

JIMMA UNIVERSITY SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHINICAL ENGINEERING

Correlation of California Bearing Ratio with Soil Index Properties for Subgrade Soil in Jimma Town

A thesis submitted to the School of Graduate Studies of Jimma University in Partial Fulfilment of the Requirements for the Degree of Master of Science in Geotechnical Engineering

By: - Gifti Hailu

Jimma, Ethiopia January, 2018

SCHOOL OF GRADUATE STUDIES JIMMA INSTITUTE OF TECHNOLOGY SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING GEOTECHNICAL ENGINEERING

Correlation of California Bearing Ratio with Soil Index Properties for Subgrade Soil in Jimma Town

A thesis submitted to the School of Graduate Studies of Jimma institute of technology, in Partial Fulfilment of the Requirements for the Degree of Master of Science in Geotechnical Engineering

By: - Gifti Hailu

Advisor:

Main Advisor: - Dr. Yoseph Birru Co Advisor: - Mr. Damtew Tsige

DECLARATION

This research is my original work and has not been presented for a degree in any other university. Gifti Hailu

Signature	
-----------	--

This research proposal has been submitted for examination with my approval as university supervisor.

Advisor

Main advisor: - Dr. Yoseph Birru

Signature_____

Co Advisor: - Mr. Damtew Tsige

Signature_____

Page III

Date_____

Date

Date_____

Acknowledgement

First and most of all, I would like to thank almighty God for blessing and being with me in every steps.

I would like to express my warmest thanks my advisor Dr. Yoseph Birru for immense guidance and supervision all the way throughout this research work with good heart and patient. Also I am very grateful for my research co- advisor Mr.Damtew Tsige Who has encouraged, directed, and given me academic advisory throughout my work.

A special thanks address to Jimma University, Institute of Technology, Geotechnical chair Staffs and Ethiopian Roads Authority (ERA) my sponsor deserves thank for its financial support until the completion of the study.

A special thank goes to all my friends and my family especially my sister husband Mr. Danial Alemayehu for their support and encouragement during the development of thesis research.

Table of Contents

AcknowledgementI
List of Symbols IIII
List of Abbreviation and AcronymsV
List of TableVII
List of Figures VIII
Abstract IX
CHAPTER ONE
Introduction1
1.1 Background
1.2 Statement of the Problem
1.3 Objective of the Study
1.3.1 General Objective
1.3.2 Specific Objectives
1.4 Significance of the study
1.5 Scope of the study
1.6 Organization of the study
CHAPTER TWO
Literature Review
2.1 California Bearing Ratio (CBR)
2.1.1 General
2.1.2 Applications of California Bearing Ratio
2.2 CBR Laboratory Test Methods
2.3 Index Properties of Soil Test
2.3.1 Textural classification
2.3.2 Atterberg Limit
2.3.4 Moisture Content
2.3.5 Moisture Density Relationship (Compaction Test)
2.4 Existing Correlations

2.4.1 Relationship Specific to a region and soil type	
2.4.2 Universal Approaches Based on Soil Classification Systems	
CHAPTER THREE	
Methods, Data Collection and Laboratory Results	
3.1 General	
3.2 Study Area	
3.3 Data Collection and Test Results	
3.3.1 Primary Data	
3.3.2 Secondary Data	
3.4 Discussion on Laboratory Tests	
CHAPTER FOUR	
REGRESSION ANALYSIS AND CORRELATIONS	
4.1 Introduction	
4.2 Scatter Plot	
4.3 Regression Analysis	
4.3.1 Single Linear Regression Analysis	
4.3.2 Multiple Linear Regression Analysis	
4.4 Discussion on correlation results	
4.5 Evaluation of the Developed and Existing Correlations	
CHAPTER FIVE CONCLUSION AND RECOMMENDATION	
5.1 Conclusions	
5.2 Recommendations	
References	
APPENDIX A: Details of the SPSS Regression Analysis Outputs	
APPENDIX B: Details of the Laboratory Test Results	57
APPENDIX C: Details of the Secondary Data Laboratory Test Results	

List of Symbols

c	Cohesion of Soil			
Cu	Undrained Cohesion of Soil			
D60	Diameter on the Cumulative Size Distribution Curve			
	Where 60 percent of Particles are fines			
IP	Plasticity Index			
mw	mass of water contained in soil			
ms	mass of dry soil			
P200	Percent Passing Sieve No. 200 (0.075mm Sieve Size)			
R	Pearson Product Moment Correlation Coefficient			
R2	Coefficient of Determination			
R	Value Resistance Value			
Р	Standard Significant Error			
a1, a2, a3, an	Coefficients of the Single Linear Regression Equation			
β1, β2, β3, βn	Coefficients of the Multiple Linear Regression Equation			
3	Statistical Random Error			

List of Abbreviation and Acronyms

AASHTO	American Association of State Highway and Transportation Officials			
AC	Agricultural Campus			
ASTM	American Society for Testing and Materials			
CBR	California Bearing Ratio			
СН	High Plasticity Clay			
DCP	Dynamic Cone Penetrometer			
GC	Clayey Gravels			
GI	Group Index			
GP	Poorly Graded Gravels			
GW	Well Graded Gravel			
HM	Honeyland to Michael			
SB	Shanan gibe to Bore			
KF	Kitto Furdisa Campus			
MR	Merewa Road project			
ST	Seto Area			
LL	Liquid Limit			
MDD	Maximum Dry Density			
ML	Inorganic Silts of Low Plasticity			
MH	Inorganic Silts of High Plasticity			
NCHRP	National Cooperative Highway Research Program of United States of			
	America			
OMC	Optimum Moisture Content			
PI	Plasticity Index			

PL	Plasticity Limit
SPSS	Statistical Package for Social Science Software
ТА	Tilehun shed to Kera hospital
USCS	Unified Soil Classification System
WA	Weigh bridge to Ajip

List of Tables

Table 2.1: Symbols in the Unified Soil Classification System	10
Table 2.2: Typical California Bearing Ratio Values based on Unified Soil Classification	18
Table 3.1 Summary of all laboratory test result	26
Table 4.1: Statistical Information of Dependent and Independent Variable	. 39
Table 4.2: correlation on matrix of Pearson Correlation Coefficient	40
Table 4.3: Validation of the developed correlation	. 44
Table 4.4 Comparisons between actual value, newly developed and Mechanistic-Empirical method for cohesive soils	. 45
Table 4.5 comparisons between actual value, newly developed and Agarwal and Ghanker	46

List of Figures

Figure 2.1: California Bearing Ratio laboratory Testing Apparatus	8
Figure 2.2: Atterberg limits	11
Figure 2.3 (a): Comparison of un-soaked CBR actual vs. predicted CBR	15
Figure 2.3 (b): Comparison of soaked CBR actual vs. predicted CBR	16
Figure 2.4: Relationship between socked CBR test and suitability index	17
Figure 3.1 Map showing Jimma Area and regional setting (Google Earth)	22
Figure 3.3: Typical Liquid Limit Graph (Flow Curve)	23
Figure 3.4: Typical Density vs. Moisture Content Relationship Graph	24
Figure 3.5: Typical Density vs. CBR Graph	24
Figure 4.2: Scatter diagram of PL versus CBR	35
Figure 4.3: Scatter diagram of PI versus CBR	36
Figure 4.4: Scatter diagram of MDD versus CBR	36
Figure 4.5: Scatter diagram of OMC versus CBR	37

Abstract

CBR is a commonly used indirect method to assess the stiffness modulus and shear strength of subgrade soils in pavement design. However; it is always difficult and time taking to obtain representative CBR value for design of pavements. In this study a method is proposed for correlating CBR values with the liquid limit, plastic limit, plasticity index, optimum moisture content, and maximum dry density of cohesive soils of various zones of Jimma city.

With the objective of predicting CBR value from index properties of soil, having all the associated test results with corresponding CBR values collected from laboratory tests and Ethiopia road authority's archival secondary data analysis were carried out. As a result, these study has examined the feasibility of single linear regression analysis and multiple linear regression analysis in correlating CBR value with soil index properties.

Specific to this research, statistical software (SPSS) is employed to investigate the significance of individual independent variables. The correlation is developed in the form of an equation of CBR as a function of grain size parameter, Atterberg limits and compaction parameters by considering the effect of an individual soil properties and effect of a combination of soil properties on the CBR value.

The developed correlation entailed a moderate determination coefficient of $R^2 = 0.462$ using single regression analysis, while multiple regression analysis generated relatively an improved correlation of $R^2 = 0.604$, for a sample size of fifty. After validating the developed correlation with control test results, it was noted that the correlation of CBR value with soil index properties is more applicable for preliminary characterizing the strength of subgrade soil in Jimma town.

Keywords: California Bearing Ratio (CBR), Maximum Dry Density (MDD), Optimum Moisture Content (OMC), Plasticity index (PI)

CHAPTER ONE

Introduction

1.1 Background

Soil has diverse information and character. Therefore accurate prediction of its engineering behaviour is of research interest in civil engineering area. The engineering behaviour of soils varies from place to place and also with time. Index properties of cohesive soils are used to characterize the physical and mechanical behaviour of soils by making use of parameters such as moisture content, specific gravity, particle size distribution, Atterberg limits and moisture-density relationships. Such parameters are useful to classify cohesive soils and provide correlations with engineering soil properties [1]

Roads are necessary for transportation and economic development of the country. Most of the road network in the country is consisting of flexible pavement of difference layers such as subgrade, subbase, base course and surface layer. Subgrade is the bottom most layer. Design and performance of flexible pavement mainly depends on the strengths of subgrade material. The load from the pavement surface is ultimately transferred to sub-grade and to the sub-base. The subgrade is designed such that the stress transferred should not exceed elastic limit. Hence, the suitability and stability of subgrade material is evaluated before construction of pavement. Soaked CBR value percent is considered as strength parameter in design of subgrade. The thickness of subgrade is mainly depends on CBR value, if the CBR value is higher, then the designed thickness of the subgrade is thinner and vice versa.

The soil sample will be compacted as required in a standard mould and then a plunger is made to penetrate the soil at a specified penetration rate. Load versus penetration curve will be plotted from the result of the penetration and will be compared with the bearing resistance of standard crush rock [1]. Apart from CBR test carried out in laboratory, engineers frequently conduct in direct measurement of CBR value at project site. Various attempts, which take less time and are easier to perform as compared to the standard procedure of CBR testing, have been made to predict the CBR of a particular type of soil.

1.2 Statement of the Problem

Soil has numerous mineralogical contents and subsequently diversified characteristics, thus the correct prediction of its engineering behaviour is of research interest in civil engineering field. The engineering behaviour of soils varies from place to place and also with time. To predict the CBR value many an attempts are made from the index properties of soil. Hence determining of things that influence the soil strength and finding out their relationship with CBR value on stratified soil sample could be considered nearly as good insight of soil behaviour. [1]

The CBR is the well-known, common and trustful penetration test currently used in road pavement design. The test is being used for many years and is familiar to organization's involved in the interpretation of results, consequent road design and construction. The socked CBR test require large quantity of soil sample and the soil is remoulded to maximum dry density and time consuming. Therefore it's very difficult to carry out to entire stretch of the road in short duration and leads to serious delay in the project and increase its cost. To overcome this problem a simple and less time consuming method is necessary by correlating soaked CBR value with easily determining soil parameters.

Different investigations are conducted on this correlation by different scholars in our country, for instance by Yared Leliso in 2013 for the case study of Addis Ababa city. In Jimma there are no such studies conducted so far. Hence determining of factors that influence the soil strength and studying their-relationship with CBR value may be considered as good insight of soil behaviour.

1.3 Objective of the Study

1.3.1 General Objective

The general objective of the research is to predict CBR values from correlation of index properties of soil.

1.3.2 Specific Objectives

- > To investigate the index properties parameter and CBR.
- To come up with the correlation between CBR and index properties of typical subgrade soils in Jimma town.
- > To check and validate the developed correlation using a control test results.

1.4 Significance of the study

In Ethiopia many road construction projects and railway constructions are undertaking. For this reasons, the output of the proposed correlation will provide road authorities, railway authorities, consultants, contractors and stakeholders preliminary background information on the value of CBR, for a localized subgrade material, from soil index properties with a benefit of timesaving and without incurring any additional cost for carrying out laboratory CBR test.

This study will enhance the researcher additional knowledge and improve his/her skill on the correlation of CBR with soil index properties in practical way.

1.5 Scope of the study

As mentioned above, this research investigates the correlation of CBR with soil index properties. Focusing only on typical Jimma subgrade soils .With regard to the regression analysis the required correlation carried out by applying a single linear regression model and multiple linear regression models with the aid of SPSS software.

1.6 Organization of the study

The thesis is organized and presented under six Chapters. The first Chapter high lights introduction of the subject study. Chapter two deals with review of published literature. In Chapter three, discussions on sample collection and on test results were made. In Chapter four, correlation and regression analyses were conducted and Chapter five focuses on validating and evaluating the obtained correlation. Under Chapter six, the conclusion and recommendation were presented. At the end, details of the regression and laboratory test results enclosed under appendix section.

CHAPTER TWO

Literature Review

2.1 California Bearing Ratio (CBR)2.1.1 General

The California bearing ratio test was first developed by California division of highways in 1929 as a means of classifying the suitability of a soil for use as subgrade or base course material in highway construction. During World War II, the US corps of engineers adopted the test for use in airfield construction [2].

To measure the stiffness modulus and shear strength of subgrade soil a simple test that can be used as an index test was devised. This is where CBR test comes into frame in measurement of subgrade strength. The CBR test is a simple strength test that compares the bearing capacity of a material with that of a well graded standard crushed stone base kept in California Division of Highways Laboratory [2]. This means that the standard crushed stone material should have a CBR value of 100%. The resistance of the crushed stone under standardized conditions is well established. Therefore, the purpose of a CBR test is to determine the relative resistance of the subgrade material under the same conditions. The test is an index test, thus it is not a direct measure of stiffness modulus or shear strength. In equation form

$$CBR = \frac{testunitlaad}{stadaredunitload} *100$$
(2.1)

The CBR test is essentially a measure of the shearing resistance of a soil at a known moisture and density conditions. The method of evaluating CBR is standardized in AASHTO T 193 and ASTM D 1883.

2.1.2 Applications of California Bearing Ratio

The value of CBR is an indicator of the suitability of natural subgrade soil as a construction material. If the CBR value of subgrade is high, it means that the subgrade is strong and as a result, the design of pavement thickness can be reduced in conjunction with the stronger subgrade. Conversely, if the subgrade soil has low CBR value it indicates that the thickness of pavement

shall be increased in order to spread the traffic load over a greater area of the weak subgrade or alternatively, the subgrade soil shall be subjected to treatment or stabilization.

2.2 CBR Laboratory Test Methods

California bearing ratio (CBR) test can be done at both field and laboratory according to the test method ASTM D 4429 and ASTM D1883-73 respectively.

Samples may be prepared in three different ways. Accordingly,

- (i) The test can be performed on a remoulded sample in laboratory.
- (ii) On undisturbed sample carefully extracted from field and trimmed to closely fit the standard mould in laboratory.
- (iii) An in-situ sample which is entirely tested on field.

The CBR test taken in this research is socked CBR test. CBR tests are usually made on test specimens at the optimum moisture value for the soil as determined using the standard or modified compaction test using method 2 or 4 of ASTM D 69870 or of D155770 (for the 15.2cm diam. mould)[3].

The sample which is taken from the terrain must be purposive disturbed soil samples were collected. Two moulds of soil are often compacted one for immediate penetration testing and one for testing after soaking for a period of 96 hr. The second specimen is soaked for a period of 96hr with a surcharge approximately equal to the pavement weight used in the field but in no case the surcharge weight is less than 4.5kg. Swell readings are taken during this period at arbitrary selected times. At the end of the soaking period, the CBR penetration test is made to obtain a CBR value for the soil in saturated condition.

In both penetration tests for the CBR values, a surcharge of the same magnitude as for the swell test is placed on the soil sample. The test on soaked sample accomplishes two things:

- It gives information concerning expected soil expansion beneath the pavement when the soil become saturated.
- II) It gives an indication of strength loss from field saturation.

At the end of the soaking period the penetration test is carried out at a rate of 1.27mm/min and the force or load required to cause the penetration recorded with respect to the standard penetration depths at each 0.5mm penetration, including the load value at 2.54 mm and 5.08 mm until the total penetration is 12.7mm. The penetration resistance load is then plotted against the penetration depth and correction is made for the load-penetration curve.

Using the corrected value taken from the load-penetration curve for 2.54 mm and 5.08 mm penetration, the bearing ratio is calculated by dividing the corrected load by the corresponding standard load, multiplied by 100. Its value ranges from 0 (worst) to 100 (best). If the bearing ratio of 2.54 mm is greater than that of 5.08 mm, the bearing ratio that should be reported for the soil is normally the one at 2.54 mm penetration. When the ratio at 5.08 mm penetration is greater, the test is entirely repeated on a fresh specimen. If the repeated result of 5.08 mm is again greater, the design bearing ratio will be that of 5.08 mm or else, if the bearing ratio of 2.54 mm is greater the design bearing ratio will be that of 2.54 mm penetration [3].

