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Abstract 

Cloud computing is one of the recent technology that provides different 

services from different platform for the users at any time, at anywhere using 

internet without any limitations. As cloud computing providing this service, 

the most serious challenge is that, a DDoS attack which interrupt an online 

service by generating a high volume of malicious traffic, which is called 

flooding-attack. Moreover, DDoS attack consumes all the available network 

resources thus rendering legitimate users unable to access the services. To 

tackle this problem different research works have been done and proposed 

to defeat this type of attack in traditional and SDN networks for the cloud 

computing systems. 

In this thesis, we developed and investigated a pushback distributed defense 

mechanism or framework for private as well as public network domain DDoS 

attacks. The defense system has three major components: traffic monitoring 

with detection, attack identification and traffic control. The components are 

inter-dependent and working in hierarchical fashion. The traffic monitoring 

scheme monitors only high-rate outgoing flows at victim networks and 

identify the source of an attack in the network. Once the source of an attack 

is identified the traffic control daemon apply an ingress filtering to drops the 

packets belonging to these flows. Based on the rules implemented on the 

controller the rate limiting mechanism, limit the rate of an incoming traffic 

to the victim node and filter the traffic in its source network controller. For 

Distributed DDoS attack, the controller at the malicious source node network 

send a pushback request message to apply a rule to the victim node 

controller. 

The proposed framework is evaluated with different performance metrics to 

analyze the detection of rate of an attack traffic, throughput, link bandwidth, 

attack and legitimate traffic drop rate, and system resource consumption 

during normal and attack state. The simulation model is designed and a 
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number of simulation experiments have been done on mininet virtual 

network setup. The results demonstrate that the scheme is capable of 

detecting flooding-based DDoS attacks, and the pushback defense 

framework can effectively mitigate attack traffic in order to sustain the 

quality of service for legitimate traffic. 

Key words: Cloud computing, SDN, OpenFlow, DDoS attack, Pushback 

technique 
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Chapter 1 

Introduction 

Today's Internet communication is changing. Cloud computing is an emerging 

new technology which provides a centralized pool of configurable computing 

resources and computing outsourcing mechanisms that makes available 

different computing services to different people [1]. With the use of cloud, many 

companies can scale up without having to invest large amount in new 

infrastructure, software license and building large data centers. Cloud 

computing technologies are saves costs of deployments, high availability of 

services, flexibility and easy scalability of nature when the services demand 

increases [1]. As a result of integration of many techniques such as grading, 

clustering, utilization computing and resource's sharing, cloud computing has 

been appeared as multi element's composition technology, it offers several 

computing services such as IaaS (infrastructure as service), PaaS (platform as 

service) and SaaS (software as service) based on pay as you use rule. But 

nevertheless, cloud computing end users participate in computing resources (co_ 

tenancy), and by which infrastructure computing can be shared by a number of 

users, some security challenges has been explained, reported and researched by 

the Internet community. One of the most serious security threats is bandwidth 

attack, which prevent other users from using cloud infrastructure services. This 

kind of attack can be done by a legitimate or illegitimate cloud computing users 

[2]. 

There are various network bandwidth attacks  [3]. Distributed denial of service 

(DDoS) attacks and Internet worms are the two frequently occurred ones. The 

former attacks a specific IP address from many distributed sources at the same 

time to cause the communication congestion at the destination; and the later 

breaks out when a large number of Internet hosts are infected and then, scan 

vigorously for the vulnerable hosts to propagate. 
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Bandwidth attacks are typically distributed attacks. An attacker uses tools to 

gain root access to machines on the Internet. Once a machine is cracked, it is 

turned into a “zombie.” The attacker instructs the zombies to send bogus data 

to one particular destination. The resulting traffic can clog links, cause routers 

near the victim or the victim itself to fail under the load. 

One major reason underlies the absence of a simple solution against bandwidth 

attacks: attackers can release high volumes of normal-looking packets on the 

Internet without being conspicuous or easily traceable. It is the mass of all 

packets together directed at one victim that poses a threat, rather than any 

characteristics of the individual packets. A dropping policy in routers based on 

per-packet characteristics will, therefore, not work. It is relatively easy, but 

rather useless, to detect a bandwidth attack in the vicinity of the victim: by 

measuring the traffic load on a link or in a router, the exceptionally high volume 

of packets can be detected. Unfortunately for the victim, determining that it is 

under attack will not make the packets go away. Harm has already been done 

the time the malicious packets reach (the vicinity of) the victim. A bandwidth 

attack should, therefore, be detected close to the attacker rather than close to 

the victim so that malicious packets can be stopped before they can cause any 

harm [4]. 

Traditional DDoS solutions are unable to respond in time or handle the immense 

bandwidth that these attacks impose on today’s networks. Both service providers 

and enterprises need a scalable solution that can detect and mitigate these 

behavioral security threats, immediately preventing them from spreading 

through the network and disrupting the services of customers and users [5]. 

SDN is a new paradigm in networking industry designed to solve the limitations 

of traditional networks flexibility, scalability and vendor locked features. Besides 

the fact that SDN has been proposed as a candidate of the next generation 

Internet architecture, companies like Google have already adopted SDN in their 

internal data centers [6]. With the decoupling of data and control plane and the 
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introduction of open communication interfaces between layers, SDN enables 

programmability over the entire network, promising rapid innovation in this 

area. If it is properly implemented SDN can actually be exploited to address the 

security challenges brought by cloud computing and the DDoS attack defense 

can be made more effective and efficient in the era of cloud computing and SDN 

[6].  

In order to solve the security problems there are a number of DDoS defense 

mechanism are designed and proposed in traditional and SDN based networks 

for the cloud computing networks. By exploiting a number of features of 

OpenFlow protocol researchers designed a DDoS flooding attacks defense 

mechanisms at the number of locations: at Source node based, Network based, 

and Destination based networks. Each of the implementation of this defense 

approaches has its own advantage and disadvantage in protecting the network 

from different types of attacks. 

In this thesis, we present a pushback scheme to detect possible attacks and 

defeat them at the source of an attack and at the destination, so that most of the 

attack packet are targeted to the victim node. This scheme makes the 

identification between good and bad packets easier, thus minimizing the amount 

of collateral damage. Moreover, it helps to reduce bandwidth usage by the attack 

traffic. Pushback monitors only high-rate outgoing flows at source networks and 

preferentially drops the packets belonging to these flows when it senses any 

existing Internet protocols. The approach uses a specific IP address or MAC 

address from many distributed sources at the same time to cause the 

communication congestion at the Victim. Based on this the detection, 

identification and mitigation of an attack can be done on a per-flow basis by 

matching either IP or MAC addresses. 

Our work is an extension to the pervious works [3] and presents such 

collaborative mechanism to fight against DDoS attacks by making defense 

mechanism at the source node network and the victim node network domain 
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work together. Each of the controller in its domain collects local information 

which is extracted by the local defense module and makes filtering instructions 

in order to regulate the traffic.  

1.1 Motivation 

The growing of dependency of users accessing resources from different platforms 

at anytime and anywhere from where they are connected to internet is the newly 

observable trend in the interconnected community. In this regard the concepts 

of, cloud computing, big data and internet of things are recently evolved. Cloud 

computing is enables users and organizations to be access their files and 

resources easily through Internet. This situations enforced most of the 

organization to move their services and resources to the cloud computing system.  

The basic objective for most of the companies working in this area is providing 

highly available service to the customer using the Internet is the recent need of 

the service providers and business organizations. Particularly in infrastructure 

based cloud services, companies like, Google are providing virtual infrastructure 

for the users in commercial base with distributed servers on the Internet. Cloud 

users from different sides of the world are with pay for a service system they use 

this network for their day to day business process. The resources and data’s of 

the users should be protected, secure and always available in this system.  And, 

users shouldn’t be denied due to security breaches and attacks. But, this is 

common in cloud computing systems due to a number of reasons. One of this is 

that the feature of the technology by itself. Resource sharing with the users, 

direct access to Cloud infrastructures, etc.), are the main reason for the security 

problems in the cloud network. So, it need new and innovative solutions to 

protect both the users and the provider from security attacks, like DDoS. 

As we described slightly the concepts in the cloud computing, the nature of the 

technology, and the architecture of the cloud computing network which is 

different from the traditional network. This nature makes the system and the 

services to be vulnerable to different types of attacks security threats.  Due to 
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this, cloud computing have always been primary target for DDoS attacks. 

In traditional network there are a number of mechanisms are designed to protect 

the network from different kind of DDoS attacks. And, this defense mechanisms 

are some are effective and some are ineffective in defending DDoS attacks. But, 

in cloud computing the DDoS attack defending mechanisms are a little different. 

Even though, some of the defense mechanism which are designed for traditional 

network are feasible and used in cloud network for DDoS attacks. In cloud 

computing system the way of attacker gain access to the network for the attack 

is very simple. Because, tenants are the owners of the Virtual machines they are 

using. So, this characteristics open the way for attackers simply to employ an 

attack from using a simple script to any of services and application which is 

connected to Internet.  

As the number of cloud security alliance report reviewed by this [7], [8] work, the 

extent of the DDoS attack is still increasing and its impact also. In spite of 

deploying various security measures against cloud attacks, there are a number 

of issues that providers may face still now: for example, the tradeoff between 

public and private cloud, Insiders and outsiders threats, militancy, web-based 

access, and the simplicity of attacking methods. This reflects organization and 

cloud providers need to have a better security solution for their service 

availability. So, designing and proposing an effective DDoS attack detection and 

mitigation approach is an open research for the researchers.  

For the distributed botnet attacks form multiple domain nodes to a single target 

node designing a single defense mechanism on the source node only can’t be 

effective. Furthermore, defending attacking node at the victim also. A 

sophisticated attacker can easily evade detection by employing a large number 

of zombie machines around the world and make them send malicious traffic 

through different edge routers. As a result, if we only take a single router into 

accounts, the volume of malicious traffic accounts, the volume of malicious 

traffic might not be aggregated at a detectable level. 



6 
 

Designing an attack reaction and filtering malicious traffic at the source node, 

locally and globally with cooperation between the systems enable us to reduce 

the impact of an attack. The advantage of designing a distrusted defense system 

compared to source based, destination based defense system is more effective in 

defending an attacks in collaboration between the systems. 

 

Figure 1.1: DDoS attack in cloud: direct and indirect effects [9] 

In this regard, there are a number of works that has been done in traditional 

works in the detection of Botnet attacks at the Source node, destination (victim 

node), and also in a distributed manner. Even though, designing of this detection 

techniques was very complex and not reactive on the reaction and filtering of 

malicious traffic when the DDoS is noticed by the systems. Furthermore, some 

works has been designing the botnet attacks by employing an SDN methodology. 

Though, our work is designed with objective of reacting and filtering malicious 

traffic on locally by applying rate limiter at the source node and forward 

notification message to other controller in another domain.  
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In this thesis we design and investigate an SDN based pushback approach for 

DDoS attack detection and mitigation for cloud computing network. In this 

approach we monitor the rate of the traffic in the cloud network and identify an 

attacking node which generates malicious request to the target node from 

globally distributed private as well as public networks. Moreover, we investigate 

and analyze its feasibility in the detection and mitigation of DDoS flooding attack 

in the cloud system, scalability, flexibly, and dynamically. 

1.2 Statement of the problem 

Today, many of the enterprises are increasingly moving services and business 

applications from their internal data centers to external cloud service providers, 

whether by purchasing applications in the form of Software as a Service (SaaS) 

or by running those applications on cloud-based Infrastructure as a Service 

(IaaS) [10]. The basic needs for the enterprises moving their service to the cloud 

data center could be; to ensuring an availability and connectivity of the services 

for their mobile users they are accessing the cloud services using different 

networking devices or platforms, and good resource allocation for their cloud 

users or tenant’s. As the nature of communication is changing in the cloud 

computing, security and vulnerability of different components of the systems is 

also a big problem for the cloud service providers and tenants. When physical 

resources are provided as logical re-sources via a virtualization layer, availability 

attacks on one virtual machine can affect other virtual machines which share 

the resources between them.  Due to this feature, availability attacks on 

infrastructure are very intimidating on those virtual machines which share the 

physical resources.   

A Distributed Denial of Service attack is one of the availability attacks. A DDoS 

attack generates a large amount of traffic to the specific system on the network. 

Therefore, it depletes the system resources, and end users do not receive reliable 

services. Botnet as the flood traffic comes from many machines, and is not a 
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single flow on the network. While it is possible to attack various types, it is 

difficult to detect this attack or to find its source. 

As more applications, data, and websites move to the cloud systems, there is a 

need to design a flexible, scalable and easily manageable security mechanism for 

this environment. Traditional works have been tried to address DDoS botnet 

flooding attacks in the past, but DDoS attacks remain a major security problem 

and the detection and protection process is hard, especially when it comes to 

highly distributed implementations.  

Therefore, a deployment of defense mechanism at different points in the network 

is an important consideration for creating an accurate filter to separate good 

traffic from attack traffic, and finding an efficient method to filter. Furthermore, 

cooperation between this defense mechanism in the detection process and 

reducing the impact of an attack on the system. Hence, providing a cooperative 

defense mechanism can be a significant improvement in this area. As a result of 

these problems, the following research questions have been identified: 

 How to design a scalable, flexible cooperative DDoS attack defense 

mechanism to ensure service availability in cloud computing networks? 

 What are the appropriate flow statistics features be used to detect DDoS 

attacks using a pushback algorithm? 

 Does pushback is a feasible approach for detecting and mitigating DDoS 

flooding attack in the cloud computing environment when we employing 

SDN technology? 

 

1.3 Objectives 

The General objective of this thesis work is to develop and investigate a DDoS 

flooding attack defense framework and approach for the ever growing cloud 

computing services availability and security consolidation. By using the 

advantages and features of OpenFlow protocol, we design a system which enable 
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us to detect distributed attacks performed to the targeted node (victim node), 

and identity the attacking node in a flexible and scalable manner.  

 

1.3.1 Specific Objectives 

The specific objectives are enable us to achieve our general objective. So, in order 

to meet the above objective, the following specific objectives are defined: 

 Reviewing and analyze various literatures that has been done as a defense 

mechanism for DoS and DDoS attacks in traditional and SDN based cloud 

networks and its features to designing an effective security mechanism 

 Understand different types of services provided to cloud tenants by the 

cloud providers, and types of DDoS attacks that exist in cloud computing 

systems that impact the services reliability and availability with the 

methodologies in defending the attacks at different locations  

 Design a cooperative DDoS flooding attack defense system for botnet 

attack to the target node by monitoring the rate of a traffic in the network 

and identify an attacking node in private as well as in public network 

domain. A proposed technique detects and identifies a DDoS attack at an 

early stage of the attack, and its mitigation process should drop most of 

the attack packets without sacrificing the QoS for legitimate traffic. 

