

JImma University

Jimma Institute of technology

FACULTY of computing

SDN based DDoS flooding attacks defense in cloud environment

By: Ashenafi Meshesha

A THESIS SUBMITTED TO THE FACULTY OF COMPUTING

OF JIMMA UNIVERSITY IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF

SCIENCE IN COMPUTER NETWORKING

 Jimma Univeristy

Jimma, Ethiopia

 June, 2018 G.C

JImma University

Jimma Institute of technology

faculty of computing

SDN based DDoS flooding attacks defense in cloud environment

By: Ashenafi Meshesha

School of Computing Department of Computer Networking

Advisor: Dr. Towfik Jemal (Ph.D)

Approved by:

1. Dr. Towfik Jemal (Ph.D) Advisor __________

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my

supervisors, Dr. Towfik Jemal, for his extensive support and valuable

comments in doing this thesis work. Also, I would like to sincerely thank my

colleagues and friends during this work. I must acknowledge a number of

peoples that I had make an email communication with them and they helped

me a lot in regard to the research work. And last but not the least, I cannot

forget my family’s support during this entire phase – My parents, brothers

and my wife. I know that I have given them enough confusion and

disappointment throughout the journey, but I am glad that I have been able

to catch up finally, to see them happy. I dedicate this thesis to my parents.

Thank you!!

I

Abstract

Cloud computing is one of the recent technology that provides different

services from different platform for the users at any time, at anywhere using

internet without any limitations. As cloud computing providing this service,

the most serious challenge is that, a DDoS attack which interrupt an online

service by generating a high volume of malicious traffic, which is called

flooding-attack. Moreover, DDoS attack consumes all the available network

resources thus rendering legitimate users unable to access the services. To

tackle this problem different research works have been done and proposed

to defeat this type of attack in traditional and SDN networks for the cloud

computing systems.

In this thesis, we developed and investigated a pushback distributed defense

mechanism or framework for private as well as public network domain DDoS

attacks. The defense system has three major components: traffic monitoring

with detection, attack identification and traffic control. The components are

inter-dependent and working in hierarchical fashion. The traffic monitoring

scheme monitors only high-rate outgoing flows at victim networks and

identify the source of an attack in the network. Once the source of an attack

is identified the traffic control daemon apply an ingress filtering to drops the

packets belonging to these flows. Based on the rules implemented on the

controller the rate limiting mechanism, limit the rate of an incoming traffic

to the victim node and filter the traffic in its source network controller. For

Distributed DDoS attack, the controller at the malicious source node network

send a pushback request message to apply a rule to the victim node

controller.

The proposed framework is evaluated with different performance metrics to

analyze the detection of rate of an attack traffic, throughput, link bandwidth,

attack and legitimate traffic drop rate, and system resource consumption

during normal and attack state. The simulation model is designed and a

II

number of simulation experiments have been done on mininet virtual

network setup. The results demonstrate that the scheme is capable of

detecting flooding-based DDoS attacks, and the pushback defense

framework can effectively mitigate attack traffic in order to sustain the

quality of service for legitimate traffic.