A typical laboratory CBR testing apparatus found in ERA from jimma district is shown in Figure 2.1.

Figure 2.1: California Bearing Ratio laboratory Testing Apparatus

2.3 Index Properties of Soil Test

Index properties are the properties of soil that help in identification and classification of soil. Water content, specific gravity, Particle size distribution, in situ density (Bulk Unit weight of soil), Consistency Limit and relative density are the index properties of soil. These properties are generally determined in the laboratory. In situ density and relative density require undisturbed sample extraction while other quantities can be determined from disturbed soil sampling. Such parameters are useful to classify cohesive soils and provide correlations with engineering soil properties [4].

2.3.1 Textural classification

In a general sense, texture of soil refers to its surface appearance. Soil texture is influenced by the size of the individual particles present in it. In most cases, natural soils are mixtures of particles from several size groups. In the textural classification system, the soils are named after their principal components, such as sandy, clay, silty clay, and so forth [4].

Although the textural classification of soil is relatively simple, it is based entirely on the particlesize distribution. Currently, two more elaborate classification systems are commonly used by soils engineers. Both systems take in to consideration the particle-size distribution and Atterberg limits. They are the American Association of State Highway and Transportation Officials (AASHTO) classification system and the Unified Soil Classification System (USCS). The AASHTO classification system is used mostly by state and section highway departments. Geotechnical engineers generally prefer the Unified system. Both are used to specify a certain soil type that is best suitable for a specific application. These classification systems divide the soil into two groups: cohesive or fine-grained soils and cohesion-less or coarse-grained soils [5].

The Unified Soil Classification System is a standardized technique for classifying soils for engineering purposes. Within this system, soils are classified based on the distribution of their grain sizes and the plasticity characteristics of the cohesive material. The original form of this system was proposed by Casagrande in 1942 for use in the airfield construction works undertaken by the Army Corps of Engineers during World War .II. In cooperation with the U.S. Bureau of Reclamation, this system was revised in 1952.At present, it is used widely by engineers (ASTM Test Designation D-2487) [6].

This system classifies soils into three broad categories:

- 1. Coarse-grained soils that are gravelly and sandy in nature with less than 50% passing through the No.200 sieve. The group symbols start with a prefix of G or S.G stands for gravel or gravelly soil and S for sand or sandy soil.
- 2. Fine-grained soils are with 50% or more passing through the No. 200 sieve. The group symbols start with prefixes of M, which stands for inorganic silt, C for inorganic clay,

or O for organic silts and clays. The symbol Pt is used for peat, muck, and other highly organic soils.

3. Highly organic soil.

Table 2.1: Symbols in the Unified Soil Classification System

Soil groups	Symbol
Gravel	G
Sand	S
Silt	М
Clay	С
Soil Characteristics	Symbol
Well-graded	W
Poorly-graded	Р
Low plasticity (liquid limit under 50)	L
High plasticity (liquid limit over 50)	Н
Organic (silts and clays)	0
Organic (peat)	Pt

2.3.2 Atterberg Limit

When clay minerals are present in fine-grained soil, the soil can be remoulded in the presence of some moisture without crumbling. This cohesive nature is caused by the adsorbed water surrounding the clay particles. In the early1900s, a Swedish scientist named Atterberg developed a method to describe the consistency of fine-grained soils with varying moisture contents.

At a very low moisture content, soil behaves more like a solid. When the moisture content is very high, the soil and water may flow like a liquid. Hence, on an arbitrary basis, depending on the moisture content, the behaviour of soil can be divided into four basic state solid, semisolid, plastic and liquid as shown in Figure 2.2. The moisture content, in percent, at which the transition from solid to semisolid state takes place is defined as the shrinkage limit. The moisture content at the point of transition from semisolid to plastic state is the plastic limit, and from plastic to liquid state is the liquid limit. These parameters are also known as Atterberg limits [6].

Figure 2.2: Atterberg limits [6]

This limit describes the plasticity and consistency of fine grained soils with varying degrees of water content. For the portion of soil passing 425mm (no 40) sieve, the moisture content is varied to determine the three stages of soil behaviour in terms of consistency. These stages are generally known as liquid limit (LL), plastic limit (PL) and shrinkage limit (SL) of soils.

2.3.2.1 Liquid Limit

The liquid limit (LL) is the water content, expressed in percent, at which the soil changes from a liquid state to a plastic state and principally it is defined as the water content at which the soil pat cut using standard groove closes for about a distance of 13cm (1/2 in.) at 25 blows of the liquid limit machine (Casagrande Apparatus). The liquid limit of a soil highly depends upon the clay mineral present. The conventional liquid limit test is carried out in accordance of test procedures of AASHTO T 89 or ASTM D 4318. A soil containing high water content is in the liquid state and it offers no shearing resistance.

2.3.2.2 Plastic Limit

The moisture at which soil has the smallest plasticity is known as the plastic limit. Which the soil stops behaving as a plastic material Just after plastic limit the soil displays the properties of a semi-solid. For determination purpose, the plastic limit is defined as the water content at which soil will just begin to crumble when rolled into a thread of 3mm in diameter.

2.3.2.3 Plastic Index

The amount of water which must be added to change a soil from its plastic limit to liquid limit is an indication of the plasticity of the soil. The degree of plasticity is measured by the plasticity index (PI), which is the numerical difference between liquid limit and plastic limit (PI=LL – PL). The greater the plasticity index means that the soil is more plastic, compressible and the greater volume change characteristic of the soil.

2.3.3.4 Sieve Analysis

Sieve analysis is done to determine the percentage of various grain sizes. The grain size distribution helps in determining the textural classification of soils whether it is gravel, sand, silt, clay, etc. which is then useful in evaluating the engineering characteristics such as permeability, strength, swelling potential and susceptibility to frost action. The sieves for soil tests used are 4.75 mm to 75mm. Particle size analysis tests are carried out in accordance to ASTM D 422-63[7].

2.3.4 Moisture Content

Moisture content of soil describes the amount of water present in a quantity of soil in terms of its dry weight.

In equation form

$$W = \frac{m_w}{m_s} * 100$$
------in percent

Where:

 m_w = mass of water contained in soil.

 M_s = mass of dry soil

(2.2)

The purpose of moisture content test is to determine the amount of water present in a quantity of soil in terms of its dry weight and to provide general correlations with strength, settlement, workability and other properties. The moisture content test is carried out in the laboratory as per the procedure of AASHTOT 265 or ASTM D 2216 and in the field according to AASHTO T217.

2.3.5 Moisture Density Relationship (Compaction Test)

It is the process of densification of soils. Compaction is the application of mechanical energy to a soil so as to rearrange its particles. It is applied to improve the engineering properties it means it increases the shear strength of the soil and hence, the bearing capacity. It increases the stiffness and thus, reduces future settlement, void ratio and permeability of an existing soil or in the process of placing fill such as in the construction of embankments, road bases, runways, earth dams, and reinforced earth walls. Compaction is also used to prepare a level surface during construction of buildings [8].

Compaction tests are performed using disturbed, prepared soils with or without additives. Normally, soil passing the No. 4 (4.75mm) or 19mm sieve is mixed with water to form samples at various moisture contents ranging from the dry state to wet state. These samples are compacted in layers in a mold by a hammer in accordance with specified nominal compaction energy. Dry density is determined based on the moisture content and the unit weight of compacted soil. The test is done in the laboratory according to AASHTO T 99 (Standard Proctor), T 180 (Modified Proctor) or ASTM D 698 (Standard Proctor), D1557 (Modified Proctor).

2.4 Existing Correlations

2.4.1 Relationship Specific to a region and soil type

A number of studies and investigations such as in-situ or laboratory tests have previously been carried out to make correlations between the CBR and other soil properties. Most of the correlations were applied according to the particular circumstances of the soil such as soil type, dry density, Soil consistency and degree of saturation. A few of these methods take a general approach and attempt to encompass many or all possible soil types however most attempts have been limited in scope to a specific soil and only apply to one region, soil type, or specialized material. Some of the correlations are presented as follows:

Scala was one of the first investigators who developed the correlation between the CBR and soil strength. He undertook a considerable number of test in Australia for obtaining the CBR, using static or dynamic cone penetrometer (DCP) [9]. Other than Scala, studies regarding the CBR and DCP impact on various types of soil have also been conducted by researchers such as kleyn (1975), Smith and Pratt (1983), Harrison (1986) and Webster et al. (1992). The scala correlations was presented below in Eq (2.3):

 $\log CBR = 2.465 - 1.12 \log (DCP)$

(2.3)

Venkatasubramania proposed a method for correlating CBR values with the liquid limit, plastic limit, plasticity index, optimum moisture content, Maximum dry density, values of various soils taken from in and around three different district in Tamil-Naidu's [10]. The relation was made with the help of artificial neural network system and multiple regression analysis. The tests were performed as per IS. Code specification. The result showed that the specific gravity for 15 sample varied from 1.609 to 2.55 and plasticity index varied from 5 to 9. All samples had good amount of sand content which ranged from 28% to 86%. Unsoaked CBR value is around 2-3 times the soaked CBR value. Unconfined compressive strength varied from 66.2 *KN*/ m^2 to 183.90 *KN*/ m^2 for different samples. From the results it was observed that samples 1, 2, 5, 8, 9, 10, 11, 12 and 15 multiple linear regression analysis under estimates actual CBR values and for remaining Samples it over estimates. Similarly for samples 1, 2, 4, 5, 6, 9, 11, 14 and 15 neural network model under estimates CBR value and for remaining samples it over estimated.

Figure 2.3 (a): Comparison of un-soaked CBR actual vs. predicted CBR. [10]

Figure 2.3 (b): Comparison of soaked CBR actual vs. predicted CBR

It was also concluded from this research that the CBR prediction model based on multiple linear regression performs better than neutral network model and hence recommended to predict CBR values.

De Graft-Johnson and Bhatia on the Ghana lateritic soil developed a correlation of CBR with plasticity and grading using the concept of suitability index [11].

$$SI = \frac{A}{LL(LogPI)}$$
(2.4)

Where: - SI Suitability Index value of de Graft-Johnson and Bhatia

- A Percentage passing 2.0mm sieve size
- LL Liquid Limit

- PI Plasticity Index

It is worth to note that the soil samples were compacted to maximum dry density at optimum moisture content and soaked for 4 days according to the Ghana standard of compaction. This specifies the use of a standard CBR mould and a 4.5kg hammer with 450mm drop height to compact the soil in 5 layers using 25 blows per layer. The developed relationship is presented in Figure 2.4.

Figure 2.4: Relationship between socked CBR test and suitability index

Aggarwal and Ghanekar performed their research on 48 samples of fine grained soils found in India, on the basis of which they had tried to develop a correlation between CBR values and either liquid limit, plastic limit or plasticity index [12]. But in that case they failed to find any strong or significant correlation between them. Instead, they found a better correlation when they include the optimum moisture content and liquid limit. The correlation developed is as below:

$$CBR = 2-\log(OMC) + 0.07* L.L.$$
 (2.5)

OMC-optimum moisture content, LL=Liquid limit

The 48 soil samples tested by them had CBR values not exceeding 9% and the standard deviation obtained was 1.8. Hence, they suggested that the correlation is only of sufficient accuracy for preliminary identification of material. They also recommended that this correlation may be of more use of derived for specific geological regions.

2.4.2 Universal Approaches Based on Soil Classification Systems2.4.2.1 Typical Values Based on Unified Soil Classification System

Guidelines for choosing CBR values based solely on USCS soil type are found throughout different literature. A variety of USCS class soils are associated with a range of CBR values by different researchers and research institutes. A summary of reported values from several of these sources is shown in Table 2.1. Generally, these are consistent for each soil type, with minor differences among the reported values. Part of this variation may be due to the fact that some refer to compacted soils, others refer to field-measured CBR values, while some do not specify test conditions [13].

USCS Soil Type	USACE, US Army and Air Force	Yoder & Witczalk	US Army, Air Force and Navy and PCA	Rollings & Rollings	NCHRP*
GW	40 - 80	60 - 80	60 - 80	60 - 80	60 - 80
GP	30 - 60	35 - 60	25 - 60	35 - 60	35 - 60
GM	20 - 60	40 - 80	20 - 80	40 - 80	30 - 80
GC	20 - 40	20 - 40	20 - 40	20 - 40	20 - 40
SW	20 - 40	20 - 40	20 - 40	20 - 50	20 - 40
SP	10 - 40	15 - 25	10 - 25	10 - 25	15 - 30
SM	10 - 40	20 - 40	10 - 40	20 - 40	20 - 40
SC	5 - 20	10 - 20	10 - 20	10 - 20	10 - 20
ML	15 or less	5 - 15	5 - 15	5 - 15	8-16
CI	15 or less	5 - 15	5 - 15	5 - 15	5-15
OL	5 or less	4 - 8	4 - 8	4 - 8	
MH	10 or less	4 - 8	4 - 8	4 - 8	2 - 8
СН	15 or less	3 - 5	3 - 5	3 - 5	1 - 5
OH	5 or less	3 - 5	3 - 5	3 - 5	
Pt				< 1	
CL-ML					

Table 2.2: Typical California Bearing Ratio Values based on Unified Soil Classification [13].

Jimma Institute of technology

GW-GM	 	 	35 - 70
GW-GC	 	 	20 - 60
GP-GM	 	 	25 - 60
GP-GC	 	 	20 - 50
GC-GM	 	 	
SW-SM	 	 	15 - 30
SW-SC	 	 	10 - 25
SP-SM	 	 	15 - 30
SP-SC	 	 	10 - 25
SC-SM	 	 	

* NCHRP: represents National Cooperative Highway Research Program of United States

2.4.2.2 Mechanistic-Empirical Design Guide

Another general approach to the problem of estimating CBR has been developed as a part of the highway pavement community's recently released *Mechanistic-Empirical Design Guide for New and Rehabilitated Pavement Structures* [14]. The design guide methodology includes three levels of confidence in the resulting pavement designs, depending on the quality of input data provided to the model. This ranges from the highest level, where the design is based on a detailed, project-specific series of laboratory characterization tests on the construction materials, to the lowest level where default values based on simple material characterization tests and/or regional norms are used as model inputs. One of the parameters needed to perform a flexible pavement design using this system is the resilient modulus, which is "a specific type of modulus of elasticity that is based on their coverable strain instead of total strain" [14]. Also, the resistance value test (r-value) is used to measure the frictional resistance of a material to deformation under saturated condition. Its test is conducted using the HveemStabilo meter in accordance to ASTM D 2844.

In addition to the above, the National Cooperative Highway Research Program of United States of America through the "Guide for Mechanical-Empirical Design of New and Rehabilitated Pavement Structures" had developed some correlations that describe the relationship between soil index properties and CBR values based on a simple regression approach. The CBR values were selected by choosing average values for each USCS soil type based up on sources that provide typical CBR values by classification, as illustrated in the previous section. The index property values were selected by examining the USCS classification criteria for each soil type, and choosing a typical value for that USCS soil type. The index properties chosen to correlate with CBR included:

$$wPI = P_{200} * PI$$
 (If PI > 0) (2.6)

W = Percent passing No. 200 Sieve

PI = Plasticity Index

For the clean, coarse-grained, non-plastic soils where wPI=0, the CBR were correlated with D_{60} . The best-fitted equation proposed by NCHRP for clean, coarse-grained soil provides the following prediction relationship:

$$CBR = \begin{cases} 5 & (if \ D_{60} \le 0.0 \ lmm) \\ 28.09 (D_{60})^{0.358} & (if \ 0.0 \ lmm < D_{60} < 30 \ mm) \\ 95 & (if \ D_{60} \ge 30 \ mm) \end{cases}$$

Where: - D60 Diameter on the cumulative size distribution curve where 60 percent of Particles are finer (in millimetres)

- P200 Percent passing (finer than) the number 200 sieve size (in decimal form)

In cases where the soil has fine content, percent passing sieve No. 200 greater than twelve percent and the weighted plasticity index (wPI) value is different from zero, the prediction equation will be:

$$CBR = \frac{75}{1 + 0.728(wPI)}$$
(2.7)

wPI = Weighted Plasticity Index

PI = Plasticity index

CHAPTER THREE

Methods, Data Collection and Laboratory Results

3.1 General

In order to accomplish the proposed objectives of the study, Books, journal and published reports has been thoroughly studied and reviewed at early stage of the study to keep up to date on the published correlation of CBR and soil index properties.

To have satisfactory data for utilizing the correlations, laboratory tests were conducted by the researcher on sample collected from different localities of Jimma town and also records of already tested results of CBR values together with associated soil indices (sieve analysis results, moisture-density relationship and Atterberg limit) were collected from selected road material.