 Evaluate and  measure the proposed technique with different performance 

measurement metrics in defending the DDoS attack when it is deployed in 

a distributed manner 

 

1.4 Methodology 

The research used different methodologies in order to accomplish the general 

and specific objectives of the study. This methodologies enable us to design a 

DDoS flooding attack defending technique for the cloud environment. 

The first thing we conducted a comprehensive review of literatures to acquire a 

deeper understanding of the research area and its problem domains. Through 
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this literature we identify the importance of the previous works done in the area 

in DDoS flooding attack and the defending techniques used in the cloud 

environments.  

Existing works done in defending DDoS attack whether in traditional network or 

SDN based network technologies assessed to identify and point direction in 

providing solution to identified problems on this network domain. 

Secondly, we design and propose our defense mechanism which is relied on SDN 

based OpenFlow technology. The main reason of selecting SDN technology to 

design our solution is it flexibility, scalability, programmability and more of its 

features. In addition to this, SDN has an ability to globally view of the entire 

network which is separated or decoupled the data plane (the forwarding network 

infrastructure) and the control plane (decision maker in forwarding the incoming 

traffics). The separation of this functionalities and an interface to program the 

control plane, obliged us to design and implement our DDoS defense mechanism 

on the existing SDN framework. Our DDoS defense formwork consist of three 

daemon in the detection, identification and mitigation of DDoS attacks. 

In a DDoS attack scenario, the proposed distributed framework defends against 

attacks by coordinating between the local defenses systems at the source ends 

and the victim end. A native OpenFlow protocol approach is used to gathering, 

distributing and analyzing information from a distributed Ethernet network. The 

following concepts are the method of attack defending mechanism in the 

framework. 

Detection of an attack: Each of the controller protects a server which provides 

services for the tenants on the cloud network by monitoring flows on all of 

switches in its domain for high bandwidth on the link. Moreover, the controllers 

monitoring the hosts to check if it is sending data to the victim and its data rate 

is above from the predefined threshold. 
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Source finding: Detect an attack and identify an attacker. To find source-end 

edge routers, traditional methods rely on the topological knowledge in each node 

and iterative communication among nodes. Finding a source an attacking node 

can be accomplished by the trackback component of the defense system at the 

victim node domain controller. We proposed a mechanism that identify filters 

that block attack traffic and allow legitimate traffic as close to the source node 

as possible, so that network resources are not wasted in propagating the attack.  

Mitigation of an attack: The defense system at the victim network controller 

identities the aggregate, it enables Pushback. It sends pushback message to its 

upstream adjacent OpenFlow switches asking them to rate limit the rate of its 

identified aggregates. When the pushback message arrives at the source 

OpenFlow switch, the controller identify which input links are the contributing 

links that are primarily responsible for the aggregate traffic. The OpenFlow 

switch at the source then probabilistically drop the flows coming from these 

contributing links until they do not receive more pushback messages from 

downstream routers. 

The final step is an experiment. We performed several steps in our experiments 

for analyzing the incoming traffic and identifying an existence of an attack from 

the flow of the traffic and mitigate the rate of an attack on the cloud networks. 

For the experimenting we used a mininet virtual network traffic that is generated 

between the virtual machines. Ryu OpenFlow controller is selected for the design 

of our application codes in the framework. Using this tools, different DoS and 

DDoS attack scenarios are designed and performed. Then finally our approach 

is evaluated, with our evaluation metrics, like rate of attack traffic, throughput 

measurement, available bandwidth, time delay and system overload during 

normal and attack periods. The observation of the result from the experiment is 

collected and presented as graphs and tables. We also made a discussion on the 

performance of the overall technique proposed. 
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1.5 Scope 

In this work, the DoS attack defense system and the security issue analysis of 

the cloud computing is on the network infrastructure only. The main reason for 

this is that, most of the DoS attacks are generated and arise from where the 

cloud network infrastructures.  As most of DoS attack statics reports, a large 

number attack traffics are sent from malicious users or VM’s in the data center 

to different cloud networks easily. Because, the intention of an attackers in this 

cloud model is that, denying services by flooding the traffic congesting the links, 

consuming the bandwidths and system resources. The aim of the proposed 

defense systems is also, to detect malicious traffic on the network and increase 

detection rate and examine cloud based infrastructure attacks. We monitor all 

the flow of information by using PACKET IN message from the connected hosts, 

extracting this flow information’s, identifying the malicious from, the normal flow 

and also mitigate an attack when a malicious flow is detected. 

Moreover, our DDoS defense mechanism is on botnet attacks generated with-in 

private as well as in public cloud computing environment. Furthermore, the 

feasibility of the proposed system is analyzed with simulated data traffic that is 

generated in the mininet simulation environment. 

1.6 Organization of the study 

On the rest of this thesis work, we discuss a part of our work. Chapter 2 starts 

with introducing what the cloud computing and its services and models. It also 

discusses about DoS attack and how DDoS attack impact the cloud systems 

particularly at the Infrastructure level. Furthermore, the defense schemes and 

deployment of this defense mechanism are looks like. We also reviewed, some 

background information on SDN, OpenFlow architecture and, its basic feature 

that helps us in defending a DDoS flooding attack on the SDN virtual 

environment. Chapter 3 discusses related works that have significant relation 

with this thesis. Even if there are a number of works done on this area, we selects 

the most related works to our thesis and presents them based on their attack 
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defense approach. Chapter 4 shows the designed and the proposed work on the 

existing SDN framework. The section also detailed the coordination of the 

different components in attack defending process. Here, a pushback DDoS 

attack detection system is selected and designed due to its effectiveness in 

detection and identification of attack on the system without any overhead on the 

controller for the distributed cloud systems. On chapter 5 the proposed system 

implemented and simulated using Software defined network emulation tools. The 

simulation is done on virtually created mininet network. The result of this 

experimental analysis is described and explained. Finally, we summarizes the 

contributions made in the thesis, and conclude our work based on the results 

obtained from the thesis. Furthermore, new issues that have been surfacing 

while working on the thesis will be suggested as future work. 
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Chapter 2 

Literature Review 

In this section we discussed the state of arts in DDoS attack in cloud, the major 

types of attack on the cloud computing environment, and the open security 

challenges in designing the defense mechanisms. DDoS attack is one of the 

security challenges on the cloud computing environment that results in 

minimizing the performance of the cloud services or blocking its availability from 

legitimate users.  The existing DDoS attack detection methodologies, and the 

placement of this DDoS detection mechanisms is reviewed. Where the defense 

mechanisms can be deployed and effective in defending an attack. Moreover, we 

discussed features of SDN that helps us to design our defense mechanism. The 

motivations of the attackers and the tools they use for attacking, are also 

addressed. In addition to the primary motives of the attacker, the attacking 

techniques as well as their targets and the main problems due to these attacks 

are reviewed. 

2.1 Cloud Computing  

Cloud computing is a model for enabling convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released 

with minimal management effort or service provider interaction.  

This cloud model promotes availability and is composed of five essential 

characteristics, three service models, and four deployment models. The essential 

characteristics of cloud computing’s are [11]:  

 On-demand  self-service:  computing resources  can  be acquired  and  used  

at  any time  without  the  need  for human   interaction   with   cloud   

service   providers. Computing    resources    include    processing    power, 

storage, virtual machines etc. 
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 Broad   network   access:   the   previously   mentioned resources   can   be 

accessed   over   a   network   using heterogeneous devices such as laptops 

or mobiles phones. 

 

Figure 2.1: Cloud computing Architecture [12] 

 Resource  pooling:  cloud  service  providers  pool  their resources  that  are  

then  shared  by  multiple  users.  This is  referred  to  as multi-tenancy 

where  for  example  a physical server  may  host  several  virtual  machines 

belonging to different users. 

 Rapid  elasticity:  a  user  can  quickly  acquire  more resources  from  the  

cloud  by  scaling  out.  They can scale back in by releasing those resources 

once they are no longer required.  
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 Measured  service:  resource  usage  is  metered  using appropriate  metrics  

such  monitoring  storage  usage, CPU hours, bandwidth usage etc… 

 

 

 

 

 

 

 

 

 

Figure 2.2: Cloud computing deployment and service models 

 

2.1.1 Cloud deployment models 

There are four types of cloud deployment models: 

 Private cloud: Private cloud is a new term that some vendors have recently 

used to describe offerings that emulate cloud computing on private 

networks. It is set up within an organization’s internal enterprise 

datacenter. In the private cloud, scalable resources and virtual 

applications provided by the cloud vendor are pooled together and 

available for cloud users to share and use. It differs from the public cloud 

in that all the cloud resources and applications are managed by the 

organization itself, similar to Intranet functionality. Utilization on the 

private cloud can be much more secure than that of the public cloud 

because of its specified internal exposure. Only the organization and 

designated stakeholders may have access to operate on a specific Private 

cloud [13]. 

 Community cloud: The cloud infrastructure is provisioned for exclusive 

use by a specific community of consumers from organizations that 

have shared concerns (e.g., mission, security requirements, policy, and 

Software as a Service 

Infrastructure as a Service 

Platform as a Service 

Community 

Cloud 

Hybrid Cloud 
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compliance considerations). It may be owned, managed, and operated 

by one or more of the organizations in the community, a third party, 

or some combination of them, and it may exist on or off premises.  

 Public cloud: The cloud infrastructure is provisioned for open use by 

the general public. It may be owned, managed, and operated by a 

business, academic, or government organization, or some combination 

of them. It exists on the premises of the cloud provider.  

 Hybrid cloud: The cloud infrastructure is a composition of two or more 

distinct cloud infrastructures (private, community, or public) that 

remain unique entities, but are bound together by standardized or 

proprietary technology that enables data and application portability 

(e.g., cloud bursting for load balancing between clouds).  

 

2.1.2 Service models  

Clouds use architectural models in order to provide different services to the 

users. Service models are not tied to a specific deployment type, public, private, 

hybrid and community, rather each deployment type can use each service model. 

Just as with the different deployment methods the service models can have 

implications for a clouds security state, it is therefore important to have 

knowledge of these service models. The common service models are explained 

below. 

A. Cloud Infrastructure-as-a-Service (IaaS) 

The capability provided to the consumer is to provision processing, storage, 

networks, and other fundamental computing resources where the consumer is 

able to deploy and run arbitrary software, which could include operating systems 

and applications. The consumer does not manage or control the underlying cloud 

infrastructure but has control over operating systems, storage, deployed 

applications, and possibly limited control of select networking components (e.g., 

host firewalls). 



18 
 

B. Cloud Platform-as-a-Service (PaaS) 

This model provides a complete development environment to the customers, 

which includes all phases of SDLC with an appropriate support of APIs. PaaS 

facilitating a customer organization in developing software applications without 

investing huge on infrastructure which will be delivered to the users over Internet 

on-demand & rent (pay-as-you-use) basis. Web servers, application servers, 

development environment, runtime environment, etc. are the example 

components with respect to PaaS. In this model customers need not maintain 

underlying infrastructure including maintaining server machines, cooling, 

operating systems, storage, etc. Google AppEngine, force.com, Microsoft 

Windows Azure, RedHat, etc. are example of PaaS vendors [12]. 

C. Cloud Software-as-a-Service (SaaS) 

Following this model, the cloud service provider makes both the software and 

the cloud infrastructure to run it available to the client, while it retains complete 

control over the underlying physical settings of the cloud (i.e., the operating 

system, network, storage, etc.) and the individual application capabilities. Thin 

client interfaces such as web browsers are often used to allow access to these 

applications [14]. 

D. Cloud Hardware-as-a-Service 

Hardware as a Service, often abbreviated to ‘HaaS’. It brought forth a significant 

improvement because it allows for easy access to physical hardware devices, 

distributed among several geographical locations. If the cloud consumers 

subscribe to this service, it will appear as if they are connected to the local 

machine. The HaaS cloud middleware will ensure transparency between data 

exchanges while the local system considers all connected hardware to be locally 

connected, even though this is not always the case. 
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E. Cloud Data-as-a-service 

Data in various formats and from multiple sources could be accessed via services 

by users on the network. Users could, for example, manipulate the remote data 

just like operate on a local disk or access the data in a semantic way in the 

Internet. Amazon Simple Storage Service (S3) provides a simple Web services 

interface that can be used to store and retrieve, declared by Amazon, any amount 

of data, at any time, from anywhere on the Web. The DaaS could also be found 

at some popular IT services, e.g., Google Docs and Adobe Buzzword. Elastic Drive 

is a distributed remote storage application which allows users to mount a remote 

storage resource such as Amazon S3 as a local storage device [15]. 

Virtualization and multi tenancy are two of the core technologies that enables 

cloud computing to be used as we know it today. A traditional way of hosting 

applications and data storage involves running one operating system (OS) on one 

physical server. This traditional hosting method can also be used to create a 

functioning but inefficient cloud. This is achieved by linking multiple servers 

using a Virtual LAN (VLAN). This is secure but inefficient in the long term as a 

large part of the physical hardware available end up being unused. 

Virtualization was created in order to solve this efficiency problem. By using a 

Virtual Machine Monitor (VMM) a single physical server can host multiple 

instances of an OS. This means that a single server can utilize the available 

hardware power in a more efficient manner. The figure below (Figure 2.3) is a 

basic illustration of a VMM running multiple instances of an OS using a 

virtualization layer. The virtualization layer is often known as hypervisor. There 

are two main ways of utilizing this hypervisor to run virtual machines (VM). 

These are known as full virtualization and paravirtualization. The difference 

between them lies in how much of the OS needs to be emulated. A VM deployed 

using full virtualization has to emulate the BIOS and drives of the OS, in addition 

to the other functions. A VM using paravirtualization runs a version of the OS 
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that has been modified to work without needing a BIOS or similar components 

[16]. 

There are also two major architectures used to deploy virtual machines, hosted 

architecture and hypervisor architecture. The difference here stems from the way 

the hypervisor is handled by the server. In a hosted architecture the hypervisor 

is a platform that the host OS runs as a normal application. The application is 

then charged with the upkeep of the virtual machines. On the other hand a 

hypervisor architecture skips the OS and is instead run directly on the hardware. 

