1.6	5	17.2		82.8
		0.3		458		7.6	5	24.8		75.2
0.01 1 2	100	0.07	5	683		11	.4	36.2		63.8
Siev Size(mm)		Pan		3842		63.9		100		0.0
Total Wt.					1.0					
PARTICLE	SIZE	DISTRB	UTION	N: (AA	SHTO) T-1	1 /T 2'	7)		
Type of Material: - Subgra	ade		Dat	te of Sa	mpled:	-12/0)6/201	7		
Failure type:- Non-defec	et		Da	ate of T	ested:	- 20/	06/201	7		
Source :- BH-6			S	ampled	by: - F	Fikru	Benti			
Method of sieving: - wet	sieve	;	N	ominal	maxim	um p	particle	size 4.7	5 m	m
BH-6	-	Sieve	V	Vt.	%		Cum	ulative		
100	Ope	ening,	Reta	ined,g	Reta	ine	Ret	ained	(% Pass
90	mm			m	d				-	
<u></u> 80		4.75	3	33	5.	6		5.6	94	1.4
8 70		2.36		468	7.	8		13.4	86	5.6
\$ 60 50		1.18		98	1.6	5		15.0	83	5.0
		0.425		89	1.	5		16.5	83	3.5
40	40 0.3		3	99	6.7	7		23.2	- 76	5.8
0.01 100		0.075	5	597	10	.0		33.2	66	5.8
Sieve Size(mm)		Pan	3	993	66.	8	1	00.0	0.	0
	Т	otal Wt.	5	977.0						

	1	1	1		-			
Test pit No.	%	%	%	D_{10}	D ₃₀	D ₆₀	Cu	Cc
	Gravel	Sand	Fines	mm	mm	mm		
BH-1	72.8	22.6	4.5	0.9	6.0	15	16.7	2.7
BH-2	69.0	26.0	4.9	0.7	5.0	16	22.9	2.2
BH-3	65.6	28.4	5.9	0.2	4.0	11	55.0	7.2
BH-4	62.9	32.7	4.5	0.2	3.0	11	55.0	4.1
BH-5	63.0	32.9	4.2	0.6	4.0	12	20.0	2.2
BH-6	52.2	45.2	2.8	0.2	2.2	4.6	25.0	2.5

✓ From Grain Size Distribution Curve of Base Course material

✓ From Grain Size Distribution Curve of sub-base material

Test pit No.	%	%	%	D ₁₀	D ₃₀	D ₆₀	Cu	Cc
	Gravel	Sand	Fines	mm	Mm	Mm		
BH-1	74.1	15	10.3	0.3	6.0	17	56.7	7.0
BH-2	72.7	22.1	2.8	0.3	6.0	20	66.0	6.0
BH-3	62.4	32.0	5.5	0.2	3.0	19.0	95.0	2.4
BH-4	70.7	22.2	7.0	0.1	5.0	15.0	150	9.3
BH-5	72.9	21.8	4.1	0.2	6.1	20.0	100	9.3
BH-6	69.9	25.6	4.5	0.3	5.0	20.0	66.7	4.2

✓ From Grain Size and Hydrometer Size Distribution Curve of subgrade soil.

Test pit No.	%	%	%	D ₁₀	D ₃₀	D ₆₀	Cu	Cc
	Gravel	Sand	Fines	mm	Mm	mm		
BH-1	4.8	39.4	55.8	0.002	0.006	0.15	75.0	0.12
BH-2	5.7	20.8	73.6	0.0015	0.0017	0.04	26.7	0.05
BH-3	4.3	34.8	61.0	0.0011	0.011	0.019	17.3	5.8
BH-4	4.4	31.1	64.6	0.002	0.009	0.03	15.0	1.35
BH-5	4.4	31.8	63.9	0.0015	0.005	0.04	26.7	0.42
BH-6	5.6	27.6	66.8	0.0016	0.0049	0.03	18.8	0.5

Appendix B: Atterberg limit test

i) Atterberg limit test / Base Course

ATTERBERG LIMITS: AASHTO T-89 & T – 90									
Type of Material: - Base Cou	rse		Date of Sampling: -13/06/2017						
Source:-BH-1			Date of Testing:-23/06/2017						
Failure Type:- Pothole and Patching				led by:- Fi	ikru Benti				
Proportion retained on 0.425mm Sieve				en Dried at	:: -110 °C				
	Liquid Li	nit			Plastic Lim	it			
Container No.	D	В	С		T2	T3			
No. of Blows	31	25	20		-	-			
Wgt.of Wet soil + Cont.(gm)	53.8	55.6	56.1						
Wgt. of Dry soil + Cont.(gm)	52.2	53.9	54.2						
Wgt. of Moisture (gm)	1.6	1.7	1.9						
Wgt. of Container (gm)	13.9	13.9	14.0						
Wgt. of Dry soil (gm)	38.3	40.0	42.1						
Moisture Content, %	4.2	4.3	4.5		0.0	0.0			
	Avg. LL	4.33		Avg.PL	0.0				
Summary , Liquid Limit	4.33								
Plasticity Limit	0.0								
Plasticity Index	4.33%								

Final Results: Liquid Limit = 4.35

Plastic Limit = 0.00

Plasticity Index =4.34

ATTERBERG LIMITS: AASHTO T-89 & T – 90								
Type of Material: - Base Course		Γ	Date of S	Sampling:	-13/06/2	017		
Source:- BH-2		D	ate of T	Cesting: - 2	3/06/201	7		
Failure Type:-Raveling &stripping		Sa	ampled	by:- Fikru	Benti			
Proportion retained on 0.425mm Sieve		0	ven Dri	ed at: -110	0°C			
	Liquid	Limit			Plastic	Limit		
Container No.	R1	T2	Y3		D2	D1		
No. of Blows	33	26	22		-	-		
Wgt. of Wet soil + Cont.(gm)	54.1	55.2	55.8					
Wgt. of Dry soil + Cont.(gm)	52.7	53.5	54.0					
Wgt. of Moisture (gm)	1.4	1.7	1.8					
Wgt. of Container (gm)	14.0	13.9	14.0					
Wgt. of Dry soil (gm)	38.7	39.6	40.0					
Moisture Content, %	3.6	4.3	4.5		0.0	0.0		
	Avg.	4.13		Avg.PL	0.0			
	LL							
Summary, Liquid Limit	4.13							
Plasticity Limit	0.0							
Plasticity Index	4.13%							

Final Results: Liquid Limit = 4.26

ATTERBERG LIMITS: AASHTO T-89 & T – 90								
Type of Material: - Base Cour	se		Date of Sampling: -13/06/2017					
Source:- BH-3		Dat	e of Testing	g: - 23/06/20	17			
Failure Type:- Corrugation			Sam	pled by:- Fi	kru Benti			
Proportion retained on 0.425	5mm Sieve		Ov	en Dried at	-110 °C			
	Liquid Limit				Plastic Lim	it		
Container No.	Q2	S 2	H2		D1	B1		
No. of Blows	32	25	21		-	-		
Wgt.of Wet soil + Cont.(gm)	55.1	55.2	55.9					
Wgt. of Dry soil + Cont.(gm)	53.6	53.4	54.0					
Wgt. of Moisture (gm)	1.5	1.8	1.9					
Wgt. of Container (gm)	13.0	13.2	13.1					
Wgt. of Dry soil (gm)	40.6	40.2	40.9					
Moisture Content, %	3.7	4.5	4.7		0.0	0.0		
	Avg. LL	4.3		Avg.PL	0.0			
Summary , Liquid Limit	4.3							
Plasticity Limit	0.0							
Plasticity Index	4.3%							

Final Results: Liquid Limit = 4.81

Plastic Limit = 0.00

Plasticity Index =4.81

ATTERBERG LIMITS: AASHTO T-89 & T – 90									
Type of Material: - Base Cour	rse		Date of Sampling: -13/06/2017						
Source:- BH-4			Date	e of Testing	: -23/06/201	7			
Failure Type:- Rutting and Wearing			Samp	oled by:- Fil	kru Benti				
Proportion retained on 0.425mm Sieve				n Dried at:	-110 °C				
	Liquid Limit				Plastic Lin	nit			
Container No.	C4	S 1	D1		L1	L5			
No. of Blows	34	27	23		-	-			
Wgt.ofWet soil + Cont.(gm)	55.3	55.5	56.0						
Wgt. of Dry soil + Cont.(gm)	53.9	54.0	54.3						
Wgt. of Moisture (gm)	1.4	1.5	1.7						
Wgt. of Container (gm)	14.6	14.8	14.5						
Wgt. of Dry soil (gm)	39.3	39.2	39.8						
Moisture Content, %	3.6	3.8	4.3		0.0	0.0			
	Avg.LL	3.9		Avg.PL	0.0				
Summary , Liquid Limit	3.9								
Plasticity Limit	0.0								
Plasticity Index	3.9%								

Final Results: Liquid Limit = 4.10

Plastic Limit = 0.00

Plasticity Index =4.10

ATTERBERG LIMITS: AASHTO T-89 & T – 90									
Type of Material: - Base Cou	rse		Date of Sampling: -13/06/2017						
Source:- BH-5	Source:- BH-5				: -23/06/2017	,			
Failure Type:- Alligator crack		Sam	pled by:- Fi	kru Benti					
Proportion retained on 0.425mm Sieve			Ove	en Dried at:	-110 °c				
	•,				•,				
	Liquid Li	mit	1		Plastic Lim	1t			
Container No.	H1	R2	M3		M1	M2			
No. of Blows	33	26	21		-	-			
Wgt.of Wet soil + Cont.(gm)	57.4	58.3	59.2						
Wgt. of Dry soil + Cont.(gm)	55.6	56.2	56.8						
Wgt. of Moisture (gm)	1.8	2.1	2.4						
Wgt. of Container (gm)	13.0	13.3	13.2						
Wgt. of Dry soil (gm)	42.6	42.9	43.6						
Moisture Content, %	4.2	5.0	5.5		0.0	0.0			
	Avg.LL	4.9		Avg.PL	0.0				
Summary , Liquid Limit	4.9								
Plasticity Limit	0.0								
Plasticity Index	4.9%								

Final Results: Liquid Limit = 5.10

Plastic Limit = 0.00

Plasticity Index =5.10

ATTERBERG LIMITS: AASHTO T-89 & T – 90								
Type of Material: - Base Cou	rse		Date of Sampling: -13/06/2017					
Source:- BH-6	Source:- BH-6				g: -23/06/20	17		
Failure Type:-Non defect			Sam	pled by:- Fi	ikru Benti			
Proportion retained on 0.425		0	ven Dried a	nt: -110 °c				
	Liquid Limit				Plastic Limit			
Container No.	D	F	S		Т	В		
No. of Blows	34	27	20		-	-		
Wgt.ofWet soil + Cont.(gm)	66.4	69.5	70.7					
Wgt. of Dry soil + Cont.(gm)	64.3	66.3	67.2					
Wgt. of Moisture (gm)	2.1	3.2	3.5					
Wgt. of Container (gm)	12.9	12.2	12.0					
Wgt. of Dry soil (gm)	51.4	54.1	55.2					
Moisture Content, %	4.08	5.92	6.34		0.0	0.0		
	Avg.LL	5.67		Avg.PL	0.0			
Summary , Liquid Limit	5.57							
Plasticity Limit	0.0							
Plasticity Index	5.45%							

Final Results: Liquid Limit = 5.80

Plastic Limit = 0.00

Plasticity Index = 5.80

ii) Atterberg limit test / Sub-Base Course

ATTERBERG LIMIT:AASI	ATTERBERG LIMIT:AASHTO T-89 & T-90									
Type of Material: - Sub base C	Course		Date of Sampling: -13/06/2017							
Source: - BH-1			Date of Test	ing: -23/06/2	2017					
Failure Type:- Pothole and Pat	Sampled by:	- Fikru Ben	ti							
Proportion retained on 0.425	mm Sieve		Oven D	ried at: -110)°c					
		Liquid Lim	Plastic	e Limit						
Number of Blows	31	24	16	-	-					
container Number	A1	A2	A3	B1	B2					
Wet Soil + container (gram)	79.2	62.6	78.3	10.2	12.3					
Dry Soil + container (gram)	67.8	55.4	66.6	9.9	11.6					
Mass of container (gram)	32.7	32.6	33.2	9.4	9.0					
Mass of Moisture (gram)	10.3	7.2	11.7	0.5	0.7					
Mass of Dry Soil (gram)	35.1	22.8	33.4	2.3	2.6					
Moisture Content %	29.3	31.6	35.1	21.7	26.9					
Avg.LL		33.1	Avg.PL	24.3						
Liquid Limit :		33.1								
Plastic Limit :	2	24.3								
Plastic Index :		8.7								

Final Results: Liquid Limit = 31.0

Plastic Limit = 24.30

Plasticity Index = 6.70

ATTERBER	ATTERBERG LIMIT: AASHTO T-89 & T-90								
Type of Material: - Sub base Cou	urse		Date of Sampling: -13/06/2017						
Source: - BH-2			Date of T	esting: -23/00	5/2017				
Failure Type:- Raveling &strippi	Sampled b	oy: - Fikru Be	nti						
Proportion retained on 0.425mm Sieve			Oven	Dried at: -11	0 °c				
		Liquid Lim	nit	Plastic	e Limit				
Number of Blows	34	26	18	-	-				
container Number	Q2	E3	X4	Q1	R2				
Wet Soil + container (gram)	72.6	76.7	74.8	18.5	20.3				
Dry Soil + container (gram)	63.8	66.8	64.4	17.3	19.5				
Mass of container (gram)	32.2	32.6	33.2	12.6	15.7				
Mass of Moisture (gram)	8.8	9.9	10.4	1.2	0.8				
Mass of Dry Soil (gram)	31.6	34.2	32.5	4.7	3.8				
Moisture Content %	27.8	28.9	32.0	25.5	21.0				
Avg.LL		29.6	Avg.PL	23.3					
Liquid Limit	29.6								
Plastic Limit	23.3								
Plastic Index	(5.35							

Final Results: Liquid Limit = 29.00

Plastic Limit = 23.30

Plasticity Index = 5.70

ATTERBERG L	ATTERBERG LIMIT: AASHTO T-89 & T-90									
Type of Material: - Sub base Co	ourse		Date of Sampling: -13/06/2017							
Source: - BH-3	Date of Tes	ting: -23/06/	/2017							
Failure Type:- Corrugation			Sampled by:	: - Fikru Ben	ti					
Proportion retained on 0.425n	nm Sieve		Oven Dr	ied at: -110	°c					
		Liquid Lim	Plastic	e Limit						
Number of Blows	32	27	22	-	-					
container Number	D2	D3	D4	X1	X2					
Wet Soil + container (gram)	80.5	70.4	76.7	19.3	21.6					
Dry Soil + container (gram)	71.9	63.5	67.6	18.5	20.9					
Mass of container (gram)	37.0	36.3	33.2	14.8	17.6					
Mass of Moisture (gram)	8.6	7.1	9.7	0.8	0.7					
Mass of Dry Soil (gram)	34.1	27.3	33.0	3.7	3.3					
Moisture Content %	25.2	28.0	29.4	21.6	21.2					
Avg.LL		27.5	Avg.PL	21	.4					
Liquid Limit	27.50									
Plastic Limit	21.80									
Plastic Index	4	5.73								

Final Results: Liquid Limit = 28.00

Plastic Limit = 21.40

Plasticity Index = 6.70

2		1	O
4	U	1	0

ATTERBERG LIMIT: AASHTO T-89 & T-90						
Type of Material: - Sub-base Course			Date of Sampling: -13/06/2017			
Source: - BH-4			Date of Tes	ting: -23/06	5/2017	
Failure Type:- Rutting and We	earing		Sampled by:	- Fikru Ber	nti	
Proportion retained on 0.42	5mm Sieve	e	Oven Dried	at: -110 °c		
		Liquid Lim	it	Plasti	c Limit	
Number of Blows	30	25	21	-	-	
container Number	C1	C2	C3	N1	N2	
Wet Soil + container (gram)	72.6	68.3	76.7	20.6	18.8	
Dry Soil + container (gram)	64.2	61.6	68.4	20.0	18.2	
Mass of container (gram)	33.1	33.4	34.2	16.4	14.8	
Mass of Moisture (gram)	7.1	6.7	8.3	0.6	0.6	
Mass of Dry Soil (gram)	31.1	28.2	34.2	3.6	3.4	
Moisture Content %	22.8	23.8	24.3	16.7	17.6	
Avg.LL	23.6		Avg.PL	17.1	15	
Liquid Limit	2	23.6				
Plastic Limit	18.8					
Plastic Index		4.8				