Key words: Cloud computing, SDN, OpenFlow, DDoS attack, Pushback

technique

III

Table of Contents

Page

Abstract .. I

Table of Contents .. III

List of Tables ... VI

List of Figures ... VII

List of Acronyms ... VIII

Chapter 1 ... 1

Introduction ... 1

 1.1 Motivation ... 4

 1.2 Statement of the problem .. 7

 1.3 Objectives ... 8

 1.3.1 Specific Objectives ... 9

 1.4 Methodology .. 9

 1.5 Scope .. 12

 1.6 Organization of the Study .. 12

Chapter 2 .. 14

Literature review ... 14

 2.1 Cloud computing ... 14

 2.1.1 Deployment models ... 16

 2.1.2 Service models .. 17

 2.2 DDoS attacks on Cloud environment 21

 2.2.1 Infrastructure level attacks 24

 2.1.2 Application level attacks .. 26

 2.3 Impact of Dos/DDoS attack on cloud 26

 2.4 DDoS Defense Scheme .. 29

IV

 2.5 DDoS defense deployment locations 32

 2.5.1 Source based deployment 33

 2.5.2 Access-point deployment 34

 2.5.3 Intermediate-network deployment 34

 2.5.4 Distributed defense deployment 35

 2.6 Traditional and SDN Network .. 36

 2.6.1 SDN .. 36

 2.6.2 OpenFlow ... 39

 2.7 OpenFlow Operation ... 41

 2.8 SDN controllers .. 42

 2.9 SDN for cloud computing ... 43

Chapter 3 .. 45

Related works .. 45

 3.1 Existing DDoS attack defense works 45

Chapter 4 .. 52

Proposed design .. 52

 4.1 Overview of Pushback ... 53

 4.2 Cooperative defense components ... 58

 4.2.1 Traffic Flow monitor .. 59

 4.2.2 Attack identification .. 61

 4.2.3 Attack mitigation ... 62

 4.3 Work flow .. 64

Chapter 5 .. 63

Experimentation and Results ... 67

 5.1 Environmental Setup .. 67

 5.2 Simulation topology ... 69

 5.3 Mininet Simulation parameters ... 71

 5.4 Traffic generation ... 72

V

 5.5 Simulation Results .. 72

 5.5.1 Throughput .. 73

 5.5.2 Bandwidth measurement 76

 5.5.3 Drop rate of an attack traffic 77

 5.5.4 Drop rate of legitimate traffic 78

 5.5.5 System resource consumption 79

 5.6 Result discussion .. 80

 5.6.1 Local defense .. 81

 5.6.2 Cooperative defense.. 82

Chapter 6 .. 85

Conclusion .. 85

 6.1 Limitation ... 87

References .. 88

Declaration ... 91

VI

List of Tables

Table 4.1: Flow table entry ... 59

Table 5.1: Mininet Emulation parameters ... 72

Table 5.2: Drop rate of an attack traffic .. 78

Table 5.3: Drop rate of Legitimate traffic ... 79

VII

List of Figures

Figure 1.1: DDoS attacks in cloud: Direct/indirect effects 6

Figure 2.1: Cloud computing architecture .. 15

Figure 2.2: Cloud computing deployment and service models 16

Figure 2.3: Virtualization ... 20

Figure 2.4: DDoS attack scenarios in cloud infrastructure 21

Figure 2.5: DDoS defense deployment location 32

Figure 2.6: Source-end based DDoS defense 33

Figure 2.7: Network-based DDoS defense ... 35

Figure 2.8: Monolithic and SDN paradigm .. 37

Figure 2.9: SDN architecture and it fundamental abstraction 38

Figure 2.10: OpenFlow protocol architecture 40

Figure 2.11: Flow table entry ... 40

Figure 2.12: Basic OpenFlow Operation ... 42

Figure 3.1: Detection Loop operation .. 48

Figure 4.1: DDoS attack in progress .. 54

Figure 4.2: DDoS attack Cooperative defense framework 56

Figure 4.3: Cooperative flow monitoring Algorithm 60

Figure 4.4: Cooperative DDoS attack defense Algorithm 63

Figure 4.5: Cooperative DDoS attack defense flow chart 65

Figure 5.1: OpenFlow Ryu controller ... 68

Figure 5.2: Simulation network setup .. 70

Figure 5.3: Mininet virtual network setup .. 71

Figure 5.4: Throughput of TCP and UDP without defense 74

Figure 5.5: Throughput of TCP and UDP with defense 76

Figure 5.6: Allocated Bandwidth during normal and attack periods 76

Figure 5.7: System CPU consumption at different traffic rate 79

Figure 5.8: System CPU consumption with defense 80

Figure 5.9: Attack indentation at the local domain 81

Figure 5.10: DDoS defense cooperation between the controllers 83

Figure 5.11: DDoS defense cooperation between the controllers 84

VIII

List of Acronyms

Abbreviations Description

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

IaaS Infrastructure-as-a-Service

SDN Software defined network

DDoS Distributed Denial of Service

UDP User Data Gram Protocol

ICMP Internet Control Message Protocol

DNS Domain Name System

CPU Central Processing Unit

DaaS Desktop-as-a-Service

CaaS Communications-as-a-Service

HaaS Hardware-as-a-Service

DoS Denial of Service

CIDoS Cloud-internal denial of service

EDoS Economic denial of service

ADos Application denial of service

OVS OpenFlow Virtual Switch

RPF Router-based Packet Filtering

SAVE Source Address Validity Enforcement

CBSPs Cloud-based Security Providers

CPS Cloud Service Providers

MTF Multilevel Thrust Filtration

1

Chapter 1

Introduction

Today's Internet communication is changing. Cloud computing is an emerging

new technology which provides a centralized pool of configurable computing

resources and computing outsourcing mechanisms that makes available

different computing services to different people [1]. With the use of cloud, many

companies can scale up without having to invest large amount in new

infrastructure, software license and building large data centers. Cloud

computing technologies are saves costs of deployments, high availability of

services, flexibility and easy scalability of nature when the services demand

increases [1]. As a result of integration of many techniques such as grading,

clustering, utilization computing and resource's sharing, cloud computing has

been appeared as multi element's composition technology, it offers several

computing services such as IaaS (infrastructure as service), PaaS (platform as

service) and SaaS (software as service) based on pay as you use rule. But

nevertheless, cloud computing end users participate in computing resources (co_

tenancy), and by which infrastructure computing can be shared by a number of

users, some security challenges has been explained, reported and researched by

the Internet community. One of the most serious security threats is bandwidth

attack, which prevent other users from using cloud infrastructure services. This

kind of attack can be done by a legitimate or illegitimate cloud computing users

[2].

There are various network bandwidth attacks [3]. Distributed denial of service

(DDoS) attacks and Internet worms are the two frequently occurred ones. The

former attacks a specific IP address from many distributed sources at the same

time to cause the communication congestion at the destination; and the later

breaks out when a large number of Internet hosts are infected and then, scan

vigorously for the vulnerable hosts to propagate.

2

Bandwidth attacks are typically distributed attacks. An attacker uses tools to

gain root access to machines on the Internet. Once a machine is cracked, it is

turned into a “zombie.” The attacker instructs the zombies to send bogus data

to one particular destination. The resulting traffic can clog links, cause routers

near the victim or the victim itself to fail under the load.

One major reason underlies the absence of a simple solution against bandwidth

attacks: attackers can release high volumes of normal-looking packets on the

Internet without being conspicuous or easily traceable. It is the mass of all

packets together directed at one victim that poses a threat, rather than any

characteristics of the individual packets. A dropping policy in routers based on

per-packet characteristics will, therefore, not work. It is relatively easy, but

rather useless, to detect a bandwidth attack in the vicinity of the victim: by

measuring the traffic load on a link or in a router, the exceptionally high volume

of packets can be detected. Unfortunately for the victim, determining that it is

under attack will not make the packets go away. Harm has already been done

the time the malicious packets reach (the vicinity of) the victim. A bandwidth

attack should, therefore, be detected close to the attacker rather than close to

the victim so that malicious packets can be stopped before they can cause any

harm [4].

Traditional DDoS solutions are unable to respond in time or handle the immense

bandwidth that these attacks impose on today’s networks. Both service providers

and enterprises need a scalable solution that can detect and mitigate these

behavioral security threats, immediately preventing them from spreading

through the network and disrupting the services of customers and users [5].

SDN is a new paradigm in networking industry designed to solve the limitations

of traditional networks flexibility, scalability and vendor locked features. Besides

the fact that SDN has been proposed as a candidate of the next generation

Internet architecture, companies like Google have already adopted SDN in their

internal data centers [6]. With the decoupling of data and control plane and the

3

introduction of open communication interfaces between layers, SDN enables

programmability over the entire network, promising rapid innovation in this

area. If it is properly implemented SDN can actually be exploited to address the

security challenges brought by cloud computing and the DDoS attack defense

can be made more effective and efficient in the era of cloud computing and SDN

[6].

In order to solve the security problems there are a number of DDoS defense

mechanism are designed and proposed in traditional and SDN based networks

for the cloud computing networks. By exploiting a number of features of

OpenFlow protocol researchers designed a DDoS flooding attacks defense

mechanisms at the number of locations: at Source node based, Network based,

and Destination based networks. Each of the implementation of this defense

approaches has its own advantage and disadvantage in protecting the network

from different types of attacks.

In this thesis, we present a pushback scheme to detect possible attacks and

defeat them at the source of an attack and at the destination, so that most of the

attack packet are targeted to the victim node. This scheme makes the

identification between good and bad packets easier, thus minimizing the amount

of collateral damage. Moreover, it helps to reduce bandwidth usage by the attack

traffic. Pushback monitors only high-rate outgoing flows at source networks and

preferentially drops the packets belonging to these flows when it senses any

existing Internet protocols. The approach uses a specific IP address or MAC

address from many distributed sources at the same time to cause the

communication congestion at the Victim. Based on this the detection,

identification and mitigation of an attack can be done on a per-flow basis by

matching either IP or MAC addresses.