Depending on which deployment method and architecture used different security 

aspects applied [17]. 

 

Figure 2.3: Virtualization of multiple operating system on one physical Machine 

Multi tenancy is closely tied to virtualization. In short, multi tenancy allows 

several users to share computing resources with logical separation of the 

different users, a user in this case is a tenant of the system. In the context of 

cloud computing, each VM can be considered a tenant. However multi tenancy 

is not limited to multiple VMs running on the same hardware. Applications can 

also be utilised in a way that allows multiple tenants to use them, while at the 

same time separating the different users from each other [17] while virtualization 

and multi tenancy are core technologies needed for cloud computing to remain 
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efficient and viable they introduce new security risks. These are discussed in the 

next sections. 

2.2. DDoS attack on the cloud network Infrastructure 

Before dealing with possible detections and mitigations of attacks on Cloud 

Computing, the kinds of attacks and the types of attackers that are actually a 

threat to Cloud Computing shall be addressed. We shall first focus on the various 

forms an attack can take. There are multiple scenarios involved in the Cloud 

infrastructure itself and its environment. In a DDoS attack, some hosts (VM, PC 

or laptops), also called “bots” or “zombies”, can be controlled remotely. A 

collection of such bots controlled by a master entity (attacker) is known as a 

“botnet”. The typical attackers will be classified into three categories, according 

to their location, their motivation or their level of activity in the attack [16]. 

 

Figure 2.4 : DDoS Attack Scenario in Infrastructure Cloud [9] 
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Cloud computing infrastructures can be compromised in three ways: the attack 

can come from the outside and the target be inside (external to internal), it can 

even originate from within the system (internal to internal) and it can even occur 

from within to target the outside of the infrastructure. 

1. External to internal. In such a case, the botnet used to perform the attack 

comes from outside the target system. The attack can target the internet gateway 

of the Cloud infrastructure, or the servers. If a particular client (in a VM) becomes 

the victim of an attack, it will also affect the other VMs present on the same 

physical server of the Cloud (performance interference between VMs). 

2. Internal to external. In such a case, the attack begins by taking ownership 

of a VM running in the Cloud. This can be done with a Trojan horse. The choice 

of which customer’s VM to infect is important because if this customer owns a 

large number of VMs, the Trojan horse can potentially spread over all those VMs, 

therefore forming a botnet. The great computing power and resource availability 

of the Cloud becomes a real threat for an external target. 

3. Internal to internal. In the Cloud infrastructure, an internal botnet is formed 

and can attack another target inside the system (such as a VM or a group of VM). 

All Cloud infrastructures may break down under these kinds of attacks. 

With the different kinds of attacks come different types of attackers. Indeed, each 

attack scenario corresponds to a particular attacker with a specific location and 

goals. 

The scope of an attack may greatly vary, depending on who perpetrates the 

attack. System administrators take the appropriate actions: to exclude or to 

ensure a quick recovery and allow subsequent investigations. There are four 

categories of attackers that we will describe in the context of cloud computing. 

1. Insider vs. Outsider. In such a case, the insider belongs to the network that 

is under attack: he is an authenticated user with privileged access to critical 
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data. Of course, the insider can do more harm than the outsider since the latter 

would be considered an intruder from the network perspective. Moreover, he 

would have fewer resources to begin an attack. In the case of Cloud Computing, 

an insider could be an employee of the Cloud infrastructure, or someone 

controlling one or several VMs inside the Cloud network, whereas an outsider 

would not be part of the network at all. For example, an insider attacker may be 

able to execute arbitrary commands on the behalf of a legitimate Cloud user, 

thus performing a DoS or DDoS on the user’s services or to create a botnet for 

charging the Amazon Elastic Cloud Computing costs on the user’s invoice. 

2. Malicious or Rational. Malicious attackers have a general goal of harming 

the network or the network users (employees or customers of the network). 

Whatever the costs or the consequences, all means can be deployed to achieve 

his goal and such attackers are usually harder to stop or to track since no logic 

is involved. On the contrary, rational attackers can be more predictable in the 

way the attacks are led and which specific targets are reached. Consider the 

example of a DoS attack in Cloud Computing: a malicious attacker may want to 

destabilize an organization without any claim or consistent reasons to motivate 

his actions: he simply wants to be famous. However, a rational attacker could be 

a competitor desiring to create a commercial threat or an organization leading a 

DoS or DDoS against a company or a government for ideological reasons. 

3. Active vs. Passive. Active attackers lead attacks by consciously or 

unconsciously sending packets or signals while passive attackers may simply 

eavesdrop. Victims may not even be aware that their machine is under the 

control of a master machine that forces it to contribute to the attack (a botnet is 

such an example). In DoS and DDoS attacks, this defines the difference between 

the zombies and the master entity (active attacker): both participate in the 

attack, but zombies are never aware that they are vehiculing an attack. In the 

context of Cloud Computing, an active attacker would have taken control of one 

or several VMs inside the Cloud network, for instance, and would send huge 

amounts of traffic or malformed packets to a specific host or subnet in the 
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network. Hence, a legitimate user such as a zombie whose VM was taken over 

by a master attacker, also performs the attack. A passive attacker consists on 

sniffing traffic to discover vulnerable links for future exploitations. In addition, 

passive attackers may launch eavesdropping attacks to capture the 

communication. 

4. Local vs. Extended. The scope of the attacker depends on the number of 

machines he can control. More than just a number, it really is about how those 

machines are linked together and scattered across the network. An attacker 

controlling thousands of machines outside the cloud to perpetrate a DoS or 

DDoS would be considered an extended attacker. On the other hand, an attacker 

in the Cloud, with one or several entities, would be described as local. 

2.2.1 Infrastructure level attacks 

Network bandwidth, routing equipment and computing resources are considered 

infrastructure. In this attack, the intruder attempts to overwhelm the resource 

capacity of a private cloud’s infrastructure by sending a large number of fake 

requests, which exploit the limitation of a specific application to cause 

performance degradation or ultimately crash remote servers. Some commonly 

used infrastructure level attacks are listed below. 

a) Direct: A direct Denial-of-Service attack is characterized by an explicit 

attempt to prevent the legitimate use of a service. A Distributed Denial-of-Service 

attack deploys multiple attacking entities to attain this goal. A DDoS attack 

includes an overwhelming quantity of packets sent from multiple attack sites to 

a victim site. These packets arrive in such a high quantity that some key resource 

at the victim is quickly exhausted. The victim either crashes or spends so much 

time handling the attack traffic that it cannot attend to its real work. 

b) Reflection/Indirect: It is a type DoS attack in which multiple compromised 

victim machines unwillingly participate in a DDoS attack. Flashes of requests to 

the victim host machines are redirected or reflected from the victim hosts to the 

target. Some reflection or indirect based attacks are mentioned below. 
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DNS (Domain Name Service) reflection or amplification attacks use botnets that 

send a large number of DNS queries to open DNS resolver using spoofed IP 

addresses of victims to produce an overwhelming amount of traffic with very little 

effort. Thus, such an attack can do a lot of damage as it is difficult to stop this 

type of attack at an early stage. 

SSDP (Simple Service Discovery Protocol) reflection attacks are created using the 

Simple Object Access Protocol (SOAP) to deliver control messages to universal 

plug and play (UPnP) devices and to communicate information. These requests 

are created to elicit responses, which reflect and amplify a packet and redirect 

responses towards a target. 

NTP (Network Time Protocol) reflection attacks are created by the attacker to send 

a crafted packet in which requests for a large amount of data are sent to the 

host. NTP is used to synchronize the time between client and server. 

In an SNMP (Simple Network Management Protocol) reflection attack, the culprits 

send out a huge number of SNMP queries with forged IP addresses to numerous 

victim machines. SNMP is a network management protocol for configuring and 

collecting information from servers. 

CHARGEN (Character Generator Protocol) is often misused when attackers use 

the testing features of the protocol to create malicious payloads and reflect them 

by spoofing the address of the source to direct them to the target. CHARGEN is 

a debugging and measurement tool and also a character generator service. 

TCP SYN flood: Manipulating the 3-way handshake in a TCP connection, an 

attacker sends a lot of ordinary SYN segments to fill up resources causing a 

service to be denied for legitimate connections. 

UDP flood: In this attack, massive amounts of UDP packets are sent to random 

ports on the victim side. Sometimes ports remain open without knowledge of 

administrators, causing the server to respond. A response to each UDP packet 

with an IMCP unreachable reply to the spoofed source IP address makes the 

situation worse by overwhelming the network environment of the victimized IP 

addresses. 
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ICMP flood: ICMP flood, occasionally referred to also as a Smurf attack or Pin 

flood, is a ping-based DoS attack that sends large numbers of ICMP packets to 

a server and attempts to crash the TCP/IP stack on the server and cause it to 

stop responding to incoming TCP/IP requests. 

Crossfire Attack: A botnet can launch an attack with low intensity traffic flows 

that cross a targeted link at roughly the same time and flood it. For example, a 

botnet controller can compute a large set of IP addresses whose advertised routes 

cross the same link, and then direct its bots to send low-intensity traffic towards 

these addresses. This type of attack is called the Crossfire attack. 

2.2.2 Application level attacks 

Application layer DDoS attacks continue to grow in both complexity and 

prevalence. 

Common application-layer DDoS attack types: When a heavy amount of 

legitimate application-layer requests or normal requests that consume large 

amounts of server resources or high workload requests across many TCP 

sessions are sent to the server, they can cause common application layer DDoS 

attacks. 

HTTP flood attacks: Some application level DDoS attacks come in the form of 

HTTPGET floods. HTTP request attacks are those attacks where attackers send 

HTTP GETs and POSTs to Web servers in an attempt to flood them by consuming 

a large amount of resources. The HTTP POST method enables attackers to POST 

large amounts of data to the application layer at the victim side, and it happens 

to be the second most popular approach among the application layer attacks. 

2.3 Probable Impact of DoS/DDoS on Cloud 

As mentioned earlier, the cloud computing market continues to grow, and the 

cloud platform is becoming an attractive target for attackers to disrupt services 

and steal data, and to compromise resources to launch attacks. Miao et al. [12] 

present a large-scale characterization of inbound attacks towards the cloud and 

outbound attacks from the cloud using three months of NetFlow data in 2013 
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from a cloud provider. They investigate nine types (TCP SYN flood, UDP flood, 

ICMP flood, DNS reflection, Spam, Brute-force, SQL injection, Port scan, and 

Malicious Web activity (TDS)) of attacks ranging from network level attacks such 

as DDoS to application-level attacks such as SQL injection and spam. Cloud 

computing features a cost-efficient, “pay-as-you-go” business model. A cloud 

platform can dynamically clone virtual machines very quickly, e.g., by 

duplicating a gigabyte level server within one minute. Despite the promising 

business model and hype surrounding cloud computing, security is the major 

concern for a business that is moving its applications to clouds. When a DDoS 

attack is launched from a botnet with a lot of zombies, Web servers can be 

flooded with packets quickly, and memory can be exhausted quickly in an 

individual private cloud. So, we can say that the main competition between DDoS 

attacks and defenses is for resources. The increase of DDoS attacks in volume, 

frequency, and complexity, combined with the constant required alertness for 

mitigating Web application threats, has caused many Website owners to turn to 

Cloud-based Security Providers (CBSPs) to protect their infrastructure. In one 

recent analysis, DDoS attacks are considered one of the top nine threats to cloud 

based environments. This report concludes that cloud services are very tempting 

to DDoS attackers who now focus mainly on private data centers. It is safe to 

assume that, as more cloud services come into use, DDoS attacks on them will 

become more commonplace. Some key findings are provided by InfoWorld20, in 

2013. 

 94 percent of data center managers reported some type of security attacks. 

 76 percent had to deal with distributed denial-of-service (DDoS) attacks 

on their customers. 

 43 percent had partial or total infrastructure outages due to DDoS attacks. 

 14 percent had to deal with attacks targeting a cloud service. 

Unfortunately, the counterparts of clouds, e.g., client-server and peer-to-peer 

computing platforms, do not usually have sufficient resources to beat DDoS 

attacks. The public cloud infrastructure stands a better chance because a public 

cloud usually has a lot of resources that make it easy to handle a rapid increase 
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in service demands to counter the attack dynamically. It is almost impossible to 

shut down such clouds by attacking them. But, if an intense DDoS attack occurs 

on customers of an individual private cloud like a data center with limited 

resources, it cannot escape from the DDoS attack, and it becomes a battle of 

survival using all the resources there are to confront. The essential requirement 

to defeat a DDoS attack is to allocate sufficient resources to mitigate attacks no 

matter how efficient our detection and filtering algorithms are. 

Cloud Service Providers (CPS) usually provide cloud customers two resource 

provisioning plans: short-term on-demand and long-term reservation. Giant 

cloud providers, like Amazon EC2 and GoGrid, provide both plans. If a customer 

chooses the first plan, it is charged based on resources used. This business 

model for resources is vulnerable to an Economic Denial of Sustainability (EDoS) 

attack. This kind of attack also disturbs the service of clouds that allocate 

resources based on spot instance. On the other hand, if a customer chooses the 

reservation plan, it makes a prior reservation for resources for the maximum 

usage for the business. In other words, the reserved resources for the application 

are limited from start. As a result, a threat of DDoS attack remains. 

Some possible examples of DDoS attacks in cloud environments are Smurf 

attack, IP spoofing attack, Tear drop attack, SYN flood attack, ping of death 

attack, Buffer overflow attack, LAND attack, etc. From many news report we can 

state that large-scale IoT-enabled DDOS attacks will continue to dominate 

enterprise security. Darwish et al, discuss DDoS attacks as attacks that target 

the resources of these services, lowering their ability to provide optimum usage 

of the network infrastructure. Due to the nature of cloud computing, the 

methodologies for preventing or stopping DDoS attacks are quite different 

compared to those used in traditional networks, and new approaches published 

till now are usually adapted versions of older approaches. In the above 

mentioned papers, we can find descriptions about the effect of DDoS attacks on 

cloud resources and recommend practical defense mechanisms against different 

types of DDoS attacks in the cloud environment. 
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2.4 DDoS Defense Scheme 

Defense mechanisms proposed in research literature against DoS (and DDoS) 

attacks can be divided into three main categories [17] : 

1. Attack Prevention 

2. Attack Detection 

3. Attack Reaction 

1) Attack Prevention: Attack Prevention aims to preempt attacks before they 

cause damage. This approach is effective against DoS attacks in which the 

source address of attack traffic is spoofed to hide the real source of the attack 

traffic and exploit protocol vulnerabilities. The main exponents of this approach 

is Ingress/Egress Filtering, Router-based Packet Filtering (RPF) and Source 

Address Validity Enforcement (SAVE). 