3.2 Study Area

The Jimma Town is one of the biggest towns located in the Oromia National Regional State. The town is a Centre for large trunk roads passing different part of Ethiopia; Due to this reason the town is a meeting place for different nationalities, languages and a place for marketing. The town is located in western part of Ethiopia 7°40'N 36°50'E latitude and longitude. Jimma has a tropical rainforest climate (Af) under the Köppen climate classification. It features a long annual wet season from March to October. Based on the 2007 Census conducted by the Central Statistical Agency of Ethiopia (CSA), this Zone has a total population of 120,960, of whom 60,824 are men and 60,136 women with an area of 50.52 square kilometres. Temperatures at Jimma are in a comfortable range, with the daily mean staying between 20°C and 25°C year-round.

3.3 Data Collection and Test Results 3.3.1 Primary Data

In order to have sufficient and reliable data for the target analysis, laboratory tests were conducted on soil samples obtained from different localities of Jimma Town. One of the samples collected from undergoing road construction projects during the excavation stage. A total of twenty test pit disturbed samples were gathered within a reasonable sampling interval. The representative samples selected on the basis of visual identification of a subgrade soil, as such a diversified

samples acquired from areas such as; Merawa road project, Jimma university institution of technology (KittoFurdisa) construction site, Agricultural University Jimma branch and Seto area.

3.3.2 Secondary Data

The twenty disturbed sample conducted in the laboratory which is not enough for correlation purpose. However, additional thirty tests are obtained from secondary data. The secondary data has been collected from records of CBR and Index property test results found in Ethiopia road authority. The data consist of subgrade three point CBR with corresponding consequent Atterberg limit test, Compaction test, Sieve analysis and necessary classification based on AASHTO standard for various geographical locations in Jimma. All the tests are conducted based on the standard compaction with corresponding socked CBR test. The secondary data acquired from area such as; Weigh Bridge to Ajip road, Honey land to Michael road, Tilehun Shed to Kera road, Kera to Bore road, Bore to Qofe road.

Figure 3.1 Map showing Jimma Area and regional setting (Google Earth)

The result graph of detailed for sample 1 of cohesive soil is presented from Figure 3.2 to Figure 3.5. For the rest of the samples summary of tests with detailed sample demonstrations have been attached at appendix part of this thesis.

Figure 3.2: Typical Grain Size Analysis Graph

Figure 3.3: Typical Liquid Limit Graph (Flow Curve)

Figure 3.4: Typical Density vs. Moisture Content Relationship Graph

Figure 3.5: Typical Density vs. CBR Graph
3.4 Discussion on Laboratory Tests

The following different kinds of tests have been performed both primary data (laboratory test) and secondary data (already exist test result)

- Liquid Limit Test (ASTM D 4318)
- Plastic Limit Test (ASTM D4318-III)
- Grain size Analysis Test (ASTM D 422-63)
- Standard Proctor Test (AASHTO T 180)
- Three-point CBR Test (AASHTO T 193)

The above conventional tests were conducted on the fifty soil samples and a range of test results achieved. Based on the obtained test results of plasticity and grain size distribution the soil classification was made and the result shows that all the sample are classified as fine grained soil. In accordance to the AASHTO classification system the soil is mainly classified as A-7-5 and A-7-6 from the conventional Atterberg limit tests, The liquid limit (LL) is the water content, expressed in percent, at which the soil changes from a liquid state to a plastic state, a liquid limit value ranging from 44 up to 77, The moisture at which soil has the smallest plasticity is known as the plastic limit, plasticity limit value of 18 up to 45 and the degree of plasticity is measured by the plasticity index (PI), which is the numerical difference between liquid limit and plastic limit (PI=LL – PL). A plasticity index value of 17 up to 50 were obtained.

A Standard proctor test conducted as per AASHTO T 180 D, through which samples compacted at five layers each compacted by 25 uniform blows using 4.54 kg weight of hammer. From the standard proctor test, after plotting moisture-density curve, a range of maximum dry density along with the optimum moisture content were obtained. Similarly, the CBR test was carried out, on samples remoulded with OMC using 10, 30 and 65 blows of standard proctor density and soaked for four days. Consequently, after the penetration test were carried out a CBR value ranging from 1.8 up to 9.5 is obtained at 95% MDD of standard AASHTO proctor density.

Table 3.1 Summary of all laboratory test result

It. No.	Sample Code	Grain Preser	size ana nt passir	alysis 1g			Atter	berg li	mits	Soil Classifica tion	Standa Procto	rd r Test		CB	R Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
													10	1.103	0.18	0.29	
1	MR- 1	100	99.7	99.4	99.1	98.9	66	32	33	A-7-5(28)	1.435	24.4	30	1.275	0.2	0.4	2.3
													65	1.395	0.35	0.5	
													10	1.102	0.24	0.40	
2	MR- 2	100	100	92	80.6	70.8	67	35	32	A-7-5(25)	1.451	26.3	30	1.199	0.3	0.4	2.6
													65	1.322	0.47	0.87	
													10	1.440	0.56	0.77	
3	MR - 3	100	99.3	97.3	94.9	88.1	63	24	39	A-7-6(37)	1.468	27.3	30	1.599	0.7	0.9	4.9
													65	1.634	0.82	1.10	
													10	1.162	0.96	1.41	
4	MR - 4	100	48.3	82.9	76.6	63.1	52	32	20	A-7-5(9)	1.360	26.8	30	1.302	1.1	1.6	8.0
													65	1.372	1.25	2.12	
													10	1.243	0.77	1.01	
5	MR - 5	100	85.2	71.9	67.6	61.1	63	24	39	A-7-5(25)	1.468	27.3	30	1.357	1.0	1.4	7.6
													65	1.510	1.06	1.51	
													10	1.049	0.41	0.67	
6	MR - 6	100	98.1	95.7	94.1	91.7	59	28	32	A-7-6(29)	1.470	28	30	1.411	0.7	0.74	5.3
													65	1.529	0.74	1.15	
													10	1.129	0.4	0.61	
7	MR - 7	100	84.7	71.9	67.9	65.3	61	25	32	A-7-6(20)	1.653	22.6	30	1.303	1.0	1.5	9.5
													65	1.378	1.88	2.43	

It. No.	Sample Code	Grain Preser	size ana nt passir	alysis ng			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd r Test		CB	R Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 Mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
													10	1.275	0.51	0.73	
8	KF - 1	100	94.8	91.3	87.3	85.0	58	31	27	A-7-5(26)	1.486	28	30	1.364	0.9	1.3	8.5
													65	1.479	1.47	2.2	
													10	1.317	0.31	0.5	
9	KF - 2	100	98.3	97.1	95.0	91.9	59	24	35	A-7-5(36)	1.521	24.3	30	1.462	0.4	0.5	3.9
													65	1.555	0.47	0.63	
10	VE 2	100	06.4	02.0		05.0		22	24		4 505	25.0	10	1.409	0.19	0.33	2.5
10	KF - 3	100	96.4	92.0	89.0	85.6	66	32	34	A-7-5(34)	1.505	25.8	30	1.428	0.3	0.5	2.5
													65	1.499	0.4	0.84	
11	VE A	100	00.0	01.0	07.4	04.2		22	24		1 502	20.0	10	1.384	0.22	0.38	27
11	КГ - 4	100	98.8	91.6	87.4	84.3	66	32	34	A-7-5(33)	1.503	28.9	50 65	1.430	0.4	0.7	2.7
													10	1.337	0.31	0.84	
12	AC -1	100	96.3	88.6	78 3	73.4	74	30	44	A-7-5(26)	1 420	27.2	30	1.242	0.2	0.57	3.0
12		100	50.5	00.0	70.5	73.4	/ 4	50		///////////////////////////////////////	1.420	27.2	65	1.419	0.4	0.61	5.0
													10	1.305	0.59	0.84	
13	AC - 2	100	98.8	97.5	87.0	74.9	60	23	37	A-7-6(29)	1.505	26.7	30	1.456	0.7	0.9	5.0
													65	1.532	0.83	1.04	
													10	1.256	0.33	0.56	
14	AC - 3	100	96.3	84.3	79.7	70.0	66	28	38	A-7-6(27)	1.458	28.8	30	1.408	0.4	0.7	3.2
													65	1.490	0.51	0.79	

It. No.	Sample Code	Grain Preser	size ana it passir	alysis 1g			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd r Test		CBR	C Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
													10	1.430	0.6	0.74	
15	AC - 4	100	96	85	80	72	68	32	36	A-7-5(27)	1.661	18	30	1.600	0.65	0.69	4.5
													65	1.682	0.7	0.98	
													10	1.252	0.22	0.46	
16	AC- 5	82.8	71.9	67.5	61.9	56.6	60	22	38	A-7-6(18)	1.443	29	30	1.407	0.3	0.6	2.3
													65	1.490	0.41	0.68	
	OT 1	100	100	00.0	02.2	07.2	65	24	4.1		1 400	25	10	1.018	1.05	1.41	7.0
1/	51-1	100	100	98.8	93.3	87.3	65	24	41	A-7-6(17)	1.480	25	30	1.395	1.46	1./3	7.0
													65 10	1.492	1.48	2.03	
10	ST- 2	100	100	98.6	94.1	88 3	65	30	36		1 42	31.7	30	1.254	0.41	1.09	6.5
10	51-2	100	100	70.0	74.1	00.5	05	50	50	A-7-0(55)	1.72	51.7	65	1.343	0.9	1.2	0.5
													10	1.407	0.52	1.20	
19	ST- 3	100	100	97.8	86.8	72.8	74	34	40	A-7-5(31)	1.393	31.9	30	1.378	1.03	1.31	4.0
							-			///////////////////////////////////////			65	1.390	1.05	1.33	
													10	1.241	0.62	1.13	
20	ST- 4	100	93.8	85.8	82.7	79.3	65	31	34	A-7-5(16)	1.433	26.8	30	1.347	0.24	1.99	9.5
													65	1.431	1.71	2.57	
													10	1.018	1.05	1.41	
21	WA-1	100	100	99.5	96.2	84.9	72	32	40	A-7-5(19)	1.393	31.6	30	1.395	1.46	1.73	3.9
													65	1.492	1.48	2.03	

It. No.	Sample Code	Grain Preser	size ana nt passir	alysis ng			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd r Test		CB	R Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
													10	1.225	0.22	0.37	
22	WA -2	100	88.5	85.3	81.9	78.6	62	27	35	A-7-5(29)	1.435	25.5	30	1.336	0.3	0.4	2.5
													65	1.439	0.45	0.61	
23	WA -3	100	99.1	98.4	93.7	87.6	68	30	38	A-7-5(38)	1 315	38.5	30	1.178	0.18	0.51	4.0
25	WIX 5	100	<i>))</i> .1	70.4	23.1	07.0	00	50	50	11 / 5(50)	1.515	50.5	65	1.366	0.29	0.45	7.0
													10	1.233	0.18	0.31	
24	WA -4	100	92.5	89.8	84.5	77.4	60	30	30	A-7-5(25)	1.435	31.2	30	1.376	0.3	0.4	1.8
													65	1.440	0.29	0.45	
													10	1.230	0.32	0.5	
25	WA -5	100	98.6	97.8	95.2	90.5	64	31	33	A-7-5(34)	1.405	28	30	1.372	0.4	0.6	3.0
													65	1.443	0.43	0.61	
		100	00.4		0.5.4	00.0	-				1		10	1.426	0.14	0.26	
26	WA -6	100	99.4	98.3	96.4	88.8	59	27	37	A-7-6(37)	1.640	22	30	1.587	0.2	0.3	6.9
													65	1.652	0.2	0.37	
27	WA 7	100	00.2	00 0	08.2	05.2	72	20	12	A 7 5(42)	1 4 1 0	27.4	10	1.226	0.14	0.22	2.2
27	WA-/	100	99.5	98.9	98.2	95.5	15	50	45	A-7-3(42)	1.410	27.4	<u> </u>	1.3/3	0.2	0.2	5.5
													10	1.430	0.19	0.27	
28	HM -1	100	95.9	90.4	84 5	79.2	77	27	50	A-7-6(35)	1 390	34.4	30	1.190	0.19	0.31	51
20		100	,,,,	20.1	01.0	, , , , 2	. ,				1.570		65	1.410	0.36	0.58	

It. No.	Sample Code	Grain Preser	size ana it passir	alysis 1g			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd r Test		CB	R Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
		4.0.0						1.0					10	1.198	0.29	0.47	
29	HM -2	100	91.9	88.6	73.3	65.9	52	18	34	A-7-6(20)	1.496	22	30	1.336	0.41	0.61	3
													65 10	1.410	0.45	0.70	
30	HM -3	100	98.3	967	93.9	87.4	67	32	35	A-7-5(36)	1 427	27	30	1.223	0.27	0.55	4
50		100	2012	2017	2012	0711	07	52		11 / 5(50)	11127	27	65	1.455	0.56	0.86	
													10	1.267	0.42	0.67	
31	HM -4	100	97.1	94.2	90.4	84.9	62	28	34	A-7-6(32)	1.470	25.6	30	1.408	0.5	0.8	3.5
													65	1.495	0.52	0.88	
													10	1.290	0.18	0.4	
32	HM -5	100	100	91.5	86.2	76.8	62	25	37	A-7-6(30)	1.495	24.7	30	1.446	0.3	0.5	2.0
													65	1.531	0.41	0.69	
		100	00.2	00.1	02.2	77 4	<i>C</i> 1	22	22	A 7 5(07)	1 405	22.2	10	1.405	0.38	1.3	6.0
33	HM -0	100	99.2	90.1	82.3	//.4	64	32	32	A-7-5(27)	1.485	23.2	30	1.435	1.3	2.2	6.0
													05 10	1.512	2.01	3.29	
24	TK _1	100	00.2	90.6	83.2	78.6	62	3/	38	$A_{-7-6}(31)$	1 566	19.4	30	1.434	0.40	0.90	15
54	111 -1	100	<i>)).</i> 2	70.0	05.2	70.0	02	57	50	11-7-0(31)	1.500	17.4	65	1.505	0.5	1.0	т.5
													10	1.312	0.38	0.54	
35	TK -2	100	90.9	88.2	81.6	66.9	57	25	32	A-7-6(20)	1.540	22.4	30	1.479	0.5	0.6	3.4
										× - /			65	1.539	0.52	0.81	1

It. No.	Sample Code	Grain Preser	size ana nt passir	alysis 1g			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd r Test		CB	R Tests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
		100	100		0.5.4	=	-0				1 100	2 0 7	10	1.240	0.19	0.29	
36	TK -3	100	100	90.3	85.1	73.2	70	27	43	A-7-6(32)	1.423	30.5	30	1.378	0.3	0.4	2.2
													65 10	1.4/8	0.32	0.43	
37	TK -4	100	98.2	95.6	89.7	81.7	44	26	18	A-7-6(16)	1.560	22	30	1.525	0.40	0.9	3.8
57													65	1.557	0.69	1.02	
													10	1.254	0.29	0.52	
38	TK -5	100	100	99.0	97.3	88.5	63	36	28	A-7-5(29)	1.455	27.7	30	1.397	0.5	0.8	3.5
													65	1.478	0.58	0.9	
													10	1.244	0.37	0.56	-
39	KB -1	100	98.0	95.8	92.6	83.0	70	33	37	A-7-5(35)	1.433	31.2	30	1.385	0.5	0.7	3.8
													65	1.450	0.59	0.86	
	WD 0	100	05.4	01.0	95 6	02.0	50	24	25	A 7 5 (0 A)	1 5 2 2	26.6	10	1.317	0.68	1.00	5 4
40	КВ -2	100	95.4	91.9	85.0	82.0	59	34	25	A-7-5(24)	1.533	26.6	30	1.323	0.7	1.1	5.4
													05 10	1.537	0.//	1.5	
11	KB-3	100	97.1	95 7	9/ 5	03.0	60	28	32	$A_{-7-6}(35)$	1 / 56	29	20	1.254	1.82	1.95	3.8
41	KD -J	100	77.1	75.7	74.5)5.)	00	20	52	11-7-0(33)	1.450	2)	65	1.409	<u> </u>	<u> </u>	5.0
													10	1.245	0.33	0.47	
42	KB -4	100	100	97.5	90.5	84.4	57	31	26	A-7-5(25)	1.413	31.5	30	1.364	0.49	0.78	4.0
										(-)			65	1.441	0.69	1.15	

It. No.	Sample Code	Grain Preser	size ana nt passir	alysis 1g			Atter	berg li	mits	Soil Classifica tion	Standa Proctor	rd : Test		CBR T	`ests		
		9.5 mm	4.75 Mm	2.00 Mm	0.475 Mm	0.075 mm	LL (%)	PL (%)	PI (%)	AASHTO Class.	MDD (g/cc)	OMC (%)	No. of Blows	Density (g/cc)	Load in (MPa) at 2.54 mm	Load in (MPa) at 5.08 mm	CBR at 95% MDD (%)
													10	1.349	0.22	0.38	
43	KB -5	100	95.4	90.2	85.6	80.9	66	32	33	A-7-5(30)	1.468	26.4	30	1.393	0.4	0.6	2.8
													65 10	1.495	0.46	0.72	
44	BO -1	100	94.2	86.8	83.5	81.9	62	45	17	$A_{-}7_{-}5(19)$	1 480	30.8	30	1.285	5.95 777	4.73	7.0
	DQ I	100	74.2	00.0	05.5	01.7	02	-10	17	11 / 5(1)	1.400	50.0	65	1.423	11.03	11.7	7.0
													10	1.315	0.77	1.24	
45	BQ -2	100	99.5	98.6	97.1	96.3	59	35	24	A-7-5(29)	1.504	25.5	30	1.423	1.0	1.8	8.0
													65	1.623	1.36	1.85	
													10	1.511	0.37	0.59	
46	BQ -3	100	89.1	75.3	69.4	67.8	63	31	32	A-7-5(22)	1.630	24	30	1.533	0.6	0.9	4.9
													65	1.619	0.81	1.23	
47		100	00.0	00.0	00.0	00.6			2.1		1 500	25	10	1.408	0.18	0.28	
47	BQ -4	100	99.9	99.8	99.3	98.6	66	32	34	A-7-5(41)	1.503	25	30	1.433	0.4	0.7	2.3
													65 10	1.527	0.45	0.74	
48	BO 5	100	07.0	96.7	03.0	017	57	27	30	A 7 6(31)	1 527	25 /	30	1.423	0.33	1.05	1.1
40	- yu	100)1.)	70.7)3.))1.7	57	21	50	A-7-0(31)	1.327	23.4	65	1.470	0.7	1.2	7.7
													10	1.309	0.51	0.84	
49	BO -6	100	98.8	97.0	88.1	77.8	66	35	31	A-7-5(27)	1.456	30.3	30	1.380	0.3	0.7	2.2
_													65	1.428	0.22	0.42	
													10	1.324	0.15	0.31	
50	BQ -7	100	97.3	96.8	94.9	93.2	54	28	26	A-7-6(28)	1.459	29.7	30	1.462	0.3	0.6	2.4
													65	1.544	0.32	0.7	

CHAPTER FOUR

REGRESSION ANALYSIS AND CORRELATIONS 4.1 Introduction

Regression analysis is a statistical technique for modelling and investigating the relationship between two or more variables. Many problems in engineering and science involve exploring and making use of the relationships between two or more variables. Regression analysis the best fit model could be in the form of linear, parabolic, and logarithmic and so on, depending on the trend that may exist between the dependent and independent variables.