Our work is an extension to the pervious works [3] and presents such

collaborative mechanism to fight against DDoS attacks by making defense

mechanism at the source node network and the victim node network domain

4

work together. Each of the controller in its domain collects local information

which is extracted by the local defense module and makes filtering instructions

in order to regulate the traffic.

1.1 Motivation

The growing of dependency of users accessing resources from different platforms

at anytime and anywhere from where they are connected to internet is the newly

observable trend in the interconnected community. In this regard the concepts

of, cloud computing, big data and internet of things are recently evolved. Cloud

computing is enables users and organizations to be access their files and

resources easily through Internet. This situations enforced most of the

organization to move their services and resources to the cloud computing system.

The basic objective for most of the companies working in this area is providing

highly available service to the customer using the Internet is the recent need of

the service providers and business organizations. Particularly in infrastructure

based cloud services, companies like, Google are providing virtual infrastructure

for the users in commercial base with distributed servers on the Internet. Cloud

users from different sides of the world are with pay for a service system they use

this network for their day to day business process. The resources and data’s of

the users should be protected, secure and always available in this system. And,

users shouldn’t be denied due to security breaches and attacks. But, this is

common in cloud computing systems due to a number of reasons. One of this is

that the feature of the technology by itself. Resource sharing with the users,

direct access to Cloud infrastructures, etc.), are the main reason for the security

problems in the cloud network. So, it need new and innovative solutions to

protect both the users and the provider from security attacks, like DDoS.

As we described slightly the concepts in the cloud computing, the nature of the

technology, and the architecture of the cloud computing network which is

different from the traditional network. This nature makes the system and the

services to be vulnerable to different types of attacks security threats. Due to

5

this, cloud computing have always been primary target for DDoS attacks.

In traditional network there are a number of mechanisms are designed to protect

the network from different kind of DDoS attacks. And, this defense mechanisms

are some are effective and some are ineffective in defending DDoS attacks. But,

in cloud computing the DDoS attack defending mechanisms are a little different.

Even though, some of the defense mechanism which are designed for traditional

network are feasible and used in cloud network for DDoS attacks. In cloud

computing system the way of attacker gain access to the network for the attack

is very simple. Because, tenants are the owners of the Virtual machines they are

using. So, this characteristics open the way for attackers simply to employ an

attack from using a simple script to any of services and application which is

connected to Internet.

As the number of cloud security alliance report reviewed by this [7], [8] work, the

extent of the DDoS attack is still increasing and its impact also. In spite of

deploying various security measures against cloud attacks, there are a number

of issues that providers may face still now: for example, the tradeoff between

public and private cloud, Insiders and outsiders threats, militancy, web-based

access, and the simplicity of attacking methods. This reflects organization and

cloud providers need to have a better security solution for their service

availability. So, designing and proposing an effective DDoS attack detection and

mitigation approach is an open research for the researchers.

For the distributed botnet attacks form multiple domain nodes to a single target

node designing a single defense mechanism on the source node only can’t be

effective. Furthermore, defending attacking node at the victim also. A

sophisticated attacker can easily evade detection by employing a large number

of zombie machines around the world and make them send malicious traffic

through different edge routers. As a result, if we only take a single router into

accounts, the volume of malicious traffic accounts, the volume of malicious

traffic might not be aggregated at a detectable level.

6

Designing an attack reaction and filtering malicious traffic at the source node,

locally and globally with cooperation between the systems enable us to reduce

the impact of an attack. The advantage of designing a distrusted defense system

compared to source based, destination based defense system is more effective in

defending an attacks in collaboration between the systems.

Figure 1.1: DDoS attack in cloud: direct and indirect effects [9]

In this regard, there are a number of works that has been done in traditional

works in the detection of Botnet attacks at the Source node, destination (victim

node), and also in a distributed manner. Even though, designing of this detection

techniques was very complex and not reactive on the reaction and filtering of

malicious traffic when the DDoS is noticed by the systems. Furthermore, some

works has been designing the botnet attacks by employing an SDN methodology.

Though, our work is designed with objective of reacting and filtering malicious

traffic on locally by applying rate limiter at the source node and forward

notification message to other controller in another domain.

7

In this thesis we design and investigate an SDN based pushback approach for

DDoS attack detection and mitigation for cloud computing network. In this

approach we monitor the rate of the traffic in the cloud network and identify an

attacking node which generates malicious request to the target node from

globally distributed private as well as public networks. Moreover, we investigate

and analyze its feasibility in the detection and mitigation of DDoS flooding attack

in the cloud system, scalability, flexibly, and dynamically.

1.2 Statement of the problem

Today, many of the enterprises are increasingly moving services and business

applications from their internal data centers to external cloud service providers,

whether by purchasing applications in the form of Software as a Service (SaaS)

or by running those applications on cloud-based Infrastructure as a Service

(IaaS) [10]. The basic needs for the enterprises moving their service to the cloud

data center could be; to ensuring an availability and connectivity of the services

for their mobile users they are accessing the cloud services using different

networking devices or platforms, and good resource allocation for their cloud

users or tenant’s. As the nature of communication is changing in the cloud

computing, security and vulnerability of different components of the systems is

also a big problem for the cloud service providers and tenants. When physical

resources are provided as logical re-sources via a virtualization layer, availability

attacks on one virtual machine can affect other virtual machines which share

the resources between them. Due to this feature, availability attacks on

infrastructure are very intimidating on those virtual machines which share the

physical resources.

A Distributed Denial of Service attack is one of the availability attacks. A DDoS

attack generates a large amount of traffic to the specific system on the network.

Therefore, it depletes the system resources, and end users do not receive reliable

services. Botnet as the flood traffic comes from many machines, and is not a

8

single flow on the network. While it is possible to attack various types, it is

difficult to detect this attack or to find its source.

As more applications, data, and websites move to the cloud systems, there is a

need to design a flexible, scalable and easily manageable security mechanism for

this environment. Traditional works have been tried to address DDoS botnet

flooding attacks in the past, but DDoS attacks remain a major security problem

and the detection and protection process is hard, especially when it comes to

highly distributed implementations.