Ingress filtering involves filtering the traffic coming into a local network, and 

egress filtering involves filtering the traffic leaving a local network. The purpose 

of ingress/egress filtering is to only allow traffic to enter or leave the network if 

its source addresses are within the expected ip address range in the network. 

Thus, as a result of deploying ingress/egress filtering, spoofed ip packets with 

source IP address not within the network are dropped, thereby mitigating the 

effect of DoS attacks. 

RPF extends ingress filtering to the core of the Internet. It is based on the 

principle that for each link in the core of the Internet, there is only a limited set 

of source addresses from which traffic on the link could have originated. In the 

event that an unexpected source address appears in an ip packet on a link, we 

can infer that the source address has been spoofed, and hence filter the packet. 

SAVE uses a protocol that can provide routers with information needed for 

source address validation. SAVE messages propagate valid source address 

information from source location to all destination, allowing each router along 
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the way to build an incoming table that associates each incoming interface of the 

router with a set of valid source address blocks. 

The techniques described above involve changes in network infrastructure and 

protocols. Hence, unless policies or regulations are implemented for their 

enforcement, it is difficult to deploy such techniques. 

2) Attack Detection: There are two main categories of DoS attack detection 

techniques - DoS-attack-specific detection and anomaly detection. DoS-attack-

specific detection utilizes characteristics of DoS attack traffic. Since DoS traffic 

is generated by the attacker, it does not typically follow traffic control protocols. 

There is an imbalance in the traffic between source and victim since the victim 

is not able to handle all incoming packets. This is not the case for normal traffic. 

MULTOPS [4] is based on the assumption that packet rates between two hosts 

are proportional during normal operation. 

It monitors traffic rates in up and down links to detect disproportional traffic 

between hosts in order identify DoS attacks. TOPS [2] uses a similar approach 

but is more memory efficient on account of use of hashing scheme with a small 

set of field length lookup tables. Other methods such as [14] define a statistical 

model of normal traffic and then identify traffic which does not match this model 

to be attack traffic. 

Anomaly detection builds a model of normal traffic using training data. If the 

monitored traffic is statistically different from the model, then it can be inferred 

that a DoS attack is in action. The first real-time intrusion detection model was 

proposed in [8]. It detected attacks by monitoring a system’s audit records for 

abnormal patterns of system usage. 

The main drawback of using attack detection techniques mentioned above is that 

depend heavily upon a traffic model which may not be universally applicable. 

Building a traffic model and making online statistical comparison between 

normal and observed traffic is also time-consuming and costly. 
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3) Attack Reaction: The main aim of DoS attacks is to damage the target as 

much as possible. Attackers typically do not disguise the attack since the target 

will be aware of the attack damage eventually. The attack detection techniques 

mentioned attempt to detect an ongoing attack in the minimal possible time. In 

order to minimize the damage caused by DoS attacks, a reaction scheme must 

be employed after an attack has been detected. DoS attacks not only affect the 

end-host victim but also congest the intermediate links between the source and 

the victim. Attack reaction will be most effective if the attack traffic is filtered as 

close to the source as possible. 

Attack reaction techniques can be classified into host-based reaction which 

takes place only at the end host and network-based reaction which takes place 

at intermediate routers (and optionally end-hosts). An example of network-based 

reaction is. It uses an online scheme in which intermediate routers learn a 

congestion signature based on the victim’s IP address and the volume of traffic 

directed towards that IP address. Once a signature has been identified local 

congestion control is filter attack traffic. In addition, a Pushback mechanism is 

used to request upstream adjacent routers to rate-limit traffic matching a 

specified signature. [21], uses a Selective Pushback mechanism that sends 

pushback messages to the routers closest to the attack sources directly by 

analyzing the traffic distribution change of all upstream routers at the target. 

The techniques mentioned above, though effective, require the co-operation of 

routers for their implementation. In many cases, a victim may not have access 

to such routers. In such a scenario, defense mechanism must be implemented 

on the end-host alone. While such techniques cannot completely stop an attack, 

they can mitigate the damage caused. An example of such a technique is SYN-

cookies using which a host does not need to keep track of half-open connection 

states thereby mitigating the effects of a SYN-Flood. 

Another technique is using system and network interface logs on the host to 

identify IP address from which malicious traffic is originating and then filtering 



32 
 

those using tools such as iptables/net filter. Malicious traffic can also be 

identified using a history maintained by the host. 

2.5 DDoS Defense deployment location  

For the detection and prevention of DDoS attack, four types of designs were 

proposed by the researches. Each of the designs have their own benefits and 

drawbacks in the detection and prevention of the different types of attacks on - 

 

Figure 2.5: DDoS defense deployment locations [18] 

the cloud system. Here below we explained the design of the defense mechanisms 

from the state of arts. From our analysis, our defense mechanism also uses one 

of the defense system design for our DDoS flooding attack detection in the cloud 

system. But, our analysis is limited and considers only the defense mechanisms 

to the cloud systems. In the cloud system mostly attacks are generated from the 

inside network or external networks. So, the locality of deployment, for DDoS 

defense the design of the defense system should have to consider this scenarios. 
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There are four defense systems are designed: source based, network based, 

destination and distributed based. When a DDoS attack is detected, and there 

is nothing that can be done expect manually fix the problem and disconnect the 

victim system from the network. DDoS attacks blocks a lot of resources such as 

CPU power, bandwidth, memory, processing time, etc., on the paths that lead to 

the targeted system. The main processing time, etc., on the paths that lead to 

the targeted system. The goal of any DDoS defense mechanism is based, and 

distributed form of attack defense mechanisms.  

2.5.1 Source-end DDoS attack defense mechanism 

A generic architecture of source-end preventive schemes is shown in Figure 2.6. 

This architecture is similar to the victim-end detection architecture. Here a 

throttling component is added to impose rate limit on outgoing connections. The 

mechanism. The observation engine compares both incoming and outgoing 

traffic statistics with some predefined normal profiles. 

 

Figure 2.6: Generic architecture for source-end based DDoS defense [8] 

Detecting and stopping a DDoS attack at the source is the best possible defense. 

It prevents the possibility of flooding not only on the victim side, but also in the 

whole intermediate network. The main difficulty with this approach is that, 
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detecting DDoS attacks at source end is not easy. This is because in these 

attacks, sources are widely distributed and a single source behaves almost 

similarly as in normal traffic. Another problem is the difficulty of deploying 

system at the source end [8]. 

2.5.2. Access point deployment 

Access point deployment is usually deployed in the front-end, back-end or each 

virtual machines (VMs) in the cloud computing environment. The front-end is 

typically the administrative domain of the cloud service that serves as an 

interface between the cloud user and the various cloud components. In 

Eucalyptus, for example, this is referred to as the cloud controller, while in Xen, 

it is known as dom0.DDoS defenses deployed at the access point distinguish 

legitimate packets from malicious packets before granting access to the cloud 

computing resource and services. Key limitation of this deployment is that the 

access point is generally not the most suitable place for filtering or rate-limiting 

as bandwidth might be saturated. However, this approach is most commonly 

deployed due to the ease of deployment, and SBTA (Yang et al., 2012) is one 

popular example.  

2.5.3 Intermediate-network defense mechanism 

The intermediate network defense scheme balances the trade-offs between 

detection accuracy and attack bandwidth consumption, the main issues in 

source-end and victim-end detection approaches. Figure 2.7, shows a generic 

architecture of the intermediate network defense scheme, one that can be 

employed in any network router. Such a scheme is generally collaborative in 

nature and the routers share their observations with other routers. Like a 

source-end scheme, these schemes also impose rate limits on connections 

passing by the router after comparing with stored normal profiles. 
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Figure 2.7: Generic architecture for intermediate network-based DDoS defense 

mechanism [8] 

Detection and traceback of attack sources are easy in this approach due to 

collaborative operation. Routers can form an overlay mesh to share their 

observations. The main difficulty with this approach is deployability. To achieve 

full detection accuracy, all routers on the Internet will have to employ this 

detection scheme, because unavailability of this scheme in only a few routers 

may cause failure to the detection and traceback process. Obviously, full 

practical implementation of this scheme is extremely difficult by reconfiguring 

all the routers on the Internet [8].Such a deployment can be effective but it is 

impractical in a cloud computing environment as the nodes are not controlled 

by the same provider and are in different administrative domains. This could, 

perhaps, work in private cloud deployment. 

2.5.4. Distributed-end or Hybrid Defense architecture 

Attack detection and mitigation at distributed ends can be the best strategy 

against DDoS attacks. The hybrid defense mechanisms are deployed at (or their 

components are distributed over) multiple locations such as source, Victim or 

intermediate networks and there is usually cooperation among the deployment 
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points. The core-end is best to rate-limit all kinds of traffic whereas the victim-

end can accurately detect the attack traffic in a combination of legitimate and 

attack packets. Therefore, distribution of methods of detection and mitigation at 

different ends of the network can be more beneficial [19]. MTF (iyengar et.al, 

2014) is an example of a distributed defense deployment. 

2.6 Traditional and SDN Networks 

Software defined networking is a promising technology which has an ability to 

view the entire network. The network infrastructure namely the data planes for 

forwarding traffics from cloud network administrative domain to the other 

remote domain. The controller on top of this network infrastructure domains ma 

nages the flow of traffic with the configure rules. Employing this methodology, 

helps us to design a simplified version of a DDoS attacks mitigation solution. 

The next section we will explain some of the concepts and features of this 

methodology. 

2.6.1 SDN: A New Network Paradigm 

SDN is a framework that separated the data plane and the control plane of the 

network switches and moves the control plane to a centralized application knows 

as Network controller. The network controller maintains the entire network thro 

ugh a vendor-independent interface called as OpenFlow, which defined the low-

level packet forwarding behaviors in the data plane. 

The application layer will have a single view of the network through the control 

layer and the whole system looks like one logical switch. The control layer is 

where the controller abstracts the network infrastructure from the application 

layer. By using the control layer, any configurations and modifications can be 

done in real-time. In the infrastructure layer, there is no need for each device to 

learn different protocols and the only task left is forwarding. 
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Figure 2.8:  Monolithic vs Software-Defined Network Paradigms 

In this new network architecture, control is decoupled from the network devices, 

and is directly programmable. The network devices become simple packet 

forwarding devices, which receive control instructions from a logically centralized 

entity known as the controller. By logically centralized we mean that control logic 

is to be designed and operated as if it was a centralized application, rather than 

a distributed state. However, the controller itself may be a distributed system, 

as is in fact the case with production SDNs, such as Google’s private Wide Area 

Network (WAN). 

Current networks have no powerful control plane abstractions. SDN aims to 

solve this problem. The control plane is redefined as three abstractions: a 

forwarding abstraction, a state distribution abstraction and a global 

management abstraction. The forwarding abstraction allows a software 

controller to communicate directly with the data plane, using a common 

Application Programming Interface (API) to program the network hardware. 
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Figure 2.9 :  SDN architecture and its fundamental abstractions [20] 

In SDNs, the materialization of this abstraction is most commonly done using 

Open-Flow. The state distribution abstraction shields control programs from the 

vagaries of distributed state. Thus, management applications no longer have to 

worry about dissemination and collection of state. The logically centralized 

controller accomplishes the state distribution abstraction. With the global 

management abstraction the network has a logical appearance and can be 

managed as a single logical switch, rather than having to program each 

individual network device one at a time. The network becomes divided in three 

tiers, as seen in Figure 2.11. The switches —now “dumb” packet forwarding 

devices are located in the data plane tier; the controller and the network 

applications are in the control plane and application tiers, respectively. 
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2.6.2 OpenFlow 

OpenFlow [21] is the most common forwarding abstraction in SDNs. It is the first 

standard communications interface defined for the exchanging of information 

between the controller and the packet forwarding devices. While it is not 

mandatory to use OpenFlow, it is nowadays the most common standard used for 

the communication between SDN controllers and packet forwarding devices. 

OpenFlow started out as a way for researchers to run experimental protocols in 

networks used every day. As explained before, networks today are static. A lot of 

the algorithms that are used, as well as functions, are fixed in hardware, in the 

network device’s chips. This results in a high barrier of entry for new ideas, due 

to the enormous installed base of equipment and protocols. Commercial 

solutions, meaning proprietary equipment, are closed and inflexible. Research 

solutions on the other hand, either have insufficient performance or are too 

expensive. OpenFlow, however, attempts to have switches support a broad range 

of applications, with high performance and low-cost implementations, all while 

being consistent with vendor’s need for closed platforms.  

OpenFlow operates on the switches’ flow tables. While each vendor’s flow table 

maybe different, OpenFlow exploits a common set of functions that run in many 

network devices. 

The goal is to provide an open protocol to program the flow table indifferent 

network devices. This way, network traffic can be partitioned into production 

traffic and research traffic. Flows can be controlled, the paths that packets follow 

can be chosen, as well as the processing they receive. OpenFlow can be compared 

to the instruction setoff a Central Processor Unit (CPU), since it specifies basic 

primitives that can be used by external software (in SDN, the controller) to 

program the forwarding plane of the network devices. 
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Figure 2.10: OpenFlow protocol architecture 

We present the three building blocks of an OpenFlow switch in Figure 2.11: a 

flow table, with an action associated with each flow entry; a secure channel 

connecting the switch to a remote controller; and the OpenFlow Protocol, which 

provides an API for the controller to communicate with the switch. The flow table 

 

Figure 2.11:  Flow table entries for matching fields [22], [23]  
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is populated with flow entries of the form h header; action i, as decided by the 

remote controller. Packet headers are compared with the header field of flow ent- 

ries on the switch. If there is a match, the action associated with the matched 

entry is performed on the packet. The switch does not have to know what it 

means in term of distributed state, it only knows what it is supposed to do 

2.7 OpenFlow Operation  

Whenever any data packet from end host arrives at an OpenFlow-enabled switch, 

the switch will forward this packet to a control plane for verification. The function 

of switch is to encapsulate and forwards the first packet arrives from end host 

to an OpenFlow controller on secure link using OpenFlow Protocols (OFP). This 

in turn enables the controller to decide whether the flow should be added to flow 

table of switches or to discard. OpenFlow switch consists of flow table and secure 

channel to communicate with OpenFlow controller using OpenFlow Protocols 

(OFP). Each data flow through the network must first get permission from the 

OpenFlow controller in order to verify whether communication is permissible by 

network policies or not. If controller allows the flow than it will compute the route 

and inserts the flow entries in the flowtable of an OpenFlow switch. The flow 

table entries done by controller have three fields as shown in Figure 2.12. Once 

an entry is done by controller in a switch, all the succeeding packet arrives from 

hosts to a switch will match the entry and follow the same path dictated by a 

controller. 