Regression analysis divided into either simple regression or multiple regression analysis pertinent to the number of variables involved in the system. A regression model that contains more than one regression variable is called multiple regression model. Alternatively, a regression model containing one independent variable or regression is termed as simple regression model. [15]

A variable whose value is predicted is called dependent variable or response. A variable(s) used to predict the value of dependent variable is termed independent or regression variable (s). The development and subsequent Fitting of a regression model requires several assumptions. The method of least squares is used in order to choose the best fitting line for a set of data. Estimation of the model parameters requires the assumption that, the residuals (actual values less estimated values) corresponding to different observations are uncorrelated random variables with zero mean and constant variance (σ_2). In most practical situation, the variance (σ_2) of the random error (ε) will be unknown and must be estimated from the sample data [15]. The standard error of an estimate gives some idea about the precision of an estimate. During modelling, a variable that shows the least standard error of estimates is the one to be chosen.

This is indeed fundamental assumption of any tests of hypothesis and interval estimation.

A number of techniques can be used to indicate the adequacy of a multiple regression model, some of which are standard error, the multiple regression R-squared values. The standard error of a statistic gives some idea about the precision of an estimate. Estimated standard errors are computed based on sample estimates, as population values are not obtainable using sample surveys. The estimated standard error of a variable with mean x and standard deviation of SD is given by

$$\sigma = \frac{SD}{\sqrt{n}}$$
(4.1)

 σ = Estimated standard error of a sample.

n=sample size

During modelling, a variable that shows the least standard error of estimates is the one to be relatively chosen.

A convenient way of measuring how well the regression model performs as a predictor of the dependent variable is to compute the reduction in the sum of squares of deviations that can be attributed to regress or variables and this quantity termed the coefficient of determination, R₂. The value of R² is always between 0 and 1, because R² is between -1 and +1, whereby a negative value of R² indicates inversely relationship and positive value implies direct relationship. Many problems in engineering require that we decide whether to accept or reject a statement about some correlations. A number of techniques can be used to judge the adequacy of a regression model some of which are standard error (α), R-squared value (*R*₂), R-adjusted. [16]

4.2 Scatter Plot

In this work, the California Bearing Ratio value is taken as the dependent variable whereas the percent passing 0.075mm sieve size, liquid limit, plastic limit, plasticity index, maximum dry density and optimum moisture content are independent variables

In carrying out the whole statistical analysis, statistical software programs called SPSS software were used. Using the 50 soil samples, different kinds of relationships between CBR and other soil index properties were studied. The scatter plot of the dependent variable CBR with the regression variable for the case of Jimma soils is shown below from Figure 4.1 to Figure 4.6

Figure 4.1: Scatter diagram of LL versus CBR

Figure 4.2: Scatter diagram of PL versus CBR

Figure 4.3: Scatter diagram of PI versus CBR

Figure 4.4: Scatter diagram of MDD versus CBR

Figure 4.5: Scatter diagram of OMC versus CBR

Figure 4.6: Scatter diagram of P200 versus CBR

4.3 Regression Analysis

Regression an analysis one of the most important statistical techniques for engineering applications. It's a conceptually simple method for involving functional relationship among or between variable. The regression results show whether this relationship is valid.

In this research work, an attempt is made to apply single linear regression model and multiple linear regression models to characterize the strength of subgrade soil from soil index parameters using a statistical approach. In simple linear regression a single independent variables used to predict the value of a dependent variable. In multiple linear regressions two or more independent variables are used to predict the value of a dependent variable. The difference between the two is the number of independent variables.

The general representation of a probabilistic single and multiple linear regression models are presented in the following forms:

$$Y = \alpha_0 + \alpha_1 x + \varepsilon \tag{4.2}$$

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$
(4.3)

Where the slope α_0 and α_1 of the single linear regression model are called regression coefficients. Similarly, coefficients $\beta_0 \beta_1 \beta_2 and \beta_n$ are termed multiple regression coefficients.

The appropriate way to generalize this to a probabilistic linear model is to assume that the actual value of Y is determined by the mean value function (the linear model) plus the random error term, ϵ [16]. The basic assumption to estimate the regression coefficients of the single and multiple regression models is based on the least square method. Specific to this research, a statistical package for social science software (SPSS) is employed to investigate the significance of individual regress or variables. Accordingly, the forty two laboratory test results of the independent and dependent variables are used in the following regression analysis. The statistical information's of the test results are presented in Table 4.1

Variable Type	Variable type	Unit of Measure ment	No of sample	Range	Minimum	Maximum	Std. Deviation
	0.075	%	50	65.8	56.6	98.9	11.78
Independent	LL	%	50	41	44	77	7.35
	PL	%	50	27	18	45	4.72
	PI	%	50	38	17	50	7.74
	MDD	g/cc	50	0.34	1.31	1.66	0.07
	OMC	%	50	20.5	18.0	38.5	3.75
Dependent	CBR	%	50	8.2	1.8	9.5	2.0

 Table 4.1: Statistical Information of Dependent and Independent Variable

In order to know the influence of one variable on the other, a stepwise linear regression has been analysed and as a result correlation coefficients and level of significance have been calculated, as shown in Table 4.2 the Pearson correlation coefficient matrix.

Table 4.2. Conclation on matrix of realson Conclation Coefficient	Table 4.2: correlation	on matrix	of Pearson	Correlation	Coefficient
---	------------------------	-----------	------------	-------------	-------------

			Correlat	lions			
Pearson	CBR	0.075	LL	PL	PI	MDD	OMC
Correlation							
CBR	1.000	-0.162	-0.554	0.270	-0.563	0.662	-0.084
0.075	-0.162	1.000	0.238	0.213	0.101	-0.028	0.118
LL	-0.554	0.238	1.000	0.233	0.789	-0.277	0.347
PL	0.270	0.213	0.233	1.000	-0.405	-0.140	0.261
PI	-0.563	0.101	0.789	-0.405	1.000	-0.140	0.149
MDD	0.662	-0.028	-0.277	-0.140	-0.140	1.000	-0.777
OMC	-0.084	0.118	0.347	0.261	0.149	-0.777	1.000

From the above linear relationships, it is shown that the correlation between CBR with liquid limit, plasticity index and maximum dry density has relatively moderate correlation coefficient. Basically, the strength of fine grained soil has a greater association with the consistency of the soil. As a result, liquid limit, plasticity index and maximum dry density has resulted relatively a better correlation with the strength parameter. However, the correlation with plastic limit, optimum moisture content, grain size shows a weak relationship, this is may be due to the inconsistency in conducting laboratory test and inadequacy of the number of trials considered in the test procedures. Further to the above correlation analysis, a number of alternative linear regression analyses that best fits the obtained test results have been carried out. The summarized correlation results are presented hereinafter:

4.3.1 Single Linear Regression Analysis

Model 1: Correlation between CBR and Liquid Limit (LL)

After correlating CBR with LL the resulting regression analysis is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR = 14.528 - 0.168*LL,	with $R^2 = 0.316$,	n = 50
· · · · · · · · · · · · · · · · · · ·		

The details of the statistical out-put indicates that the relationship developed between LL and CBR is significant (p<0.05) as shown in Model-1 of Appendix A.

Model 2: Correlation Between CBR and Plastic Limit (PL)

The resulting regression analysis after correlating CBR with PL is expressed by the following single linear equation with its corresponding correlation coefficients:

```
CBR = -0.875 + 0.172*PL, with R^2 = 0.137, n = 50
```

The details of the statistical out-put indicates that the relationship developed between PL and CBR is not significant (p>0.05) as shown in Model-1 of Appendix A.

Model 3: Correlation Between CBR and Plasticity Index (PI)

The resulting regression analysis after correlating CBR with PI is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR = 10.995 - 0.218*PI with $R^2 = 0.462$, n = 50

The details of the statistical out-put indicates that the relationship developed between PI and CBR is significant (p<0.05) as shown in Model-3 of Appendix A.

From the above developed correlation liquid limit and plastic index has good correlation than plastic limit it means PI=LL-PL, PI and LL direct relation but with PL inverse relation so the above correlation show that PI and LL better correlation than PL.

Model 4: Correlation Between CBR and Maximum Dry Density (MDD)

The resulting regression analysis after correlating CBR with MDD is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR = -12.276 + 11.172*MDD, with $R^2 = 0.458$, n = 50

The details of the statistical out-put indicates that the relationship developed between MDD and CBR is significant (p<0.05) as shown in Model-4 of Appendix A.

Model 5: Correlation Between CBR and Optimum Moisture Content (OMC) The resulting regression analysis after correlating CBR with OMC is expressed by the following single linear equation with its corresponding correlation coefficients:

CBR = 5.682 - 0.0490 * OMC, with $R^2 = 0.007$, n = 50

The details of the statistical out-put indicates that the relationship developed between OMC and CBR is not significant (p>0.05) and also a weak relationship exists between correlation variables.

Model 6: Correlation Between CBR and Percent Passing Sieve No. 200 (P₂₀₀) The resulting regression analysis after correlating CBR with P₂₀₀ is expressed by the following linear equation with its corresponding correlation coefficients:

CBR = $6.771 - 0.030 * P_{200}$, with $R^2 = 0.026$, n = 50

The details of the statistical out-put indicates that the relationship developed between P_{200} and CBR is not significant (p>0.05) and also a weak relationship exists between correlation variables.

From the above developed single linear regression models, based on the significant standard error (p) and coefficient of determination (R^2), it was noted that the CBR value correlates relatively better with liquid limit, plasticity index and maximum dry density which is an indication for these variables to form the multiple regression variables that could yield a better correlation result. While the remaining parameters showed a weak relationship with CBR.

4.3.2 Multiple Linear Regression Analysis

Model A: Correlation between CBR with PL and LL

CBR=9.339-0.205LL+0.245PL, with R^2 =0.570, n=50

The details of the statistical out-put of Model A indicates that the relationship developed between CBR with LL and PL is significant (p<0.05). Besides, the R₂ value of the multiple regression analysis is improved than the R₂ value of the individual parameters, i.e. PI and PL. For further reference, the detail of Model A is shown in Appendix A.

Model B: Correlation between CBR with PI and P200

CBR=12.204-0.116P200-0.216PI, with
$$R^2$$
 =0.589, n=50

The statistical out-put of Model B indicates that the relationship developed between CBR with PI and P₂₀₀ is significant (p<0.05). Besides, the R^2 value of the multiple regression analysis is improved than the R₂ value of the individual parameters, i.e. PI and P₂₀₀. For further reference, the detail of Model B is shown in Appendix A.

Model C: Correlation between CBR with LL, PL and MDD

CBR=2.838+3.673MDD+0.246PL-0.14LL, with $R^2 = 0.604$, n=50

The details of the statistical out-put of Model C indicates that the relationship developed between CBR with LL, PL and MDD is significant (p<0.05) and CBR with LL, PL and MDD. Besides, the R^2 value of Model C is better than all the above stated models. Furthermore, the detail of Model C is shown in Appendix A.

4.4 Discussion on correlation results

4.4.1 Comparisons between the Existing and the Developed Equations

These control test results were obtained from soil samples collected from different localities of Jimma. The validation of the developed correlation is conducted by using five known test results which follows similar testing procedures with that of current research. Depending on the relative significance order.

Model C (CBR = 2.838 + 3.673 * MDD + 0.246 * PL - 0.14 * LL is preferably selected among the different alternative correlations for further verifications. Subsequently, using the control test results and the developed correlation equation, the predicted CBR is determined so as to compare it with the actual CBR value as shown in Table5.1:

				Cont	rol Test Re	esults			
Sample					MDD	OMC	Actual	Developed	Variat
No.	P200	LL	PL (%)	PI (%)	(g/cc)	(%)	CBR	CBR value	ion
		(%)					value		(%)
Mr 1	77.8	76	31	45	1.455	30.3	6	5.2	-15.4
Mr 2	93.5	92	36	56	1.362	33.8	5	3.82	-24
Kb3	89.4	67	31	36	1.420	28.8	6.6	6.0	-9
Da4	85.2	66	29	37	1.339	29	7.0	5.7	18.57
Da5	89.0	74	26	48	1.52	33	4.0	4.46	11.25
Avg.							5.6	5.21	15.4

Table 4.3: Validation of the developed correlation

From the above performed result it was determined that a significant correlation can be developed between among the actual and predicted CBR value

4.5 Evaluation of the Developed and Existing Correlations

The suitability of existing correlations particularly the Yared Liliso correlation and Agarwal and Ghanekar's correlation along with the developed correlation is examined using a control test results obtained from the subject study area. The calculated results of the correlations which are obtained by using the control test results are shown in Table 4.4:

Table 4.4 Comparisons between actual value, newly developed and Mechanistic-Empirical method for cohesive soils.

		Developed	Correlation	Yared Liliso Correlation		
Sample	Actual					
No.	CBR	Predicted	Variation	Predicted	Variation	
	Value	CBR Value	(%)	CBR Value	(%)	
	[A]	[B]	[B-A]*100/A	[C]	[C-A]*100/A	
1	6.0	5.2	-15.4	2.83	-52.8	
2	5.0	3.82	-24	1.92	-61.6	
3	6.6	6.0	-9	1.68	-74.54	
4	7.0	5.7	18.57	2.5	-64.8	
5	4.0	4.45	11.25	2.34	-41.5	
Avg.	5.6	5.21	15.4	2.6	59.0	

As shown in Tables 4.4, the Yared Liliso correlation resulted an average variation of 59.0% from the actual CBR values.

		Developed C	Correlation	Agarwal and Ghanekar		
Sample	Actual					
No.	CBR	Predicted	Variation	Predicted	Variation	
	Value	CBR Value	(%)	CBR Value	(%)	
	[A]	[B]	[B-A]*100/A	[D]	[D-A]*100/A	
1	6.0	5.2	-13.3	-28.14	-169	
2	5.0	3.8	-24	-28.9	-278	
3	6.6	6.0	-9.1	-26.0	193.9	
4	7.0	5.7	-18.57	-28.0	-100	
5	4.0	4.45	11.25	-27.5	-187.5	
Avg.	5.72	5.09	15.4	20.2	104	

Table 4.5 comparisons between actual value, newly developed and Agarwal and Ghanekar

The Agarwal and Ghanekar's correlation resulted average variation of 104 % by entirely under estimating the actual CBR value. The Agarwal and Ghanekar correlation has been evaluated and the result shows that a negative predicted CBR value, which is impractical, is obtained. This is may be due to the difference in test procedures and also the unique properties of the geological material where this correlation was developed. In light of the above, it is worth to note that the test results obtained from the subject study area are not suited by the above existing correlations.

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Conclusions

This research is carried out to predict the CBR of cohesive soil from soil index properties in terms of P200, LL, PL, PI, MDD and OMC. The laboratory test were conducted on samples taken from different geographical area of Jimma and secondary data of the same town is also included. The total of 50 sample test results are obtained and analysed using single and multiple linear regression. In general from the statistical analysis made, the following conclusions are drawn.