Final Results: Liquid Limit = 23.65

Plastic Limit = 17.15

Plasticity Index =6.5

ATTERBERG LIMIT: AASHTO T-89 & T-90						
Type of Material: - Sub-base	Date of Sa	mpling: -13	/06/2017			
Source: - BH-5			Date of Tes	sting: -23/0	5/2017	
Failure Type:- Alligator c	rack		Sampled	by: - Fi	ikru Benti	
Proportion retained on 0.425n	nm Sieve		Oven Dried a	ut: -110 °c		
		Liquid Lim	it	Plastic	e Limit	
Number of Blows	31	23	19	-	-	
container Number	T2	T3	T4	D3	D4	
Wet Soil + container(gram)	80.4	68.5	78.7	24.1	21.4	
Dry Soil + container (gram)	72.3	62.1	69.8	23.2	20.6	
Mass of container (gram)	35.5	36.7	42.6	17.4	16.4	
Mass of Moisture (gram)	8.1	6.4	8.9	0.9	0.8	
Mass of Dry Soil (gram)	36.8	25.4	34.6	5.8	4.2	
Moisture Content %	22.0	25.2	25.7	15.5	19.1	
Avg.LL	24.3		Avg.PL	17.3		
Liquid Limit	24.3					
Plastic Limit	17.3					
Plastic Index		7.0				

Final Results: Liquid Limit = 23.80

Plastic Limit = 17.30

Plasticity Index = 6.50

ATTERBERG LIMIT: AASHTO T-89 & T-90							
Type of Material: - Sub-bas	Date of Sampling: -13/06/2017						
Source: - BH-6			Date of Te	esting: -23/0	6/2017		
Failure Type:-Non-defe	ct		Sampled	by: - Fikru	Benti		
Proportion retained on	0.425mm	Sieve	Oven I	Dried at: -11	0°c		
		Liquid Lim	it	Plastic	e Limit		
Number of Blows	32	24	21	-	-		
container Number	Z1	Z2	Z3	C2	C3		
Wet Soil + container(gram)	80.2	68.4	76.5	22.8	19.5		
Dry Soil + container (gram)	73.3	62.1	67.2	21.6	18.7		
Mass of container (gram)	33.5	33.2	34.0	16.0	14.2		
Mass of Moisture (gram)	6.9	6.7	9.3	1.2	0.8		
Mass of Dry Soil (gram)	39.8	28.9	33.2	5.6	4.5		
Moisture Content %	19.3	23.18	28.01	21.43	17.80		
Avg.LL	23.50		Avg.PL	19	.60		
Liquid Limit	23.50						
Plastic Limit	19.60						
Plastic Index		4.2					

Final Results: Liquid Limit = 24.00

Plastic Limit = 19.60

Plasticity Index = 4.40

ATTERBERG LIMITS: AASHTO T-89 & T – 90							
Type of Material: - Sub grade Dat				e of Sampli	ng: -13/06/2	017	
Source:-BH-1			D	ate of Testin	ng:-24/06/20	17	
Failure Type:- Pothole a	nd Patching	g		Sampled by	:- Fikru Bent	ti	
Proportion retained on	0.425mm S	lieve		Oven Dried	l at: -110 °C		
	Liq	uid Limi	it		Plastic L	imit	
Container No.	В	С	D		E1	B4	
No. of Blows	32	24	16		-	-	
Wgt.of Wet soil + Cont.(gm)	54.1	58.8	59.1		22.9	23.4	
Wgt. of Dry soil + Cont.(gm)	43.4	46.4	46.4		21.7	21.9	
Wgt. of Moisture (gm)	10.7	12.4	12.7		1.2	1.5	
Wgt. of Container (gm)	17.6	17.1	17.6		17.4	17.2	
Wgt. of Dry soil (gm)	25.8	29.3	28.8		4.1	4.7	
Moisture Content, %	41.47	42.32	44.09		29.27	31.91	
	Avg.LL	42.05		Avg.PL	30.59		
Summary , Liquid Limit	42.62						
Plasticity Limit	30.59						
Plasticity Index	12.03%						

iii) Atterberg limit test / Sub-grade soil

Plastic Limit = 30.95

Plasticity Index = 12.30

ATTERBERG LIMITS: AASHTO T-89 & T – 90								
Type of Material: - Sub grade				Date of Sampling: -13/06/2017				
Source:-BH-2			Dat	e of Testing	g:-24/06/201	7		
Failure Type:- Ravelin	g &strippin	g	Sa	ampled by:-	· Fikru Benti			
Proportion retained or	n 0.425mm	Sieve	C	Oven Dried	at: -110 °C			
	Liq	uid Limi	it		Plastic L	imit		
Container No.	D5	B1	B2		A3	B3		
No. of Blows	30	23	16		-	-		
Wgt.of Wet soil + Cont.(gm)	49.4	60.6	62.0		21.9	22.4		
Wgt. of Dry soil + Cont.(gm)	39.5	47.3	48.0		20.7	21.2		
Wgt. of Moisture (gm)	9.9	13.0	14.0		1.2	1.2		
Wgt. of Container (gm)	17.0	18.1	17.6		16.9	17.7		
Wgt. of Dry soil (gm)	22.5	29.5	30.0		3.8	3.5		
Moisture Content, %	44.00	45.08	46.66		31.58	34.29		
	Avg.LL	44.91		Avg.PL	32.93			
Summary , Liquid Limit	44.91							
Plasticity Limit	32.93							
Plasticity Index	11.98%							

Plastic Limit = 32.93

Plasticity Index =11.87

ATTERBERG LIMITS: AASHTO T-89 & T – 90						
Type of Material: - Sub gra	de		Dat	e of Sampli	ng: -13/06/2	017
Source:-BH-3			D	ate of Testin	ng:-24/06/20	17
Failure Type:- Corrugat	ion			Sampled by	:- Fikru Bent	i
Proportion retained on	0.425mm S	ieve		Oven Dried	l at: -110 °C	
	Liq	uid Limi	it		Plastic L	imit
Container No.	T5	T1	T2		D2	D3
No. of Blows	35	24	17		-	-
Wgt.of Wet soil + Cont.(gm)	48.4	60.5	61.2		24.4	25.7
Wgt. of Dry soil + Cont.(gm)	38.6	46.7	46.1		23.1	24.2
Wgt. of Moisture (gm)	9.8	13.8	15.1		1.3	1.5
Wgt. of Container (gm)	17.4	19.6	18.1		18.7	18.0
Wgt. of Dry soil (gm)	21.2	27.1	28.0		4.4	6.2
Moisture Content, %	46.23	50.92	53.93		29.55	24.19
	Avg.LL	50.94		Avg.PL	26.87	
Summary , Liquid Limit	50.36					
Plasticity Limit	26.87					
Plasticity Index	23.49%					

Plastic Limit = 26.87

Plasticity Index =22.93

ATTERBERG LIMITS: AASHTO T-89 & T – 90							
Type of Material: - Sub grad	le		Date of	Date of Sampling: -13/06/2017			
Source:-BH-4			Date	of Testing	g:-24/06/2	2017	
Failure Type:- Rutting and	d Wear		Sa	mpled by:-	- Fikru Be	enti	
Proportion retained on 0	.425mm Si	eve	Ov	ven Dried a	at: -110 ° (С	
	Li	quid Limi	t		Plastic	: Limit	
Container No.	F2	B3	B4		G3	G1	
No. of Blows	33	25	17		-	-	
Wgt. of Wet soil + Cont.(gm)	52.3	63.6	66.1		22.5	23.6	
Wgt. of Dry soil + Cont.(gm)	40.2	47.9	48.9		21.3	22.1	
Wgt. of Moisture (gm)	12.1	15.7	17.2		1.2	1.5	
Wgt. of Container (gm)	17.2	19.9	17.5		16.6	17.3	
Wgt. of Dry soil (gm)	23	29.6	48.6		4.7	4.8	
Moisture Content, %	52.26	53.04	54.08		31.58	34.29	
	Avg. LL	53.13		Avg.PL	32.94		
Summary , Liquid Limit	53.13						
Plasticity Limit	32.94						
Plasticity Index	20.19%						

Plastic Limit = 32.94

Plasticity Index = 20.06

ATTERBE	RG LIMITS	S: AASH	ГО Т-89	& T – 90		
Type of Material: - Sub g	rade		Date of	Sampling: -	-13/06/201	7
Source:-BH-5			Date of	f Testing:-2	4/062017	
Failure Type:- Alligat	or crack		Samp	led by:- Fil	kru Benti	
Proportion retained o	n 0.425mm	Sieve	Over	n Dried at:	-110 °C	
	Lic	quid Limit			Plastic 1	Limit
Container No.	R1	R2	R4		E2	E3
No. of Blows	33	26	19		-	-
Wgt.of Wet soil + Cont.(gm)	52.2	55.5	56.3		21.8	22.7
Wgt. of Dry soil+ Cont.(gm)	42.1	43.9	43.3		20.5	21.2
Wgt. of Moisture (gm)	10.1	11.6	13.0		1.3	1.5
Wgt. of Container (gm)	17.6	17.2	16.1		16.7	16.3
Wgt. of Dry soil (gm)	24.5	26.7	27.2		3.8	4.9
Moisture Content, %	41.22	43.44	47.79		34.21	30.61
	Avg.LL	43.66		Avg.PL	32.41	
Summary , Liquid Limit	44.15					
Plasticity Limit	32.41					
Plasticity Index	11.74					

Plastic Limit = 32.41

Plasticity Index =12.39

ATTERBERG LIMITS: AASHTO T-89 & T – 90						
Type of Material: - Subgrad	le		Date o	f Sampling	g: -13/06/20)17
Source:-BH-6			Date	of Testing	:-24/06/20	17
Failure Type:- Non-defec	t		Sa	mpled by:-	Fikru Bent	i
Proportion retained on 0).425mm Sie	eve	0	ven Dried a	at: -110 °C	
	Lie	quid Limit			Plastic 1	Limit
Container No.	N1	N2	N3		N5	N4
No. of Blows	40	27	16		-	-
Wgt.of Wet soil + Cont.(gm)	53.0	51.6	56.2		22.1	25.7
Wgt. of Dry soil+ Cont.(gm)	47.2	44.9	47.7		21.2	24.5
Wgt. of Moisture (gm)	5.80	6.70	8.50		0.90	1.20
Wgt. of Container (gm)	29.2	27.5	28.30		18.6	18.9
Wgt. of Dry soil (gm)	18.0	17.4	19.4		2.6	5.6
Moisture Content, %	31.11	38.50	43.81		34.62	21.45
	Avg.LL	37.81		Avg.PL	28.03	
Summary , Liquid Limit	37.81					
Plasticity Limit	28.03					
Plasticity Index	9.78					

Plastic Limit = 28.03

Plasticity Index =9.97

Appendix	C:	Modified	Proctor	Test
----------	----	----------	---------	------

i) Modified Proctor Test: Base Course

MOISETURE DENSITY RELATION: (AASHTO T-180)						
Type of Material :Base courseDate of Sampling:-13/06/2017						
Source: - BH-1			Date of Tester	d:- 27/06/2017	7	
No. of Layers: 5			Weight of Ha	mmer Kg :- 4	4.5	
No. of Blows : 56			Volume of N	Iolds, cm3:- 2	2105	
Trial No.	1	2	3	4	5	
Amount of water added,%	2	4	6	8	10	
Volume of Mould (cc)	2105	2105	2105	2105	2105	
Wgt. of Mould + Wet soil	10230	10340	10590	10500	10475	
Wgt. of Mould (gm)	6590	6590	6590	6590	6590	
Wgt. of Wet soil (gm)	3640	3750	4000	3910	3885	
Wet Density (gm/cc)	1.73	1.78	1.9	1.86	1.85	
]	Moisture co	ontent deterr	nination			
Container No.	A2	T1	G1	01	O2	
Wgt. of Wet soil + Cont.(gm)	278.1	244.0	253.0	265.8	240.7	
Wgt. of Dry soil + Cont.(gm)	269.4	234.6	240.1	247.6	220.6	
Wgt. of Container (gm)	34.8	33.9	32.3	32.5	34.4	
Wgt. of Moisture (gm)	8.6	9.4	12.9	18.2	20.1	
Wgt. of Dry soil (gm)	234.6	200.7	207.8	215.1	186.2	
Moisture Content, %	3.70	4.70	6.20	8.50	10.80	
Dry Density (gm/cc)	1.67	1.70	1.79	1.71	1.67	

Optimum Moisture Content = 6.4 % Maximum Dry Density = 1.795 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)						
Type of Material :Base course	,		Date of Samp	ling:-13/06/20	17	
Source: - BH-2	Date of Tested:- 27/06/2017					
No. of Layers: 5	Weight of Hammer Kg :- 4.5					
No. of Blows : 56	Volume of Molds, cm3:- 2105					
Trial No.	1	2	3	4	5	
Amount of water added,%	2	4	6	8	10	
Volume of Mould (cc)	2105	2105	2105	2105	2105	
Wgt. of Mould + Wet soil	10220	10331	31 10474 10570			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590	
Wgt. of Wet soil (gm)	3630	3741	3884 3980 3			
Wet Density (gm/cc)	1.72 1.78 1.85 1.89 1.8					
1	Moisture co	ontent deterr	nination			
Container No.	G2	G3	U1 U2 M2			
Wgt. of Wet soil + Cont.(gm)	280.7	254.0	262.0	268.9	250.2	
Wgt. of Dry soil + Cont.(gm)	272.4	243.7	248.5	249.6	229.1	
Wgt. of Container (gm)	34.2	34.3	34.5	33.8	33.7	
Wgt. of Moisture (gm)	8.3	10.3	13.5	19.3	21.1	
Wgt. of Dry soil (gm)	238.2	209.4	214.0	215.8	195.4	
Moisture Content, %	3.49	4.92	6.31	8.94	10.79	
Dry Density (gm/cc)	1.66	1.70	1.74	1.74	1.67	

Optimum Moisture Content = 6.91 % Maximum Dry Density = 1.745 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Base course			Date of Samp	ling:-13/06/20)17		
Source: - BH-3	Date of Tested:- 27/06/2017						
No. of Layers: 5	Weight of Hammer Kg :- 4.5						
No. of Blows : 56			Volume of M	Iolds, cm3:- 2	2105		
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil	10560	10750	10890	10706	10590		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3970	4160	4300	4116	4000		
Wet Density (gm/cc)	1.89	1.98	2.04	1.96	1.90		
I	Moisture co	ontent deterr	nination				
Container No.	X2	X4	X4 V2 N1 N2				
Wgt. of Wet soil + Cont.(gm)	280.3	256.2	264.1	276.6	254.5		
Wgt. of Dry soil + Cont.(gm)	271.4	246.0	251.1	258.9	235.3		
Wgt. of Container (gm)	34.6	34.1	34.3	34.2	34.0		
Wgt. of Moisture (gm)	8.9	10.2	13.0	17.7	19.2		
Wgt. of Dry soil (gm)	236.8	211.9	216.8	224.7	201.3		
Moisture Content, %	3.76	4.81	6.00	7.90	9.54		
Dry Density (gm/cc)	1.82	1.89	1.92	1.82	1.73		

Optimum Moisture Content = 5.9 % Maximum Dry Density = 1.92g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Base course	Material :Base courseDate of Sampling:-13/06/2017						
Source: - BH-4		Date of	Tested:- 27	/06/2017			
No. of Layers: 5		Weight	of Hammer	Kg :- 4.5			
No. of Blows : 56		Volun	ne of Molds,	cm3:- 210	5		
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil	10190	10360	10490	10470	10460		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3600	3770	3900	3880			
					3870		
Wet Density (gm/cc)	1.71 1.79 1.85 1.84			1.84			
Moisture co	ntent dete	rmination					
Container No.	G2	G3	U1	U2	M2		
Wgt. of Wet soil + Cont.(gm)	274.3	249.2	259.5	263.8	254.6		
Wgt. of Dry soil + Cont.(gm)	265.2	237.6	245.3	245.3	234.3		
Wgt. of Container (gm)	34.3	34.4	34.6	33.5	33.6		
Wgt. of Moisture (gm)	9.1	11.6	14.2	18.5	20.3		
Wgt. of Dry soil (gm)	230.9	203.2	210.7	211.8	200.7		
Moisture Content, %	3.94	5.71	6.74	8.73	10.11		
Dry Density (gm/cc)	1.65	1.69	1.73	1.69	1.67		