If entry not found in the flow table than either switch will discard the packet or 

it will send to the controller for further processing based on controller decision. 

A flow diagram of arrived data packet processing in OpenFlow-enabled switch is 

explained in [8]. 
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 Figure 2.12: Basic OpenFlow Operations 

2.8 SDN Controllers 

Controllers offer a uniform and centralized programmatic interface to the entire 

network. Much like operating systems provide controlled access to high-level 

abstractions for the resources of a computer system, thus facilitating program 

development, the controller software is a “network operating system”, providing 

the ability to observe and control a network. The interface offered must be 

general enough to support a broad spectrum of network management 

applications. 

The controller does not manage the network itself; applications implemented on 

top of it perform the actual management. The controllers form the control plane 

of the SDN network and the applications form the management plane. For 

example, the controller merely adds and removes flow-entries from the switches’ 

flow tables on behalf of the network management applications. 
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Some concerns about availability and scalability may arise when devising a 

network architecture based on a centralized controller. However, enough 

resilience can be achieved by applying standard replication techniques. In fact, 

the term logically centralized is an oversimplification. What is important to note 

is that the distribution model is our choice to make, and not the network’s 

choice. Thus, the controller can be a distributed system built and configured 

based on the specific requirements of scalability, resiliency, availability, etc.  All 

that is needed to maintain is a unified network view. As with any distributed 

system, the choice in consistency model offers a tradeoff between performance 

and overhead, which influences SDN scalability. Furthermore, the OpenFlow 

protocol allows for a switch to be controlled by more than one controller, for 

increased performance and resilience. 

Controllers present programs with a centralized programming model, allowing 

applications to be written as if the entire network were present on a single 

machine. This is made possible by logically centralizing the network state. 

Controllers also allow programs to be written in terms of high-level abstractions, 

such as users and host names, instead of low-level configuration parameters, 

like IP and MAC addresses. Management rules can be enforced independent of 

the network topology; provided the controller maintains mappings between these 

abstractions and the low-level configurations.  

2.9 SDN for cloud computing 

SDN has many distinct features as aforementioned, and this distinct features 

offer many advantages to designing DDoS defending application on the controller 

[24]. 

Separation of the control plane from the data plane: SDN decouples the data plane 

from the control plane, and thus makes it possible to easily establish large scale 

attack and defense experiments. The high configurability of SDN offers clear 

separation among virtual networks, permitting experimentation in a real 
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environment. Progressive deployment of new ideas can be performed through a 

seamless transition from an experimental phase to an operational phase. 

A centralized controller and view of the network: The controller has network-wide 

knowledge of the system and global views to build consistent security policies 

and to monitor or analyze traffic patterns for potential security threats. 

Centralized control of SDN makes it possible to dynamically quarantine 

compromised hosts and authenticate legitimate hosts based on the information 

obtained through requesting end hosts and remote authentication dial in user 

service (RADIUS) servers for users’ authentication information and system 

scanning during registration. 

Programmability of the network by external applications: The programmability of 

SDN supports a process of harvesting intelligence from existing intrusion 

detection systems and intrusion prevention systems. More intelligent algorithms 

can be flexibly used based on different DDoS attacks. 

Software-based traffic analysis: Software-based traffic analysis greatly enables 

innovation, as it can be performed using all kinds of intelligent algorithms, 

databases, and any other software tools. 

Dynamic updating of forwarding rules and flow abstraction: Dynamic updating of 

forwarding rules assists in the prompt response to DDoS attacks. Based on the 

traffic analysis, new or updated security policy can be propagated across the 

network in the form of flow rules to block the attack traffic without delay. 

By Appling the above features of the OpenFlow protocol the proposed defense 

mechanism is deploy a flexible, scalable and very simple cost effective system as 

an application for the cloud computing environment. 
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Chapter 3 

Related Works 

This Chapter reviews some of the works that have been done on securing cloud 

infrastructure from possible attacks and assuring reliability of cloud services. 

Even though cloud computing is in its infant stage, some researches have been 

done in the field of security, particularly on DoS attacks in the cloud. Both DoS 

and DDoS attacks are serious threats to the Internet. Consequently, it is 

necessary to have a more intricate mechanism to determine the malicious traffic 

from the legal ones. In this regard, different detection and defense algorithms 

have been introduced in the literature for cloud computing and OpenFlow 

networks. 

In this chapter, we will review some of the previous works on DDoS attacks in 

the cloud using SDN methodologies. We also, try to analyze mitigation as well as 

detection mechanisms of DDoS attacks in previous works.  

3.1 Existing DDoS attack Detection and mitigation works 

It is very interesting to know that implementing SDN architecture is proposed 

by, Seungwon shin [25] as a method for the intrusion detection in cloud 

environment. In the proposed scheme OpenFlow is integrated into the network 

structure to control the network flows and diverts the traffic through a path that 

it is inspected by the preinstalled security devices (e.g. network intrusion 

detection system (NIDS), firewall, etc.). Employing the SDN infrastructure will 

simplify the network operator’s job in a huge cloud infrastructure. The changes 

in the flow directions and network policies can easily be performed by running 

simple scripts on the controller that will install new flow entries on the switches. 

The controller itself is not involved in the abnormal activity detection but it is 

responsible for calculating the best and shortest paths that will guide the traffic 

through the NIDS. 
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In a similar approach Snort, an Intrusion Detection Systems (IDS), is used to 

monitor network traffic and measures to identify mischievous activities in the 

network. Intrusion prevention System (IPS) is an IDS that has the power to 

spontaneously take action towards the suspect events upon attack detection. 

Tianyi Xing et al. [26] have implemented an IPS called snortflow by integrating 

Snort and OpenFlow modules. In this approach the cloud networking 

environment is dynamically reconfigured utilizing the power of OpenFlow 

switches in real time to dynamically detect and prevent the attacks.  

Kreutz et al. [20] revel the need of building protected and trustworthy SDNs in 

the design phase. Bringing replication, diversity and dynamic switch association 

to SDN control platform design are the main arguments described as mitigation 

methods for several threat vectors that enable the exploit of SDN vulnerabilities. 

In the proposed example by implementing a number of replicated controllers the 

backup controller will take over if one controller malfunctions. The controllers 

must be designed with interoperation capabilities. Meanwhile the switches must 

have the ability to dynamically associate to the controllers. To prevent 

simultaneous attack on all controllers, controllers’ diversity must be considered 

to improve the robustness of the system. FRESCO [27] is an extension of this 

work that makes it easy to create and deploy SDN security services.  

FRESCO is a framework proposed for easier design of secure SDN networks. 

FRESCO presents an OpenFlow security application development framework 

that assists in prototyping new compassable security services in OpenFlow 

networks. FRESCO offers a library of reusable security modules that can detect 

and mitigate different attacks. The scripting API offered by FRESCO enables the 

rapid design and development of these modular libraries. Essential security 

functions (e.g. firewalls, IDS, attack deflector, etc.) can be simulated by assigning 

values to the interfaces and connecting the necessary modules. The modules can 

produce flow rules used to enforce the security directives. 
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B. Wang et al. (2015) [6] proposes a DDoS attack mitigation architecture that 

integrates a highly programmable network monitoring to enable attack detection 

and an adjustable control structure to allow fast and specific attack reaction. To 

cope with the new architecture, paper proposes a graphic model based attack 

detection system that can deal with the dataset shift problem. The simulation 

results show that the architecture can effectively and efficiently address the 

security challenges brought by the new network prototype. 

Chu,Yu Hunag et.al (2010) [28] proposes an OpenFlow DDoS Defender that 

monitors flows on an open flow switch. If the number of packets received in 5 

seconds exceeds 3000 then the number of packets will be studied in per second 

duration. If the number packets per second exceed 800 for 5 continuous times 

then an attack is detected and the DDoS defender will start dropping the 

incoming packets until the flow entry times out. 

S.A. Mehdi, (2011) [29] argue that network security tasks should be delegated to 

the home and office networks instead of ISPs. In the presented work security 

policy implementation is delegated to the downstream networks. Four prominent 

traffic anomaly detection algorithms, threshold random walk with credit based 

rate limiting, rate-limiting, maximum entropy detector and Network Traffic 

Anomaly Detector (NETAD) are implemented in NOX controller and it is observed 

that the anomaly detection can function well at line rates without any 

performance degradation in the home network traffic. It is suggested that this 

approach can monitor the network activities without the need of the excessive 

sampling. 

K. Giotis et al. (2013) [30] proposed a combined mechanism comprised of data 

gathering with sampling, implemented with the use of the sFlow protocol and 

anomaly detection algorithm implemented by entropy-based algorithm. Their 

mechanism eliminates the flow statistics collection through forwarding tables’ 

lookup and reduces the required communication between switches and OF 

controllers, thus easing the control plane overloading.  
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R. Braga (2010)  [31] propose a DDoS detection method built into the NOX 

controller based on Self-Organizing Maps (SOM). SOM is an unsupervised 

artificial neural network trained with the features of the network flow that is 

periodically collected  

 

Figure 3.1: Detection Loop Operation [31] 

from the switches. The traffic is classified as either normal or abnormal based 

on the SOM pattern. This detection method as shown in figure 3.1, runs in three 

modules running periodically within a loop in the NOX controller:  

 The flow collector module queries the switches periodically for their flow 

tables. 

 The feature extractor module extracts the main features that are studied 

for DDoS attack detection and gathers them in 6-tuples. The main 

elements that are calculated based on the collected features and will be 

studied in the next module for the traffic classification include average of 

packets per flow, average of bytes per flow, average of duration per flow, 

percentage of pair flows, growth of single-flows and growth of different 

ports.  

 The classifier module must analyze and decide whether the given 6-tuple 

corresponds to a DDoS attack. 
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Querying the switches periodically especially in the large scale cloud architecture 

with large number of switches will put an extreme overhead on the system and 

will eventually affect the performance of the controller. Processing that high 

volume of flows in the flow tables is another issue that must also be well-thought-

out.  

Lee et al.(2013) [32] propose a collaborative defense model, called coDef, against 

large scale link-flooding attacks. CoDef consists of two complementary 

mechanisms: collaborative routing and collaborative rate control. They introduce 

a specialized server, called the route controller, into each participating AS, which 

has complete knowledge of the network topology by participating in the intra-

domain routing protocol (i.e. IGP). The route controller is implemented in an SDN 

architecture. In collaborative routing, a congested router sends a congestion 

notification message to its route controller. Then, are route control message is 

exchanged between route controllers placed in individual ASs to instruct the 

source ASs to reroute their traffic, which relieves congestion at that router. The 

collaborative rate control mechanism helps to distinguish between bot-

contaminated and uncontaminated ASs. In this case, a router that is subject to 

a flooding attack sends rate-control requests to all the ASs to establish the 

service priorities of their out-going flows (i.e. high-priority flows, low-priority 

flows, and flows to be filtered). 

In Xuan, Bettati and Zhao (2001) a collaborative DDoS defense system is 

proposed in which routers act as gateways, detecting DDoS attacks locally and 

identifying and dropping packets from misbehaving flows. Gateways are installed 

and communicate only within the source and the victim domains, thus providing 

cooperative defence of a limited scope. 

Sumanth M. Sathyanarayana (2011), demonstrates that SDN can be leveraged 

to mitigate DDoS attacks efficiently using the pushback technique with their 

Frenetic mechanism. Two daemons are implemented in the Open-Flow 

controller: a pushback daemon and a rate-limiter daemon. The use of the 
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OpenFlow controller prevents pushback messages from being sent by the 

routers, and all communications are handled by the central controller. 

Another a Collaborative DDoS defending system is pushback. Pushback has two 

components, Pushback [33] and Aggregate-Based Congestion Control (ACC). 

Pushback is the routers in the system assume that the congestion of local packet 

queue is the sign of DDoS attack and take action to rate limit the identified 

aggregates which are responsible for queue congestion according to local policy. 

If the congested router cannot control the aggregate itself, it issues a rate limit 

request to its immediate upstream neighbors who carry the aggregates traffic to 

apply rate limiting to specified excessive flows. These requests will be propagated 

upstream as far as the identified aggregates have been effectively controlled. This 

approach requests all the routers on the path of aggregate traffic be augmented 

with the pushback capability. 

Local ACC is triggered when the traffic drop rate at the queue exceeds from the 

predefined value of 10%. ACC attempts to identify the aggregate traffic 

responsible for this series congestion.it then limits the rate of the traffic 

probabilistically dropping from this aggregate until the drop rate reduces below 

10%. The amount of packet dropping depends on how much traffic exceeded the 

target bandwidth. ACC drops the excess traffic from its identification aggregates 

until the drop rate at the output queue is below the predefined level. ACC is not 

able to distinguish between the legitimate and attack traffic within an aggrate.it 

drops legitimate traffic that belongs to the aggregate as well. 

Our work is related to this approach. The pushback messages are the (defense) 

rules that would be added to the switches by the controller. The "Preferential 

Dropping phase of the Pushback" mentioned by [33]. (Ioannidis, 2001) is 

implemented in this work, in which anomalous nodes are removed first from the 

flow table of the switch next to the victim, and then successively on all the 

switches, one after the other, from the victim node to the malicious node. On the 

other hand, the approach presented here does all the calculations at the 
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controller and makes the decisions quickly. The mitigation strategy presented in 

this thesis takes advantage of the fact that the SDN controller has information 

on the complete network and is able to gather statistics of all the ports in it; with 

all this information, a computation can be done using the complete knowledge 

of the network and a quick decision can be made so that the attack that is being 

performed is stopped. 
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Chapter 4 

Proposed Design 

As we discussed in the literature reviewed, DDoS attack is the most serious 

attack in the cloud environment which consumes the resources of the service 

and denying the legitimate user not able to access the service. Implementing 

DDoS attacks on the cloud systems and denying services is easy when it 

compared to the other networks. Most existing congestion control mechanisms, 

are designed to detect and drop packets at or near the destination network where 

the packets have already traversed the network and consumed considerable 

bandwidth. The aggregate traffic at the destination node may consists of too 

much flows. It is more difficult to distingue between legitimate and attacking flow 

there. Therefore, some forms of congestion control mechanism that can identify 

and handle DDoS attack at their source and collaboration between the different 

defense systems for the distributed cloud network systems is required. In this 

regard we design a simple, scalable congestion control mechanism which can 

detect an attack at the source node and a report an existence of an attack on the 

system and performing the attack mitigation process cooperatively. Our defense 

solution is based on Software defined networking technology.  