Among the single linear regression analysis the correlation between CBR and liquid limit has resulted the following relationship:

CBR =
$$10.995 - 0.218*$$
PI, with $R^2 = 0.462$, $n = 50$

As it can be observed from the following expression, relatively an improved correlation is obtained when multiple regression is used.

CBR=2.838+3.673MDD+0.246PL-0.14LL, with $R^2 = 0.604$, n=50

These indicate that the multiple regression is better correlation than single regression analysis.

- From the comparisons made between the newly developed, Yared Liliso and Agarwal and Ghanekar method, the newly developed one approximates CBR value of cohesive soils in a better way.
- For preliminary design purpose the above correlation might be used, if the predicted CBR value is within the range of 1.8 % to 9.5%. Otherwise, a detailed laboratory test should be carried out to obtain the actual CBR value.

5.2 Recommendations

From the research conducted, the following recommendations are given:

- 1. It is recommended to further carry out this correlation works using a different geographical areas in Jimma which are not covered by this research.
- 2. The correlations made in this study were developed for locally used sub grade soils. The applicability of the CBR soil index properties for other pavement layers such as sub base and base courses are also should be investigated.

References

- Fredrics, M., Standard Hand Book for Civil Engineers, McGraw-Hill Book Company, New York, 1983.
- [2] Yang, H., Pavement Design and Analysis, Pearson Education Inc., New Saddle River, NJ, 2004.
- [3] American Society for Testing and Materials, Designation: D 1883 99, Laboratory CBR Testing, Annual Book of ASTM Standards, Volume 04.08, West Conshohocken, Pennsylvania, 2000.
- [4] Bowles Joseph E, Engineering Properties of Soils and Their Measurement, McGraw-Hill, Singapore, second edition, 1984
- [5] Mittal, S. and Shukla, J.P., Soil Testing for Engineers, Romesh Chander Khanna Publishers Delhi (India), 2000.
- [6] Braja M. Das, principals of geotechnical engineering seventh edition, 2001.
- [7] Prasad, index properties of soil, S. J. College of Engineering, Mysore, 2000.
- [8] Arora, K.R., Soil Mechanics and Foundation Engineering, Re-print Standard Publishers Distributer, Niagara, Delhi, 2004.
- [9] Carter, M. and Bentley, S.P., correlation of soil properties, Pentech Press, London, 1991
- [10] Venkata, S., Correlation of index properties of soil, India institution of technology, 2011
- [11] De. Graft Johnson. J.W.S and Bhatia the engineering characteristics of the lateritic gravel soil of Ghana, 1969.
- [12] Agarwal, K.B and Ghanekar, K.D., prediction of CBR from plasticity characteristics of soil, south East Asia, 1970.
- [13] US Army and Air Force (1983), Soils and Geology Procedures for Foundation Design Of Buildings and Other Structures, US Army Technical Manual 5-818-1, Washington DC, 1983. Available Online /http://www.usace.army.mil/inet/usacedocs/.

- [14] National Cooperative Highway Research Program, Guide for Mechanistic-Empirical
 Design of New and Rehabilitated Pavement Structures, Correlation of CBR Values
 With Soil Index Properties, NCHRP, Transportation Research Board, National
 Research Council, Washington DC, 2004.
- [15] Douglas C. M. George C. Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons, Inc.USA, third edition ,2003.
- [16] Perry R.Hinton, Charlotte Brownlow, SPSS Explained, Taylor and Francis e-Library, 2005

APPENDIX A: Details of the SPSS Regression Analysis Outputs

Appendix A-1: Single Linear Regression Analysis

Model 1: Correlation between CBR and Liquid Limit (LL)

Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of the				
			Square	Estimate				
1	.562ª	.316	.302	1.8337				

a. Predictors: (Constant), LL

b. Dependent Variable: CBR

	Coefficients ^a									
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.				
		В	Std. Error	Beta						
1	(Constant)	14.528	2.177		6.672	.000				
1	LL	168	.036	562	-4.709	.000				

a. Dependent Variable: CBR

Model 2: Correlation between CBR and Plastic Limit (PL)

Model Summary ^b								
Model	R	R Square	Adjusted R	Std. Error of the				
			Square	Estimate				
1	.370ª	.137	.119	2.0602				

a. Predictors: (Constant), PL

b. Dependent Variable: CBR

Coefficientsa

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
4	(Constant)	875	1.917		457	.650
I	PL	.172	.062	.370	2.756	.08

Model 3: Correlation between CBR and Plastic Index (PI)

Model Summary									
Model	R	R Square	Adjusted R	Std. Error of the					
			Square	Estimate					
1	.679 ^a	.462	.413	1.4333					

a. Predictors: (Constant), PI

	Coefficients ^a										
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.					
		В	Std. Error	Beta							
4	(Constant)	10.995	.838		13.120	.000					
1	PI	218	.027	763	-8.177	.000					

a. Dependent Variable: CBR

Model 4: Correlation between CBR and MDD

Model Summary									
Model	R	R Square	Adjusted R	Std. Error of the					
			Square	Estimate					
1	.676	.458	.408	1.65072					

a. Predictors: (Constant), MDD

Coefficients^a

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	-12.276	6.418		-1.913	.042
1	MDD	11.172	4.309	.350	2.593	.013

Model 5: Correlation between CBR and OMC

Model Summary ^b									
Model	R	R Square	Adjusted R	Std. Error of the					
			Square	Estimate					
1	.084ª	.007	014	2.2094					

a. Predictors: (Constant), OMC

b. Dependent Variable: CBR

	Coefficients ^a										
Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.					
		В	Std. Error	Beta							
1	(Constant)	5.682	2.298		2.472	.017					
.1	OMC	049	.084	084	587	.560					

a. Dependent Variable: CBR

Model 6: Correlation between CBR and Grain Size

Model Summary^b

Model	R	R Square	Adjusted R	Std. Error of the	
			Square	Estimate	
1	.162ª	.026	.016	2.1881	

a. Predictors: (Constant), 0.075

b. Dependent Variable: CBR

Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	6.771	2.159		3.136	.003
	0.075	030	.027	162	-1.135	.262

Appendix A-2: Multiple Linear Regression Analysis

Model 1 CBR with LL, PL

Model Summary										
Model	R	R Square	Adjusted R	Std. Error of the						
			Square	Estimate						
1	.755ª	.570	.552	1.4689						

a. Predictors: (Constant), PL, LL

	Coefficients ^a										
Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.					
		В	Std. Error	Beta							
	(Constant)	9.339	2.017		4.631	.000					
1	LL	205	.030	677	-6.886	.000					
	PL	.245	.046	.528	5.366	.000					

a. Dependent Variable: CBR

Model 2 CBR with PI, 0.075

Model Summary										
Model	R	R Square	Adjusted R	Std. Error of the						
			Square	Estimate						
1	.768ª	.589	.572	1.4359						

a. Predictors: (Constant), PI, 0.075

-			-
Coe	ffici	ient	sa

Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
	(Constant)	12.204	1.570		7.772	.000
1	0.075	116	.071	286	-2.443	.036
	PI	216	.027	754	-8.029	.000

Model 3 CBR with MDD, PL, and LL

Model Summary									
Model	R	R Square	Adjusted R	Std. Error of the					
			Square	Estimate					
1	.777ª	.604	.579	1.4246					

a. Predictors: (Constant), MDD, PL, LL

Coefficients ^a										
Model		Unstandardize	ed Coefficients	Standardized	t	Sig.				
				Coefficients						
		B Std. Error Beta								
	(Constant)	6.616	5.580		1.186	.242				
1	LL	201	.031	664	-6.477	.000				
	PL	.247	.046	.532	5.349	.000				
	MDD	.136	.5123	.053	.524	.006				

APPENDIX B: Details of the Laboratory Test Results

Sample No.: 1	Location of Sample: Merewa	Road Project, MR - 1
1	1	J

	1.1 GRAIN SIZE ANALYSIS (ASTM D422)								Grain siz	e analysis	5			
		Total Weight of dry soil before washing 1316gm				100	1	10	1	0.1	0.01			
	Sieve op	ening	Weight retain	ned P	ercent etained (%)	% age	e Passing	100 99.8						
	9.5		0.0		0.0	1	00.0	99.6						
	4.75		2.8		0.3	ę	99.7	99.4						
	2		2.8		0.3	ç	99.4	99.2						
	0.425		2.1		0.2	ç	99.1	99						
	0.075		1.9		0.2	ę	98.9	98.8						
	Pan		0.0		0.0									
	1.1.2 Su	bgrade S	oil Classificat	ion				ASSHT	O A-7-5(20)				
Descriptio	ons	1.2	2.1 Liquid Lii	nit		1.2.2 Pla	stic Limit							
Container		AD	13	A-66	Z-40	25	B-30	69 -			LIQU	JID LIMIT	CHART	
Wt wet so	oil + con	38 88	41 05	39.89	40.35	24.38	24 15	68 -						
Wt dry so	il + con	00.00	11.00	00.00	10.00	21.00	21.10	۰ ۴ ۴ ۴		\uparrow				
XX 74 C 4		31.34	32.67	32.20	31.95	23.45	23.22							
Wt of wat	ter	7.54	8.38	7.69	8.40	0.93	0.93	EL 66						
Wt of con	tainer													
		19.36	19.70	20.56	19.55	20.58	20.34							
Wt of dry	soil	11 98	12 97	11 64	12 40	2 87	2 88	11 51 64						
Water cor	ntent,%		12.01	1	12.10	2.01	2.00	[−] [⊖] 63 -						
	,	62.94	64.61	66.07	67.74	32.40	32.29							
No of blo	ws	33	28	23	18			62						
1.2.3 Plas	ticity Inde	ex = LL	-PL = 66-32	=33			•	ר 1	0		25 ^N	O. OF BLC	OWS	100

1.3 STANDARD PROCTOR TEST (AASHTO T-181, Method D)

1.3.1 Dry Density Determination					No. of Blows=56	No. of Layers=5	Method of Compaction	Volume of Mold=2124	Weight of Hammer=4.5 Kg
Mold No.	1	2	3	4					6
Mold + Wet soil (gm)	9326.4	9544.0	9704.0	9786.0	1 500				
Mold (gm)	5912.4	5912.4	5912.4	5912.4	1.000				
Wet soil(gm)	3414.0	3631.6	3791.6	3873.6					
Volume(cm3)	2123.0	2123.0	2123.0	2123.0					
Wet Density (g/cm3)	1.608	1.711	1.786	1.825	1.450				
1.3.2 Moisture Content Determination					Эсс 9				
Container No.	B-8	PH	EP	A-2					
Wet Soil + Con. (g)	168.4	161.4	154.6	160.9	e 1.400				
Dry Soil +Con. (g)	149.4	139.3	131.4	132.7	<u>م</u>				
Mass of water	19.0	22.1	23.2	28.2	1.350				
Mass of Con. (g)	34.1	33.2	36.2	35.8					
Mass of dry soil	115.3	106.1	95.2	96.9	1.300 + 15 16	17 18 19 20 2	21 22 23 24 25	5 26 27 28 29	30 31 32 33
Moisture Content(g/cm3)	16.5	20.8	24.4	29.1			Moisture co	ntent,%	
Dry density	1.381	1.416	1.436	1.413	From the compact	tion curve: MDD	p = 1.435 g/cm3 as	nd OMC = 24.4%	

1.4.1 Pen	etration Dat	a (After 4-c	Ring Factor=0.01279				
Penetration		10	Blows 65				
(mm)	Blows	10	50 D 10W3		Blows		
	Dial	Load	Dial	Load	Dial	Load	
	RDG	(KN)	RDG	(KN)	RDG	(KN)	
0		0.00		0.0		0.00	
0.64	5	0.06	8	0.1	17	0.22	
1.27	9	0.12	11	0.1	21	0.27	
1.96	13	0.17	15	0.2	24	0.31	
2.54	14	0.18	19	0.2	27	0.35	
3.18	15	0.19	24	0.3	31	0.40	
3.81	19	0.24	27	0.3	36	0.46	
4.45	22	0.28	30	0.4	37	0.47	
5.08	23	0.29	34	0.4	39	0.50	

1.4 CALIFORNIA BEARING RATIO TEST (AASHTO T-193)

Jimma Institute of technology
			2.1.1GRAI	N SIZE A	ANALYSI	S (ASTM	D422)				Gra	in siz	e ana	lysis					
S	Sieve op	Tota ening	l Weight of d Weight retain	ry soil be ned Pe	fore washi ercent	<u>ng 815gm</u> % age	e Passing	1 120	.00		10		1		0.1		0.01		
9	9.5		0.0		0.0	1	00.0	100											
4	4.75		0.0		0.0	1	00.0	80									_		
2	2		65.0		8.0	ç	92.0	60									_		
C	0.425		93.0		11.4	8	30.6	40											
C	0.075		80.0		9.8	7	70.8	40											
F	Pan							20											
			0.0		0.0	1	00.0	0											
2	2.1.2 Sub	ograde S	oil Classificat	ion		I		AS	SSHTC) A-7-5	(19)								
Description	IS	2.	2.1 Liquid Lii	nit		2.2.2 Pla	stic Limit											 	
Container		C-68	A-66	AZ	U	C-3	D-4						I	JQUIE) LIMIT	CHAR	Г	 	
Wt wet soil	+ con	22 72	21.69	22.52	21.40	27 47	27.25		70			•							
Wt dry soil	+ con	29.30	27.26	28.16	27.02	25.56	25.55	NT %	69 68			•							
Wt of water	r	4.42	4.42	4.36	4.47	1.91	1.80	ONTEI	67 66										
Wt of conta	ainer	22.42	20.56	21.74	20.52	20.21	20.34	JRE CO	65 64						•				
Wt of dry so	oil							STU	63										
XX 7 4		6.88	6.70	6.42	6.50	5.35	5.21	10	60										
water conte	ent,%	64.24	65.97	67.91	68.77	35.70	34.55	≥	0∠ 61										
No of blows	s	33	28	23	18			71		10			25	NO	OF BL	OWS		10	0
2.2.3 Plastic	city Inde	$\mathbf{x} = \mathbf{L}\mathbf{L}$	-PL = 67-35	=32	•	•	•											 	

Sample No 2.1. 1 Location of Sample: Merewa Road Project, MR - 2

	2.3.1 Dry D	ensity Determ	ination		No. of Blows=56	No. of Layers=5	Method of Compaction	Volume of Mold=2124	Weight of Hammer=4.5 Kg
Mold No.	1	2	3	4		·	•	•	
Mold + Wet soil (gm)	9898.0	10150.0	10202.0	10080.0	1 480				
Mold (gm)	6292.0	6292.0	6292.0	6292.0	1.100				
Wet soil(gm)	3606.0	3858.0	3910.0	3788.0					
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	1.460				
Wet Density (g/cm3)	1.698	1.816	1.841	1.783	<u></u> ບ				
		2.3.2 Moistu	are Content De	etermination	àų1.440 ,≩				
Container No.	BN	CU	AQ	N-30	SU U U U U U				
Wet Soil + Con. (g)	616.7	473.4	515.3	434.5					
Dry Soil +Con. (g)	522.3	392.3	418.6	350.7	1.400			X	
Mass of water	94.4	81.1	96.7	83.8	1.380				
Mass of Con. (g)	74.9	72.5	76.4	81.0	1 260				
Mass of dry soil	447.4	319.8	342.2	269.7	21	22 23 24	25 26 27	28 29 3	0 31 32
Moisture Content(g/cm3)	21.1	25.4	28.3	31.1			Moisture co	ntent,%	
Dry density	1.402	1.449	1.435	1.361	From the compa	ction curve: MDD	0 = 1.456 g/cm3 a	nd OMC = 26.3%)

2.4.1 Pen	etration Dat	a (After 4-c	lay	Ring Facto	r=0.01279	
soaking)						
Penetration		10	30	Blows		65
(mm)	Blows				Blows	
	Dial	Load	Dial	Load	Dial	Load
	RDG	(KN)	RDG	(KN)	RDG	(KN)
0		0.00	0	0.0		0.00
0.64	9	0.12	10	0.1	11	0.14
1.27	12	0.15	16	0.2	16	0.20
1.96	15	0.19	18	0.2	23	0.29
2.54	19	0.24	21	0.3	37	0.47
3.18	22	0.28	26	0.3	44	0.56
3.81	25	0.32	30	0.4	55	0.70
4.45	28	0.36	32	0.4	63	0.81
5.08	31	0.40	35	0.4	68	0.87

	4.1 GRAIN SIZ	E ANALYSIS (A	ASTM D422)			Grai	n size analy	ysis	
Tot	al Weight of dry so	il before washing	1316gm	100		10	1	0.1	0.0
Sieve opening	Weight retained	Percent retained (%)	% age Passing	120					
9.5	0.0	0.0	100.0	80					
4.75	680.0	51.7	48.3	60					
2	72.0	5.5	42.9	40					
0.425	82.0	6.2	36.6	40					
0.075	46.0	3.5	33.1	20					
Pan	0.0	0.0		0 –			1		
4.1.2 Subgrade	Soil Classification	•	•	ASS	HTO A-7-!	5(20)			