Optimum Moisture Content = 6.74 % Maximum Dry Density = 1.73 g/cm

MOISETURE DENSITY RELATION: (AASHTO T-180)								
Type of Material :Base courseDate of Sampling:-13/06/2017)17			
Source: - BH-5	Date of Tested:- 27/06/2017							
No. of Layers: 5	Weight of Hammer Kg :- 4.5							
No. of Blows : 56			Volume of M	Iolds, cm3:- 2	2105			
Trial No.	1	2	3	4	5			
Amount of water added,%	2	4	6	8	10			
Volume of Mould (cc)	2105	2105	2105	2105	2105			
Wgt. of Mould + Wet soil	10350	10465	10690	10506	10490			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590			
Wgt. of Wet soil (gm)	3760	3875	3875 4100 3916					
Wet Density (gm/cc)	1.79	1.84	1.95	1.86	1.85			
I	Moisture co	ontent deterr	nination					
Container No.	M3	M2	2 K2 K1 T					
Wgt. of Wet soil + Cont.(gm)	279.6	260.0	274.3	269.6	258.8			
Wgt. of Dry soil + Cont.(gm)	271.7	250.3	263.8	255.8	242.9			
Wgt. of Container (gm)	34.3	34.4	34.2	34.5	34.1			
Wgt. of Moisture (gm)	7.9	9.7	10.5	13.8	15.9			
Wgt. of Dry soil (gm)	237.4	237.4 229.6 221.3 208.8						
Moisture Content, %	3.33	4.09	4.57	6.24	7.61			
Dry Density (gm/cc)	1.73	1.77	1.87	1.75	1.71			

Optimum Moisture Content = 4.8 % Maximum Dry Density = 1.87 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Base courseDate of Sampling:-13/06/2017							
Source: - BH-6	Date of Tested:- 27/06/2017						
No. of Layers: 5	Weight of Hammer Kg :- 4.5						
No. of Blows : 56		Volume of Molds, cm3:- 2105					
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil	10413	10700	11050	10640	10509		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3823	4110	4460	4050	3919		
Wet Density (gm/cc)	1.82	1.95	2.12	1.92	1.86		
I	Moisture co	ontent deterr	nination				
Container No.	B3	B4	B4 B1 B2 G				
Wgt. of Wet soil + Cont.(gm)	282.1	265.6	273.5	268.9	250.8		
Wgt. of Dry soil + Cont.(gm)	272.9	254.9	260.7	253.6	220.6		
Wgt. of Container (gm)	34.4	34.3	34.1	34.4	34.2		
Wgt. of Moisture (gm)	9.2	10.7	12.8	15.3	19.9		
Wgt. of Dry soil (gm)	238.5	220.6 226.6 219.2 186.4					
Moisture Content, %	3.86	4.85	5.65	6.98	10.68		
Dry Density (gm/cc)	1.75	1.86	2.00	1.79	1.68		

Optimum Moisture Content = 5.8 %

Maximum Dry Density = 2.0 g/cm3

34.3

10.0

232.1

4.31

1.64

Modified Proctor Test: Sub-base Course									
MOISETURE	DENSII	Y REL	AT	ION: (AAS	HTO T-18	0)			
Type of Material :Sub-base co	ourse			Date of S	ampling:-1	3/06/2017			
Source: - BH-1				Date of T	ested:- 27/0	06/2017			
No.of Layers: 5 Weight of Hammer									
No.of Blows : 56	Volume of Molds, cm3:- 2								
Trial No.	1 2			3	4	5			
Amount of water added,%	2	4	ł	6	8	10			
Volume of Mould (cc)	2105	210	5	2105	2105	2105			
Wgt. of Mould + Wet soil (gm)	10216	103	90	10589	10467	10390			
Wgt. of Mould (gm)	6590	659	0	6590	6590	6590			
Wgt. of Wet soil (gm)	3626	380	0	3999	3877	3800			
Wet Density (gm/cc)	1.72	1.80)	1.89	1.84	1.80			
Moi	sture Co	ontent D	eteri	mination					
Container No.	Z1	X1		Z2	X3	X2			
Wgt. of Wet soil + Cont.(gm)	276.4	240.5		251.1	265.2	241.0			
Wgt. of Dry soil + Cont.(gm)	266.4	228.1		235.5	245.5	222.6			

ii) Moo

34.4

12.4

6.40

1.69

193.7

32.5

15.6

203.0

7.68

1.75

32.7

19.7

212.8

9.26

1.68

34.6

19.4

204.2

9.50

1.64

Optimum Moisture Content = 7.68.0 %

Maximum Dry Density = 1.75 g/cm^3

Wgt. of Container (gm)

Wgt. of Moisture (gm)

Wgt. of Dry soil (gm)

Moisture Content, %

Dry Density (gm/cc)

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Sub-base course			Date of Sampling:-13/06/2017				
Source: - BH-2			Date of Tes	sted:- 27/0	5/2017		
No. of Layers: 5			Weight of	Hammer	Kg :- 4.5		
No. of Blows : 56			Volume o	of Molds, c	m3:- 2105		
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil (gm)	10386	10577	10600	10499	10368		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3796	3987	4010	3909	3778		
Wet Density (gm/cc)	1.80	1.89	1.90	1.86	1.79		
Moi	sture Co	ontent Deteri	mination				
Container No.	Н	K	K M L1				
Wgt. of Wet soil + Cont.(gm)	265.6	268.2	240.7	256.4	213.9		
Wgt. of Dry soil + Cont.(gm)	254.3	253.6	227.0	240.6	199.0		
Wgt. of Container (gm)	34.7	34.8	34.5	34.8	34.1		
Wgt. of Moisture (gm)	11.3	14.6	13.7	15.8	14.9		
Wgt. of Dry soil (gm)	219.6	218.8	192.5	205.8	164.9		
Moisture Content, %	5.15	6.67	7.12	7.68	9.04		
Dry Density (gm/cc)	1.71	1.77	1.78	1.73	1.64		

Optimum Moisture Content = 7.2 % Maximum Dry Density = 1.78 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Sub-base course			Date of Sampling:-13/06/2017				
Source: - BH-3			Date of Te	sted:- 27/0	6/2017		
No. of Layers: 5			Weight of	Hammer	Kg :- 4.5		
No. of Blows : 56			Volume o	of Molds, c	m3:- 2105		
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil (gm)	10365	10563	10617	10486	10379		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3775	3973	4027	3896	3789		
Wet Density (gm/cc)	ity (gm/cc) 1.79 1.89			1.85	1.80		
Moi	sture Co	ontent Deteri	nination				
Container No.	S 1	S2	S5				
Wgt. of Wet soil + Cont.(gm)	248.5	238.2	250.1	213.3	223.6		
Wgt. of Dry soil + Cont.(gm)	237.7	222.3	231.5	196.2	204.2		
Wgt. of Container (gm)	34.3	34.7	34.4	34.5	34.3		
Wgt. of Moisture (gm)	10.8	15.9	18.6	17.1	19.4		
Wgt. of Dry soil (gm)	203.4	187.6 197.1 161.7 16					
Moisture Content, %	5.30	8.48	9.44	10.58	11.42		
Dry Density (gm/cc)	1.70	1.74	1.75	1.67	1.61		

Optimum Moisture Content = 9.3 %

Maximum Dry Density = 1.75 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)							
Type of Material :Sub-base course	;	Da	te of Sampl	ing:-13/0	6/2017		
Source: - BH-4	D	ate of Teste	ed:- 27/06	6/2017			
No. of Layers: 5	Weight of Hammer Kg :- 4.5						
No. of Blows : 56	Volume of Molds, cm3:- 2105						
Trial No.	1	2	3	4	5		
Amount of water added,%	2	4	6	8	10		
Volume of Mould (cc)	2105	2105	2105	2105	2105		
Wgt. of Mould + Wet soil (gm)	10284	10723	10761	10687	10512		
Wgt. of Mould (gm)	6590	6590	6590	6590	6590		
Wgt. of Wet soil (gm)	3694	4133	4171	4097	3922		
Wet Density (gm/cc)	1.75	1.96	1.98	1.94	1.86		
Moisture	Content D	eterminati	on				
Container No.	Z1	X1	Z2	X3	X2		
Wgt. of Wet soil + Cont.(gm)	238.7	241.1	210.2	236.7	220.4		
Wgt. of Dry soil + Cont.(gm)	228.4	225.4	194.8	215.3	200.1		
Wgt. of Container (gm)	34.2	34.7	34.5	34.8	34.4		
Wgt. of Moisture (gm)	10.3	15.7	15.4	21.4	20.3		
Wgt. of Dry soil (gm)	194.2	190.7	160.3	180.5	165.7		
Moisture Content, %	5.30	8.23	9.61	11.86	12.25		
Dry Density (gm/cc)	1.67	1.81	1.83	1.73	1.65		

Optimum Moisture Content = 9.1 % Maximum Dry Density = 1.84 g/cm3
MOISETURE DENSITY RELATION: (AASHTO T-180)								
Type of Material :Sub-base co	ourse		Date of Sar	mpling:-13	6/06/2017			
Source: - BH-5 Date of Tested:- 27/0								
No. of Layers: 5			Weight of	Hammer	Kg :- 4.5			
No. of Blows : 56 Volume of Molds, cm3:- 21								
Trial No.	1	2	3	4	5			
Amount of water added,%	2	4	6	8	10			
Volume of Mould (cc)	2105	2105	2105	2105	2105			
Wgt. of Mould + Wet soil (gm)	10283	10497	10621	10518	10450			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590			
Wgt. of Wet soil (gm)	3693	3907	4031	3928	3860			
Wet Density (gm/cc)	1.75	1.86	1.92	1.87	1.83			
Moi	sture Co	ontent Deter	mination					
Container No.	Z1	X1	Z2	X3	X2			
Wgt. of Wet soil + Cont.(gm)	282.3	245.6	253.9	268.2	244.7			
Wgt. of Dry soil + Cont.(gm)	272.9	233.5	237.1	247.8	225.2			
Wgt. of Container (gm)	34.6	34.0	32.2	32.0	34.3			
Wgt. of Moisture (gm)	9.4	12.1	16.8	20.4	19.5			
Wgt. of Dry soil (gm)	238.3	199.5	204.9	215.8	190.9			
Moisture Content, %	3.95	6.10	8.20	9.45	10.21			
Dry Density (gm/cc)	1.69	1.75	1.78	1.71	1.66			

Optimum Moisture Content = 8.0 % Maximum Dry Density = 1.78 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)								
Type of Material :Sub-base co	ourse		Date of Sa	mpling:-13	6/06/2017			
Source: - BH-6		Date of T	ested:- 27/	/06/2017				
No. of Layers: 5 Weight of Hammer Kg :- 4.5								
No. of Blows : 56 Volume of Molds, cm3:- 210								
Trial No.	1	2	3	4	5			
Amount of water added,%	2	4	6	8	10			
Volume of Mould (cc)	2105	2105	2105	2105	2105			
Wgt. of Mould + Wet soil (gm)	10357	10680	10890	10565	10458			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590			
Wgt. of Wet soil (gm)	3767	4090	4300	3975	3868			
Wet Density (gm/cc)	1.79	1.94	2.04	1.89	1.84			
Moi	sture Co	ontent Deter	nination					
Container No.	Н	K	М	L1	L2			
Wgt. of Wet soil + Cont.(gm)	246.8	267.8	268.9	259.9	270.4			
Wgt. of Dry soil + Cont.(gm)	237.1	253.8	250.3	239.7	248.0			
Wgt. of Container (gm)	34.3	34.9	34.8	34.1	34.5			
Wgt. of Moisture (gm)	9.7	13.9	18.6	20.2	22.4			
Wgt. of Dry soil (gm)	202.8	218.9	215.5	205.6	214.8			
Moisture Content, %	4.78	6.35	8.65	9.83	10.43			
Dry Density (gm/cc)	1.71	1.82	1.88	1.72	1.67			

Maximum Dry Density = 1.88 g/cm3

iii) Modified Proctor	Test:	Sub-grade soil
-----------------------	-------	----------------

MOISETURE DENSITY RELATION:	(AASH	TO T-18	0)							
Type of Material :Sub-grade		Date	of Sampl	ing:- 13/	06/2017					
Source: - BH-1	Source: - BH-1 Date of Testing:- 27/06/2017									
No. of Layers: 5		Weig	ght of Han	nmer Kg	:- 4.5					
No. of Blows : 56		Vol	ume of Mo	olds, cm3	8:- 2105					
Trial No.	1	2	3	4	5					
Amount of water added,%	2	4	6	8	10					
Volume of Mould (cc)	2105	2105	2105	2105	2105					
Wgt. of Mould + Wet soil (gm)	10423	10772	11109	10993	10768					
Wgt. of Mould (gm)	6590	6590	6590	6590	6590					
Wgt. of Wet soil (gm)	3833	4182	4519	4403	4178					
Wet Density (gm/cc)	1.821	1.987	2.147	2.092	1.985					
Moisture Cont	ent Dete	rmination		_						
Container No.	A3	D5	B2	C3	R4					
Wgt. of Wet soil + Cont.(gm)	141.5	150.2	152.5	132.7	123.7					
Wgt. of Dry soil + Cont.(gm)	121.2	127.1	117.5	107.0	98.9					
Wgt. of Container (gm)	16.8	16.9	17.5	17.6	17.5					
Wgt. of Moisture (gm)	20.3	23.1	25.0	25.7	24.8					
Wgt. of Dry soil (gm)	104.4	110.2	100.0	90.6	81.4					
Moisture Content, %	19.44	20.96	25.00	28.36	30.47					
Dry Density (gm/cc)	1.525	1.642	1.720	1.646	1.521					

Optimum Moisture Content = 25.0 %

Maximum Dry Density = 1.74 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)									
Type of Material :Sub grade	Type of Material :Sub gradeDate of Sampling:-13/06/2017								
Source: - BH-2			Date of Teste	ed:- 27/06/2	017				
No. of Layers: 5			Weight of	Hammer 1	Kg :- 4.5				
No. of Blows : 56			Volume	of Molds, c	m3:- 2105				
Trial No.	1	2	3	4	5				
Amount of water added,%	2	4	6	8	10				
Volume of Mould (cc)	2105	2105	2105	2105	2105				
Wgt. of Mould + Wet soil (gm)	9890	10280	10942	10764	10630				
Wgt. of Mould (gm)	6590	6590	6590	6590	6590				
Wgt. of Wet soil (gm)	3300	3390	4352	3974	4040				
Wet Density (gm/cc)	1.568	1.753	2.067	1.983	1.919				
Moi	sture Co	ontent Dete	ermination						
Container No.	T1	T2	Т3	T4	T5				
Wgt. of Wet soil + Cont.(gm)	185.3	180.5	187.0	174.0	179.4				
Wgt. of Dry soil + Cont.(gm)	174.9	164.3	155.8	140.0	137.0				
Wgt. of Container (gm)	25.4	27.6	27.3	27.1	24.5				
Wgt. of Moisture (gm)	10.4	16.2	31.2	34.0	42.4				
Wgt. of Dry soil (gm)	149.5	136.7	128.5	113.1	132.5				
Moisture Content, %	6.95	11.85	24.28	30.06	32.00				
Dry Density (gm/cc)	1.466	1.567	1.664	1.524	1.454				

Optimum Moisture Content = 24.8 % Maximum Dry Density = 1.67 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)									
Type of Material :Sub-grade	ype of Material :Sub-gradeDate of Sampling:-13/06/2017								
Source: - BH-3	Date of Tested:- 27/06/2017								
No. of Layers: 5			Weight of Ha	mmer Kg :- 4	1.5				
No. of Blows : 56			Volume of M	Iolds, cm3:- 2	2105				
Trial No.	1	2	3	4	5				
Amount of water added,%	2	4	6	8	10				
Volume of Mould (cc)	2105	2105	2105	2105	2105				
Wgt. of Mould + Wet soil	9747.5	10000.0	10190.0	10126.0	9860				
Wgt. of Mould (gm)	6590	6590	6590	6590	6590				
Wgt. of Wet soil (gm)	3157.5	3410	3600	3536	3515				
Wet Density (gm/cc)	1.500	1.620	1.710	1.680	1.670				
Ν	Aoisture Co	ontent Deter	mination						
Container No.	D1	C1	B1	A1	B2				
Wgt. of Wet soil + Cont.(gm)	185.3	180.5	187.0	168.5	173.0				
Wgt. of Dry soil + Cont.(gm)	176	168	168	150	150				
Wgt. of Container (gm)	25.3	27.6	27.3	25.0	26.0				
Wgt. of Moisture (gm)	9.3	12.5	19.0	18.5	23.0				
Wgt. of Dry soil (gm)	150.7 130.4 140.7 132.0 124.0								
Moisture Content, %	6.17	9.62	13.5	14.02	18.55				
Dry Density (gm/cc)	1.410	1.478	1.507	1.482	1.409				