Therefore, a deployment of defense mechanism at different points in the network

is an important consideration for creating an accurate filter to separate good

traffic from attack traffic, and finding an efficient method to filter. Furthermore,

cooperation between this defense mechanism in the detection process and

reducing the impact of an attack on the system. Hence, providing a cooperative

defense mechanism can be a significant improvement in this area. As a result of

these problems, the following research questions have been identified:

 How to design a scalable, flexible cooperative DDoS attack defense

mechanism to ensure service availability in cloud computing networks?

 What are the appropriate flow statistics features be used to detect DDoS

attacks using a pushback algorithm?

 Does pushback is a feasible approach for detecting and mitigating DDoS

flooding attack in the cloud computing environment when we employing

SDN technology?

1.3 Objectives

The General objective of this thesis work is to develop and investigate a DDoS

flooding attack defense framework and approach for the ever growing cloud

computing services availability and security consolidation. By using the

advantages and features of OpenFlow protocol, we design a system which enable

9

us to detect distributed attacks performed to the targeted node (victim node),

and identity the attacking node in a flexible and scalable manner.

1.3.1 Specific Objectives

The specific objectives are enable us to achieve our general objective. So, in order

to meet the above objective, the following specific objectives are defined:

 Reviewing and analyze various literatures that has been done as a defense

mechanism for DoS and DDoS attacks in traditional and SDN based cloud

networks and its features to designing an effective security mechanism

 Understand different types of services provided to cloud tenants by the

cloud providers, and types of DDoS attacks that exist in cloud computing

systems that impact the services reliability and availability with the

methodologies in defending the attacks at different locations

 Design a cooperative DDoS flooding attack defense system for botnet

attack to the target node by monitoring the rate of a traffic in the network

and identify an attacking node in private as well as in public network

domain. A proposed technique detects and identifies a DDoS attack at an

early stage of the attack, and its mitigation process should drop most of

the attack packets without sacrificing the QoS for legitimate traffic.

 Evaluate and measure the proposed technique with different performance

measurement metrics in defending the DDoS attack when it is deployed in

a distributed manner

1.4 Methodology

The research used different methodologies in order to accomplish the general

and specific objectives of the study. This methodologies enable us to design a

DDoS flooding attack defending technique for the cloud environment.

The first thing we conducted a comprehensive review of literatures to acquire a

deeper understanding of the research area and its problem domains. Through

10

this literature we identify the importance of the previous works done in the area

in DDoS flooding attack and the defending techniques used in the cloud

environments.

Existing works done in defending DDoS attack whether in traditional network or

SDN based network technologies assessed to identify and point direction in

providing solution to identified problems on this network domain.

Secondly, we design and propose our defense mechanism which is relied on SDN

based OpenFlow technology. The main reason of selecting SDN technology to

design our solution is it flexibility, scalability, programmability and more of its

features. In addition to this, SDN has an ability to globally view of the entire

network which is separated or decoupled the data plane (the forwarding network

infrastructure) and the control plane (decision maker in forwarding the incoming

traffics). The separation of this functionalities and an interface to program the

control plane, obliged us to design and implement our DDoS defense mechanism

on the existing SDN framework. Our DDoS defense formwork consist of three

daemon in the detection, identification and mitigation of DDoS attacks.

In a DDoS attack scenario, the proposed distributed framework defends against

attacks by coordinating between the local defenses systems at the source ends

and the victim end. A native OpenFlow protocol approach is used to gathering,

distributing and analyzing information from a distributed Ethernet network. The

following concepts are the method of attack defending mechanism in the

framework.

Detection of an attack: Each of the controller protects a server which provides

services for the tenants on the cloud network by monitoring flows on all of

switches in its domain for high bandwidth on the link. Moreover, the controllers

monitoring the hosts to check if it is sending data to the victim and its data rate

is above from the predefined threshold.

11

Source finding: Detect an attack and identify an attacker. To find source-end

edge routers, traditional methods rely on the topological knowledge in each node

and iterative communication among nodes. Finding a source an attacking node

can be accomplished by the trackback component of the defense system at the

victim node domain controller. We proposed a mechanism that identify filters

that block attack traffic and allow legitimate traffic as close to the source node

as possible, so that network resources are not wasted in propagating the attack.

Mitigation of an attack: The defense system at the victim network controller

identities the aggregate, it enables Pushback. It sends pushback message to its

upstream adjacent OpenFlow switches asking them to rate limit the rate of its

identified aggregates. When the pushback message arrives at the source

OpenFlow switch, the controller identify which input links are the contributing

links that are primarily responsible for the aggregate traffic. The OpenFlow

switch at the source then probabilistically drop the flows coming from these

contributing links until they do not receive more pushback messages from

downstream routers.

The final step is an experiment. We performed several steps in our experiments

for analyzing the incoming traffic and identifying an existence of an attack from

the flow of the traffic and mitigate the rate of an attack on the cloud networks.

For the experimenting we used a mininet virtual network traffic that is generated

between the virtual machines. Ryu OpenFlow controller is selected for the design

of our application codes in the framework. Using this tools, different DoS and

DDoS attack scenarios are designed and performed. Then finally our approach

is evaluated, with our evaluation metrics, like rate of attack traffic, throughput

measurement, available bandwidth, time delay and system overload during

normal and attack periods. The observation of the result from the experiment is

collected and presented as graphs and tables. We also made a discussion on the

performance of the overall technique proposed.

12

1.5 Scope

In this work, the DoS attack defense system and the security issue analysis of

the cloud computing is on the network infrastructure only. The main reason for

this is that, most of the DoS attacks are generated and arise from where the

cloud network infrastructures. As most of DoS attack statics reports, a large

number attack traffics are sent from malicious users or VM’s in the data center

to different cloud networks easily. Because, the intention of an attackers in this

cloud model is that, denying services by flooding the traffic congesting the links,

consuming the bandwidths and system resources. The aim of the proposed

defense systems is also, to detect malicious traffic on the network and increase

detection rate and examine cloud based infrastructure attacks. We monitor all

the flow of information by using PACKET IN message from the connected hosts,

extracting this flow information’s, identifying the malicious from, the normal flow

and also mitigate an attack when a malicious flow is detected.

Moreover, our DDoS defense mechanism is on botnet attacks generated with-in

private as well as in public cloud computing environment. Furthermore, the

feasibility of the proposed system is analyzed with simulated data traffic that is

generated in the mininet simulation environment.