SDN is a network architecture that decouples the control plane and the data 

plane of network switches and moves the control plane to a centralized 

application called network controller. The network controller is in charge of the 

entire network through a vendor-independent interface such as OpenFlow, 

which defines the low-level packet forwarding behaviors in the data plane. Using 

this methodology researchers can program the network from a higher level 

without concerning the lower level detail of packet processing and forwarding in 

physical devices. As a result, rich functionality in traffic management, routing, 

firewall configuration, load balancing etc., which may pertain to specific flows 

they control, may be easily developed. 



53 
 

Based on this, multiple features and functionalities, of SDN we try to design an 

efficient and scalable mechanism for performing anomaly detection and 

mitigation in SDN architectures. In order to detect DDoS flooding attacks, the 

designed framework requires collaboration between client and server side cloud 

computing network architecture. For this reason, the proposed architectural 

components should have to suit like the real cloud computing environment. And, 

each of the component on the framework should have to coordinate in the traffic 

flow collection, analysis and in the prevention process.  

In this chapter, we present our pushback approach which detects and mitigates 

DDoS attacks at the source node and sends a pushback messages to remote 

node, which the controller in our case, in different network domain. In the 

process of attack detection and mitigation, pushback has two procedures. The 

first one is identifying the flows with high sending rate and secondly, controlling 

those flow’s sending rate in the case of DDoS attacks. So, the goal of our work is 

to detect and drop most of the malicious packets at the source close to the 

attacking sources instead of at the victim network, and sending a pushback 

message to the controller for an attack that is generated from the remote network 

domain. This ensures that the victim host is not seriously congested at the time 

of an attack and allows a minimal level of collateral damage to legitimate traffic. 

Normal client requests are therefore able to reach their destination server even 

though it is under attack. 

In section 4.1 we described an overview of the proposed pushback scheme. 

Section 4.2 also present the proposed components for DDoS attack that is 

targeted to infrastructure of the cloud domains. In this section each of our 

modules are described and explained in detail, and finally we shows the flow of 

information and the procedure how the technique is working. 

4.1 Pushback Overview 

Pushback is a network based solution to prevent DDoS attacks. It contains a 

local aggregates-based congestion control (ACC) mechanism for detecting and 
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controlling an aggregate a single router, and cooperative pushback mechanism 

in which a router can ask adjacent routers to control an aggregate upstream. Let 

us consider figure 4.1 to illustrate the operation of the pushback technique 

under a DDoS attack.  

 

Figure 4.1: A DDoS attack in progress [33] 

 

The victim host is the victim of an ongoing DDoS attack. The thick lines shows, 

the links for attack traffic flow. In contrast, the thin lines mean the links are in 

normal status. Especially, the last link between router R6 and the victim V is the 

bottleneck link which is congested by attack traffic. In this situation, the local 

aggregate congestion control (ACC) at router R6 detects incoming aggregated 

traffic. R6 therefore immediately starts to drop packets belonging to the 
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aggregated traffic. Because there are more than one aggregated traffic flows from 

different links, the pushback technique punishes them equally. Moreover, router 

R6 will attempt to cooperate with its upstream routers (R4 and R5) by sending 

pushback messages to them if the ongoing congestion is still severe. In fact, the 

operation can be recursive. This means that router R4 or R5 will send pushback 

messages to their upstream routers. The recursive operation will not end until 

congestion of the whole network is relieved.  

The design decision in pushback is to separate the rate-limiting and packet 

dropping functionality. When congestion of links are detected, the router checks 

for anomalous aggregates. If anomaly is detected based on congestion signature 

(a congestion signatures is something like a victim node’s IP address or MAC 

address), then rate-liming is done on such aggregates. The packets from those 

aggregates which are not rate limited are sent to the output queue of the router 

as usual. The packets which are dropped both by the rate limiter and the output 

queue are sent to the pushback module for an analysis on the attack estimated 

to be happening. The pushback daemon checks the dropped packets and update 

the congestion signature and adjust the rate limit based on how much 

congestion is still detected in the links. For e.g. even after setting a rate limit, if 

congestion is detected in the links, then either the rate limit has to be increased 

or rate limits have to be applied on the aggregates which might be anomalous. 

The router then send pushback messages to the upstream router in order to let 

them know that due to a particular signature, congestion is happening at the 

links and hence they in turn have to adapt accordingly by limiting their own 

rates and dropping certain packets. 
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Figure 4.2: DDoS flooding attack and Collaborative defense mechanism 

In SDN, controllers can be implemented as centrally to manage the entire 

network and in distributed manner. In this architecture distributed controller 

are implanted on the OpenFlow switches. The Ryu controller is running on top 

of the OpenFlow switches as the OpenFlow controller to function as both the 

pushback daemon and the rate limiter. As a traditional network pushback 

technique pushback messages are not sent by the router as the switches do not 

communicate and all the communication is done by the controller in case of 

OpenFlow networks. Thus, the pushback messages in this case are the rules 
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that would be installed by the controller on the switches, i.e. the communication 

between the controller and the switches. 

On this implementation, the controller will program the switches to behave as 

learning switches, this means that for each MAC address of the hosts, the 

switches will store the port on which they have to forward the packet to reach 

their destination. If a packet arrives and the switch does not have the MAC 

address stored, it will flood all the ports and store the port that replies to the 

packet. 

This control application will also have a graph that is constructed by obtaining 

the network information. This graph is a representation of the network and 

gathers information of nodes and links on it. Of the nodes, we know their type 

(either switch or host) and their identifier on the network. Each node has a list 

of links that contains information of the devices connected to it, the ports each 

link is using and statistics of the data that changes according to the network 

behavior; an example of this are the bytes that it has received or transmitted and 

the latest bytes per second measurement. 

But here, our defense mechanism on Figure 4.2, uses different flow of traffic 

information of its attack detection, mitigation when the communication is takes 

place between a legitimate or attack node and victim node of the cloud network. 

In order to determine an existence of DDoS attack in the network, a simple 

application will periodically query the statistic of the network nodes traffic 

sending rate to the specific node is analyzed from this flow. 

The statistics of interest to our implementation is the bandwidth that each host 

receives, with this information we can calculate the rate at which the host is 

inserting packets to the network, measured by Megabytes per second. Each of 

the host’s traffic sending rate is pre-defined. For this implementation, the 

threshold that separates normal traffic from unusual traffic is set to a static 

value, equal for all the hosts in the network. Any node is allowed to receive the 

normal amount of data. When a node starts receiving larger data that from the 
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predefined threshold it is assumed that there has been a congestion which might 

be due to a DDoS attack. Once congestion seen in the network, the controller 

identifying the switch and the victim node as well as an attacking node. Then 

after the application on the controller install a rule on the switches so that they 

drop the packets coming from that port or a port that a malicious node is 

connected to.  

By doing so, it is able to defend against a bandwidth attack before it can congest 

the network. For the performance of the above stated functionality, we deigned 

a flow monitoring and detection, traceback or an identification of an attack and 

mitigation module on the Ryu controller as a simple application. The property of 

this defensing mechanism is performed locally and globally with the coordination 

between the distributed controllers in the private and public network domains. 

4.2 Cooperative defense components 

This section presents our scheme to identify attack nodes, and blocking the 

DDoS attacks at the source of their OpenFlow switches to minimize the impact 

both to the victim and to the cloud network during the attack time. The proposed 

DDoS mitigation mechanism consists of the three components. The first one is 

flow monitoring component. This component monitoring the rate of an incoming 

traffic and measure the flow thorough the connected ports. The measurement 

and the decision of an attack existence in the network is based on the calculated 

value of the bandwidth. Then the module checks the calculated byte transferred 

is above the predefined threshold it identify the situation to the next trackback 

or identification component. The module identify the victim node and an 

attacking node which carry the attack traffic, and  activate packet filtering at 

selected points.  
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4.2.1. Traffic (flow) monitoring. 

No matter what kind of anomaly detection mechanism, the flow collection is an 

important part to get the statistic data. To get this traffic flow information, from 

active OpenFlow switches we employed a native OpenFlow messages. More 

specifically, the “OFPT_STATS_REQUEST” and “OFPT_STATS_REPLY” OpenFlow 

messages have been implemented. The controller application periodically 

requests from all the switches to report statistics about the packet matches and 

the accesses to their flow tables occurred during the specified time window. Flow 

refers to a set of sequential packets which have the same properties traveling 

through the same network during a period of time[34]. Table 4.1: shows the flow 

entry of OpenFlow switch records the information of a flow naturally [30]. 

Table 4.1 An Example of flow table entries 

 

When the switch, namely the OFA_switch module, receives this message parses 

the flow table and collects all the current flow entries and their counters. All the 

information is included in the OFPT_STATS_REPLY OpenFlow message, which is 

sent back to the controller. When the controller receives replies from all the 

switches presented in the network, update the flow table when a forwarding 

lookup process matches a specific flow entry of the flow table.  

Here we modified the functionality of an OpenFlow controller role for our 

requirement. Our flow monitoring component function as or performing: 

monitoring the flow, detect an attack, and identify an attacker. Once traffic 

received by the controller from the OpenFlow switches, the controller starts the 

monitoring process of incoming traffic. Here the controller keeps measuring each 
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incoming flows’ byte counts for each FLOW and incoming flow PORT to calculate 

deltas for bandwidth usage calculation. Therefore, a record of the flow table’s 

state for the previous time windows should be kept and compared to the current  

Pseudo code 1: Cooperative Flow Monitor 

Setp1: initialize the local threshold parameters, the 

collaborative detection threshold and the interval ΔT; 

Step 2: for each new incoming flow at any router or switch 

Step 3: check the Source IP/MAC of the new flow 

Step 4: Install OpenFlow rules for forwarding the new 

IP/MAC in switch flow  

Step 5: continue the  monitoring  to get the statistics of the 

flow 

Step 6: Check the received byte for this flow and calculate 

bandwidth  

Step 7: Save the bandwidth calculated for this flow as f1, 

f2, f3 ... fn  

Step 8: If the calculated bandwidth for the flow is above from 

the pre-defined threshold  

Step 9: Call the identification module to identify the victim 

whether it is from the local or remote domain.  

Step 10: Calculate no sustained attack counts 

Step 11: If rate for all flows on the links is below safe level, 

increase the sustained no attack count for this link 

Step 12: Call the mitigation function 

Step 13: Go to step 2 

 

Figure 4.3 Cooperative DDoS flow monitoring algorithm 

 

number of bytes for each flow entry, in order to find the corresponding number 

of bytes for the current time widow. The controller maintains different stats for 
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each high rate flow and updates them according to the average bandwidth at the 

victim.  The rate of a flow of bytes is computed with a moving time window of 2 

seconds, which means we are only concerned with the average arrival rate in the 

last 2 seconds. When the controller detects those flows whose arrival rate 

exceeds a threshold, it likely DDoS attack, tires to find out the OpenFlow switch 

where a high rate of traffic is generated from.  

In the normal state, hosts in the network send the traffic with normal rate. And, 

the recipients are process and response the request normally, but in the case of 

an attack the rate of the incoming traffic to the receiving host is maximum. The 

recipient cannot process the request and denying the legitimate users request. 

The monitoring of the rate of the flow and calculate its average in order to 

determine the normal and attack flow. Once the attacking and victim node is 

identified, a new iteration of the method update is executed and the controller 

pass this information to the attack mitigation component for it its measure. 

Figure 4.3 show, the proposed cooperative flow monitoring algorithm. 

 

4.2.2 Attack Identification 

Once an attack has been detected, the next step is identification of an attacking 

node and applying the mitigation technique to provide a service for those of the 

legitimate clients. Finding a potential group of attackers at the source network 

domain controller which has forwarded that group of attack traffic. For an 

identification of an attacking node we used some of the characteristics of attack 

traffics, such as source IP address or MAC address of a host to detect and identify 

attack traffic. The process of identifying a malicious host is based on the report 

of the flow monitoring algorithm. The monitoring algorithm check which host is 

sending malicious traffic that is above the pre-defined threshold. The malicious 

host identification process use, some characteristics of the flow for its attack 

identification. Which is the MAC address of the host. Once the MAC address of 

the tracing back the source of the router where the attacking node is connected 

to it. The control know all of the switches connected in the network through its 
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logical connection mechanism, and it sends flow modification message to the 

switch. The switch applies about the flow information that is decided by the 

controller. To forward a traffic or drop a traffic through some of it network 

interfaces. Identification and response is performed in both of the network 

domains. At the victim side network and at the source of the malicious node 

network. This helps us to identify attacks quickly and stop them as close to the 

source as possible. SDN is providing a better alternative to identify and block 

attacking traffic and a victim node on at the source. Because, the OpenFlow 

controller has an ability to globally view the entire network.  

4.2.3 Attack mitigation on combination of filtering and rate-limiting 

Once an attacking node and a victim host is identified, the next step is to rate-

limit the traffic with the identified attack signature. As soon as the attack has 

been identified, the mitigation module is called. The purpose of the module is to 

rate-limit the traffic with the identified attack signature and to protection in the 

network and especially to the victim by dropping all the packets coming from the 

adversary. The module is responsible to prepare the match fields of the new flow 

entry and emit the “Mitigation” signal to the main controller application to notify 

about the new mitigation rule which will be installed.  