Optimum Moisture Content = 13.5 % Maximum Dry Density = 1.51 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)									
Type of Material :Sub gradeDate of Sampling:-13/06/2017									
Source: - BH-4 Date of Tested:- 27/06/2017									
No. of Layers: 5	No. of Layers: 5 Weight of Hammer Kg :- 4.5								
No. of Blows : 56		Volu	me of Mold	s, cm3:- 2	2105				
Trial No.	1	2	3	4	5				
Amount of water added,%	2	4	6	8	10				
Volume of Mould (cc)	2105	2105	2105	2105	2105				
Wgt. of Mould + Wet soil (gm)	9379	9780	9987	9989	9978				
Wgt. of Mould (gm)	6590	6590	6590	6590	6590				
Wgt. of Wet soil (gm)	2789	3190	4352	3399	3388				
Wet Density (gm/cc)	1.325	1.515	2.067	1.615	1.610				
Moisture	Content De	terminati	on						
Container No.	R1	R2	R3	R4	R5				
Wgt. of Wet soil + Cont.(gm)	178.7	179.6	185.0	173.0	176.1				
Wgt. of Dry soil + Cont.(gm)	167.0	161.2	159.2	145.0	139.0				
Wgt. of Container (gm)	26.4	27.6	27.4	27.1	24.5				
Wgt. of Moisture (gm)	11.7	18.4	25.8	28.0	37.1				
Wgt. of Dry soil (gm)	140.6	133.6	141.8	117.9	122.5				
Moisture Content, %	8.32	13.77	18.19	23.93	30.28				
Dry Density (gm/cc)	1.223	1.332	1.365	1.302	1.235				

Optimum Moisture Content = 15.5 %

Maximum Dry Density = 1.37 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)								
Type of Material :Sub grade		D	ate of Sampli	ng:-13/06/201	7			
Source: - BH-5		Ι	Date of Tested	:- 27/06/2017				
No. of Layers: 5		We	eight of Hamn	ner Kg :- 4.5				
No. of Blows : 56		Vo	olume of Mold	ls, cm3:- 2105				
Trial No.	1	2	3	4	5			
Amount of water added,%	2	4	6	8	10			
Volume of Mould (cc)	2105	2105	2105	2105	2105			
Wgt. of Mould + Wet soil	9833	9987	10180	10004	9799			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590			
Wgt. of Wet soil (gm)	3243	3397	3590	3414	3209			
Wet Density (gm/cc)	1.54	1.61	1.71	1.62	1.52			
Ν	Aoisture Co	ontent Deter	mination					
Container No.	D1	C1	B1	A1	B2			
Wgt. of Wet soil + Cont.(gm)	183.1	181.4	186.9	167.7	170.2			
Wgt. of Dry soil + Cont.(gm)	172.4	168.3	168.0	148.6	147.8			
Wgt. of Container (gm)	25.5	27.4	27.1	25.2	26.5			
Wgt. of Moisture (gm)	10.7	13.1	18.9	19.1	22.4			
Wgt. of Dry soil (gm)	146.9 140.9 140.9 123.4 121.3							
Moisture Content, %	7.28	9.29	13.41	15.48	18.47			
Dry Density (gm/cc)	1.44	1.47	1.50	1.40	1.28			

Maximum Dry Density = 1.50 g/cm3

MOISETURE DENSITY RELATION: (AASHTO T-180)								
Type of Material :Sub-grade	Date of Sampling:-13/06/2017							
Source: - BH-6	Date of Tested:- 27/06/2017							
No. of Layers: 5			Weight of Ha	mmer Kg :- 4	1.5			
No. of Blows : 56			Volume of M	Iolds, cm3:- 2	2105			
Trial No.	1	2	3	4	5			
Amount of water added,%	2	4	6	8	10			
Volume of Mould (cc)	2105	2105	2105	2105	2105			
Wgt. of Mould + Wet soil	10560	10755	10945	10925	10875			
Wgt. of Mould (gm)	6590	6590	6590	6590	6590			
Wgt. of Wet soil (gm)	3970	4165	4355	4335	4285			
Wet Density (gm/cc)	1.89	1.98	2.07	2.06	2.04			
I	Moisture co	ontent deterr	nination					
Container No.	T1	T2	T3	M1	M2			
Wgt. of Wet soil + Cont.(gm)	188	182	186	165	174			
Wgt. of Dry soil + Cont.(gm)	178.3	167.1	168.3	146.7	152			
Wgt. of Container (gm)	25.7	27.6	27.5	25.4	26.7			
Wgt. of Moisture (gm)	9.7	14.9	17.7	17.5	22.0			
Wgt. of Dry soil (gm)	152.6	142.5	139.7	121.3	125.3			
Moisture Content, %	6.36	10.5	12.7	14.4	17.56			
Dry Density (gm/cc)	1.78	1.79	1.84	1.8	1.73			

Optimum Moisture Content = 12.9 %

Maximum Dry Density = 1.84 g/cm3

Appendix D: California Bearing Ratio Test

i. California Bearing Ratio Test/ Base Course

CALIFC)RNIA]	BEAR	ING RA	TIO TE	EST-AAS	нто т	193				
Material type: Base Co	ourse			Date of Sampling: 13-06- 2017							
Failure type: Pothole	and Patc	hing]	Date of Testing: 09-07-2017						
Source-BH-1				S	Sampled b	oy: Fikru	ı Benti				
Ring Factor: N/Di	vision =	0.0243	33	F	Plunger ci	oss-sect	ion 193	35.5mm	2		
Density Determination											
Soaking condition			10 blow	S	30) blows		65 bl	ows		
		Bef	ore	After	Before	Af	ter	Before	After		
Mold number		B	1		N2			L2			
Weight of soil $+$ mold (gm)		144	176	14652	14482	1491	3	13775	13956		
Weight of mold (gm)		79	90	7990	7730	77	30	6660	6660		
Weight of soil (gm)		64	86	6662	6752	71	83	7115	7296		
Volume of mold (cc)		2266 2		2266	2266	22	66	2266	2266		
Wet density of soil (g/cc)		2.86		2.94	2.98	3.	17	3.14	3.22		
Dry density of soil (g/cc)		2.0	65	2.71	2.77	2.9	94	2.99	3.00		
	· · ·	Moist	ure Det	erminat	tion		•				
	1	0 Blow	VS		30 Blows	5		65 Blov	vs		
Soaking condition		A	fter		After			A	fter		
SUAKING CONCILION	Before	Top 1	Avg.	Before	Top 1	Avg.	Before	Top	l Avg.		
		in.			in.			in.			
Container number	T2	T3		T1	T4		B1	G2			
Wet soil + container (gm)	252.2	230.4	241.3	245.7	222.4	234.1	228.1	233.9) 231.0		
Dry soil + container (gm)	236.6	215.3	225.9	230.9	208.7	219.8	218.7	7 220.3	3 219.5		
Weight of water (gm)	15.6	15.1	15.4	14.8	13.7	14.3	9.4	13.6	11.5		
Weight of container (gm)	35.6	35.7	35.7	34.9	34.8	34.9	35.3	35.7	35.1		
Weight of dry soil (gm)	201.0	179.6	190.3	196.0	173.9	184.9	183.4	184.0	5 184.0		
Moisture content (%)	7.76	8.41	8.09	7.55	7.88	7.73	5.13	7.37	6.25		
Average moisture contents	7.35	5							!		

	Penetration Test Data											
Penetr		10 bl	ows			30 blo	OWS		65 blows			
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(11111)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	50	1.2165			65	1.5815			124	3.0169		
1.27	75	1.8248			130	3.1629			257	6.2528		
1.96	106	2.5790			189	4.5984			404	9.8293		
2.54	124	3.0169	3	23	220	5.3526	5	40	512	12.4569	13	93
3.18	137	3.3332			246	5.9852			598	14.5493		
3.81	149	3.6252			285	6.9341			667	16.2281		
4.45	165	4.0144			342	8.3209			738	17.9555		
5.08	176	4.2821	4	22	371	9.0264	9	45	810	19.7073	20	99
7.62	255	6.2042			543	13.2112			1046	25.4492		

SWELL DATA								
Height of specimen (mm) 116.43								
No. of blows	10 30 65							
RDG (before soaking)	0.00 0.00 0.00							
RDG (after Soaking)	0.98 0.21 0.12							
Percent Swell	0.84 0.18 0.09							
Average Percent swell		0.66						
Density-CBR Chart								
Blows/Layer	10/5	30/5	65/5					
Socked C.B.R in%	23	45	99					
Density gm/cm3	2.68	2.86	3.00					

CALIFO	ORNIA	BEAR	ING RA	TIO TE	CST-AAS	нто т	193						
Material type: Base Course				Date of Sampling: 13-06- 2017									
Failure type: Raveli	ng, strip	ping		Date of Testing: 09-07-2017									
Source-BH-2				Sampled by: Fikru Benti									
Ring Factor: N/Div	ision =	0.02433	Plunger cross-section 1935.5mm ²										
		Dens	sity Dete	rminati	on								
			10 blows	8	30) blows		OWS					
Soaking condition		Bef	ore	After	Before	Af	ter l	Before	After				
Mold number		D1		D1	D2	D2		D3	D3				
Weight of soil + mold (gm)		136	579	13756	14833	1491	3	15778	15958				
Weight of mold (gm)		66	60	6660	7730	77	30	7990	7990				
Weight of soil (gm)		70	19	7096	7103	71	83	7788	7968				
Volume of mold (cc)		22	66	2266	2266	22	66	2266	2266				
Wet density of soil (g/cc)		3.09		3.13	3.13	3.	17	3.44	3.52				
Dry density of soil (g/cc)		2.90		2.92	2.94	2.	96 3.	19	3.29				
		Moist	ture Det	erminat	ion								
		10 Blow	VS		30 Blows	5		65 Blow	/S				
Soaking condition		A	fter		After			A	fter				
Souking condition	Before	Top 1 in	Avg.	Before	Top 1	Avg.	Before	Top in	l Avg.				
Container number	F1	F2		E1	E2		G1	G3					
Wet soil + container (gm)	235.9	246.7	241.3	263.1	239.2	251.2	229.5	254.8	3 242.2				
Dry soil + container (gm)	223.6	232.1	227.9	248.9	225.3	237.1	218.1	239.1	228.6				
Weight of water (gm)	12.3	14.6	13.5	14.2	13.9	14.1	11.4	15.7	13.6				
Weight of container (gm)	35.3	34.9	35.2	34.7	35.2	35.3	35.1	35.6	35.4				
Weight of dry soil (gm)	188.3	197.2	192.7	214.2	190.1	201.8	183.0	203.5	5 193.2				
Moisture content (%)	6.53	7.40	7.01	6.63	7.31	6.98	6.23	7.72	7.04				
Average moisture contents	6.9	8				•							

	Penetration Test Data												
Penetr		10 bl	OWS			30 blo	OWS		65 blows				
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	36	0.8759			62	1.5085			90	2.1897			
1.27	54	1.3138			136	3.3089			174	4.2334			
1.96	77	1.8734			205	4.9877			269	6.5448			
2.54	110	2.6763	3	20	270	6.5691	7	49	351	8.5398	9	64	
3.18	125	3.0413			338	8.2235			449	10.9242			
3.81	157	3.8198			410	9.9753			540	13.1382			
4.45	168	4.0874			482	11.7270			645	15.6929			
5.08	189	4.5984	5	23	553	13.4545	14	68	744	18.1015	19	91	
7.62	266	6.4718			767	18.6611			1012	24.6220			

SWELL DATA										
Height of specimen (mm) 116.43										
No. of blows	10	30	65							
RDG (before soaking)	0.00	0.00	0.00							
RDG (after Soaking)	1.00	0.40	0.14							
Percent Swell	0.86	0.34	0.12							
Average Percent swell		0.44								
Density-CBR Chart										
Blows/Layer	10/5	30/5	65/5							
Socked C.B.R in%	23	68	91							
Density gm/cm3	2.91	2.95	3.24							

CALIFO	ORNIA	BEA	RING RA	TIO TE	EST-AAS	бнто т	193						
Material type: Base Cou	rse			Date of	Sampling	g: 13-06	- 201	7					
Failure type: Corrugation	and se	egregati	on	Date of [Festing: ()9-07-20	17						
Source-BH-3				Sampled	l by: Fikr	u Benti							
Ring Factor: N/	Divisi	n = 0.)2433	Plunger cross-section 1935.5mm ²									
		Der	nsity Dete	erminati	on								
			10 blow	S	30	0 blows			65 blo	ows			
Soaking condition		В	efore	After	Before	Af	iter	Be	efore	After			
Mold number		K2		K2	K3	K3			L1	L1			
Weight of soil + mold (gm)		12	2914	13118	14369	1448	2	14	4810	15309			
Weight of mold (gm)		6	660	6660	7730) 77	30	7	990	7990			
Weight of soil (gm)		6	254	6458	6639) 67	52	52 6		7319			
Volume of mold (cc)		2	266	2266	2266	5 22	.66	2	266	2266			
Wet density of soil (g/cc)		2	2.76	2.85	2.93	2.	98	3.01		3.23			
Dry density of soil (g/cc)		2	2.60	2.64	2.69	2.	72	2.7	5	2.95			
		Moi	sture Det	erminat	ion								
		10 Blo	OWS		30 Blow	s		6	5 Blow	'S			
Socking condition			After		After	r			A	fter			
Soaking condition	Befor	e Top	1 Avg.	Before	Top 1	Avg.	Befo	re	Top 1	Avg.			
		in.			in.				in.				
Container number	H2	H3		A2	B2		C	2	D2				
Wet soil + container (gm)	264.	2 258.	4 261.3	243.8	267.2	255.5	225	5.2	246.1	260.7			
Dry soil + container (gm)	250.	8 241	.9 246.4	226.7	247.6	237.2	208	8.8	227.2	218.0			
Weight of water (gm)	13.4	16.	5 15.0	17.1	19.6	18.4	16.	.4	18.9	17.7			
Weight of container (gm)	35.6	5 35.4	4 35.5	34.8	35.2	35.0	35.	.1	35.0	35.1			
Weight of dry soil (gm)	215.2	2 206.	5 210.9	210.9 191.9 212.4 202.2		202.2	173	5.7	192.2	182.9			
Moisture content (%)	6.23	7.99	7.11	8.91	9.23	9.09	9.4	4	9.83	9.64			
Average moisture contents	8.	61											

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	OWS		65 blows				
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	48	1.1678			67	1.6301			122	2.9683			
1.27	80	1.9464			130	3.1629			257	6.2528			
1.96	112	2.7249			192	4.6714			409	9.9510			
2.54	128	3.1142	3	23	220	5.3526	5	40	508	12.3596	12	93	
3.18	146	3.5522			256	6.2285			588	14.3060			
3.81	158	3.8441			289	7.0314			664	16.1551			
4.45	164	3.9901			343	8.3452			731	17.7852			
5.08	205	4.9877	4	25	380	9.2454	9	47	809	19.6830	20	99	
7.62	262	6.3745			555	13.5032			1072	26.0818			

SWELL DATA									
Height of specimen (mm)	116.43								
No. of blows	10	30	65						
RDG (before soaking)	0.00	0.00	0.00						
RDG (after Soaking)	1.06	0.52	0.20						
Percent Swell	0.91	0.45	0.17						
Average Percent swell		0.44							
Density-CBR Chart									
Blows/Layer	10/5	30/5	65/5						
Socked C.B.R in%	25	47	99						
Density gm/cm3	2.62	2.71	2.85						

CALIFO	DRNIA	BEAR	ING RA	TIO TE	ST-AAS	HTO T	193					
Material type: Base Course			Date	e of Sam	pling: 13	-06- 201	17					
Failure type: Rutting and	Wear		Date of Testing: 08-07-2017									
Source -BH-4			S	ampled	by: Fikru	Benti						
Ring Factor: N/Division = 0	0.02433		Plun	ger cross	s-section	1935.5m	m^2					
		Dens	sity Dete	rminati	on							
			10 blows	8	30) blows		65 blows				
Soaking condition		Bef	ore	After	Before	Af	ter	Be	efore	After		
Mold number	Χ	X11		X11	J33	J33			Z1	Z1		
Weight of soil + mold (gm)		139	916	14296	13991	1398	3	14	4998	15902		
Weight of mold (gm)		7730		7730	6660	66	60	7	990	7990		
Weight of soil (gm)		61	86	6566	7331	73	23	7	008	7912		
Volume of mold (cc)		22	66	2266	2266	22	66	2	266	2266		
Wet density of soil (g/cc)		2.73		2.89	3.24	3.24 3.		3	3.09	3.49		
Dry density of soil (g/cc)		2.54		2.68	2.98	3.	02	2.8	5	3.21		
		Moist	ture Det	erminat	ion							
	1	0 Blow	vs		30 Blows	5		6	5 Blow	'S		
Souking condition		A	fter	After					A	fter		
Soaking condition	Before	Top 1	Avg.	Before	Top 1	Avg.	Befo	re	Top 1	Avg.		
		in.			in.				in.			
Container number	X	V		Ν	L		P	•	G			
Wet soil + container (gm)	249.4	264.1	256.8	252.7	273.3	263.0	260).4	252.6	256.5		
Dry soil + container (gm)	234.5	247.3	240.9	235.3	258.0	246.7	243	3.7	235.4	239.6		
Weight of water (gm)	14.9	16.8	15.9	17.4	15.3	16.4	16	.7	17.2	17.0		
Weight of container (gm)	35.3	34.6	35.0	34.5	35.0	34.8		.2	35.4	35.3		
Weight of dry soil (gm)	199.2	212.7	205.9	200.8 223.0 211.9		208.5		200.0	204.3			
Moisture content (%)	7.48	7.90	7.72	8.67	6.86	7.74	8.0)1	8.60	8.32		
Average moisture contents	7.92	2	I			I						