Sample No 4: 1 Location of Sample: Merewa Road Project, MR - 4

Descriptions	4.2.1	Liquid Lin	nit		4.2.2 Pla	stic Limit										
Container	B-65	BM	A-29	ZL	Z-40	A-38		LIQUID LIMIT (CHART							
Wt wet soil + con	28.54	31.37	29.78	32.68	22.46	22.46	55 -									
Wt dry soil + con	25.69	27.34	26.10	28.57	21.75	21.84	[%] 54 −									
Wt of water	2.85	4.03	3.68	A 11	0.71	0.62	ELNO									
Wt of container	2.00	10.49	10.10	20.09	10.55	10.02	O 52 -									
Wt of dry soil	20.01	19.40	19.10	20.90	19.55	19.92	DLSI(
Water content,%	5.68	7.86	7.00	7.59	2.20	1.92	Ŭ 50 -									
	50.18	51.27	52.57	54.15	32.27	32.29	49 -									
No of blows	34	29	24	19	Z-40	A-38	1) NO. OF BLO	ws 100							
4.2.3 Plasticity Inde	ex = LL - P	PL = 52-32=	=20				25 NO. OF BLOWS 100									

Correlation of California Bearing Ratio with Soil Index Properties for Subgrade Soil in Jimma Town

	4.3.1 Dry D	ensity Determ	ination		No. of	No. of	Method of	Volume of	Weight of
					Blows=56	Layers=5	Compaction		Hammer=4.5
							_	Mold=2124	Kg
Mold No.	1	2	3	4					
Mold + Wet soil (gm)	9536.0	9676.0	9882.0	9790.0	1.370				
Mold (gm)	6218.0	6218.0	6218.0	6218.0					
Wet soil(gm)	3318.0	3458.0	3664.0	3572.0					
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	1.350				
Wet Density (g/cm3)	1.562	1.628	1.725	1.682					
					ຽ 1.330				
4.3.2	Moisture Con	tent Determination	ation		20				
Container No.	E	A-4	A-3	Р	1 210				
Wet Soil + Con. (g)									
	481.2	521.4	500.8	473.3	۰ ۲				
Dry Soil +Con. (g)	308 /	127 0	108.3	380 5	ā 1.290				
Mass of water	550.4	427.0	400.5	500.5					
Wass of water	82.8	94.4	92.5	92.8	1.270				
Mass of Con. (g)									
	54.2	58.4	63.4	53.0	1 250				
Mass of dry soil					1.230	25	26	77 70	2 20
	344.2	368.6	344.9	327.5	24	25	20	2/ 20	5 29
Moisture Content(g/cm3)	24.1	25.6	26.8	28.3			Moisture co	ntent,%	
Dry density	1.259	1.296	1.360	1.310	From the compa	ction curve: MDD	D = 1.360 g/cm3 at	nd OMC = 26.8 %	6

Sample No.: 5 Location	of Sample: Merewa	Road Project, MR - 5
------------------------	-------------------	----------------------

	5.3.1 Dry D	ensity Determ	ination		No. of	No. of	Ν	lethod of	Volume of	Weight of
					Blows=56	Layers=	5 C	ompaction		Hammer=4.5
									Mold=2124	Kg
Mold No.	1	2	3	4						
Mold + Wet soil (gm)	10014.0	10166.0	10102.0	10049.0	1.500					
Mold (gm)	6188.0	6188.0	6188.0	6188.0						
Wet soil(gm)	3826.0	3978.0	3914.0	3861.0	1.480					
Volume(cm3)	2124.0	2124.0	2124.0	2124.0						
Wet Density (g/cm3)	1.801	1.873	1.843	1.818	1.460					
		5.3.2 Moistu	are Content De	etermination	a.440					
Container No.	EP	PH	B-17	B-12	sity					
Wet Soil + Con. (g)					e 1.420		↓			
	459.6	456.3	446.0	379.6	a.400					
Dry Soil +Con. (g)	070.0	000 F	050.4	000.0						
Mass of water	379.9	369.5	350.4	296.9	1.380				`	
Mass of water	79 7	86.8	95.6	82 7						
Mass of Con (g)	10.1	00.0	00.0	02.1	1.360					
inass of com (g)	57.9	57.5	52.4	53.6	1 2 4 0					
Mass of dry soil					1.340	25 26				
	322.0	312.0	298.0	243.3	24	25 26	27 28	29 30	0 31 32 :	33 34 35
Moisture Content(g/cm3)	24.8	27.8	32.1	34.0				Moisture o	content,%	
Dry density	1.444	1.465	1.395	1.357	From the comp	action curve	: MDD = 1	1.468 g/cm3	and OMC = 27.3%	0

5.4.1 Pene	tration Data	(After 4-da	ay soaking)	Ring Factor=0.01279				
Penetration		10	30	Blows		65		
(mm)	Blows				Blows			
	Dial	Load	Dial	Load	Dial	Load		
	RDG	(KN)	RDG	(KN)	RDG	(KN)		
0	0.0	0.00	0.0	0.0	0.0	0.00		
0.64	21.0	0.27	16.0	0.2	27.0	0.35		
1.27	40.0	0.51	42.0	0.5	46.0	0.59		
1.96	53.0	0.68	65.0	0.8	67.0	0.86		
2.54	60.0	0.77	80.0	1.0	83.0	1.06		
3.18	67.0	0.86	89.0	1.1	95.0	1.22		
3.81	72.0	0.92	94.0	1.2	104.0	1.33		
4.45	77.0	0.98	100.0	1.3	111.0	1.42		
5.08	79.0	1.01	110.0	1.4	118.0	1.51		

	6.1 GRAIN	N SIZE AN	NALYSIS (ASTM D	422)			Gi	rain siz	e analv	sis			
Total	l Weight of di	ry soil bef	ore washin	g 659.4gn	n	100		10		1	0 1	0.01		
Sieve opening	Weight retain	ned Per reta	cent ained (%)	% age	Passing	102		10			0.1	0.01		
9.5	0.0		0.0	10	0.00	100								
4.75	12.3		1.9	9	8.1	30								
2	15.9		2.4	9	5.7	96								
0.425	10.6		1.6	9	4.1	94								
0.075	16.1		2.4	9	1.7	92								
Pan	0.0		0.0			90					(
6.1.2 Subgrade S	oil Classificat	ion				ASSHT	O A-7-	·6(20)					1	
Descriptions	6.2.1	Liquid L	imit		6.2.2 Pla	astic Limit		64			LIC	DUID LIMIT CH	ART	
Container	A-38	A-36	BF	Q	XY	DN		63						
Wt wet soil + con	n 29.99	32.01	30.96	30.26	25.96	25.98	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ect						-
Wt dry soil + con	n 26.44	27.84	26.86	26.61	24.79	24.79	ITFNT	60 -			X			
Wt of water	3.55	4.17	4.10	3.65	1.17	1.19		559 + 58 +						
Wt of container	19.91	20.66	20.08	20.79	20.53	20.50		57 + 556 +						
Wt of dry soil	6.53	7.18	6.78	5.82	4.26	4.29		255 54				•		
Water content,%	54.36	58.08	60.47	62.71	27.46	27.74		53						
No of blows	35	28	22	17				10			25	NO. OF BLOWS		
1.2.3 Plasticity In	dex = LL - H	PL = 59-23	8=31		·									_

Sample No 6: Location of Sample: Merewa Road Project, MR - 6

Correlation of California Bearing Ratio with Soil Index Properties for Subgrade Soil in Jimma Town

6.4.1 Pen	etration Dat	a (After 4-c	lay	Ring Facto	r=0.01279				
soaking)									
Penetration		10	30	Blows		65			
(mm)	Blows				Blows	Blows			
	Dial	Load	Dial	Load	Dial	Load			
	RDG	(KN)	RDG	(KN)	RDG	(KN)			
0		0.00	0	0.0		0.00			
0.64	10	0.13	17	0.2	10	0.13			
1.27	17	0.22	35	0.4	30	0.38			
1.96	25	0.32	47	0.6	48	0.61			
2.54	32	0.41	55	0.7	58	0.74			
3.18	38	0.49	60	0.8	69	0.88			
3.81	45	0.58	62	0.8	75	0.96			
4.45	49	0.63	65	0.8	83	1.06			
5.08	52	0.67	69	0.9	90	1.15			

Sample No 9: Location of Sample: Kitto Furdisa, KF - 9

Tota	9.1 GRAIN SIZ al Weight of dry soi	E ANALYSIS (A	STM D422) 628gm	100	Grai	n size anal	ysis	0.01
Sieve opening	Weight retained	Percent	% age Passing	101		-		
		retained (%)		100				
9.5	0.0	0.0	100.0	99				
4.75	10.9	1.7	98.3	98				
2	7.2	1.1	97.1	96				
0.425	13.3	2.1	95.0	95				
0.075	19.4	3.1	91.9	94			\mathbf{i}	
Pan				93				
	0.0	0.0		91				
9.1.2 Subgrade	Soil Classification			ASSH	TO A-7-6(20)			

9.2 ATTERBERG LIMIT TEST (ASTM D 4318)

Descriptions	9.2.1	Liquid Lir	nit		9.2.2 Pla	stic Limit		
							63	LIQUID LIMIT CHART
Container	SB	MS	A-36	F	BD	B-30		
Wt wet soil + con	33.42	31.00	37.45	32.65	25.62	24.22	62	
Wt dry soil + con	28.76	26.46	31.14	28.16	24.81	23.46	⁸ L 61	
Wt of water	4.66	4.54	6.31	4.49	0.81	0.76	ELNO 60	
Wt of container	20.48	18.70	20.67	20.91	21.50	20.34	ORE - 1	
Wt of dry soil	8.28	7.76	10.47	7.25	3.31	3.12	LSIOI	
Water content,%	56.28	58.51	60.27	61.93	24.47	24.36	56	▲
No of blows	32	27	22	17] [.	10 25 NO. OF BLOWS 100
9.2.3 Plasticity Inde	ex = LL - P	PL = 59-24=	=35					23

		No. Blov	of ws=56	No. of Layers=5		Method of Compaction			Volume of Mold=2124			Weight of Hammer=4. Kg		f =4.5							
Mold No.	1	2	3	4																	
Mold + Wet soil (gm)	9872.0	10156.0	10252.0	10198.0		1 540 -															
Mold (gm)	6192.0	6192.0	6192.0	6192.0		1.540															
Wet soil(gm)	3680.0	3964.0	4060.0	4006.0		1.530 -															
Volume(cm3)	2124.0	2124.0	2124.0	2124.0		1.520 -				++++		-									
Wet Density (g/cm3)	1.733	1.866	1.911	1.886		1 5 1 0									\mathbf{h}						
		9.3.2 Moist	ure Content De	etermination	,g/cc	1.510										N					
Container No.	СМ	AL	AG	BE	sity	1 400						•					N				
Wet Soil + Con. (g)	550.0	486.5	437.4	413.9	y den:	1.490															
Dry Soil +Con. (g)	473.2	407.9	359.4	335.9	Δ	1.470															
Mass of water	76.8	78.6	78.0	78.0		1.460															
Mass of Con. (g)	78.6	67.2	68.1	79.5		1.450 - 1.440 -															
Mass of dry soil	394.6	340.7	291.3	256.4		19)	20 2	1 2	22	23	24 Moi	25 sture		26 tent	27 %	28	3	29	30	31
Moisture Content(g/cm3)	19.5	23.1	26.8	30.4								10101	sture		.cm	,,,,					
Dry density	1.450	1.516	1.508	1.446	From	m the com	pacti	on cur	ve: N	1DD	= 1.	521 g	g/cm	3 an	d Ol	MC =	= 24.	.0%			

	11.3.1 Dry I	Density Determ	nination		No. of	No. of	Method of	Volume of	Weight of		
					Blows=56	Layers=5	Compaction	N 11 0104	Hammer=4.5		
		r	r					Mold=2124	Kg		
Mold No.	1	2	3	4							
Mold + Wet soil (gm)	9908.0	10284.0	10260.0	10115.0	1.540						
Mold (gm)	6188.0	6188.0	6188.0	6188.0	1 5 2 0						
Wet soil(gm)	3720.0	4096.0	4072.0	3927.0	1.520						
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	1.500	/					
Wet Density (g/cm3)	1.751	1.928	1.917	1.849	3 ,480						
		11.3.2 Moist	ure Content De	etermination	1 .460						
Container No.	AG	BE	AF	BF	u .440						
Wet Soil + Con. (g)	513.1	474.9	460.4	478.1	λ 420						
Dry Soil +Con. (g)	420.7	387.2	368.7	378.1	D 1.420						
Mass of water	92.4	87.7	91.7	100.0	1.400						
Mass of Con. (g)	68.1	79.7	78.4	75.0	1 380						
Mass of dry soil	352.6	307.5	290.3	303.1	26	27 28	29 30	31 32	33 34		
Moisture Content(g/cm3)	26.2	28.5	31.6	33.0			Moisture co	ntent,%			
Dry density	1.388	1.500	1.457	1.390	From the compac	tion curve: MDD	= 1.503 g/cm3 a	nd OMC = $2\overline{8.9\%}$)		

11.4.1 Pe	netration Da	ata (After 4	-day	Ring Factor=0.01279					
soaking)									
Penetration		10	30	Blows		65			
(mm)	Blows				Blows				
	Dial	Load	Dial	Load	Dial	Load			
	RDG	(KN)	RDG	(KN)	RDG	(KN)			
0	0.0	0.00	0.0	0.0	0.0	0.00			
0.64	7.0	0.09	10.0	0.1	16.0	0.20			
1.27	12.0	0.15	18.0	0.2	22.0	0.28			
1.96	15.0	0.19	24.0	0.3	30.0	0.38			
2.54	17.0	0.22	32.0	0.4	40.0	0.51			
3.18	20.0	0.26	37.0	0.5	47.0	0.60			
3.81	22.0	0.28	42.0	0.5	51.0	0.65			
4.45	25.0	0.32	47.0	0.6	58.0 0.74				
5.08	30.0	0.38	52.0	0.7	66.0	0.84			

Tota	12.1 GRAIN SI	ZE ANALYSIS (ASTM D422) 798.0gm	100	Gra	ain size anal	ysis	0.0
Sieve opening	Weight retained	Percent retained (%)	% age Passing	120	10		0.1	0.0
9.5	0.0	0.0	100.0	80				
4.75	29.5	3.7	96.3	60				
2	61.4	7.7	88.6	40				
0.425	82.2	10.3	78.3	40				
0.075	39.1	4.9	73.4	20				
Pan	0.0	0.0		0		I		
12.1.2 Subgrade	e Soil Classification	ASSHT	O A-7-5(20)					

Sample No 12: Location of Sample: Agricultural campus AC - 1

Correlation of California Bearing Ratio with Soil Index Properties for Subgrade Soil in Jimma Town

12.4.1 Pe	netration Da	Ring Fa	Ring Factor=0.01279					
Penetration		10	30 I	Blows		65		
(mm)	Blows				Blows			
	Dial	Load	Dial	Load	Dial	Load		
	RDG	(KN)	RDG	(KN)	RDG	(KN)		
0		0.00		0.0		0.00		
0.64	4	0.05	6	0.1	12	0.15		
1.27	6	0.08	9	0.1	20	0.26		
1.96	8	0.10	11	0.1	30	0.38		
2.54	26	0.33	32	0.4	38	0.49		
3.18	30	0.38	35	0.4	43	0.55		
3.81	33	0.42	39	0.5	49	0.63		
4.45	38	0.49	44	0.6	54	0.69		
5.08	42	0.54	53	0.7	58	0.74		

Sample No 13: Location of Sample: Agricultural campus AC - 2

Tota	13.1 GRAIN SI	ZE ANALYSIS (ASTM D422) 504.0gm	100	Graii	n size analy	/sis	0.01
Sieve opening	Weight retained	Percent	% age Passing	120				
		retained (%)		100				
9.5	0.0	0.0	100.0	80				
4.75	7.1	1.2	98.8	60				
2	8.3	1.3	97.5	60				
0.425	64.8	10.5	87.0	40				
0.075	74.5	12.1	74.9	20				
Pan	0.0	0.0		0				
13.1.2 Subgrade	e Soil Classification			ASSHTO A	-7-5(18)			

13.2 ATTERBERG LIMIT TEST (ASTM D 4318)

Descriptions	13.2.	1 Liquid L	imit		13.2.2 Pl	astic Limit		
						•	64	
Container	GT	13	D-4	BM	BN	BZ		
Wt wet soil + con	31.58						63	
		29.78	31.88	30.58	25.91	24.78		\sim
Wt dry soil + con	28.03						62	
-		26.03	27.49	26.31	24.88	24.05		
Wt of water	3.55						61	
		3.75	4.39	4.27	1.03	0.73		
Wt of container	21.90						00	
		19.71	20.32	19.48	20.50	20.91	50	
Wt of dry soil	6.13						59	
•		6.32	7.17	6.83	4.38	3.14	58	
Water content,%	57.91							
		59.34	61.23	62.52	23.52	23.25	57	
No of blows	33	28	23	18			10	25 NO OF BLOWS 100
13.2.3 Plasticity Index = $LL - PL = 60-23=37$								25 HOLOL BEOWD