In the scenario of a DDoS attack, the purpose of a rate limit is not only to lower 

the aggregated traffic under the bottleneck link's bandwidth, but also to decrease 

the percentage that attack traffic represents of the whole of aggregated traffic. To 

control attack traffic, we set up the rate limit on the controller which are close 

to the attackers OpenFllow switch interface. For rate-limiting we used the Token 

Bucket Filtering (TBF) queuing discipline, as a very light-weight method of 

allowing packets to pass only up to a specified maximum rate. To limit the rate 

of incoming traffic, we used a TBF rate-limiting mechanism. It triggered to rate-

limit not only the total traffic that arrives at the victim, but also the traffic 

associated with each priority band separately. 
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Limiting the rate of the traffic incoming to the victim node is doesn’t stop the 

problem in the network. But it limit the attack rate in the network. This need  

Pseudo code 2: Mitigation of DDoS attacks 

Step 1: If an attacking node in the local domain 

Step 2: Identify attackers for the victims  and apply an ingress 

policy to each attacker 

Step 3: If an attacking node is in different network domain 

Step 4:  Send current rate limit information to remote controller 

Step 5: If there are no victims, for a sustained duration, try 

remove ingress policies 

Step 6: Identify the set of victims attacked by hosts located in 

the other domain and directly apply policies to the attackers in 

the local domain  

Step 7: Increase the count for confidence in a suspected attack 

by the identified attacker set if applicable 

Step 8: If we have exceeded the confidence count for the local 

attacker set, apply ingress policies to all attackers or to a given 

attacker's switch/port  

Step 9: If the confidence count for an attack exceeds the 

provisioned limit check and if the bandwidth consumption on one 

of the rate-limited links dropped below a "safe" level and remove 

ingress policy 

Step 10: If rate for all flows on the links for this port have been 

below a safe level for the last couple of statistic readings, remove 

the ingress policy             

Step 11: Stop forwarding the attack traffic to the victim network 

 

Figure 4.4 Cooperative DDoS attack defense algorithm 

another better solution compared to this. Filtering of the traffic is impact or 

punish the attacking as well as the legitimate user traffics. Rather than pushing 
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and dropping all the traffic it is better to limiting the attack traffic. Here we 

applied rate limiting the impact. From then on, the protection mechanism is set 

into motion along the informed path. After detecting that the traffic is stable 

enough at the victim end, the last step of the recovery phase will remove rate 

limit at all source-end OpenFlow switches. This lets OpenFlow switches serve 

legitimate traffic fully. The pseudo code of the algorithm is show in Figure 4.4 

4.3 Work Flow 

On the process of the DDoS attack detection, the flow of information from source 

to destination is analyzed using the components on the design. Each of the 

components working in hierarchical manner. One’s input is important to the 

other components for generating a result. The inputs from the flow collector and 

attack flow identification can be used by the DDos mitigation system. Once flow 

is crated to start communication between the server and the client, the flow is 

send to the switch using the OpenFlow message. The flow monitoring algorithm 

starts monitoring the flow of information between the receiver and the sending 

node per-defined with the predefined time duration. The statistics information 

that it monitored from all of the switches that are logically connected to the 

controller, enable us to me to determine if there is any DDoS happening in the 

network. The monitored traffic is calculated every two minute intervals.  For our 

implementation purpose we have made use of a threshold amount of data = 5Mb, 

which every node can handle. When a destination node starts receiving of size of 

traffic that is greater than this predefined threshold amount, it is assumed that 

a DDoS be happening or it might be due to a temporary spike in the traffic. Once, 

it is detected that the threshold value of the data limit is exceeded on a particular 

node, we list out all the source nodes which are sending data to sending node as 

the first anomalous node. The controller starts the tracing procedure for this 

malicious node and switch where the host connected port. The controller have 

an ability to globally view all the switches connected to it and all the hosts’ 

interfaces. Using this behavior the controller can simply identify the attacking 

node in all of the network domains. Then finally the controller installs flow 
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modification message to the switch to stop or rate limit the rate of an incoming 

flow to the victim node. The rate is limited for the host which is sending to much 

traffic than from the pre-defined rate by the controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Cooperative DDoS attack defense Flow Chart 
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Once the rate of the traffic is identified by the controller in the local or remote 

network domain, the controller sends a pushback message for an attack traffic 

that is generated from a malicious node where it is connected. Once the 

pushback message received by the controller for remote network request, the 

controller sends a pushback reply message to rate limit the traffic to the victim 

node OpenFlow switch port interface. Figure 4.5 show the flow of how the 

controllers are cooperating in the process DDoS attack defending. 
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Chapter 5 

Experimentation and Results 

In this section, we evaluate the pushback approach as an attack detection, 

identification and mitigation mechanism. We mainly focus on the performance 

of our evaluation metrics with low to high traffic volumes. Moreover, we 

investigate the benefits of exploiting pushback in order to identify and mitigate 

any detected malicious traffic, using the capabilities of the OF Controller (Ryu). 

Ryu is a modular event-based OF controller, which is exploited as a high-level 

programmatic interface upon network events. Through the API of the Ryu 

Controller we implemented all three components as a single Ryu application, 

responsible for flow monitoring, periodically rate of flow calculations for an 

existence of attack on the system and attack mitigation. 

To accomplish the above tasks, we implemented the following Ryu Controller: for 

decision making, Minintet for the network simulation, OVS (OpenFlow switch) 

for the connection of the data plane and the control plane. Section 5.1 describes 

the simulation environment. Moreover, tools that are used in the experiment, 

and their usage. Section 5.2 also describes the simulation topology. The last 

section describes, the different scenarios with their respective simulation 

experiment and evaluation result.  

5.1 Environmental Setup 

Experiments are conducted on Lenovo Laptop-E51-80 computer which runs 

Ubuntu14.04 platform with the Long term support. The laptop has 8GB RAM 

and Intel® Core ™ i7-6500U CPU@2.50GHz 2.50GHz processor. For the purpose 

our experiment we installed Ryu controller software on our Ubuntu 16.04 LTS 

laptop computer. Ryu is a component-based software defined networking 

framework. Ryu provides software components with well-defined API that makes 

mailto:CPU@2.50GHz
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it easy for developers to create new network management and control 

applications. Ryu supports various protocols for managing network devices, 

such as OpenFlow, Netconf, OF-config, etc. Regarding OpenFlow, Ryu supports 

fully 1.0, 1.2, 1.3, 1.4 and Nicira Extensions.  

Moreover, Ryu is written fully in Python, and therefore it is easy to develop for. 

It comes with various applications already written to deploy SDN network, like 

Spanning Tree manager, basic switch application for creating forwarding rules, 

firewall and routing application. The Ryu architecture is shown in Figure 5.1. It 

provides a rich set of APIs allowing developers to create specific application for 

managing different aspects of a network according to the operator requirement. 

It can support legacy networks along with SDN implementations, and recently a 

huge collection of documentation and references has been added that can be 

used to create specific application. 

 

Figure 5.1: OpenFlow Ryu controller 
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Furthermore, we installed mininet for our network simulation. Mininet is a tool 

to simulate the Software Defined Networks that allows quick prototyping of a 

large virtual infrastructure network with the use of only one computer. It enables 

us to create virtual prototypes of scalable networks based on software such as 

OpenFlow, using primitive Virtualization Operating System. With these 

primitives, it allows us to create, interact and customize prototypes for Software 

Defined Networks in a very quick way.  

In order to create a network, Mininet emulates links, hosts, switches, and 

controllers. Mininet uses the lightweight virtualization mechanisms built into the 

Linux OS, processes running in network namespaces and virtual Ethernet pairs, 

and creates a virtual network by placing host processes in network namespaces. 

For network connection of host processes, Mininet connects them with virtual 

Ethernet (veth) pairs.  

After all system setup we started the experimentation. For the experiment we 

created a hierarchical network topology which is shown on Figure 5.2. The 

mininet python code is also modified for our simulation. With a simple mininet 

scrip on can build a large network consists of different network infrastructure 

5.2 Simulation topology 

For our experiment, we use six switches. From this six switches, three switches 

are connected to each other to form a hierarchal network which consists of an 

edge switch and an access switch that it directly connected to the end-devices. 

Each of this networks is managed by their own controller to act as a private net- 

work. Moreover, the controllers on OpenFlow switches are securely or logical 

connected to the OpenFlow switches in the domain. Figure 5.2: shows, the 

Network topology used in the experiment. The role of this devices whether they 

are in the private or in public networks is the same as one of the switch at the 

top of a topology used as an upper layer network device, function as routing 

traffic for a single network domain to the other network domains. Furthermore, 

which is connected to the same devices. Two of this act as an access switch and 
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they connected to four virtual machines that are members of this network are 

become the agents for DDoS attack. 

Figure 5.2 Simulation Network setup 

One of the agent host then is used to generate malicious packets to attack flow 

table resource on each switch and finally, attacks flow table in the controller. 

The final goal is to flood the victim node, rendering them unable to provide 

normal service to legitimate users. In time of an attack, normal clients may also 

send legitimate request packets to the victim node. However, they may not pass 

through and suffer drops due to the series congestion in the victim network. 

On the controller two applications are running on top of Ryu framework, one for 

configuring the switches to allow connectivity between themselves and host 

machines and another application developed by us get flow information, analyze 

and finally mitigate for an attacks in the system all as a single application. 
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5.3 Mininet Simulation parameter 

To simulate our proposed system we designed two network domains on the 

mininet tool, each of which consists a legitimate machine and an attacking 

machine. As figure 5.3 depicts, there are 6 levels of OpenFlow switches. The links 

between the two OpenFlow switches S1 and S4 is configured with 10Mbps. The 

links between the 2 levels of OpenFlow switches is also, 5 Mbps bandwidth for 

each of the network domains. In addition to this the each of the virtual machines 

are connected with 2 Mbps of bandwidth with the OpenFlow switches interfaces. 

The victim (AAh1) is connected with the OpenFlow switch by a 2 Mbps bottleneck 

link. Rate limit decision is made by a centralized control point, which is a 

controller deployed on the network domains. In order to adapt to the dynamic 

changes, rate limit decision is refreshed every 2 seconds.  

 

Figure 5.3: Mininet Virtual Network setup 

Table 5.1, lists parameters of mininet configuration for the 3 groups of 

experiments. An attack threshold is set for the victim host when it receives more 

than 1Mbps of traffic in its compunction. Moreover, we set 4Mbps traffic that a 
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host should have to process an incoming traffic rate though its interfaces. Some 

group includes two experiments, in which different attack traffic patterns are 

used.  

Table 5.1: Mininet Emulation parameters 

Parameters Values 

Attack threshold bandwidth on host 1Mbps 

Attack threshold bandwidth on port 4Mbps 

Attack stopping threshold after applying an ingress 
policy 

5 se 

Decision time (sustained count) 5 sec 

Traffic Monitoring interval 2 sec 

 

All users including attackers and legitimate users begin to send packets at an 

independent random time between 0 and 4 seconds.  

5.4 Traffic generation 

To analyze our proposed system in the detection and mitigation process we used 

different data traffics. To simulate this traffic either it is normal or attack traffics 

we used Iperf. Iperf is a simple but powerful tool originally developed by 

NLANR/DAST for measuring performance and troubleshooting networks. It can 

be used to measure both TCP and UDP bandwidth performance by allowing the 

tuning of various parameters and UDP characteristics. Iperf uses the client-

server architecture which needs to be at the opposite ends so that client can 

generate traffic and server can receive it. Once the generation is completed, both 

client and server report the performance results based on the protocol used. 

5.5 Simulation and Result 

Here we describe our experiments and analyze the results. Each of the 

experiment is simulated based on the performance evaluation metrics such as, 

Throughput, link bandwidth, and communication and computational overhead. 

All of the experiment is to evaluate the result of an attack and the defensing 
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mechanism at the normal environment and in attack duration. On the 

experiment we measured and evaluated the rate of traffic flowing between nodes 

to identify an existence of an attack. Moreover, we monitored the bandwidth of 

the link between the legitimate client and the virtual application server.  

5.5.1 Throughput measurement 

We experimented the throughput between the client the server at normal traffic 

using TCP. Throughput is the total number of bits transmitted within a given 

amount of time. The servers are running with different port numbers. We 

monitored the communication traffic for every two second in the server side. Iperf 

tool is used for the measurement of bandwidth of the link in the performance 

analysis process. In order to analyze the throughput result we running Iperf 

command on each of the virtual machine.  

Here, we have created host h1 as a server node and hosts h5 as a client nodes. 

We started Iperf measurement on both of the client node and server node in 

parallel. A TCP and UDP throughput performance analysis between server and 

client is shown in figure 5.4. The first experiment or the TCP protocol experiment 

is for the analysis of throughput during normal traffic flow between the client 

and the server in different network domain.  

In our experiment a server starts listening on a default port 5001 having default 

TCP window size of 85.3 KB. From the experiment in Figure 5.4, we can see that 

the Y axis of the figure, represent the throughput measurement, and the X axis 

represents the time during that the experiment was done.  The red line on the 

figure also represents the throughput of aggregate TCP traffic rate arriving at the 

bottleneck link of the traffic during normal traffic periods, and the pencil color 

represents the UDP traffic throughputs monitored within 2 seconds interval. The 

h5 client sends a 40.7 GB of data is to be transferred to its communication server 

which is h1 within 20 s of time interval. We also set a monitoring time interval 

for the throughput. Thus, the available throughput from the result is 15.2 Gbps. 

A throughput can be increase by increasing TCP window size. 
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Figure 5.4: Throughput of TCP and UDP without defense 

For measuring the throughput of UDP, we have done the same procedure like in 

TCP. The only difference in the experiment is setting some parameter changes. 

Which is the bandwidth of the link. At the client side we specified the bandwidth 

to use, 10 Gbps for this case, because iperf only uses 1Mbps of default 

bandwidth for UDP connection.  

Unlike TCP, in UDP throughput get affected by different network parameters. 

Since, UDP is unreliable protocol, the factors affecting throughput are out of 

order delivery of packets, network jitter, and packet loss during transmission, 

etc. Moreover in UDP protocol, there is no sync between server and client nodes, 

hence, 936 MB of data noted at server site and 957 MB of data noted at client 

site is transferred in 20 s of time interval, which gives throughput of 787 and 

803 Mbps at server site and client site respectively. 

In the second of our experiment, we also measured the throughput of TCP and 

UDP traffic during normal traffic flow and in DDoS attack with the 

implementation of our rate limiting mechanism. Figure 5.5 shows as, the ability 
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Figure 5.5: Throughput of TCP and UDP with defense 

of our rate limiting technique in detecting the DDoS attacks. The throughput of 

TCP and UDP traffic without a defense mechanism is very high while the 

throughput of legitimate traffic is very low during an attack periods. The 

pushback technique shows good performance in protecting legitimate traffic in 

the figure 5.5. However, it seems to make no effort to control attack traffic once 

the legitimate traffic has been served properly. The reason is that the pushback 

technique lacks the ability to distinguish between attack and legitimate traffic 

when a diffused DDoS attack happens. Therefore, the pushback technique 

attempts to forward as much traffic as possible in order to lower the collateral 

damage for legitimate traffic. 