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	OWS		65 blows				
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	31	0.7542			40	0.9732			92	2.2384			
1.27	59	1.4355			114	2.7736			180	4.3794			
1.96	112	2.7250			154	3.7468			246	5.9852			
2.54	133	3.2359	3	24	260	6.3258	6	45	332	8.0775		60	
3.18	158	3.8442			318	7.7369			398	9.6833			
3.81	182	4.4281			390	9.4887			453	11.0215			
4.45	206	5.0119			452	10.9972			590	14.3547			
5.08	221	5.3769	5	27	551	13.4058	13	65	697	16.9580	17	85	
7.62	285	6.9341			833	20.2669			1098	26.7143			

SWELL DATA			
Height of specimen (mm)	116.43		
No. of blows	10	30	65
RDG (before soaking)	0.00	0.00	0.00
RDG (after Soaking)	1.12	0.58	0.25
Percent Swell	0.96	0.50	0.22
Average Percent swell %		0.56	
Density-CBR Chart			
Blows/Layer	10/5	30/5	65/5
Socked C.B.R in%	27	65	85
Density gm/cm3	2.61	3.00	3.03

CALIF	ORNIA	A BEA	RI	NG RA	ΤΙΟ ΤΕ	ST-AAS	нто т	19	93				
Material type: Base Course						Date	e of Sar	npl	ling	: 13	-06-2	017	
Failure type: Alligator cra	nck				Date of Testing: 08-07-2017								
Source-BH-5			Sampled by: Fikru Benti										
Ring Factor: N/Division	= 0.024	433				Plu	nger cro) SS-	-sec	tion	1935.	5mm	\mathbf{i}^2
		De	nsi	ity Dete	rminati	on							
			1	0 blows	s 30 blows						65 bl	ows	
Soaking condition	ľ	Before			After	Before	A	fte	er	Be	efore	Afte	r
Mold number		Н				R					Т		
Weight of soil + mold (gm)		1	44(02	14697	13571	139	11		14	4754	1518	85
Weight of mold (gm)		7	799	0	7990	6660	6	66	0	7	730	773(0
Weight of soil (gm)		e	541	2	6707	6911	7	7251		7	7024		5
Volume of mold (cc)		2	226	6	2266	2266	2	26	66 2		266	2266	б
Wet density of soil (g/cc)		2.83		2.96	3.05	3.2		20 3		3.10	3.2	29	
Dry density of soil (g/cc)		2.63		2.74	2.83	2	94	4	2.8	9	3.0	05	
		Mo	istı	ure Det	erminat	ion						<u> </u>	
		10 Blo	OWS	S		30 Blows	5			6	5 Blov	/S	
Soaking condition			Af	fter		After					A	fter	
Soaking condition	Before	e Top in.	14	Avg.	Before	Top 1 in.	Avg.	F	Befo	ore	Top in.	I A	vg.
Container number	H2	H3	;		A2	B2			C	2	D2		
Wet soil + container (gm)	258.1	1 272.	.6	265.4	266.7	258.8	262.8		240).3	248.5	5 24	44.4
Dry soil + container (gm)	242.6	5 255	.3	249.0	249.8	240.6	245.2	,	226	6.6	233.0) 22	29.8
Weight of water (gm)	15.5	17.	3	16.4	16.9	18.2	17.6		13	.7	15.5	14	4.6
Weight of container (gm)	35.7	35.	3	35.6	34.5	35.3	35.2		35.5		35.4	3	5.7
Weight of dry soil (gm)	206.9	220.	0	213.4	215.3	205.3	210.0)	191	.1	197.6	5 19	94.1
Moisture content (%)	7.48	7.8	6	7.69	7.85	8.87	8.38		7.1	7	7.84	7	.52
Average moisture contents	7.	85					*						

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	OWS		65 blows				
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	48	1.1678			71	1.7274			83	2.0194			
1.27	62	1.5085			159	3.8685			181	4.4037			
1.96	85	2.0681			258	6.2772			318	7.7369			
2.54	106	2.5789	3	23	316	7.6883	8	60	410	9.9753	10	75	
3.18	123	2.9926			374	9.0994			523	12.7246			
3.81	155	3.7712			430	10.4619			603	14.6710			
4.45	170	4.1361			475	11.5568			677	16.4714			
5.08	194	4.7200	5	25	536	13.0409	13	65	756	18.3935	18	90	
7.62	247	5.7551			694	16.8850			1055	25.6682			

SWELL DATA				Density Vs CBR% Chart							
Height of specimen (mm)	116.43										
No. of blows	10	30	65								
RDG (before soaking)	0.00	0.00	0.00	2.95							
RDG (after Soaking)	1.32	0.43	0.30								
Percent Swell	1.13	0.37	0.26								
Average Percent swell %		0.59									
Density-CBR Chart											
Blows/Layer	10/5	30/5	65/5	2.65							
Socked C.B.R in%	25	65	90	0 50 100							
Density gm/cm3	2.69	2.89	2.97	CBR%							
CAL	CALIFORNIA BEARING RATIO TEST-AASHTO T 193										

Material type: Base Course	Interial type: Base CourseDate of Sampling: 13-06- 2017										
Failure type: Non-distress				Dat	e of Test	ing: 0	8-07-20	17			
Source-BH-6				San	pled by:	Fikru B	enti				
Ring Factor: N/Division =	= 0.024	<u>33</u>		Plu	inger cro	ss-sectio	on 1935.	5mm2			
		Der	isity Dei	termina	tion	0.1.1					
Soulting condition			10 blows	8	30	0 blows		65 bl	ows		
Soaking condition		Bef	ore	After	Before	Af	ter I	Before	After		
Mold number		В			C			F			
Weight of soil + mold (gm))	130	95	13344	14709	1502	6 1	5717	15807		
Weight of mold (gm)		66	60	6660	7730) 77	30	7990	7990		
Weight of soil (gm)		64.	35	6684	6979	72	96	7727	7817		
Volume of mold (cc)		22	66	2266	2266	5 22	66	2266	2266		
Wet density of soil (g/cc)		2.8	34	2.95	3.08	3.	22	3.41	3.45		
Dry density of soil (g/cc)		2.	64	2.77	2.88	3.	01	3.21	3.29		
		Moist	ure Det	erminat	ion						
		10 Blow	/S		30 Blow	s		65 Blov	vs		
Soaking condition		A	fter		After	r		А	fter		
Souking condition	Before	Top 1	Avg.	Before	Top 1	Avg.	Before	Top	1 Avg.		
		in.	-		in.			in.			
Container number	F1	T2		F2	R3		М	Ν			
Wet soil + container (gm)	225.3	3 232.6	228.9	255.7	225.9	240.8	220.2	270.4	4 245.3		
Dry soil + container (gm)	211.9	220.5	212.6	241.3	213.4	227.4	209.1	259.7	7 228.3		
Weight of water (gm)	13.4	12.1	16.3	14.4	12.5	13.5	11.1	10.7	17.0		
Weight of container (gm)	34.2	34.3	34.3	34.9	34.7	35.8	35.5	34.3	34.9		
Weight of dry soil (gm)	177.7	186.2	178.4	206.4	178.7	191.6	173.6	225.4	4 199.5		
Moisture content (%)	7.54	6.50	7.02	6.98	6.99	7.05	6.39	4.75	5.57		
Average moisture contents	6.5	53				<u>ا</u> ــــــــــــــــــــــــــــــــــــ					

	Penetration Test Data											
Penetr		10 bl	ows			30 blo	ows		65 blows			
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(11111)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	26	0.6326			45	1.0949			80	1.9464		
1.27	57	1.3868			111	2.7006			132	3.2116		
1.96	75	1.8248			200	4.8660			355	8.6372		
2.54	132	3.2117	3	24	308	7.5013	8	60	490	11.9217	12	90
3.18	147	3.5765			356	8.6615			616	14.9873		
3.81	165	4.0146			391	9.5130			643	15.6442		
4.45	186	4.3338			473	11.5081			805	19.5857		
5.08	240	5.8392	6	29	598	14.5493	15	73	990	24.0867	24	120
7.62	282	6.8611			650	15.8145			1114	27.1036		

SWELL DATA										
Height of specimen (mm)	116.43									
No. of blows	10	30	65							
RDG (before soaking)	0.00	0.00	0.00							
RDG (after Soaking)	1.01	0.13	0.07							
Percent Swell	0.87	0.11	0.06							
Average Percent swell %		0.35								
Density-CBR Chart										
Blows/Layer	10/5	30/5	65/5							
Socked C.B.R in%	29	73	120							
Density gm/cm3	2.71	2.95	3.25							

CALIFO	RNIA	BEAR	ING RA	TIO TE	ST-AAS	нто т	193			
Material type: Sub-base Co	ırse		Date	of Samp	ling: 13-(06-2017	7			
Failure type: Pothole and Pa	tching		Date	of Testin	ng: 09-07-	-2017				
Source-BH-1			Sam	oled by:	Fikru Ber	nti				
Ring Factor: N/Division =	0.02433		Plung	ger cross	-section 1	935.5m	m^2			
		Dens	ity Dete	rminati	on					
			10 blows	5	30	blows			65 blo	ows
Soaking condition		Bef	ore	After	Before	Af	ter	Be	fore	After
Mold number		B2			Y1			N1		
Weight of soil + mold (gm)		1324		13962	15276	1538	88 1		5519	16729
Weight of mold (gm)		66	60	6660	7730	77	30	0 7990		7990
Weight of soil (gm)		653	85	7302	7546	76	58	8	529	8739
Volume of mold (cc)		22	66	2266	2266	22	66	2266		2266
Wet density of soil (g/cc)		2.91		3.22	3.33	3.	38	3	.76	3.86
Dry density of soil (g/cc)		2.7	72	2.93	3.04	3.	12	3	.54	3.58
		Moist	ure Det	erminat	ion				L	
	1	0 Blow	/S		30 Blows			65	5 Blow	S
		A	fter		After				A	fter
Soaking condition	Before	Top 1 in.	Avg.	Before	Top 1 in.	Avg.	Befor	re	Top 1 in.	Avg.
Container number	R1	R2		H1	H2		U1	l	U2	
Wet soil + container (gm)	276.4	267.9	272.2	223.9	376.5	300.2	298	.1	290.3	294.2
Dry soil + container (gm)	260.5	246.6	253.6	207.6	350.4	279.0	282	.7	271.6	277.2
Weight of water (gm)	15.9	21.3	18.6	16.3	26.1	21.2	15.	4	18.7	17.1
Weight of container (gm)	32.7	33.9	33.3	34.9	33.8	34.4	35.	1	34.7	34.9
Weight of dry soil (gm)	227.8	212.7	220.3	172.7	316.6	244.6	247	.6	236.9	242.3
Moisture content (%)	6.98	10.01	8.44	9.44	8.24	8.67	6.2	2	7.90	7.10
Average moisture contents	8.11									

ii) California Bearing Ratio Test/ Sub-base Course

					Pene	tration Te	est Data	1				
Penetr		10 bl	ows			30 blo	OWS			65 blo	WS	
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(11111)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	20	0.4866			38	0.9245			90	2.1897		
1.27	49	1.1921			80	1.9464			112	2.7249		
1.96	68	1.6544			122	2.9683			160	3.8928		
2.54	85	2.0681	1	16	130	3.1629	3	24	220	5.3526	5	40
3.18	96	2.3356			170	4.1361			335	8.1505		
3.81	117	2.8466			245	5.9609			360	8.7588		
4.45	136	3.3089			298	7.2503			380	9.2454		
5.08	149	3.6252	4	18	380	9.2454	9	46	450	10.9485	11	49
7.62	200	4.8660			490	11.9217			590	14.3547		

SW	ELL DATA]				
Height of specimen (mm)	116.43					Densit		
No. of blows	10	30	65			Densit	y vs	
RDG (before soaking)	0.00	0.00	0.00	3.9				
RDG (after Soaking)	1.43	0.67	0.12	3./				
Percent Swell	1.22	0.58	0.10	1is ^{3.5}				
Average Percent swell %	0.99			b 3.3				
Densi	ty-CBR Char	t		<u>}</u> 3.1				
Blows/Layer	10/5	30/5	65/5	2.9				
Socked C.B.R in%	18	46	49	2.7				
Density gm/cm3	2.83	3.08	3.56	2.5 💻				
				0	20	CBR%	40	60

CALIFO	RNIA	BEAR	ING RA	TIO TE	EST-AAS	нто т	193		
Material type: Sub-base Co	urse		Date	of Samp	oling: 13-	06-201	7		
Failure type: Raveling, stripp	oing		Date	of Testi	ng: 09-0'	7-2017			
Source-BH-2			Samp	oled by:	Fikru Ber	ıti			
Ring Factor: N/Division	= 0.0243	33	Plu	inger cro	oss-section	n 1935.:	5mm ²		
		Dens	ity Dete	rminati	on				
			10 blow	S	30	blows		65 bl	ows
Soaking condition		Bef	ore	After	Before	Af	ter l	Before	After
Mold number		K	1		K3			L1	
Weight of soil + mold (gm)		127	75	12992	14496	1499	4	15542	15731
Weight of mold (gm)		66	60	6660	7730	77	30	7990	7990
Weight of soil (gm)		61	15	6332	6766	72	64	7552	7741
Volume of mold (cc)		22	66	2266	2266	22	66	2266	2266
Wet density of soil (g/cc)		2.7	70	2.80	2.99	3.	21	3.33	3.42
Dry density of soil (g/cc)		2.5	52	2.54	2.69	2.	94	3.11	3.18
		Moist	ure Det	erminat	ion		I		l
	-	10 Blow	/S		30 Blows			65 Blov	vs
		A	fter		After			A	fter
Soaking condition	Refore	Top 1	Avg	Before	T 1 '		Before	Top	1 Avg
	Derore	in.	11,8.	Derore	Top I in.	Avg.	Defore	in.	111.8.
Container number	H1	H2		G1	G2		T1	T2	
Wet soil + container (gm)	253.2	287.5	270.4	269.8	276.7	273.3	228.4	250.	1 239.3
Dry soil + container (gm)	239.3	263.9	251.6	253.1	256.5	254.8	215.8	234.7	225.3
Weight of water (gm)	13.9	23.6	18.8	16.7	20.2	18.5	12.6	15.4	14.0
Weight of container (gm)	33.9	33.1	33.3	35.1	35.2	35.2	33.0	34.1	33.6
Weight of dry soil (gm)	205.4	230.8	218.1	218.0	221.3	219.6	182.8	200.0	5 191.7
Moisture content (%)	6.77	10.22	8.62	7.66	9.13	8.42	6.89	7.68	7.30
Average moisture contents	8.0	8							

	Penetration Test Data											
Penetr		10 bl	ows			30 blov	WS			65 blo	WS	
ation	Dial	Load	Cor.	CB	Dial	Load	Cor	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	R %	Rdg	(kn)	•	%	Rdg	(kn)	load	%
(11111)			(kn))				Loa				(kn)	
							d					
0	0	0			0	0			0	0		
0.64	30	0.7299			60	1.4598			92	2.2384		
1.27	52	1.2652			120	2.9196			198	4.8173		
1.96	79	1.9221			222	5.4013			305	7.4207		
2.54	97	2.3601	2	18	330	8.0289	8	60	402	9.7807	10	73
3.18	110	2.6763			370	9.0021			500	12.1650		
3.81	130	3.1629			415	10.0970			570	13.8681		
4.45	159	3.8685			468	11.3864			620	15.0846		
5.08	220	5.3526	5	27	520	12.6516	13	64	744	18.1015	18	90
7.62	300	7.2990			690	16.7877			880	21.4104		

SW	ELL DATA				_	Density Vs CBR	2/2	
Height of specimen (mn	n) 116.43			3.4				
No. of blows	10	30	65	32				
RDG (before soaking)	0.00	0.00	0.00					
RDG (after Soaking)	1.51	0.45	0.18	usit				
Percent Swell	1.30	0.39	0.15	de 2.8				
Average Percent swell	% ().62		2.6 -				
Densi	ty-CBR Cha	rt		2.4				
Blows/Layer	10/5	30/5	65/5	2.2				
Socked C.B.R in%	27	64	90	2				
Density gm/cm3	2.53	2.82	3.15	0	20	40 CBR% 60	80	100
CA	ALIFORM	NIA BEA	ARING R	ATIO TEST	-AASHT	O T 193		