1.6 Organization of the study

On the rest of this thesis work, we discuss a part of our work. Chapter 2 starts

with introducing what the cloud computing and its services and models. It also

discusses about DoS attack and how DDoS attack impact the cloud systems

particularly at the Infrastructure level. Furthermore, the defense schemes and

deployment of this defense mechanism are looks like. We also reviewed, some

background information on SDN, OpenFlow architecture and, its basic feature

that helps us in defending a DDoS flooding attack on the SDN virtual

environment. Chapter 3 discusses related works that have significant relation

with this thesis. Even if there are a number of works done on this area, we selects

the most related works to our thesis and presents them based on their attack

13

defense approach. Chapter 4 shows the designed and the proposed work on the

existing SDN framework. The section also detailed the coordination of the

different components in attack defending process. Here, a pushback DDoS

attack detection system is selected and designed due to its effectiveness in

detection and identification of attack on the system without any overhead on the

controller for the distributed cloud systems. On chapter 5 the proposed system

implemented and simulated using Software defined network emulation tools. The

simulation is done on virtually created mininet network. The result of this

experimental analysis is described and explained. Finally, we summarizes the

contributions made in the thesis, and conclude our work based on the results

obtained from the thesis. Furthermore, new issues that have been surfacing

while working on the thesis will be suggested as future work.

14

Chapter 2

Literature Review

In this section we discussed the state of arts in DDoS attack in cloud, the major

types of attack on the cloud computing environment, and the open security

challenges in designing the defense mechanisms. DDoS attack is one of the

security challenges on the cloud computing environment that results in

minimizing the performance of the cloud services or blocking its availability from

legitimate users. The existing DDoS attack detection methodologies, and the

placement of this DDoS detection mechanisms is reviewed. Where the defense

mechanisms can be deployed and effective in defending an attack. Moreover, we

discussed features of SDN that helps us to design our defense mechanism. The

motivations of the attackers and the tools they use for attacking, are also

addressed. In addition to the primary motives of the attacker, the attacking

techniques as well as their targets and the main problems due to these attacks

are reviewed.

2.1 Cloud Computing

Cloud computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.

This cloud model promotes availability and is composed of five essential

characteristics, three service models, and four deployment models. The essential

characteristics of cloud computing’s are [11]:

 On-demand self-service: computing resources can be acquired and used

at any time without the need for human interaction with cloud

service providers. Computing resources include processing power,

storage, virtual machines etc.

15

 Broad network access: the previously mentioned resources can be

accessed over a network using heterogeneous devices such as laptops

or mobiles phones.

Figure 2.1: Cloud computing Architecture [12]

 Resource pooling: cloud service providers pool their resources that are

then shared by multiple users. This is referred to as multi-tenancy

where for example a physical server may host several virtual machines

belonging to different users.

 Rapid elasticity: a user can quickly acquire more resources from the

cloud by scaling out. They can scale back in by releasing those resources

once they are no longer required.

16

 Measured service: resource usage is metered using appropriate metrics

such monitoring storage usage, CPU hours, bandwidth usage etc…

Figure 2.2: Cloud computing deployment and service models

2.1.1 Cloud deployment models

There are four types of cloud deployment models:

 Private cloud: Private cloud is a new term that some vendors have recently

used to describe offerings that emulate cloud computing on private

networks. It is set up within an organization’s internal enterprise

datacenter. In the private cloud, scalable resources and virtual

applications provided by the cloud vendor are pooled together and

available for cloud users to share and use. It differs from the public cloud

in that all the cloud resources and applications are managed by the

organization itself, similar to Intranet functionality. Utilization on the

private cloud can be much more secure than that of the public cloud

because of its specified internal exposure. Only the organization and

designated stakeholders may have access to operate on a specific Private

cloud [13].

 Community cloud: The cloud infrastructure is provisioned for exclusive

use by a specific community of consumers from organizations that

have shared concerns (e.g., mission, security requirements, policy, and

Software as a Service

Infrastructure as a Service

Platform as a Service

Community

Cloud

Hybrid Cloud

17

compliance considerations). It may be owned, managed, and operated

by one or more of the organizations in the community, a third party,

or some combination of them, and it may exist on or off premises.

 Public cloud: The cloud infrastructure is provisioned for open use by

the general public. It may be owned, managed, and operated by a

business, academic, or government organization, or some combination

of them. It exists on the premises of the cloud provider.

 Hybrid cloud: The cloud infrastructure is a composition of two or more

distinct cloud infrastructures (private, community, or public) that

remain unique entities, but are bound together by standardized or

proprietary technology that enables data and application portability

(e.g., cloud bursting for load balancing between clouds).

2.1.2 Service models

Clouds use architectural models in order to provide different services to the

users. Service models are not tied to a specific deployment type, public, private,

hybrid and community, rather each deployment type can use each service model.

Just as with the different deployment methods the service models can have

implications for a clouds security state, it is therefore important to have

knowledge of these service models. The common service models are explained

below.

A. Cloud Infrastructure-as-a-Service (IaaS)

The capability provided to the consumer is to provision processing, storage,

networks, and other fundamental computing resources where the consumer is

able to deploy and run arbitrary software, which could include operating systems

and applications. The consumer does not manage or control the underlying cloud

infrastructure but has control over operating systems, storage, deployed

applications, and possibly limited control of select networking components (e.g.,

host firewalls).

18

B. Cloud Platform-as-a-Service (PaaS)

This model provides a complete development environment to the customers,

which includes all phases of SDLC with an appropriate support of APIs. PaaS

facilitating a customer organization in developing software applications without

investing huge on infrastructure which will be delivered to the users over Internet

on-demand & rent (pay-as-you-use) basis. Web servers, application servers,

development environment, runtime environment, etc. are the example

components with respect to PaaS. In this model customers need not maintain

underlying infrastructure including maintaining server machines, cooling,

operating systems, storage, etc. Google AppEngine, force.com, Microsoft

Windows Azure, RedHat, etc. are example of PaaS vendors [12].

C. Cloud Software-as-a-Service (SaaS)

Following this model, the cloud service provider makes both the software and

the cloud infrastructure to run it available to the client, while it retains complete

control over the underlying physical settings of the cloud (i.e., the operating

system, network, storage, etc.) and the individual application capabilities. Thin

client interfaces such as web browsers are often used to allow access to these

applications [14].