	13.3.1 Dry	Density Deterr	nination		No. of Blows=56	No. of Lavers=5	Method of Compaction	Volume of Mold=2124	Weight of Hammer=4 5
					10005-20	Luyers-5	Compaction	11010-2121	Kg
Mold No.	1	2	3	4					
Mold + Wet soil (gm)	9998.0	10214.0	10390.0	10262.0	1.530				
Mold (gm)	6326.0	6326.0	6326.0	6326.0	1.520				
Wet soil(gm)	3672.0	3888.0	4064.0	3936.0	1 510				
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	1.500				
Wet Density (g/cm3)	1.729	1.831	1.913	1.853	1.490				
	13.3.2 Mois	sture Content I	Determination		3 1 1 1 1 1				
Container No.	AB	CQ	CP	BN	1 .470				
Wet Soil + Con. (g)	504.3	505.8	478.6	450.5	b 1.450				
Dry Soil +Con. (g)	424.5	418.9	386.6	357.8	51.440 1.430				
Mass of water	79.8	86.9	92.0	92.7	1.420 1.410				
Mass of Con. (g)	54.2	58.0	52.4	74.7	1.400				
Mass of dry soil	370.3	360.9	334.2	283.1	21 22	23 24 2	5 26 27 2	28 29 30	31 32 33
Moisture Content(g/cm3)	21.6	24.1	27.5	32.7			ivioisture coi	ntent,%	
Dry density	1.422	1.475	1.500	1.396	From the compac	tion curve: MDD	= 1.505 g/cm3 and	nd OMC = 26.679	%

13.4.1 Pe	netration Da	Ring Factor=0.01279						
Penetration		10	30	Blo	ws		65	
(mm)	Blows					Blows		
	Dial	Load	Dial		Load	Dial	Load	
	RDG	(KN)	RDG		(KN)	RDG (KN)		
0	0.0	0.00	0.0		0.0	0.0	0.00	
0.64	16.0	0.20	18.0		0.2	20.0	0.26	
1.27	22.0	0.28	33.0 0.4		0.4	36.0	0.46	
1.96	39.0	0.50	42.0	42.0 0.5			0.70	
2.54	46.0	0.59	53.0		0.7	65.0	0.83	
3.18	49.0	0.63	56.0		0.7	69.0	0.88	
3.81	55.0	0.70	60.0		0.8	74.0	0.95	
4.45	59.0	0.75	68.0 0.9			78.0	1.00	
5.08	66.0	0.84	72.0		0.9	81.0	1.04	

Sample No 17: Location of Sample: Seto Area SA - 1

_			1.7 Partic	le size d	istribution A	ASHTO T-	11/T27		Gra	iin size ana	lysis		
		Tota	l Weight of	dry soil	before washii	ng = 513gn	n	100	10	1	0.1	0.01	
;	Sieve op	pening	Weight reta	ained	Percent retained (%)	% age	Passing	105	10		0.1	0.01	
9	9.5		0	(D	100		100					
-	4.75		0	(C	100							
	2		6.2	:	1.2	98.8		95					
	0.425		28.2		5.5	93.3		90					
	0.075		30.6		6	87.3							
	Pan		0	(D			85					
	17.1.2 S	ubgrade	Soil Classific	cation	AASH	TO = A-7-5	5(13)					<u></u>	
Description	ptions 17.2.1 Liquid Limit 17.2.2 Plast					Plastic							
Container		WO	SQ	СР	4U	A-100	PA			•			
Wt wet soil	l + con	28.46	30.03	31.39	31.84	23.6	26.25			•			
Wt dry soil	+ con	25.65	26.41	27.52	27.7	22.59	25.39						
Wt of water	r	2.81	3.62	3.87	4.14	1.01	0.86				•		
Wt of conta	ainer	20.87	20.69	21.72	21.66	18.39	21.79						
Wt of dry s	oil	4.78	5.72	5.8	6.04	4.2	3.6						
Water conte	ent,%	58.79	63.29	66.72	68.54	24.05	23.89						
No of blow	'S	34	29	24	19	24		10		2	5 NO. OF B	BLOWS	100
1.2.3 Plastic	city Inde	ex = LL	-PL = 65-24	=41							-		

17.4.1 Penetration Data (After 4-day soaking)Ring Factor=0.01279											
Penetration		10	30	Blows			65				
(mm)	Blows					Blows					
	Dial	Load	Dial	Lo	ad Dial		Load				
	RDG	(KN)	RDG	(K)	N)	RDG	(KN)				
0	0	0	0	0		0	0				
0.64	16	0.34	25	0.54		15	0.32				
1.27	29	0.62	46 0.98			31	0.66				
1.96	40	0.86	60	1.28		55	1.18				
2.54	49	1.05	68	1.46		69	1.48				
3.18	55	1.18	73	1.56		78	1.67				
3.81	60	1.28	76	1.63		85	1.82				
4.45	64 1.37		79 1.69			90	1.93				
5.08	66	1.41	81	81 1.73		95	2.03				

Sample No 18: Location of Sample: Kitto Furdisa, ST - 2

		18	1 GRAIN S	IZE ANA	LYSIS (A	ASTM D42	22)	Grain size analysis	
	r	Total Wei	ght of dry so	il before	washing :	= 884gm			
	Sieve openin	ng Weig	ght retained	Percent	1 (%)	% age Passing		ng 102 100 10 10 0.1 0.01	
	9.5	0		0		100		98	
	4.75	0		0		100		96	
	2	7.4		1.4		98.6		92	
	0.425	22.7		4.4		94.1		90	
	0.075	30.1		5.9		88.3			
	Pan	0		0				86	
	18.1.2 Subgr	ade Soil C	Classification					AASHTO = A-7-6(20)	
Desc	criptions 18.2.1 Liquid Limit 18.2.2 Limit						Plastic		
Cont	ainer	К	Z-1	JQ	23	LL	BK	BK 70	
Wt w	vet soil + con	32.4	29.75	30.96	29.91	24.64	24.69	24.69 69 68	
Wt d	ry soil + con	27.9	26.17	26.98	26.38	23.64	23.77	23.77 67	
Wt o	f water	4.54	3.58	3.98	3.53	1.00	0.92		
Wt o	f container	20.46	20.54	20.97	21.19	20.24	20.68		
Wt o	f dry soil	7.44	5.63	6.01	5.19	3.4	3.09	3.09 62 61	
Wate	er content,%	61.02	63.59	66.22	68.02	29.41	29.77		100
No o	f blows	34	29	24	19				100
18.2.	3 Plasticity In	dex = LL	-PL = 65-30)=35					

18.	4.1 Penetrat	Ring Factor =0.01279					
Penetration		10	30	Blows	65 Blows		
(mm)	Blows						
	Dial	Load	Dial	Load	Dial	Load	
	RDG	(KN)	RDG	(KN)	RDG	(KN)	
0	0	0	0	0	0	0	
0.64	16	0.34	25	0.54	15	0.32	
1.27	29	0.62	46	0.98	31	0.66	
1.96	40	0.86	60	1.28	55	1.18	
2.54	49	1.05	68	1.46	69	1.48	
3.18	55	1.18	73	1.56	78	1.67	
3.81	60	1.28	76	1.63	85	1.82	
4.45	64	1.37	79	1.69	90	1.93	
5.08	66	1.41	81	1.73	95	2.03	

APPENDIX C: Details of the Secondary Data Laboratory Test Results

-			21.1 GRA	AIN SIZE	ANALYSIS	S (ASTM D	0422)	Grain size analysis	
-	Total Weight of a Sieve opening Weight reta 9.5 0 4.75 0 2 4.6 0.425 28.9 0.075 99 Pan 0			dry soil b ined F r C C C C C C C C C C C C C C C C C C	efore washir Percent etained (%) 	g = 6/8gm % age Passing 100 100 99.5 96.2 84.9		100 10 1 0.1 0.01 105 100 1 0.1 0.01 95 90 1 1 1 90 85 1 1 1 80 1 1 1 1	
Descriptio	21.1.2 S ns	ubgrade 21	Soil Classific	cation Limit		21.2.2 P	lastic	ASSHTO A-7-(20)	
Container		140	128	121	0	C-68	MB	B 177 LIQUID LIMIT CHART	
Wt wet soi	il + con	46.44	49.71	46.16	31.66	26.12	23.89	³⁹ 76 75 75 76 75 76 76 76 76 76 76 76 76 76 76 76 76 76	
Wt dry soi	1 + con	41.45	44.5	42.21	26.97	25.22	23.01	74 73 74 73 74 73 74 73 74 75 75 75 75 75 75 75 75 75 75 75 75 75	
Wt of wate	er	4.99	5.21	3.95	4.69	0.9	0.88		
Wt of cont	tainer	34.09	37.05	36.7	20.83	22.42	20.26		
Wt of dry	soil	7.36	7.45	5.51	6.14	2.8	2.75		
Water con	tent,%	67.8	69.93	71.69	76.38	32.14	32	67 66	
No of blow	of blows 33 28 23 18							10 25 NO. OF BLOWS	100
21.2.3 Plas	sticity In	dex = LL	L - PL = 72 -	32 = 40					

Sample No 21: Location of Sample: Weight bridge - Ajip Road, WA – 1, Depth 40-100cm

Penetration (mm) IO 30 Blows 65 Blows $Blows$ Dial Load Dial Load Marcol $Blows$ $Blows$ Dial Load Dial Load Marcol 0 0.00 0 0.0 0.00 0.00 0.00 0.64 11 0.14 18 0.2 21 0.27 1.27 24 0.31 28 0.4 27 0.35 1.96 30 0.38 34 0.4 38 0.49 2.54 36 0.66 56 0.72 0.33 3.18 44 0.56 49 0.6 56 0.72 5.08 58 0.77 65 0.83 0.30 0.61 0.72 0.98 Density (KN) Load in CBR (%) CBR (%) CBR (k) (k) (k) (k) (k) (k) (k) <	21.4.1 Penetration Data (After 4-day soaking) Ring							Ring Fac	ctor	=0.021	48						
$ \begin{array}{ c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	Penetra	tion		10		3	0 Blow	'S			65 Blov	WS					
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(mm)	Blo	WS														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Dia	.1	Loa	d	Dial	L	oad	Dial		Loa	d					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		RD	G	(KN	0	RDG	()	KN)	RDG		(KN	I)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0			0.00		0	C	0.0			0.	00					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0.64		11	0.14		18	C).2	21		0.2	27					
1.96 30 0.38 34 0.4 38 0.49 2.54 36 0.46 40 0.5 47 0.60 3.18 44 0.56 49 0.6 56 0.72 3.81 49 0.63 53 0.7 65 0.83 4.45 55 0.70 58 0.7 72 0.92 5.08 58 0.74 66 0.8 77 0.98 Density - CBR Curve Standard Loads and CBR Test Summary Load in CBR (%) CBR (g/cm3) 2.54 5.08 2.54 5.08 10 1.269 0.62 1.13 13.2 20 3.84 4.51 86 0.39 1.71 2.57 13.2 20 3.45 3.71 3.45 31.6 % 1.269 1.320 1.320 1.320 1.397 1.397 1.32 1.397 1.397 1.6 % 1.269 1.320 1.397 1.397 1.397 1.397 </td <td>1.27</td> <td></td> <td>24</td> <td>0.31</td> <td></td> <td>28</td> <td>C</td> <td>).4</td> <td>27</td> <td></td> <td>0.3</td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1.27		24	0.31		28	C).4	27		0.3	35					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.96		30	0.38		34	C).4	38		0.4	49					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.54		36	0.46		40	C).5	47		0.	60					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3.18		44	0.56		49	C).6	56		0.	72					
4.45 55 0.70 58 0.7 72 0.92 5.08 58 0.74 66 0.8 77 0.98 21.4.2 CBR Value at Standard Loads and CBR Test Summary Density · CBR Curve No. of Blows Dry Load in (g/cm3) Standard Loadin CBR (%) (KN) CBR (%) CBR (%) CBR (%) CBR (%) 10 1.269 0.62 1.13 13.2 20 3.45 3.71 3.45 30 1.320 0.24 1.99 13.2 20 3.84 4.22 3.84 65 I.397 I.13 Other colspan="4">Other colspan="4"Other colspan="4">Other colspan="4">Other colspan="4"Other colspa	3.81		49	0.63		53	C).7	65		0.8	83					
5.08 58 0.74 66 0.8 77 0.98 21.4.2 CBR Value at Standard Loads and CBR Test Summary No. of Blows Dry (kN) Load in Load in (kN) CBR (%) CBR (%) CBR (%) 0	4.45		55	0.70		58	C).7	72		0.9	92					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5.08		58	0.74		66	C	.8	77		0.9	98					
Summary No. of Blows Dry Density (kN) Load in (kN) Standard Load in (kN) CBR (%) CBR (%) 10 1.269 0.62 1.13 13.2 20 3.45 3.71 3.45 30 1.320 0.24 1.99 13.2 20 3.84 4.22 3.84 65 1.397 1.71 2.57 13.2 20 4.51 4.92 4.51 Before soaking the three surples were remoted with OMC = 31.6 % Top Density gm/cc No. of Blows 10 30 65 1.397 1.320 1.397 CBR (%) 3.45 3.84 4.51 Dry density at 95% of MDD=1 323		21.4.2 CH	BR Val	ue at Sta	ndard	Loads a	and CB	R Test						Density - CBR Cu	irve		
No. of Blows Dry Density (g/cm3) Load in (kN) Standard Load in (kN) CBR (%) CBR (%) 10 1.269 0.62 1.13 13.2 20 3.45 3.71 3.45 30 1.320 0.24 1.99 13.2 20 3.45 3.71 3.45 30 1.320 0.24 1.99 13.2 20 3.84 4.22 3.84 65 1.397 1.71 2.57 13.2 20 4.51 4.92 4.51 Before soaking the three samples were remolded with OMC = 31.6 % 1.307 1.320 1.320 1.397 DD (g/cm3) 1.269 1.320 1.320 1.397 1.320 1.397 CBR (%) 3.45 3.84 4.51 5.5	Summa	ry															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	No. of	Dry	Load	in	Stand	ard	CBR ((%)	CBR								
(g/cm3) (kN) m 2.54 5.08 2.54 5.08 2.54 5.08 mm mm mm mm mm mm 10 1.269 0.62 1.13 13.2 20 3.45 3.71 3.45 30 1.320 0.24 1.99 13.2 20 3.84 4.22 3.84 65 1.397 1.71 2.57 13.2 20 4.51 4.92 4.51 Before soaking the three samples were remoled with OMC = 31.6 % 30 1.320 1.320 1.397 1.320 1.397 DD (g/cm3) 1.269 1.320 1.397 1.397 1.397 1.397 1.397 CBR (%) 3.45 3.84 4.51 51 Dry density at 95% of MDD=1 323	Blows	Density	(kN)		Load	in			(%)	(1.200)	1.300	1.400	1.500	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(g/cm3)			(kN)					н		5					
$\frac{10}{10} 1.269 0.62 1.13 13.2 20 3.45 3.71 3.45 \\ 30 1.320 0.24 1.99 13.2 20 3.84 4.22 3.84 \\ 65 1.397 1.71 2.57 13.2 20 4.51 4.92 4.51 \\ \hline Before soaking the three samples were remoled with OMC = 31.6 % \\ \hline Mo. of Blows 10 30 65 \\ \hline DD (g/cm3) 1.269 1.320 1.397 \\ \hline DD (g/cm3) 1.269 3.45 4.51 4.51 \\ \hline Before Soaking the three samples were remoled with OMC = 31.6 % \\ \hline DD (g/cm3) 1.269 3.45 4.51 \\ \hline DD (g/cm3) 3.45 4.51 4.51 \\ \hline DD (g/cm3) 1.269 3.84 4.51 \\ \hline DD (g/cm3) 0.56 0.56 0.56 \\ \hline DD (g/cm3) 0.56 0.56 0.56 \\ \hline DD (g/cm3) 0.56 0.$			2.54	5.08	2.54	5.08	2.54	5.08									
$\frac{10}{30} 1.269 0.62 1.13 13.2 20 3.43 3.4$	10	1 260		1112	12 2	mm 20	11111 2 4 5	11111 2 7 1	2.45		.0						
$\frac{30}{65} 1.397 1.71 2.57 13.2 20 4.51 4.92 4.51$ Before soaking the three samples were remolded with OMC = $\frac{31.6 \%}{DD (g/cm3)} 1.269 1.320 65$ DD (g/cm3) $1.269 1.320 1.397$ Dry Density gm/cc $\frac{345}{20} 3.84 4.51$ Dry density at 95% of MDD=1 323	10	1.209	0.02	1.15	13.2	20	2.43	3.71	2.43		~						
I.1.11 2.37 13.2 20 4.31 4.32 4.31Before soaking the three samples were remolded with OMC =31.6 % 0 30 65 DD (g/cm3)1.2691.3201.397Dry Density gm/ccDry Density gm/cc	65	1.320	1.71	2.57	$\frac{13.2}{13.2}$	20	<i>J</i> .04 <i>A</i> 51	4.22	1 51	1	B	4					
Before soluting the line samples were remoted with ONC - 31.6 % No. of Blows 10 30 65 DD (g/cm3) 1.269 1.320 1.397 CBR (%) 3.45 3.84 4.51	Bef	T.577	1.71	hree sam	nles v	vere ren	nolded	with Ω	MC –	1	р р						
No. of Blows 10 30 65 DD (g/cm3) 1.269 1.320 1.397 CBR (%) 3.45 3.84 4.51	31.6 %								MC –		ake						
DD (g/cm3) 1.269 1.320 1.397 3 Dry Density gm/cc Dry density at 95% of MDD=1 323	No. of Blows		10		30		6	5		1	So						
CBR (%) 3 45 3 84 4 51 Dry density at 95% of MDD=1 323	DD (g/cm3)		1.269)	1.320		1	.397		1		з⊥					
CBR (%) 3 45 3 84 4 51 Dry density at 95% of MDD=1 323	-													Dry Dens	sity gm/cc		
	CBR (%)		3.45		3.84	4	4	4.51						Dry density at	95% of MDD=1.32	3	