Material type: Sub-base Co	aterial type: Sub-base Course						Date of Sampling: 13-06- 2017							
Failure type: Corrugation an	d segreg	ation		D	Date of Tes	sting: 09	-07-201	1						
Source-BH-3				S	ampled by	y: Fikru	Benti	2						
Ring Factor: $N/Division = 0$	0.02433		·	ł ••	Plunger cr	oss-secti	ion 1935	.5mm ²						
		Dens	aty Dete	rminati	on			< 7 1 1						
Socking condition			10 blows	5	30	blows		65 blo	OWS					
Soaking condition		Bef	ore	After	Before	Af	ter B	efore	After					
Mold number		А	1	R2	A3	R	4	R1	A2					
Weight of soil + mold (gm)		126	545	12988	14312	1484	4 1	5633	15766					
Weight of mold (gm)		66	60	6660	7730	77	30 7	7990	7990					
Weight of soil (gm)		598	85	6328	6582	71	14 7	7643	7776					
Volume of mold (cc)		220	66	2266	2266	22	66 2	2266	2266					
Wet density of soil (g/cc)		2.64		2.79	2.91	3.	14	3.37	3.43					
Dry density of soil (g/cc)		2.45		2.58	2.68	2.8	87	3.11	3.18					
		Moist	ure Det	erminat	ion									
	1	0 Blow	VS		30 Blows		6	5 Blow	'S					
		A	fter		After			A	fter					
Soaking condition	Before	Top 1	Avg.	Before	Top 1 in	Δνσ	Before	Top 1	Avg.					
		in.			10p 1 m.	11,8.		in.						
Container number	G3	G5		C1	C2		P1	P3						
Wet soil + container (gm)	248.9	259.4	254.2	219.7	260.1	239.9	249.6	298.3	3 273.9					
Dry soil + container (gm)	233.8	242.7	236.3	205.3	240.9	223.1	233.6	278.8	256.0					
Weight of water (gm)	15.1	16.7	17.9	14.4	19.2	16.8	16.3	19.5	17.9					
Weight of container (gm)	34.2	36.0	35.1	33.6	33.9	33.8	35.1	35.2	35.2					
Weight of dry soil (gm)	199.6	206.7	201.2	171.7	207.0	189.3	198.5	243.6	5 220.9					
Moisture content (%)	7.57	8.08	8.90	8.39	9.28	8.89	8.21	8.01	8.10					
Average moisture contents	8.38	8							•					

	Penetration Test Data											
Penetr		10 bl	ows			30 blo	OWS			65 blo	WS	
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(11111)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	24	0.5839			66	1.6058			112	2.7245		
1.27	35	0.8515			178	4.3307			254	6.1798		
1.96	47	1.1435			285	6.9341			390	9.4887		
2.54	80	1.9464	2	15	340	8.2722	8	62	498	12.1163	12	91
3.18	92	2.2384			396	9.6347			580	14.1114		
3.81	124	3.0169			435	10.5836			630	15.3279		
4.45	133	3.2359			478	11.6297			700	17.0310		
5.08	145	3.5279	4	18	534	12.9922	13	65	790	19.2207	19	95
7.62	230	5.5959			654	159118			990	24.0867		

SWELL DATA			
No. of blows	10	30	65
RDG (before soaking)	0.00	0.00	0.00
RDG (after Soaking)	1.10	0.40	0.19
Percent Swell	0.95	0.34	0.16
Average Percent swe	ell	0.48	
Density-CBR Chart			
Socked C.B.R in%	18	65	95
Density gm/cm3	2.52	2.78	3.16

CALIFORNIA BEARING RATIO TEST-AASHTO T 193												
Material type: Sub-base Co	ourse		Da	te of Sa	mpling:	13-06-	2017					
Failure type: Rutting and W	ear		Da	te of Te	sting: 09	-07-201	7					
Source-BH-4			S	ampled	by: Fikru	ı Benti						
Ring Factor: N/Division =	0.024	33	P	lunger c	ross-sect	ion 193	5.5m	m ²				
		Dens	ity Dete	rminati	ion							
			10 blow	S	30	blows			65 blows			
Soaking condition		Bef	ore	After	Before	Af	ter	Before		After		
Mold number		Q	3		Q2				U2			
Weight of soil + mold (gm	l)	133	322	13941	15211	1543	34 1		5832	15873		
Weight of mold (gm)		66	60	6660	7481	77	30	7	990	7990		
Weight of soil (gm)		66	62	7281	6482	77	04 7		842	7883		
Volume of mold (cc)		22	66	2266	2266	22	266 2		266	2266		
Wet density of soil (g/cc)		2.9	94	3.21	3.30	3.	39	3	8.46	3.48		
Dry density of soil (g/cc)		2.75		2.97	3.07	3.	16	3	3.19	3.21		
	I	Moist	ure Det	ermina	tion	I						
	-	10 Blov	VS		30 Blows	5		6	5 Blow	S		
Soaking condition		A	fter		After	r			A	ter		
Souking condition	Before	Top 1	Avg.	Before	Top 1	Avg.	Befo	re	Top 1	Avg.		
		in.			in.	_			in.			
Container number	N1	N2		L1	L2		M	1	M3			
Wet soil + container (gm)	253.4	268.2	260.8	245.5	276.9	261.2	264	.7	268.1	266.4		
Dry soil + container (gm)	239.2	250.8	245.0	230.8	261.1	245.9	247	.3	249.9	248.6		
Weight of water (gm)	14.2	17.4	15.8	14.7	15.8	15.3	17.	.4	18.2	17.8		
Weight of container (gm)	34.1	35.4	35.6	34.2	34.0 34.		34.5 35.3		35.1	35.0		
Weight of dry soil (gm)	205.1	215.4	209.4	196.6	227.1 211.4		212.0		214.8	213.6		
Moisture content (%)	6.92	8.08	7.55	7.48	6.96	7.24	8.21		8.47	8.33		
Average moisture contents	7.6	9	·			·						

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	ows			65 blo	WS		
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	34	0.8272			40	0.9732			87	2.1167			
1.27	56	1.3625			112	2.7249			175	4.2578			
1.96	102	2.4817			150	3.6495			252	6.1311			
2.54	125	3.0413	3	23	260	6.3258	6	45	330	8.0289	8	60	
3.18	150	3.6495			316	7.6883			390	9.4887			
3.81	179	4.3551			389	9.4644			464	11.2891			
4.45	210	5.1093			454	11.0458			586	14.2574			
5.08	226	5.4986	6	30	550	13.3815	13	65	693	16.8607	17	85	
7.62	290	6.3258			830	20.1939			980	23.8434			

SWELL DATA				
No. of blows	10		30	65
RDG (before soaking)	0.00	0.00		0.00
RDG (after Soaking)	1.23	0.36		0.12
Percent Swell	1.06	0.3		0.1
Average Percent swell		0.49		
Density-CBR Chart				
Blows/Layer	10/5	30/5		65/5
Socked C.B.R in%	30	65		85
Density gm/cm3	2.86	3.12		3.20

CALIFORNIA BEARING RATIO TEST-AASHTO T 193											
Material type: Sub-base Co	urse		Date	of Sam	pling: `1	3-06-20	17				
Failure type: Alligator crac	ĸ		Da	te of Te	sting: 09-	07-2017	7				
Source-BH-5			Sam	pled by:	Fikru Be	nti					
Ring Factor: N/Division = (0.0243	3	Plun	ger cross	s-section	1935.5n	m^2				
		Dens	sity Dete	rminati	on						
			10 blow	S	30) blows			65 blo	WS	
Soaking condition	-	Bet	fore	After	Before	Af	ter	Be	fore A	fter	
Mold number		C	21		C2			0	G2		
Weight of soil + mold (gm))	120	574	12967	14498	1469	7	15	591 1	6295	
Weight of mold (gm)		66	60	6660	7730	77	30	79	90 7	990	
Weight of soil (gm)		60	14	6307	6768	69	67	76	501 8	305	
Volume of mold (cc)		22	66	2266	2266	22	2266		266 2	266	
Wet density of soil (g/cc)		2.	65	2.78	2.99	3.0	07	3.	.35	3.66	
Dry density of soil (g/cc)		2.	44	2.56	2.78	2.8	85	3.	.02	3.30	
		Moist	ture Det	erminat	tion				I		
		10 Blov	WS		5		65	Blows	;		
Soaking condition		A	fter		After				Af	ter	
Souking condition	Before	e Top 1	Avg.	Before	Top 1	Avg.	Befor	e	Top 1	Avg.	
		in.			in.				in.		
Container number	R1	R2		R3	R4		W1	_	W2		
Wet soil + container (gm)	245.	5 270.2	257.9	284.5	286.9	285.7	230.	.8	245.4	238.1	
Dry soil + container (gm)	229.	1 251.7	240.5	267.2	268.8	268.0	211.	.4	225.1	218.3	
Weight of water (gm)	16.4	18.5	17.5	17.3	18.1	17.7	19.4	4	20.3	19.9	
Weight of container (gm)	34.2	35.3	35.4	34.5	34.6	34.1	35.6		35.2	35.1	
Weight of dry soil (gm)	194.9	216.4	205.1	232.7	234.2 233.9		175.8		189.9	183.2	
Moisture content (%)	8.41	8.55	8.53	7.43	7.73	7.57	11.0)3	10.69	10.86	
Average moisture contents	8.9	98				•					

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	OWS			65 blo	WS		
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	38	0.9245			66	1.6059			80	1.9464			
1.27	55	1.3382			156	3.7955			189	4.5983			
1.96	90	2.1897			245	5.9609			316	7.6883			
2.54	105	2.5546	3	19	322	7.8343	8	59	420	10.2186	10	77	
3.18	123	2.9926			372	9.0508			521	12.6759			
3.81	157	3.8198			433	10.5349			607	14.7683			
4.45	170	4.1361			464	11.2891			686	16.6904			
5.08	182	4.4281	4	22	530	12.8949	13	65	786	19.1234	20	96	
7.62	234	5.6932			690	16.7877			1023	24.8896			

SWELL DATA				
No. of blows	10	30	65	Defisity vs CBR%
RDG (before soaking)	0.00	0.00	0.00	
RDG (after Soaking)	1.56	0.55	0.20	3.2
Percent Swell	1.33	0.47	0.17	Sitti 3
Average Percent swell		0.66		
Density-CBR Chart				2.6
Blows/Layer	10/5	30/5	65/5	2.4
Socked C.B.R in%	22	65	96	2.2
Density gm/cm3	2.50	2.82	3.20	2
CALI	FORNIA	BEARING	RATIC	0 50 CBR% 100 150

Material type: Sub	-base C	ourse		Date of Sampling: 13-06- 2017								
Failure type: Non-o	lefect			Date	e of Testi	ng: 09-0	07-2017					
Source-BH-6				Sam	pled by:	Fikru B	enti					
Ring Facto	or: N/Di	vision	$n = 0.02433 \qquad Plunger cross-section 1935.5 mm^2$									
		Dens	ity Dete	ermination								
Societa condition			10 blows	8	30) blows		65 blo	OWS			
Soaking condition		Bef	ore	After	Before	Af	ter I	Before	After			
Mold number		J			R			S				
Weight of soil + mold (gm)		132	254	13367	14867	1507	1 1	5309	15558			
Weight of mold (gm)		66	60	6660	7730	77	30	7990	7990			
Weight of soil (gm)		65	94	6707	7137	73	41	7319	7568			
Volume of mold (cc)		22	66	2266	2266	22	66	2266	2266			
Wet density of soil (g/cc)		2.9	91	2.96	3.15	3.2	24	3.23	3.34			
Dry density of soil (g/cc)		2.7	75	2.78	2.99	3.0)7	3.07	3.17			
		Moist	ure Det	erminat	ion							
	1	0 Blov	vs		30 Blows	5	(65 Blow	'S			
Sosking condition		A	fter	After		•		A	fter			
Soaking condition	Before	Top 1	Avg.	Before	Top 1	Avg.	Before	Top 1	Avg.			
		in.			in.			in.				
Container number	М	Р		R	G		Н	X				
Wet soil + container (gm)	256.3	261.6	258.9	266.9	276.2	271.6	223.5	232.8				
	242.0	247.0	245.0	255.9	255.0	255 4	214.0	222.0	228.2			
Dry son + container (gm)	243.9	247.9	245.8	255.8	255.0	255.4	214.0	225.0	218.5			
Weight of water (gm)	12.4	13.7	13.1	11.1	12.2	11.7	9.5	9.8	9.7			
Weight of container (gm)	34.3	3 35.4 34.9		34.2	34.5	34.4	35.1	35.3	35.2			
Weight of dry soil (gm)	209.6	5 212.5 210.9		221.6	220.5	221.0	178.9	187.7				
Moisture content (%)	5.92	92 6.45 6.21		5.01	5.53	5.29	5.30	5.22	183.3 5.29			
Average moisture contents	5.58	3	1						<u> </u>			

	Penetration Test Data												
Penetr		10 bl	ows			30 blo	OWS			65 blo	WS		
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%	
(11111)			(kn))				(kn))				(kn)		
0	0	0			0	0			0	0			
0.64	45	1.0948			76	1.8491			93	2.2627			
1.27	66	1.6059			167	4.0631			202	4.9147			
1.96	93	2.2627			255	6.2041			358	8.6615			
2.54	112	2.7249	3	23	326	7.9316	8	60	471	11.4594	12	90	
3.18	134	3.2602			400	9.7320			541	13.1625			
3.81	155	3.7711			455	11.0702			637	15.4982			
4.45	178	4.3307			490	11.9217			712	17.3229			
5.08	183	4.4524	5	25	535	13.0165	13	65	816	19.8532	20	100	
7.62	252	6.1312			704	17.1283			1145	27.8578			

SWELL DATA										
Height of specimen (mm) 116.43										
No. of blows 10 30 65										
RDG (before soaking)	0.00	0.00		0.00						
RDG (after Soaking)	0.90	0.11		0.07						
Percent Swell	0.77	0.09		0.06						
Average Percent swell		0.31								
Density-CBR Chart										
Blows/Layer 10/5 30/5 65/5										
Socked C.B.R in% 25 65 100										
Density gm/cm3 2.77 3.03 3.12										

iii) California Bearing Ratio Test/ Sub-grade Soil

CALIFORNIA BEARING RATIO TEST-AASHTO T 193

Material type: **Subgrade** Failure type: Pothole and Patching Source-BH-1 Plunger cross-section 1935.5mm² Date of Sampling: 13-06-2017 Date of Testing: 09-07-2017 Sampled by: Fikru Benti Ring Factor: N/Division = 0.01207

Density Determination												
		10	blows			30 blo	ows	(55 blows	5		
Soaking condition	I	Before	After	r	В	efore	After	Before	After			
Mold number		A1				B1		C1				
Weight of soil + mold (gn	1)	11520	110	560	12810		12100	13010	129	900		
Weight of mold (gm)		6660	66	60	7730		7730	7990	79	90		
Weight of soil (gm)		4860	50	000	5080		4370	5020	49	010		
Volume of mold (cc)		2266	22	.66		2266	2266	2266	22	266		
Wet density of soil (g/cc)		2.14	2.	21		2.24	1.93	2.22	2.	17		
Dry density of soil (g/cc)		1.69	1.	1.34		1.78	1.49	1.74	1.	59		
		Moi	sture De	termi	na	tion						
		10 blov	VS			30 blow	'S		65 blow	S		
Soaking condition	Defen	A	fter	er Def		A	fter	Defer	Ai	fter		
	e	Top 1 in.	Avg.	e bero	Л	Top 1 in.	Avg.	e e	Top 1 in.	Avg.		
Container number	B1	B2		T1		A1		A2	C1			
wet soil + container gm	164.2	123.8	144.0	166.	.3	194.2	180.3	186.7	115.5	151.1		
Dry soil + container (gm)	135.3	84.8	110.1	137.	.3	156.2	146.8	152.0	98.5	112.2		
Weight of water (gm)	28.9	39.0	33.9	29.0	0	38.0	33.5	34.5	17.0	38.9		
Weight of container (gm)	25.8	25.8 25.2 25		26.3	3	25.6	25.9	25.7	26.0	25.9		
Weight of dry soil (gm)	109.5	09.5 59.6 16		111.	.0	130.6	120.8	126.3	46.3	86.3		
Moisture content (%)	26.39	5.39 65.44 45		26.1	3	29.10	55.23	27.32	36.72	32.02		
Average moisture	38.25	.25										