D. Cloud Hardware-as-a-Service

Hardware as a Service, often abbreviated to ‘HaaS’. It brought forth a significant

improvement because it allows for easy access to physical hardware devices,

distributed among several geographical locations. If the cloud consumers

subscribe to this service, it will appear as if they are connected to the local

machine. The HaaS cloud middleware will ensure transparency between data

exchanges while the local system considers all connected hardware to be locally

connected, even though this is not always the case.

19

E. Cloud Data-as-a-service

Data in various formats and from multiple sources could be accessed via services

by users on the network. Users could, for example, manipulate the remote data

just like operate on a local disk or access the data in a semantic way in the

Internet. Amazon Simple Storage Service (S3) provides a simple Web services

interface that can be used to store and retrieve, declared by Amazon, any amount

of data, at any time, from anywhere on the Web. The DaaS could also be found

at some popular IT services, e.g., Google Docs and Adobe Buzzword. Elastic Drive

is a distributed remote storage application which allows users to mount a remote

storage resource such as Amazon S3 as a local storage device [15].

Virtualization and multi tenancy are two of the core technologies that enables

cloud computing to be used as we know it today. A traditional way of hosting

applications and data storage involves running one operating system (OS) on one

physical server. This traditional hosting method can also be used to create a

functioning but inefficient cloud. This is achieved by linking multiple servers

using a Virtual LAN (VLAN). This is secure but inefficient in the long term as a

large part of the physical hardware available end up being unused.

Virtualization was created in order to solve this efficiency problem. By using a

Virtual Machine Monitor (VMM) a single physical server can host multiple

instances of an OS. This means that a single server can utilize the available

hardware power in a more efficient manner. The figure below (Figure 2.3) is a

basic illustration of a VMM running multiple instances of an OS using a

virtualization layer. The virtualization layer is often known as hypervisor. There

are two main ways of utilizing this hypervisor to run virtual machines (VM).

These are known as full virtualization and paravirtualization. The difference

between them lies in how much of the OS needs to be emulated. A VM deployed

using full virtualization has to emulate the BIOS and drives of the OS, in addition

to the other functions. A VM using paravirtualization runs a version of the OS

20

that has been modified to work without needing a BIOS or similar components

[16].

There are also two major architectures used to deploy virtual machines, hosted

architecture and hypervisor architecture. The difference here stems from the way

the hypervisor is handled by the server. In a hosted architecture the hypervisor

is a platform that the host OS runs as a normal application. The application is

then charged with the upkeep of the virtual machines. On the other hand a

hypervisor architecture skips the OS and is instead run directly on the hardware.

Depending on which deployment method and architecture used different security

aspects applied [17].

Figure 2.3: Virtualization of multiple operating system on one physical Machine

Multi tenancy is closely tied to virtualization. In short, multi tenancy allows

several users to share computing resources with logical separation of the

different users, a user in this case is a tenant of the system. In the context of

cloud computing, each VM can be considered a tenant. However multi tenancy

is not limited to multiple VMs running on the same hardware. Applications can

also be utilised in a way that allows multiple tenants to use them, while at the

same time separating the different users from each other [17] while virtualization

and multi tenancy are core technologies needed for cloud computing to remain

21

efficient and viable they introduce new security risks. These are discussed in the

next sections.

2.2. DDoS attack on the cloud network Infrastructure

Before dealing with possible detections and mitigations of attacks on Cloud

Computing, the kinds of attacks and the types of attackers that are actually a

threat to Cloud Computing shall be addressed. We shall first focus on the various

forms an attack can take. There are multiple scenarios involved in the Cloud

infrastructure itself and its environment. In a DDoS attack, some hosts (VM, PC

or laptops), also called “bots” or “zombies”, can be controlled remotely. A

collection of such bots controlled by a master entity (attacker) is known as a

“botnet”. The typical attackers will be classified into three categories, according

to their location, their motivation or their level of activity in the attack [16].

Figure 2.4 : DDoS Attack Scenario in Infrastructure Cloud [9]

22

Cloud computing infrastructures can be compromised in three ways: the attack

can come from the outside and the target be inside (external to internal), it can

even originate from within the system (internal to internal) and it can even occur

from within to target the outside of the infrastructure.

1. External to internal. In such a case, the botnet used to perform the attack

comes from outside the target system. The attack can target the internet gateway

of the Cloud infrastructure, or the servers. If a particular client (in a VM) becomes

the victim of an attack, it will also affect the other VMs present on the same

physical server of the Cloud (performance interference between VMs).

2. Internal to external. In such a case, the attack begins by taking ownership

of a VM running in the Cloud. This can be done with a Trojan horse. The choice

of which customer’s VM to infect is important because if this customer owns a

large number of VMs, the Trojan horse can potentially spread over all those VMs,

therefore forming a botnet. The great computing power and resource availability

of the Cloud becomes a real threat for an external target.

3. Internal to internal. In the Cloud infrastructure, an internal botnet is formed

and can attack another target inside the system (such as a VM or a group of VM).

All Cloud infrastructures may break down under these kinds of attacks.

With the different kinds of attacks come different types of attackers. Indeed, each

attack scenario corresponds to a particular attacker with a specific location and

goals.

The scope of an attack may greatly vary, depending on who perpetrates the

attack. System administrators take the appropriate actions: to exclude or to

ensure a quick recovery and allow subsequent investigations. There are four

categories of attackers that we will describe in the context of cloud computing.

1. Insider vs. Outsider. In such a case, the insider belongs to the network that

is under attack: he is an authenticated user with privileged access to critical

23

data. Of course, the insider can do more harm than the outsider since the latter

would be considered an intruder from the network perspective. Moreover, he

would have fewer resources to begin an attack. In the case of Cloud Computing,

an insider could be an employee of the Cloud infrastructure, or someone

controlling one or several VMs inside the Cloud network, whereas an outsider

would not be part of the network at all. For example, an insider attacker may be

able to execute arbitrary commands on the behalf of a legitimate Cloud user,

thus performing a DoS or DDoS on the user’s services or to create a botnet for

charging the Amazon Elastic Cloud Computing costs on the user’s invoice.

2. Malicious or Rational. Malicious attackers have a general goal of harming

the network or the network users (employees or customers of the network).

Whatever the costs or the consequences, all means can be deployed to achieve

his goal and such attackers are usually harder to stop or to track since no logic

is involved. On the contrary, rational attackers can be more predictable in the

way the attacks are led and which specific targets are reached. Consider the

example of a DoS attack in Cloud Computing: a malicious attacker may want to

destabilize an organization without any claim or consistent reasons to motivate

his actions: he simply wants to be famous. However, a rational attacker could be

a competitor desiring to create a commercial threat or an organization leading a

DoS or DDoS against a company or a government for ideological reasons.