Sample No 33:	Location of Sample Honeyland –	Michahel, HM-6, Depth 40-100cm
1	1 5	, , 1

		33	.1 GRAIN SI	ZE ANA	LYSIS (A	STM D422	2)		Grain size analysis					
		Tota	l Weight of d	ry soil be	efore washi	ing 668.0g	m							
	Sieve op	ening	Weight retain	ned Pe	ercent	% age	e Passing	120		10		0.1	0.01	
	0.5		0.0	re	tained (%)	1	00.0	100						
	9.5		0.0		0.0		00.0	80						
	4.75		4.3		0.0		99.Z DA 1	60						
	0.425		49.1		7.8		82.3	40						
	0.075		26.5		4.9	-	77.4	20						
	Pan		0.0		0.0	1	00.0	0						
	33.1.2 Si	ubgrade	Soil Classifica	ation				ASSE						
Descriptio	ons	33.2	.1 Liquid Lim	nit		lastic								
Container		25	BK	A-18	AB	YS	A-2	68 📊						
Wt wet so	il + con	41.65	40.89	39.96	41.05	25.45	24.54	67 -						
Wt dry soi	il + con	33.67	33.04	32.29	32.32	24.32	23.86							
Wt of wate	er	7.98	7.85	7.67	8.73	1.13	0.68	64 🛉				\		
Wt of con	tainer	20.59	20.68	20.39	19.25	20.75	21 73					\mathbf{X}		
Wt of dry	soil	13.08	12.36	11.90	13.07	3.57	2.13	61 -						
Water con	itent,%	61.01	63.51	64.45	66.79	31.65	31.92							
No of blow	ws	34	29	23	18			109 +)					100
33.2.3 Pla	sticity Ind	ex = LL	-PL = 64-32	2=32	-	1	1		,		25	NO. OF	DLUVV3	100

	33.3.1 Dry D	Density Determ	nination		No. of Blows=56	No. of Layers=5	Method of Compaction	Volume of Mold=2124	Weight of Hammer=4.5
Mold No.	1	2	3	4					ng
Mold + Wet soil (gm)	9682.0	9992.0	10070.0	9960.0	1.500				
Mold (gm)	6182.0	6182.0	6182.0	6182.0					
Wet soil(gm)	3500.0	3810.0	3888.0	3778.0	1.480				
Volume(cm3)	2124.0	2124.0	2124.0	2124.0					
Wet Density (g/cm3)	1.648	1.794	1.831	1.779	3 1.460				
	33.3.2 Mo	isture Content	Determination	l	1.440				
Container No.	AL	B-12	EP	A-2					
Wet Soil + Con. (g)	505.6	496.2	485.9	464.6	<u>ک</u> 1.420				
Dry Soil +Con. (g)	435.1	415.1	404.5	375.1	1 400				
Mass of water	70.5	81.1	81.4	89.5	1.400				
Mass of Con. (g)	52.4	53.2	57.4	51.8	1 380				
Mass of dry soil	382.7	361.9	347.1	323.3	18	19 20 21	22 23	24 25 2	26 27 28
Moisture Content(g/cm3)	18.4	22.4	23.5	27.7			Moisture co	ontent,%	
Dry density	1.391	1.465	1.483	1.393	From the compa	ction curve: MDE	D = 1.485 g/cm3 a	nd $\overline{OMC} = 23.2\%$	0
33.4.1 Pe	netration Da) Ring I	Ring Factor=0.02148						
-------------	--------------	----------	---------------------	-------	-------	------	--	--	
Penetration		10	30	Blows		65			
(mm)	Blows				Blows				
	Dial	Load	Dial	Load	Dial	Load			
	RDG	(KN)	RDG	(KN)	RDG	(KN)			
0	0.0	0.00	0.0	0.0	0.0	0.00			
0.64	11.0	0.14	27.0	0.3	30.0	0.38			
1.27	16.0	0.20	54.0	0.7	70.0	0.90			
1.96	23.0	0.29	79.0	1.0	115.0	1.47			
2.54	30.0	0.38	103.0	1.3	157.0	2.01			
3.18	35.0	0.45	130.0	1.7	190.0	2.43			
3.81	40.0	0.51	147.0	1.9	219.0	2.80			
4.45	43.0	0.55	160.0	2.0	240.0	3.07			
5.08	48.0	0.61	170.0	2.2	257.0	3.29			

			34.1 GRAI	N SIZE A	NALYSIS	S (ASTM I	0422)	-		Gra	in size	analysi	5			
		Tota	l Weight of d	rv soil be	efore washi	ing 570.0g	m	100		10	1111 5120	, analysis	0.1	0.0	1	
	Sieve op	bening	Weight retai	ned Pe	ercent	% age	e Passing	120		10		L	0.1	0.0	T	
		_	-	re	tained (%)			100 -								
	9.5		0.0		0.0	1	00.0	80 -								
	4.75		4.3		0.8	Ś	99.2	60 -								
	2		49.1		8.6	ę	90.6	40								
	0.425		42.1		7.4	8	33.2	20								
	0.075		26.5		4.6		78.6	0								
	Pan				0.0			A.C.C		c(20)						
Descriptio	34.1.2 5	ubgrade		ation		24.2.2.0		ASS	HTU A-7-	-6(20)						
Descriptio	ns 34.2.1 Liquid Limit 34.2.2 P				lastic											
						Linit		\square				LIOU		CHART		 $\overline{}$
Container		BM	G-5	B-65	B-30	W	24	65 -						CHARI		
Wt wet so	il + con	28.13		2 00	2 00		21	64 -			_					
			32.16	29.77	30.41	24.60	22.77				Ň					
Wt dry soi	il + con	24.94	27 90	26.02	26.48	23.68	21.89	63 -				•				
Wt of wate	er	3.19	27.50	20.02	20.40	20.00	21.05	62 -				1				
	-		4.26	3.75	3.93	0.92	0.88	61 -				+ + +				
Wt of cont	tainer	19.48	20.75	20.02	20.34	20.94	19.29	60 -				$+ \lambda$				
Wt of dry	soil	5.46	20.75	20.02	20.04	20.04	10.20	59 -								 <u></u>
			7.15	6.00	6.14	2.74	2.60	58					•			
Water con	itent,%	58.42	59 58	62 50	64 01	33 58	33.85	57								
No of blow	ws	33	28	24	19	00.00	00.00	$ '_{1}$	0			25 N	D. OF BL	.ows	1	100
34.2.3 Pla	sticity Ind	lex = LL	-PL = 62-34	4=28	-	1						23		-		

34.3STANDARED PROCTOR TEST (AASHTO T-181, Method D)

34.4.1 Pen	etration Dat	ta (After 4-0	day	Ring Factor $= 0.02148$				
soaking)								
Penetration		10	30	Blows		65		
(mm)	Blows				Blows			
	Dial	Load	Dial	Load	Dial	Load		
	RDG	(KN)	RDG	(KN)	RDG	(KN)		
0	0.0	0.00	0.0	0.0	0.0	0.00		
0.64	10.0	0.13	13.0	0.2	15.0	0.19		
1.27	18.0	0.23	20.0	0.3	25.0	0.32		
1.96	28.0	0.36	31.0	0.4	35.0	0.45		
2.54	36.0	0.46	40.0	0.5	47.0	0.60		
3.18	49.0	0.63	52.0	0.7	58.0	0.74		
3.81	58.0	0.74	61.0	0.8	68.0	0.87		
4.45	64.0	0.82	76.0	1.0	82.0	1.05		
5.08	70.0	0.90	80.0	1.0	95.0	1.22		

Sample No 42: Location of Sample, Kera – Bore, KB4, and Depth 40-100cm

	42.1 GRAIN SIZE ANALYSIS (ASTM D422)										
			42.1 OKAI				D422)		Grain size analy	/sis	
		Tota	Weight of a	dry soil b	efore washi	ing1316gn	n	100	10 1	0.1 0.01	
	Sieve op	bening	Weight reta	ined F	Percent	% ag	e Passing	105			
	0.5			r	etained (%)		00.0	100			
	9.5		0.0		0.0	1	00.0	OF			
	4.75		0.0		0.0	1	00.0	95			
	2		<u> </u>		2.5		97.5	90			
	0.425		<u> </u>		6.0		90.5 84 4	85			
	Pan				0.0			80			
	12125	ubgrade	U.U Soil Classific	ation	0.0			лсснт	A_7_5(20)		
Descriptio	riptions 42.2.1 Liquid Limit				4222P	lastic Limit	A33111	A 7 3(20)			
Descriptio)	12.2	Elquiu El	iiiit		12.2.2 1					
Container		47.10	50.00	51.50	48.00	13.89	13.87		LIQ	UID LIMIT CHART	
Wt wet so	oil + con	04.50			05.00	10.05	40.00	61			
Wt dry so	$i1 \perp con$	34.50	36.00	36.50	35.00	13.35	13.32	- 0			
with uny so.	II + COII	11.60	11.50	11.50	12.00	11.59	11.58	L S S O			
Wt of wat	er										
		12.60	14.00	15.00	13.00	0.54	0.55		\		
Wt of con	tainer	~~~~	04.50	05.00	00.00	4 70	474				
Wt of dm	coil	22.90	24.50	25.00	23.00	1.76	1.74	- <u>8</u> 3/			
wit of ury	5011	55.0	57.1	60.0	56.5	30.7	31.6	ISIO 56	\		
Water con	ntent,%							ž ₅₅			
		47.10	50.00	51.50	48.00	13.89	13.87				
No of bloy	WS	33	25	16	20			54	•		
42.2.3 Pla	.2.3 Plasticity Index = $LL - PL = 57-31=26$) <u>25 ^r</u>	NO. OF BLOWS	100

42.3 STANDARED PROCTOR TEST (AASHTO T-181, Method D)

				No. of	No. of	Method of	Volume of	Weight of	
42.3	3.1 Dry Densi	ty Determinati	on		Blows=56	Layers=5	Compaction		Hammer=4.5
								Mold=2124	Kg
Mold No.	1	2	3	4					
Mold + Wet soil (gm)	9994.0	10162.0	10250.0	10120.0					
Mold (gm)	6284.0	6284.0	6284.0	6284.0	1.440				
Wet soil(gm)	3710.0	3878.0	3966.0	3836.0					
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	1.420				
Wet Density (g/cm3)	1.747	1.826	1.867	1.806	3 400				
					ณ _ี				
42.3.2	Moisture Co	ntent Determir	ation		.380			X	
Container No.	PH	Р	B-8	СК	l de l			\sim	
Wet Soil + Con. (g)	483.5	433.9	402.5	433.6	1 .360				
Dry Soil +Con. (g)	395.3	346.8	316.8	336.5					
Mass of water	88.2	87.1	85.7	97.1	1.340				
Mass of Con. (g)	57.6	52.8	57.2	69.3	1.320				
Mass of dry soil	337.7	294.0	259.6	267.2	26 27	7 28 29	30 31 32	33 34 3	5 36 37
Moisture Content(g/cm3)	00.4						Moisture co	ntent,%	
	26.1	29.6	33.0	36.3					
Dry density	1.385	1.409	1.404	1.325	From the compact	tion curve: MDD	0 = 1.413 g/cm3 a	nd OMC 31.5%	

42.4.1 Pene	tration Data	(After 4-da	Ring Factor= 0.02148				
Penetration		10	30	Blows	65		
(mm)	Blows				Blows		
	Dial	Load	Dial	Load	Dial	Load	
	RDG	(KN)	RDG	(KN)	RDG	(KN)	
0	0.0	0.00	0.0	0.00	0.0	0.00	
0.64	10.0	0.12	14.0	0.17	17.0	0.21	
1.27	16.0	0.19	26.0	0.31	32.0	0.39	
1.96	23.0	0.28	34.0	0.41	45.0	0.54	
2.54	27.0	0.33	41.0	0.49	57.0	0.69	
3.18	30.0	0.36	46.0	0.56	68.0	0.82	
3.81	33.0	0.40	54.0	0.65	78.0	0.94	
4.45	36.0	0.43	60.0	0.72	87.0	1.05	
5.08	39.0	0.47	65.0	0.78	95.0	1.15	

Sample No 44: Location of Sample Bore – Qofe, BQ-1, Depth 40-100cm

	44.1 GRAIN SIZE ANALYSIS (A						422)								
			44.1 UKAI	IN SIZE A	INAL 1 515	(ASTM D	422)	Grain size analysis							
		Total Weight of dry soil before washing = 720gm							100 10 1 0.1 0.01						
	Sieve op	bening	Weight retain	ned Per	cent	% age F	Passing	100.5	10		-	0.1	0.01	-	
				reta	ained (%)			100							
	9.5		0.0		0.0	100	0.0	99.5							
	4.75		3.6		0.5	99	.5	99							
	2		6.7		0.9	98	.6	98.5							
	0.425		10.5		1.5	97	.1	97.5							
	0.075		5.8		0.8	96	.3	97							
	Pan							96.5				\searrow			
			0.0		0.0			96							
	44.1.2 S	ubgrade	Soil Classifica	ition				-							
Descriptio	ons 44.2.1 Liquid Limit					44.2.2 Pl	lastic								
				1	1	Limit	T		70		LIQ	JID LIMIT	CHART		
Container		Κ	Z-1	JQ	23	LL	BK		60						
XX 7	•1	10.01		10 - 1	44.00	0.4 = 0			09						
Wt wet so	11 + con	42.64	41.38	43.74	41.69	24.73	23.69	%	68						
Wt dry soi	il + con	33.62	33.39	34.46	32.67	23.79	22.95	LENJ	67						
Wt of wat	er	9.02	7.99	9.28	9.02	0.94	0.74	CON	65						
Wt of com	toinor	10.10	20.07	20.54	10.57	20.97	20.00	URE	64 —						\square
	lainei	19.10	20.97	20.31	19.07	20.07	20.00		63						
Wt of dry	soil	14.52	12.42	13.95	13.10	2.92	2.29	IOM	62 —			•			\square
Water con	tent,%	62.12	64.33	66.52	68.85	32.19	32.31		61						
No of blov	ws	34	29	22	17				10		25	NO. OF E	BLOWS		10
44.2.3 Pla	sticity Inc	lex = LL	-PL = 65-30	=35	1 ''	1	1								

Jimma Institute of technology

44.3 STANDARED PROCTOR TEST (AASHTO T-181, Method D)

	44.3.1 D	ory Density De	termination		No. of Blows=56	No. of Layers=5	Method of Compaction	Volume of Mold=2124	Weight of Hammer=4.5			
Mold No.	1	2	3	4	1.500				кg			
Mold + Wet soil (gm)	9976.0	10336.0	10410.0	10290.0								
Mold (gm)	6284.0	6284.0	6284.0	6284.0	1.480							
Wet soil(gm)	3692.0	4052.0	4126.0	4006.0	1 / 60							
Volume(cm3)	2124.0	2124.0	2124.0	2124.0	<u> </u>							
Wet Density (g/cm3)	1.738	1.908	1.943	1.886	1.440			N				
	44.3.2 N	Ioisture Conte	nt Determinatio	on								
Container No.	BF	CQ	B-13	A-3	<u>5</u> 1.420		· · · · · · · · · · · · · · · · · · ·					
Wet Soil + Con. (g)	567.7	441.4	458.7	454.7	≥1 400							
Dry Soil +Con. (g)	466.1	353.8	361.2	355.0								
Mass of water	101.6	87.6	97.5	99.7	1.380							
Mass of Con. (g)	74.7	58.2	57.7	63.1	1 200							
Mass of dry soil	391.4	295.6	303.5	291.9	1.360		20 20	21 22 22	24 25			
Moisture Content(g/cm3)	26.0	29.6	32.1	34.2	25	20 27 28	29 30 Moisture co	31 32 33 ntent,%	34 35			
Dry density	1.380	1.472	1.470	1.406	From the compaction curve: MDD = 1.480 g/cm3 and OMC 30.8%							