2018

	Penetration Test Data												
Penetra		10 blo	OWS			30 blo	WS		65 blows				
tion	Dial	Load	Cor.	Chr	Dial	Load	Cor.	Chr	Dial	Load	Cor.		
(mm)	Rdg.	(kn)	Load(CDr %	rdg	(kn)	Load	CDr %	rdg	(kn)	load	Cbr %	
(IIIII)			kn)	70			(kn)	70			(kn)		
0	0	0			0	0			0	0			
0.64	58	0.70006			70	0.84490			80	0.96560			
1.27	64	0.77248			82	0.98974			94	1.13458			
1.96	98	1.18286			100	1.20700			120	1.44840			
2.54	100	1.20700	1	9	118	1.42426	1	11	136	1.64152	2	12	
3.18	105	1.26735			120	1.44840			140	1.68980			
3.81	112	1.35184			134	1.61738			150	1.81050			
4.45	120	1.44840			150	1.81050			164	1.97948			
5.08	130	1.56810	2	8	162	1.95534	2	10	200	2.41400	2	12	
7.62	144	1.73808			170	2.05190			220	2.6554			

SWELL DATA					1 7	Density vs					
No. of blows	10	30	65		1.7 -						
RDG (before soaking)	0.00	0.00	0.00		골 1.65 -						
RDG (after Soaking)	2.16	1.16	0.68		insi						
Percent Swell	1.86	0.99	0.59		p 1.6 -						
Average Percent swell		1.15			6 1.55 -						
Density-CBR Chart											
Blows/Layer	10/5	30/5	65/5		1.5 -						
Socked C.B.R in%	9	11	12								
Density gm/cm3	1.52	1.63	L		CDR//						
CALI	CALIFORNIA BEARING RATIO TEST-AASHTO T 193										

JIT, Geotechnical Engineering Stream

Material type: SubgradeDate of Sampling: 13-06-2017Failure type: Pothole and PatchingDate of Testing: 09-07-2017Source-BH-2Sampled by: Fikru BentiPlunger cross-section 1935.5mm²Ring Factor: N/Division = 0.01207										7			
Density Determination													
		10 blows			30 blows			65 blows					
Soaking condition		Before After			Before		After		Before		Afte	r	
Mold number		A2			B2					C2			
Weight of soil + mold (gm	1)	12460	13520	0	12090		13010		12690		12610		
Weight of mold (gm)		7730	7730	730		50) 6960			7490	7490	7490	
Weight of soil (gm)		4730	5790	51		30	6050		5200		5120)	
Volume of mold (cc)		2266	2266		226	56	2266			2266	226	5	
Wet density of soil (g/cc)		2.2	2.30)	2.7	'1	2.76		2.88		2.9	1	
Dry density of soil (g/cc)		1.94	1.88	3	2.3	3 2.56		.56	2.49		2.7	3	
Moisture Determination													
10 blows 30 blows 65 blows										S			
Socking condition		After				After				After			
Soaking condition	Befor e	Top 1 in.	Avg.	Be e	Befor e		op 1 n.	Avg.		e Befor	Top 1 in.	Avg.	
Container number	C	В		(G1	G2				D1	D2		
Wet soil + container (gm)	188.4	193.4	190.9	17	73.3	19	191.4 182		4	197.8	183.4	190.6	
Dry soil + container (gm)	168.9	162.5	165.7	15	52.8	179.5		166.2		175.0	173.9	174.5	
Weight of water (gm)	19.5	30.9	25.2	2	20.5 1		1.9 16.		2	22.8	9.5	16.2	
Weight of container (gm)	25.1	25.3	25.2	2	26.9		25.3		.1	27.4	27.3	27.4	
Weight of dry soil (gm)	143.8	137.2	140.5	12	25.9	5.9 154.2		140.1		147.6	146.6	147.1	
Moisture content (%)	13.56	22.53	17.94	16	5.28	8 7.72		11.56		15.45	6.48	11.01	
Average moisture 13.73 contents													

2018

Penetration Test Data												
Penetr	10 blows					30 bl	ows	65 blows				
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor	CB
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	R %
(IIIII)			(kn))				(kn)				(kn)	
0	0	0			0	0			0	0		
0.64	70	0.8449			80	0.9656			95	1.1466		
1.27	80	0.9656			90	1.0863			105	1.2673		
1.96	94	1.1346			100	1.2070			150	1.8105		
2.54	102	1.2311	1	9	110	1.3277	1	10	180	2.1726	2	16
3.18	110	1.3277			136	1.6415			195	2.3536		
3.81	124	1.4967			144	1.7381			205	2.4743		
4.45	136	1.6415			158	1.9071			230	2.7761		
5.08	144	1.7381	2	9	170	2.0519	2	10	260	3.1382	3	16
7.62	160	1.9312			200	2.4140			330	3.9831		

SWELL DATA						,	CD D 0 (
Height of specimen (mm)						Pensity Vs	CBR%				
No. of blows	10	30	65	2.9 -							
RDG (before soaking)	0.00	0.00	0.00	2.7 -							
RDG (after Soaking)	2.16	1.32	0.65	- 2.5 ج							
Percent Swell	1.86	1.13	0.56	S 2.3 -							
Average Percent swell % 1.18											
Density-CBR Chart											
Blows/Layer	10/5	30/5	65/5	1.7 -							
Socked C.B.R in%	9	10	25	15 -							
Density gm/cm3	1.910	2.445	2.610		0 5	10	CB8%	20	25	30	
CALIFO	RNIA	BEARI	ING RA	TIO TH	EST-AAS	нто т	193				
----------------------------	-------------	-----------------------------------	----------	----------------------------	--------------	---------	----------	----------------	--------------	-------	--
Material type: Sub-grade S	oil		Date	e of Sampling: 13-06- 2017							
Failure type: Corrugation			Date c	of Testin	g: 08-07-2	2017					
Source-BH-3			Plunge	er cross-	section 19	935.5mm	n^2				
Sampled by: Fikru Benti		Ring Factor: N/Division = 0.01207									
		Dens	ity Dete	rminati	ion						
~			10 blow	S	30	blows			65 blo	ows	
Soaking condition		Bef	ore	After	After Before		ter	Be	fore	After	
Mold number		Т	1	T2	E1	E	2	D1		D6	
Weight of soil + mold (gm)		112	261	11775	12376	1311	8	13	3714	13121	
Weight of mold (gm)		66	60	6660	7730	77	30 7		990	7990	
Weight of soil (gm)		460	01	5115	4646	53	88	5′	724	5131	
Volume of mold (cc)		220	66	2266	2266	22	66	22	266	2266	
Wet density of soil (g/cc)		2.0)3	2.26	2.05	2.3	38	2	.53	2.26	
Dry density of soil (g/cc)		1.5	50	1.64	1.70	1.8	34	1	.98	1.71	
	I	Moist	ure Det	erminat	tion	I	<u> </u>				
]]	10 Blow	vs		30 Blows			65	5 Blow	S	
Socking condition		A	fter		After				At	fter	
Soaking condition	Before	Top 1 in.	Avg.	Before	Top 1 in.	Avg.	Befor	re	Top 1 in.	Avg.	
Container number	F1	F2		G1	G2		H1	l	H2		
Wet soil + container (gm)	189.9	235	212.5	184.1	218.6	201.4	177.	.9	250.7	214.3	
Dry soil + container (gm)	159.1	188.0	173.6	158.6	177.7	168.2	147.	.0	198.2	172.6	
Weight of water (gm)	30.8	57.9	44.4	25.5	40.9	33.2	30.	9	52.5	41.7	
Weight of container (gm)	33.6	33.5	33.6	34.8	34.7	34.8	36.	3	34.2	35.3	
Weight of dry soil (gm)	125.5	154.5	140.0	123.8	143.0	133.4	4 110.7		164.0	137.4	
Moisture content (%)	24.54	37.48	31.71	20.60	28.60	24.88	27.9) 1	32.01	30.35	
Average moisture contents	28.6	8									

				P	enetrat	netration Test Data						
Penetrat		10 blov	WS			30 blo	WS		65 blows			
ion	Dial	Load	Cor.	CBR	Dial Load Cor. CBR					Load	Cor	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%
(IIIII)			(kn)				(kn)				(kn	
0	0	0			0	0			0	0		
0.64	61	0.73627			80	0.96560			90	1.08630		
1.27	89	1.07423			90	1.08630			95	1.14665		
1.96	90	1.08630			100	1.20700			150	1.81050		
2.54	105	1.26735	1	10	120	1.44840	2	11	160	1.93120	2	14
3.18	139	1.67773			136	1.64152			190	2.29332		
3.81	143	1.72601			150	1.81050			195	2.35365		
4.45	140	1.68980			190	2.29330			200	2.41400		
5.08	158	1.90706	2	10	200	2.41400	2	10	230	2.77610	3	14
7.62	190	2.29330			209	2.52263			300	3.62100		

SWELL DATA			Penetration(nm)		• D	ituur CDD%		
Height of specimen (mm)) 116.43			1 9		Dens	Ity vs CBR%		
No. of blows	10	30	65	1.5					
RDG (before soaking)	0.00	0.00	0.00	1.05					
RDG (after Soaking)	1.45	1.23	0.95	ort Sity					
Percent Swell	1.25	1.06	0.82						
Average Percent swell		1.	04 %						
Densi	ity-CBR Chart			1 .65					
Blows/Layer	10/5	30/5	65/5	1.6					
Socked C.B.R in%	10	11	23	1.55					
Density gm/cm3	1.57	1.77	1.84		0	5	10 CBR% 15	20	25
CA	LIFORNIA	BEAR	ING RAT	IO TEST	-AASH	ITO T 1	193		

Material type: Subgrade			Date of	f Sampli	ng:	13-(06-20)17				
Failure type: Rutting and W	ear		Date of	of Testing: 07-07-2017								
Source: - BH-4			Sampled by: Fikru Benti									
Plunger cross-section 1935	.5mm ²		Ring F	Factor: 1	N/Div	visio	n = 0	0.01	1207			
		Den	sity Dete	erminati	ion							
		10 t	olows	3	0 blo	ows				65 blows		
Soaking condition		Before	After	Befor	re	A	fter	Be	fore	After		
Mold number		R2		T	2				Y1			
Weight of soil + mold (gm)	10521	10662	118	13	12	105	12	2916	12988		
Weight of mold (gm)		6660	6660	773	30	77	730	7	990	799	0	
Weight of soil (gm)		3861	4002	408	33	43	375	4	926	499	8	
Volume of mold (cc)		2266	2266	226	66	22	266	2	266	226	6	
Wet density of soil (g/cc)		1.70	1.77	1.8	31	1	.93	2	2.17	2.2	1	
Dry density of soil (g/cc)		1.33	1.23	1.4	6 1.58		.58	1.62		1.64		
	1	Mois	sture Det	ermina	tion		L					
		10 blow	vs		30 b	low	s			65 blows	5	
Soaking condition	Defen	A	fter	Defer		A	fter		Dafa	Af	ter	
	e Belor	Тор	Avg.	e	To	p 1	Av	g.	Belo	r Top 1	Avg.	
	0	1 in.	-	Ŭ	ir	n.		-	Ũ	in.	-	
Container number	T1	T2		T3	A	.2			A1	W2		
Wet soil + container (gm)	167.6	133.7	150.7	176.3	19	9.8	188	3.1	196.0	5 125.4	161.0	
Dry soil + container (gm)	137.5	102.4	119.9	147.1	16	9.9	158	3.5	162.0	0 100.0	131.0	
Weight of water (gm)	30.1	31.3	30.7	29.2	29	9.9	29	.6	34.6	25.4	30	
Weight of container (gm)	25.6	25.4	25.7	26.2	25	5.5	25	.7	25.8	26.1	25.3	
Weight of dry soil (gm)	111.9	71.1	91.5	120.9	144	4.4	132	.7	136.2	2 73.9	105.7	
Moisture content (%)	26.89	44.02	33.55	24.15	20.	.71	22.	30	25.40	0 34.37	28.38	
Average moisture contents	32.75											

2018

					Penet	ration test	data					
Penetra		10 blo	ows			30 blo	OWS		65 blows			
tion	Dial	Load	Cor.	CDD	Dial	Load	Cor.	CDD	Dial	Load	Cor.	CD
(mm)	Rdg	(kn)	Load		Rdg	(kn)	Load		Rdg	(kn)	load	
(IIIII)			(kn)	70			(kn)	70			(kn)	K 70
0	0	0			0	0			0	0		
0.64	59	0.71213			74	0.89318			86	1.03802		
1.27	68	0.82076			88	1.06216			98	1.18286		
1.96	95	1.14665			112	1.35184			126	1.52082		
2.54	102	1.23114	1	10	122	1.47254	2	11	139	1.6773	2	13
3.18	110	1.32770			134	1.61738			148	1.78636		
3.81	115	1.38805			140	1.6898			157	1.89499		
4.45	125	1.50875			152	1.83464			166	2.00362		
5.08	143	1.72601	2	9	166	2.00362	2	10	209	2.52263	3	13
7.62	148	1.78636			180	2.1726			230	2.77610		

SWE	LL DATA				- Dens		0/	_
Height of specimen (mm)) 116.43			1.8		SILY VS CDI	/0	
No. of blows	10	30	65	1.7				
RDG (before soaking)	0.00	0.00	0.00					
RDG (after Soaking)	2.01	1.12	0.65	1.6				
Percent Swell	1.73	0.96	0.56	1 .5				
Average Percent swell	1	.08		δ ₁₄				
Density	-CBR Cha	rt						
Blows/Layer	10/5	30/5	65/5	1.3				
Socked C.B.R in%	10	11	13	1.2				
Density gm/cm3	1.28	1.52	1.63	9	11	CBR%	13	

CALIFORNIA BEARING RATIO TEST-AASHTO T 193										
Material type: Sub-grade Soil				Date	e of	f Samplii	ng: 13-0	06-2017		
Failure type: Alligator crac	k			Date	of	Testing:	- 06-07-2	2017		
Source: - BH-5			Sampled by: Fikru Benti							
Ring Factor: N/Division = 0.0	1207		Plunger cross-section 1935.5mm ²							
		Density	Determ	inatio	n					
Sosking condition	10 ł	olows		30 ł	olo	WS		65 b	lows	
Souking condition	Before	After	Befor	e		After	Befor	re	After	
Mold number	K2		N2					Z2		
Weight of soil + mold (gm)	12571	13611	1220	1	1.	3121	1399	1	13822	
Weight of mold (gm)	7490	7490	69	60		6960	7′	730	7730	
Weight of soil (gm)	5081	6121	52	41		6160	62	261	6092	
Volume of mold (cc)	2266	2266	22	66		2266	22	266	2266	
Wet density of soil (g/cc)	2.24	2.70	2.3	31		2.72	2	.76	2.69	
Dry density of soil (g/cc)	1.97	2.25	.40	2.49						
]	Moistur	e Detern	ninati	on					
		10 blows	8			30 blows	5	6	5 blows	
Soaking condition		A	fter			Af	ter		Aft	er
boaking condition	Before	Top 1	Avg.	Befo	ore	Top 1	Avg.	Before	Top 1	Av
		in.				in.			in.	g.
Container number	C4	C3		A1		A2		Q1	Q2	
Wet soil + container (gm)	198.3	190.6	194.6	183	.7	192.4	188.1	197.5	185.6	191
	177.5	1.60.7	170.1	1.00	0	175.0	1 (0, 1	175.0	174.0	.6
Dry soil + container (gm)	1//.5	162.7	1/0.1	162	.9	1/5.2	169.1	1/5.2	1/4.2	1/4
WEIGHT OF WATER (gm)	20.8	27.9	24.4	20.	8	17.2	19.0	22.3	11.4	16.
Weight of container (gm)	25.4	25.2	25.3	26	8	25.5	26.2	27.7	27.1	9 27
	23.т	23.2	23.3	20.		20.0	20.2	27.7	<i>2</i> /.1	4
Weight of dry soil (gm)	152.1	137.5	144.8	136	.1	149.7	142.9	147.5	147.1	147 .3
Moisture content (%)	13.67	20.29	16.85	15.2	28	11.49	13.38	15.12	7.75	11. 43
Average moisture contents %	13.92		l							

2018

					Penet	tration Te	st Data	ì				
Penetr		10 bl	ows			30 blo	OWS		65 blows			
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(IIIII)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	60	0.72420			76	0.91732			80	1.08630		
1.27	70	0.84490			82	0.98974			90	1.08630		
1.96	84	1.01388			102	1.23114			100	1.20700		
2.54	92	1.11044	1	8	110	1.32770	1	10	150	1.81050	2	13
3.18	100	1.20700			130	1.56910			180	2.17260		
3.81	120	1.44840			145	1.75015			195	2.35365		
4.45	132	1.59324			167	2.01569			200	2.41400		
5.08	140	1.68980	2	9	180	2.17260	2	11	260	3.13820	3	15
7.62	165	1.99155			200	2.41400			320	3.86240		