3. Active vs. Passive. Active attackers lead attacks by consciously or

unconsciously sending packets or signals while passive attackers may simply

eavesdrop. Victims may not even be aware that their machine is under the

control of a master machine that forces it to contribute to the attack (a botnet is

such an example). In DoS and DDoS attacks, this defines the difference between

the zombies and the master entity (active attacker): both participate in the

attack, but zombies are never aware that they are vehiculing an attack. In the

context of Cloud Computing, an active attacker would have taken control of one

or several VMs inside the Cloud network, for instance, and would send huge

amounts of traffic or malformed packets to a specific host or subnet in the

24

network. Hence, a legitimate user such as a zombie whose VM was taken over

by a master attacker, also performs the attack. A passive attacker consists on

sniffing traffic to discover vulnerable links for future exploitations. In addition,

passive attackers may launch eavesdropping attacks to capture the

communication.

4. Local vs. Extended. The scope of the attacker depends on the number of

machines he can control. More than just a number, it really is about how those

machines are linked together and scattered across the network. An attacker

controlling thousands of machines outside the cloud to perpetrate a DoS or

DDoS would be considered an extended attacker. On the other hand, an attacker

in the Cloud, with one or several entities, would be described as local.

2.2.1 Infrastructure level attacks

Network bandwidth, routing equipment and computing resources are considered

infrastructure. In this attack, the intruder attempts to overwhelm the resource

capacity of a private cloud’s infrastructure by sending a large number of fake

requests, which exploit the limitation of a specific application to cause

performance degradation or ultimately crash remote servers. Some commonly

used infrastructure level attacks are listed below.

a) Direct: A direct Denial-of-Service attack is characterized by an explicit

attempt to prevent the legitimate use of a service. A Distributed Denial-of-Service

attack deploys multiple attacking entities to attain this goal. A DDoS attack

includes an overwhelming quantity of packets sent from multiple attack sites to

a victim site. These packets arrive in such a high quantity that some key resource

at the victim is quickly exhausted. The victim either crashes or spends so much

time handling the attack traffic that it cannot attend to its real work.

b) Reflection/Indirect: It is a type DoS attack in which multiple compromised

victim machines unwillingly participate in a DDoS attack. Flashes of requests to

the victim host machines are redirected or reflected from the victim hosts to the

target. Some reflection or indirect based attacks are mentioned below.

25

DNS (Domain Name Service) reflection or amplification attacks use botnets that

send a large number of DNS queries to open DNS resolver using spoofed IP

addresses of victims to produce an overwhelming amount of traffic with very little

effort. Thus, such an attack can do a lot of damage as it is difficult to stop this

type of attack at an early stage.

SSDP (Simple Service Discovery Protocol) reflection attacks are created using the

Simple Object Access Protocol (SOAP) to deliver control messages to universal

plug and play (UPnP) devices and to communicate information. These requests

are created to elicit responses, which reflect and amplify a packet and redirect

responses towards a target.

NTP (Network Time Protocol) reflection attacks are created by the attacker to send

a crafted packet in which requests for a large amount of data are sent to the

host. NTP is used to synchronize the time between client and server.

In an SNMP (Simple Network Management Protocol) reflection attack, the culprits

send out a huge number of SNMP queries with forged IP addresses to numerous

victim machines. SNMP is a network management protocol for configuring and

collecting information from servers.

CHARGEN (Character Generator Protocol) is often misused when attackers use

the testing features of the protocol to create malicious payloads and reflect them

by spoofing the address of the source to direct them to the target. CHARGEN is

a debugging and measurement tool and also a character generator service.

TCP SYN flood: Manipulating the 3-way handshake in a TCP connection, an

attacker sends a lot of ordinary SYN segments to fill up resources causing a

service to be denied for legitimate connections.

UDP flood: In this attack, massive amounts of UDP packets are sent to random

ports on the victim side. Sometimes ports remain open without knowledge of

administrators, causing the server to respond. A response to each UDP packet

with an IMCP unreachable reply to the spoofed source IP address makes the

situation worse by overwhelming the network environment of the victimized IP

addresses.

26

ICMP flood: ICMP flood, occasionally referred to also as a Smurf attack or Pin

flood, is a ping-based DoS attack that sends large numbers of ICMP packets to

a server and attempts to crash the TCP/IP stack on the server and cause it to

stop responding to incoming TCP/IP requests.

Crossfire Attack: A botnet can launch an attack with low intensity traffic flows

that cross a targeted link at roughly the same time and flood it. For example, a

botnet controller can compute a large set of IP addresses whose advertised routes

cross the same link, and then direct its bots to send low-intensity traffic towards

these addresses. This type of attack is called the Crossfire attack.

2.2.2 Application level attacks

Application layer DDoS attacks continue to grow in both complexity and

prevalence.

Common application-layer DDoS attack types: When a heavy amount of

legitimate application-layer requests or normal requests that consume large

amounts of server resources or high workload requests across many TCP

sessions are sent to the server, they can cause common application layer DDoS

attacks.

HTTP flood attacks: Some application level DDoS attacks come in the form of

HTTPGET floods. HTTP request attacks are those attacks where attackers send

HTTP GETs and POSTs to Web servers in an attempt to flood them by consuming

a large amount of resources. The HTTP POST method enables attackers to POST

large amounts of data to the application layer at the victim side, and it happens

to be the second most popular approach among the application layer attacks.

2.3 Probable Impact of DoS/DDoS on Cloud

As mentioned earlier, the cloud computing market continues to grow, and the

cloud platform is becoming an attractive target for attackers to disrupt services

and steal data, and to compromise resources to launch attacks. Miao et al. [12]

present a large-scale characterization of inbound attacks towards the cloud and

outbound attacks from the cloud using three months of NetFlow data in 2013

27

from a cloud provider. They investigate nine types (TCP SYN flood, UDP flood,

ICMP flood, DNS reflection, Spam, Brute-force, SQL injection, Port scan, and

Malicious Web activity (TDS)) of attacks ranging from network level attacks such

as DDoS to application-level attacks such as SQL injection and spam. Cloud

computing features a cost-efficient, “pay-as-you-go” business model. A cloud

platform can dynamically clone virtual machines very quickly, e.g., by

duplicating a gigabyte level server within one minute. Despite the promising

business model and hype surrounding cloud computing, security is the major

concern for a business that is moving its applications to clouds. When a DDoS

attack is launched from a botnet with a lot of zombies, Web servers can be

flooded with packets quickly, and memory can be exhausted quickly in an

individual private cloud. So, we can say that the main competition between DDoS

attacks and defenses is for resources. The increase of DDoS attacks in volume,

frequency, and complexity, combined with the constant required alertness for

mitigating Web application threats, has caused many Website owners to turn to

Cloud-based Security Providers (CBSPs) to protect their infrastructure. In one

recent analysis, DDoS attacks are considered one of the top nine threats to cloud

based environments. This report concludes that cloud services are very tempting

to DDoS attackers who now focus mainly on private data centers. It is safe to

assume that, as more cloud services come into use, DDoS attacks on them will

become more commonplace. Some key findings are provided by InfoWorld20, in

2013.