Our DDoS defense framework, succeeds in lowering attack traffic while 

maintaining QoS for legitimate traffic. More aggressive attack traffic will be 

dropped more often because source-end edge OpenFlow switches have a lower 

rate limit value. However, we found a minor disadvantage in our rate limit 

mechanism during the process of traffic recovery. The phenomenon happens 

because the rate limit mechanism tries to remove the rate limit while an attack 

is still going. Moreover, our defense mechanism shows the cooperation between 

source node controller and the victim node controller in different network 

domains in the process of recovering. 

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

Tr
h

o
u

gh
p

u
t(

K
b

p
s)

Time(sec)

Throughput measurment

Ligtimate traffic Attack traffic



76 
 

In the experiments, our DDoS defense framework achieves even better 

performance and successfully maintains QoS of legitimate traffic by using the 

rate limit mechanism, while throttling back the amount of attack traffic. 

5.5.2 Bandwidth measurement 

In communication networks, bandwidth denotes the amount of data a link can 

carry. This is a metric which directly reflects the allocation of bandwidth in the 

normal and attack traffic is transmitted between the sending and the receiving 

host in the network. In the measurement of an allocation of bandwidth of the 

link, the fraction of attack traffic bandwidth is the value of attack traffic 

bandwidth over sum of attack and legitimate traffic bandwidth. 

To analyze the link bandwidth allocation we started an IP flooding or attack 

traffic from the malicious node h5 to the server h1. Also, we a set the 

transmission duration for 15 seconds. The IP flooding attack traffic is monitored 

from the local virtual machine within 2 seconds monitoring time.  

 

Figure 5.6: Allocated Bandwidth during normal and attack periods 

Figure 5.6 illustrates the allocated bandwidth rate for the link under normal and 

attack periods. Moreover, the rate of a bandwidth without and with defense 

mechanism is used in the experiment.  
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In the experiment 10Mbps and 4Mbps of an attack IP traffic and normal traffic 

is sent to the victim host respectively. From the figure we see that an allocated 

bandwidth of the link without the implementation of any defense mechanism in 

the system is about 1 Mbps. This is calculated from an attack traffic is over the 

sum of an attack and normal traffic sent to the victim host. In the figure the 

yellow color shows the normal traffic and the green color is also showing the rate 

of an attack traffic. For an analysis an allocated bandwidth with implementation 

of our defense mechanism we generated the same rate of a normal and an attack 

traffic to the same host. The result shows as, 1Mbps of bandwidth is allocated 

for the link during this experiment. 

According to the rule of a rate limiting implemented on the controller lower the 

amount of attack traffic reaches the victim node in the network. This is because 

fully deployed rate-limiters police attack traffic at different aggregation points on 

the traffic tree and thus manage to control it well. Moreover, this result also 

shows that the attack is detected and is stopped before reaching the victim node. 

5.5.3 Drop rate of an attack traffic 

The drop rate of attack traffic has been used for the purpose of evaluating the 

effectiveness of a DDoS defense system before. However, most researchers think 

it fails to capture whether legitimate service continues during the attack. For 

example, even if all attack traffic can be dropped by the edge router at the victim 

end, legitimate traffic may not be delivered properly simply because the edge 

router has no resources left to serve it. In fact, the edge router might be 

completely busy just in dropping attack traffic during the attack. In our experim- 

Table 5.2: Drop rate of an attack traffic 

Experiments   Drop rate 

No defense  0.254 

With Pushback 0.12 
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 ents, we use the drop rate as a metric of the packet level to evaluate the 

distributed DDoS defense system. If we can demonstrate that the framework can 

effectively drop attack traffic at the source ends, it indirectly demonstrates that 

the framework can sustain QoS for legitimate traffic at the victim end. After we 

compare results in the two experiments in Table 5.2 we find the network without 

DDoS defense, attack traffic is only dropped in the edge router at the victim end 

due to a lack of resources. This shows that the normal congestion control 

mechanism cannot protect QoS for legitimate traffic from going down. Pushback 

drops attack traffic at upstream routers.  

The reason is its lack of ability to differentiate between legitimate and attack 

traffic in a DDoS attack, and the consequent decision to throttle attack traffic 

just enough to maintain QoS for legitimate traffic. 

5.5.4 Drop Rate of Legitimate Traffic 

The drop rate of legitimate traffic is a direct metric which reflects the collateral 

damage for legitimate traffic. A good DDoS defense system always attempts to 

reduce collateral damage while lowering attack traffic as much as possible. In 

Table 5.3, we present the drop rates of legitimate traffic in the two experiments. 

The network without DDoS defense drops a large number of legitimate packets 

Table 5.3: Drop rate of legitimate traffic 

Experiments Drop rate 

No defense  0.56 

With Pushback 0.29 

 

due to congestion at the bottleneck link. Pushback DDoS defense framework 

show a much better performance to sustain QoS for legitimate traffic, meaning 

that collateral damage is very low.  
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5.5.5 Communicating and computational overhead 

In this section, we discuss the communication and computation overhead of 

network resources in our scheme. According to our algorithm, when 

communication starts between the requesting node and victim node the 

controller starts monitoring of the flow of information and to calculate its rates. 

Monitoring the rates of the flow of information is a continuous process for the 

controller. Therefore, there is a communication overhead for the network during  

 

Figure 5.7: System CPU consumption at different traffic rate 

the attack. Even though, there is a trade of between DDoS attack detection with 

the flow collecting and an effective attack detection and mitigation process. The 

communication between the controller and the OpenFlow switches is done by 

OpenFlow messages. So, the number of messages communication is not depends 

on the size of the topology.  

When a switch receives the packet from any source for the first time it will install 

the flow entry in the flow table. When a switch learns all the nodes from the 

network, the complete flow establishment has taken place. The ping command 

in Mininet is used to check the connectivity of the entire network. It sends the 

message from every host to all other hosts. The CPU usage is measured for this 
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initial flow establishment. Figure 5.7 shows that the CPU usage is during an 

attack time rather than at normal state. When attacks occur, the CPU utilization  

 

Figure 5.8: System CPU consumption at different traffic rate with defense 

quickly reaches a peak (around 97%) in less than 2s. The possible reason is that 

the host is receiving too much IP flood traffic from a malicious node within a 

specific time period. When the Ping command is not fired there is a normal flow 

of traffic and the CPU usage result shows the normal process.  

After we applying our rate traffic rate limiting mechanism the CPU consumption 

during normal and an attack duration is minimize. Figure 5.8, show the 

percentage of the CPU usage labeled with Red and in pencil color. The CPU usage 

during an attack period is limited which is compared to the previous result. The 

main reason is that the our proposed DDoS attack monitoring system sends flow 

modification message to the controller to limit the rate of an incoming traffic 

through the interfaces of this malicious node is connected. 

5.6 Result Discussion 

Form our experimental result we shown that our proposed system cant detected, 

identified and finally mitigated the attack in the cloud system in the distributed 
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manner. Each of the controller in SDN framework can identify an attacker in 

different network domains. The detection and identification of attack and an 

attacking node is done at the source of the node and replying a pushback 

response for the controller in other domain. The following discussion explains 

the overall result of the attack detection, identification and the mitigation of the 

proposed framework. 

5.6.1 Local attack detection 

For identify an attack controller monitoring the incoming traffic from the hosts 

to the OpenFlow switch periodically A protects hosts AAh1 and AAh2 by 

monitoring flows on all 3 switches in its domain for high bandwidth (5 Mbps) 

Identify an attacker check each host to check if it is sending data to the victim 

and its data rate is above a threshold (1 Mbps). 

 

Figure 5.9: Attack indentation at the local domain 

An attack traffic generated from the local network identified by the host’s MAC 



82 
 

address and its associated port the attack traffic initiated from. Identify the 

attacker and an interface which is connected to it. 

Ryu controller and Mininet are launched in two different terminals as we can see 

on the figure 5.9. Ryu on the left, show how the controller measures the bit rate 

through the OpenFlow switch interfaces. Moreover, it identifies the victim host 

in the topology using its MAC address. On the right side of the figure node AAh2 

which is a host from the public network domain generating an attack flow to the 

victim host IP address. An IP address of the victim host is 10.1.1.1 and, which 

is a cloud services exists in the private network domain. So, here the controller 

is easily monitor the rate of an incoming flow from all of OpenFlow switches 

connected to the distributed controllers. After the flow monitoring, the controller 

calculates the Bitrate. The Bitrate is calculated within 2 seconds interval. After 

the 2 second interval of flow monitoring, the controller identify the attacking host 

and the interface where which is connected to it. Once the attacking host is 

identified the controller install flow rule to drop or rate limit the rate of an 

incoming traffic from its local domain. This provides a space for those of 

legitimate clients to access the service. 

5.6.2 Cooperative Defense 

Implementing OpenFlow controller in the internet can be in centralized and 

distributed manner. Once it implemented in the distributed manner the 

controller oversees the entire network where they are connected to these network 

flows between the network devices. Controllers are sharing flow information for 

their analysis. For each of the commination traffic controllers are make a 

decision based on the flow. Based on this, the figure 5.10 shows, how the 

controllers in participating in the process of attack analysis and reaction for the 

Inter domain attack between the different cloud networks and send a push back 

request to the other controller for attack traffic control. 

On the right side of the screen shoot, host BBh2 (a host from the public network 

domain) generating a flooding attack to the remote server in the private network 
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domain. The controller in its domain send a pushback request message to the 

upstream OpenFlow switches. After the pushback message received by the 

controller the controller responding to the pushback request to apply filtering of 

a traffic to an interface where the flooding traffic initiated from. After some time, 

the connected host is stopped the sending of malicious traffic to the victim host, 

and then the traffic filtering rule process is removed from the controller. 

 

Figure 5.10: DDoS attack defense cooperation between the controllers 

Moreover, in real scenario, with centralized architecture as in OpenFlow, the 

central network controller can co-ordinate with its switches and take the right 

decisions in a minimal time provided correct DDoS detection happens, by 

employing strategies  like blocking the malicious node at the ingress router itself 

than going for a Pushback way of handling. But, our approach of Pushback takes 

care that even if the detection went wrong (false positive or due to spike in the 

network) and was not actually a DDoS attack, then during the phase of the 

pushback, the negation rule on the wrongly assumed malicious node can be 

removed and simultaneously ensure that the entire network is safe. 
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Figure 5.11: DDoS attack defense cooperation between the controllers 

DDoS defense in real system have to cope with complicated scenarios like 

deception by the malicious nodes thought spoofing of their IP address, but still 

our implementation shows that defense can be erected quickly through software 

defined networking. 
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Chapter 6 

Conclusion 

The currently vulnerable internetworking cloud system and the growing number 

of Internet crimes inspires much research to increase Internet security and 

protect it from intrusions. Distributed denial of service is a major threat that 

cannot be addressed through isolated actions of sparsely deployed defense 

nodes. Instead, various defense systems must organize into a framework and 

inter-operate, exchanging information and service, and acting together, against 

the threat.  

The purpose of this research work is to design and evaluate a SDN-based 

cooperative pushback defense framework for flooding attack in cloud computing 

environment. In our approach when a communication begins, each of the 

controller starts monitoring the rate of incoming flow periodically. The monitored 

traffic is above from the pre-defined threshold, the controller automatically 

identify an attacking node in the network. Then the mitigation of an attacking 

process is continues. Each of the components in the framework works 

hierarchical fashion in the process of defense. We simulated and investigated 

our DDoS cooperative defense mechanism with different tools. Mininet, Ryu and 

Iperf are tools used for virtual topology creation, application program developing 

and performance analysis respectively. Using this tools we conducted different 

experimental scenarios. Each of our experiment is evaluated with our 

performance metrics, throughput, link bandwidth measurement, time delay and 

communication and computational resources.  We analyzed this results of each 

experiment on each approaches and draw a comparison about the result 

obtained during normal and attack periods. Finally, in the discussion section we 

clearly explained the how our cooperative DDoS defense mechanism is 

performing and handling for attacks in the private or local domain as well as 

attack in public domains. 
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In the final of our work, we able to contribute some solution to the cloud tenants, 

private cloud administration bodies about a simple defense mechanism for 

flooding attack that exits in the cloud network domain. To describe some our 

contribution:  

 With the complete mechanism, we protect SDN-based cloud networks 

against both DoS and DDoS attacks. We identified the attackers or 

detecting the attackers and stopping this attack before causing large 

problem in the network. Traffic of trusted users is still handled normally 

throughout the process. 

 We also designed a flexible, and scalable detection and mitigation of 

different kinds of attacks on the cloud computing. In addition to this we 

done an experiment and analysis how the proposed system detect attacks 

accurately and easily through extensive testing scenarios.  

 The implementation of the proposed method brings no modifications on 

current routing software. On the other hand, our proposed method can 

work independently as an additional module on OpenFlow switches for 

monitoring and recording flow information, and communicating with its 

upstream and downstream distributed OpenFlow controller when the 

pushback procedure is carried out.  

 In order to evaluate the efficiency of our detection system we used different 

important metrics for traffic and attack analysis. From the experiment 

performance evaluation we investigated pushback can be a defense 

mechanism for distributed attacks on the cloud environment by deploying 

distributed DDoS attack defending controllers at the local and remote 

network domain.  

Even though a number of DDoS attack defense mechanism are proposed by 

many research works, the attacks and its impact in the Internet and cloud 

computing is exponential growing and the attacking techniques are changing 

from day to days.  So that, the result of this research provides its own 

contribution to the ongoing researches in this domain area.  
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6.1 Limitation 

There are a few aspects that need future discussion and some implementation 

and operational issues need to be addressed before pushback cloud be more 

robust in combating against DDoS attacks and deployed in the Internet. The 

main limitation of this filtering scheme is that if the attack does not use spoofed 

addresses then this filtering scheme will fail. Botnets with huge armies of 

thousands of zombies do not even care to spoof the source address; in such cases 

the strategy adopted by the Ingress/Egress filtering will fail. 

Secondly, traffic monitoring is generates overhead when the controller requests 

trigger reports (to verify the data traffic behavior of a specific incoming flow) and 

periodic reports (to calculate the minimum number of packets per successful 

connection—parameter) from the switches. Hence, we must to balance between 

report period and overhead to get the optimal benefit. 
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