SW	ELL DATA				Donsity Vs CBR%
Height of specimen (mn	า) 116.43			2.5	
No. of blows	10	30	65	2.45	
RDG (before soaking)	0.00	0.00	0.00	2.4	
RDG (after Soaking)	1.89	1.11	0.45	tisc 23	
Percent Swell	1.62	0.95	0.38	b 2.25	
Average Percent swell	% 0	.99		<u>5</u> 2.2	
Densi	ty-CBR Cha	rt		2.15 -	
Blows/Layer	10/5	30/5	65/5	2.1 -	
Socked C.B.R in%	9	11	24	2.05 -	
Density gm/cm3	2.11	2.21	2.45	0	10 10 CBR% 20 30

CALIFORNIA BEARING RATIO TEST-AASHTO T 193													
Material type: Sub-grade SoilDate of Sampling: 13- 06-2017													
Failure type: Non-defect			Date	of Te	stir	ng: 09-0	07-2017						
Source- BH-6			Sam	pled l	oy:	Fikru E	lenti	. 2					
Ring Factor: N/Division = 0	.01207		Plun	iger ci	OSS	s-section	n 1935.5	5mm ²					
		Densit	y Deter	minat	tior	1							
Cashing condition	10 t	plows		30 b	olov	WS		65	blows				
Soaking condition	Before	After	Befor	re		After	Befo	re	After				
Mold number	F		В					G					
Weight of soil + mold (gm)	13041	13290	129	65		13124	142	210	14346				
Weight of mold (gm)	7490	7490	69	60		6960	7′	730	7730				
Weight of soil (gm) 5551 5800 6004 6163 6480 6616 Velowe of weld (ex) 2266													
Volume of mold (cc) 2266 2266 2266 2266 2266 2266													
Wet density of soil (g/cc) 2.45 2.56 2.65 2.72 2.86 2.92													
Dry density of soil (g/cc)	Dry density of soil (g/cc) 2.09 2.18 2.15 2.19 2.31 2.34												
		Moistu	re Deter	mina	tio	n	•						
		10 blow	s		3	30 blow	8		65 blow	S			
Soaking condition	Defor	At	fter	Dofe		Af	ter	Defor	At	fter			
	e	Top 1	Avg.	e	<i>)</i> 1 -	Top 1	Avg.	e	Top 1	Avg.			
		in.				in.			in.				
Container number	D1	D22		E11	1	O2		Q12	H4				
Wet soil + container (gm)	186.9	227.2	207.1	205.	.4	247.4	226.4	172.5	221.2	196.9			
Dry soil + container (gm)	164.6	198.5	181.6	173.	.3	205.0	189.1	146.3	183.9	165.1			
Weight of water (gm)	22.3	28.7	25.5	32.	1	42.4	37.3	26.2	37.3	31.8			
Weight of container (gm)	33.4	33.2	33.3	34.	1	33.6	33.9	34.8	34.7	34.8			
Weight of dry soil (gm) 131.2 165.3 148.3 139.2 171.4 155.2 111.5 149.2 130.3													
Moisture content (%)	17.0	17.36	17.19	23.0)6	24.74	24.03	23.50	25.0	24.41			
Average moisture content%	19.90									•			
		Penet	ration 7	lest D)ata	a			•				

2018

Penetr		10 bl	ows			30 blo	OWS			65 blo	WS	
ation	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR	Dial	Load	Cor.	CBR
(mm)	Rdg	(kn)	Load	%	Rdg	(kn)	Load	%	Rdg	(kn)	load	%
(IIIII)			(kn))				(kn))				(kn)	
0	0	0			0	0			0	0		
0.64	18	0.2173			23	0.2776			39	0.4707		
1.27	30	0.3621			46	0.5552			63	0.7604		
1.96	47	0.5673			66	0.7966			89	1.0742		
2.54	64	0.7725	1	8	90	1.0863	1	8	121	1.4605	2	15
3.18	74	0.8932			110	1.3277			125	1.5088		
3.81	92	1.1104			113	1.3639			131	1.5811		
4.45	107	1.2914			130	1.5691			144	1.7388		
5.08	115	1.3881	2	10	180	2.1726	2	11	217	2.6192	3	15
7.62	150	1.8105			200	2.4140			250	3.0175		

SWELL DATA										
Height of specimen (mm) 116.43										
No. of blows	10	30	65							
RDG (before soaking)	0.00	0.00	0.00							
RDG (after Soaking)	1.07	0.9	0.36							
Percent Swell	0.92	0.77	0.30							
Average Percent swell	% 0	.66								
Densi	ty-CBR Cha	rt								
Blows/Layer	10/5	30/5	65/5							
Socked C.B.R in%	10	11	15							
Density gm/cm3 2.14 2.17 2.33										

Appendix E: Traffic Data Analysis

Annual average daily traffic by road section in 2014 traffic year 2014.

			Land	Small	Large	Small	Medium	Heavy	Truck	
		Cars	Rover	Buses		Trucks	Trucks	Trucks	&	Total
Route	Length								Trailer	
Mekenejo-										
Nejo	61	0	70	78	14	7	63	59	39	330

Source: Annual Average Daily Traffic by Road Section Traffic Year 2015 ERA Asset Management Data.

Type of vehicles	AADT _o in one directional flow	Traffic growth rate(i) TGR%			
Car	70	2.8%			
Buses	92	5.0%			
Trucks	129	4.0%			
Truck and Trailer	39	2.0%			

Source: Ethiopian Road Asset Management System; Nekemte district.

i. Determination of AADT₁ for each Vehicles: AADT1=AADT_o $(1+i)^n$ =is a years between traffic survey (AADT₀ in 2015 and Opening of traffic 2017) =2year i= growth rates for each vehicles types.

Type of vehicles	AADT _o	AADT ₁
Car	70	70*1.028 ² =73.97
Buses	92	92*1.05 ² =101.43
Truck	129	129*1.04 ² =139.53
Truck and trailer	39	$39*1.02^2 = 42.18$

 Determination of One directional traffic flow , T over the design period for each Class of Vehicles

Investigation period for research(x) =10 years up to now

i= growth rates for each vehicles types

Lane distribution factor =1

 $\mathbf{T} = 365 * 1 * AADT1 [(1+i)^{x} - 1] / (i)$

Type of vehicles	AADT ₁	Т
Car	70*1.028 ² =73.97	0.307 million
Buses	92*1.05 ² =101.43	0.466 million
Trucks	$129*1.04^2 = 139.53$	0.612 million
Truck and trailer	39*1.02 ² =42.18	0.169 million

- iii. Compute vehicles Damage factors for each types of vehicles :- $DF = (Axle Load_i/8160)^{4.5}$
 - a) DF(Car)=0.0004
 - b) DF(Buses)=0.48
 - c) DF(Truck)=1.84
 - d) DF(Truck and Trailer)=7.8

iv. Cumulative Equivalent Standard Axil load (CESAL)_{total}

CESAL=Design traffic*DF CESAL (Car) =0.307*0.0004=0.0001228 million CESAL (Buses) =0.466*0.48=0.224 million CESAL (Truck) =0.612*1.84=1.126 million CESAL (Truck) =0.169*7.8= 1.318 million CESAL (total) =**2.467 million**

Traffic Classes for Flexible Pavement Design the traffic class is categorized as T4.

	Test pit No.: BI	H-1		Tested by: Fikru Benti					
			Zero readin	g(mm) 50.00					
No. of blows	Cumulative No. of blows	Adjusted depth, mm	Meter reading, mm	Increment. (mm)	mm/blow	CBR	Geotechnical Layers		
0	0	0	50	0	0.0				
7	6	25	75	25	3.6	83			
8	13	55	105	30	3.8	78			
6	18	74	124	19	3.2	97	Base Course		
5	23	90	140	20	4.0	73	Av. Rate=4		
6	29	110	160	20	3.3	93	CBR=83%		
8	36	140	190	30	3.8	78			
6	41	160	210	20	3.3	93			
7	47	190	240	30	4.3	66			
5	52	220	270	30	6.0	43			
4	56	240	290	20	5.0	55			
5	71	265	315	25	5.0	55	Sub-base		
4	75	280	330	15	3.8	78	Av. Rate=5		
6	81	320	370	40	3.3	93	CBR=63%		
4	85	350	400	30	3.8	78			
8	93	400	450	50	6.3	40			
2	95	450	500	50	25	7			
2	97	490	540	40	20	9			
1	98	510	560	20	20	9			
1	99	540	590	30	30	6	subgrade		
2	101	590	640	50	25	7	Av. rate=22		
2	103	630	680	40	20	9	CBR=10%		
2	105	650	700	20	10	22			
1	106	670	720	20	20	9			
2	106	720	770	50	25	7			

Appendix F: Dynamic Cone penetration test result

	Test	pit No.: BH	-2	Tested by: Fikru Benti			
			Ze	ro reading(m	m) 50.00		
No. of blows	Cumulative No. of blows	Adjusted depth, mm	Meter reading, mm (B)	Increment. (mm)	mm/blow	CBR	Geotechnical Layers
0	0	0	50	0	0.0	0	
6	5	20	70	20	3.3	93	
7	11	45	95	25	3.6	83	
7	18	68	118	23	3.3	93	Base Course
8	26	100	150	32	4.0	73	Av. Rate=4
11	37	146	196	46	4.2	68	CBR=84%
6	42	164	214	18	3.0	105	
7	49	192	242	28	4.0	73	
5	54	210	260	18	3.6	83	
4	58	226	276	16	4.0	73	
5	63	249	299	23	4.6	61	
6	69	278	328	29	4.8	58	Sub-base
9	78	320	370	42	4.7	59	Av. Rate=6
10	88	365	415	45	4.5	63	CBR=62%
7	95	394	444	29	4.1	71	
2	97	405	455	11	5.5	49	
2	99	445	495	40	20.0	9	
1	100	460	510	15	15.0	14	
2	102	500	550	40	20.0	9	
1	103	528	578	28	28.0	6	Subgrade
1	104	550	600	22	22.0	8	Av. rate=21
2	106	597	647	47	23.5	8	CBR=9%
2	108	640	690	43	21.5	9	
2	110	676	726	36	18.0	11	
2	112	722	772	46	23.0	8	
Γ	800						
	Ê 600						
	للے 400 ا						
	200						
	0	20	40		00	100	120
	U	20	40	No. of blo	80 WS	100	120

2018

	Т	est pit No.:	BH-3	Tested by: Fikru Benti			
			2	Zero reading(m	m) 50.00		
No. of blows	Cumulative No. of blows A	Adjusted depth, mm	Meter reading, mm (B)	Increment. (mm)	mm/blow	CBR	Geotechnical Layers
0	0	0	50	0	0.0	0	
8	8	26	72	26	3.3	93	
6	14	48	98	22	3.7	80	
7	21	73	123	25	3.6	83	Base Course
9	29	105	155	32	3.6	83	Av. Rate=4
10	39	150	200	45	4.5	63	CBR=80%
7	46	176	226	26	3.7	80	
8	54	206	256	30	3.8	78	
6	60	231	281	25	4.2	68	
5	65	253	303	23	4.6	61	
6	71	280	330	27	4.5	63	Sub-base
7	78	312	362	32	4.6	61	Av. Rate=5
9	87	352	402	40	4.4	64	CBR=65%
7	94	380	430	28	4.0	73	
6	100	405	460	25	4.2	68	
2	102	447	497	42	21.0	9	
1	103	464	514	17	17.0	12	
1	104	480	530	16	16.0	13	
2	106	523	573	43	21.5	9	subgrade
1	107	541	591	18	18.0	11	Av. rate=19
2	109	579	629	38	19.0	10	CBR=10%
2	111	620	670	41	20.5	9	
2	113	664	714	44	22.0	8	
2	115	704	754	40	20.0	9	
	800 -						

:

	Test pit N	lo.: BH-4			Tested by: Fikru Benti					
	Zero reading(mm) 50.00									
No. of blows	Cumulative No. of blows (A)	Adjusted depth, mm	Meter reading, mm (B)	Increment. (mm)	mm/blow	CBR	Geotechnical Layers			
0	0	0	50	0	0.0	0				
5	5	18	68	18	3.6	83				
9	14	53	103	35	3.9	75				
7	21	78	128	25	3.6	83	Base Course			
9	30	108	158	30	3.3	93	Av. Rate=4			
10	40	147	197	39	3.9	75	CBR=80%			
8	48	180	230	33	4.1	71				
7	55	207	257	27	3.8	78				
6	61	234	284	27	4.5	63				
5	66	255	305	21	4.2	68				
7	73	285	335	30	4.3	66	Sub-base			
6	79	314	364	29	4.8	58	Av. Rate=5			
8	87	348	398	34	4.3	66	CBR=66%			
7	94	375	425	27	3.9	75				
8	102	409	459	34	4.3	66				
1	103	447	497	23	23.0	8				
2	105	464	514	39	19.5	10				
2	107	480	530	35	17.5	11				
2	109	510	560	30	15.0	14	Subgrade			
1	110	526	576	16	16.0	13	Av. rate=19			
2	112	559	609	33	16.5	12	CBR=11%			
1	113	574	624	15	15.0	14				
2	115	617	667	43	21.5	9				
2	117	663	713	46	23.0	8				
2	119	708	758	45	22.5	8				

	Test	pit No.: BH	[-5	Tested by: Fikru Benti			
			2	Zero reading(m	m) 50.00		
No. of blows	Cumulative No. of blows (A)	Adjusted depth, mm	Meter reading, mm (B)	Increment. (mm)	mm/blow	CBR	Geotechnical Layers
0	0	0	50	0	0.0	0	
7	7	26	76	26	3.7	80	
8	15	54	104	28	3.5	86	
9	24	84	134	30	3.3	93	Base Course
9	33	117	167	33	3.6	83	Av. Rate=4
8	41	147	197	30	3.8	78	CBR=82%
8	49	179	229	32	4.0	73	
7	56	208	258	29	4.1	78	
6	62	233	283	25	4.2	68	
6	68	257	307	24	4.0	73	
8	76	287	337	30	3.8	78	Sub-base
7	83	317	367	30	4.3	66	Av. Rate=5
6	89	342	392	25	4.2	68	CBR=72%
7	96	371	421	29	4.1	78	
9	105	409	459	36	4.0	73	
1	106	429	479	20	20.0	9	
1	107	446	496	17	17.0	12	
2	109	483	533	37	18.5	10	
2	111	515	565	32	16.0	13	Subgrade
1	112	531	581	14	14.0	15	Av. rate=18
1	113	547	597	16	16.0	13	CBR=11%
2	115	608	658	34	17.0	12	
2	117	650	700	42	21.0	9	
2	119	690	740	40	20.0	9	
2	121	728	778	38	19.0	10	
	800 600 400 200 0						

No. of blows

	Te	est pit No.:	BH-6	Г	Tested by: Fik	ru Benti	
			Ze	m) 50.00			
No. of blows	Cumulative No. of blows (A)	Adjusted depth, mm	Meter reading, mm (B)	Increment. (mm)	mm/blow	CBR	Geotechnical Layers
0	0	0	50	0	0.0	0	
6	5	19	69	19	3.2	97	
7	12	46	96	27	3.9	75	
8	20	74	124	28	3.5	86	Base Course
9	29	108	158	34	3.8	78	Av. Rate=4
7	36	134	184	26	3.7	80	CBR=85%
11	47	174	224	40	3.6	83	
9	56	204	254	30	3.3	93	
7	63	230	280	26	3.7	80	
6	69	253	303	23	3.8	78	
8	77	283	333	30	3.8	78	Sub-base
8	85	316	366	33	4.1	70	Av. Rate=4
7	92	343	393	27	3.9	75	CBR=74%
8	100	376	426	33	4.1	70	
9	109	414	464	38	4.2	68	
2	111	457	507	43	21.5	9	
2	113	493	543	36	18.0	11	
2	115	528	578	35	17.5	11	
2	117	559	609	31	15.5	13	Subgrade
2	119	586	636	27	13.5	16	Av. rate=17
1	120	599	649	13	13.0	16	CBR=12%
1	121	614	664	15	15.0	14	
2	123	654	704	40	20.0	9	
1	124	692	742	38	19.0	10	
1	125	727	777	35	17.5	11	

Appendix G: Photographs of Laboratory and Field during test.

Soil samples before the starting of laboratory tests during air dried.

Sample preparation for laboratory tests by using sample splitter

Grain size Distribution Test

Atterberg limit test

Modified proctor and three point CBR Test

DCP Tests on field

The following Figures show the different photos taken from the field Observation of the different types of distress along Mekenejo-Nejo Road section.

Raveling of asphalt surface

Potholes and Alligator crack

Rutting on side

Disintegrations and Potholes

Potholes

Drainage problem