 94 percent of data center managers reported some type of security attacks.

 76 percent had to deal with distributed denial-of-service (DDoS) attacks

on their customers.

 43 percent had partial or total infrastructure outages due to DDoS attacks.

 14 percent had to deal with attacks targeting a cloud service.

Unfortunately, the counterparts of clouds, e.g., client-server and peer-to-peer

computing platforms, do not usually have sufficient resources to beat DDoS

attacks. The public cloud infrastructure stands a better chance because a public

cloud usually has a lot of resources that make it easy to handle a rapid increase

28

in service demands to counter the attack dynamically. It is almost impossible to

shut down such clouds by attacking them. But, if an intense DDoS attack occurs

on customers of an individual private cloud like a data center with limited

resources, it cannot escape from the DDoS attack, and it becomes a battle of

survival using all the resources there are to confront. The essential requirement

to defeat a DDoS attack is to allocate sufficient resources to mitigate attacks no

matter how efficient our detection and filtering algorithms are.

Cloud Service Providers (CPS) usually provide cloud customers two resource

provisioning plans: short-term on-demand and long-term reservation. Giant

cloud providers, like Amazon EC2 and GoGrid, provide both plans. If a customer

chooses the first plan, it is charged based on resources used. This business

model for resources is vulnerable to an Economic Denial of Sustainability (EDoS)

attack. This kind of attack also disturbs the service of clouds that allocate

resources based on spot instance. On the other hand, if a customer chooses the

reservation plan, it makes a prior reservation for resources for the maximum

usage for the business. In other words, the reserved resources for the application

are limited from start. As a result, a threat of DDoS attack remains.

Some possible examples of DDoS attacks in cloud environments are Smurf

attack, IP spoofing attack, Tear drop attack, SYN flood attack, ping of death

attack, Buffer overflow attack, LAND attack, etc. From many news report we can

state that large-scale IoT-enabled DDOS attacks will continue to dominate

enterprise security. Darwish et al, discuss DDoS attacks as attacks that target

the resources of these services, lowering their ability to provide optimum usage

of the network infrastructure. Due to the nature of cloud computing, the

methodologies for preventing or stopping DDoS attacks are quite different

compared to those used in traditional networks, and new approaches published

till now are usually adapted versions of older approaches. In the above

mentioned papers, we can find descriptions about the effect of DDoS attacks on

cloud resources and recommend practical defense mechanisms against different

types of DDoS attacks in the cloud environment.

29

2.4 DDoS Defense Scheme

Defense mechanisms proposed in research literature against DoS (and DDoS)

attacks can be divided into three main categories [17] :

1. Attack Prevention

2. Attack Detection

3. Attack Reaction

1) Attack Prevention: Attack Prevention aims to preempt attacks before they

cause damage. This approach is effective against DoS attacks in which the

source address of attack traffic is spoofed to hide the real source of the attack

traffic and exploit protocol vulnerabilities. The main exponents of this approach

is Ingress/Egress Filtering, Router-based Packet Filtering (RPF) and Source

Address Validity Enforcement (SAVE).

Ingress filtering involves filtering the traffic coming into a local network, and

egress filtering involves filtering the traffic leaving a local network. The purpose

of ingress/egress filtering is to only allow traffic to enter or leave the network if

its source addresses are within the expected ip address range in the network.

Thus, as a result of deploying ingress/egress filtering, spoofed ip packets with

source IP address not within the network are dropped, thereby mitigating the

effect of DoS attacks.

RPF extends ingress filtering to the core of the Internet. It is based on the

principle that for each link in the core of the Internet, there is only a limited set

of source addresses from which traffic on the link could have originated. In the

event that an unexpected source address appears in an ip packet on a link, we

can infer that the source address has been spoofed, and hence filter the packet.

SAVE uses a protocol that can provide routers with information needed for

source address validation. SAVE messages propagate valid source address

information from source location to all destination, allowing each router along

30

the way to build an incoming table that associates each incoming interface of the

router with a set of valid source address blocks.

The techniques described above involve changes in network infrastructure and

protocols. Hence, unless policies or regulations are implemented for their

enforcement, it is difficult to deploy such techniques.

2) Attack Detection: There are two main categories of DoS attack detection

techniques - DoS-attack-specific detection and anomaly detection. DoS-attack-

specific detection utilizes characteristics of DoS attack traffic. Since DoS traffic

is generated by the attacker, it does not typically follow traffic control protocols.

There is an imbalance in the traffic between source and victim since the victim

is not able to handle all incoming packets. This is not the case for normal traffic.

MULTOPS [4] is based on the assumption that packet rates between two hosts

are proportional during normal operation.

It monitors traffic rates in up and down links to detect disproportional traffic

between hosts in order identify DoS attacks. TOPS [2] uses a similar approach

but is more memory efficient on account of use of hashing scheme with a small

set of field length lookup tables. Other methods such as [14] define a statistical

model of normal traffic and then identify traffic which does not match this model

to be attack traffic.

Anomaly detection builds a model of normal traffic using training data. If the

monitored traffic is statistically different from the model, then it can be inferred

that a DoS attack is in action. The first real-time intrusion detection model was

proposed in [8]. It detected attacks by monitoring a system’s audit records for

abnormal patterns of system usage.

The main drawback of using attack detection techniques mentioned above is that

depend heavily upon a traffic model which may not be universally applicable.

Building a traffic model and making online statistical comparison between

normal and observed traffic is also time-consuming and costly.

31

3) Attack Reaction: The main aim of DoS attacks is to damage the target as

much as possible. Attackers typically do not disguise the attack since the target

will be aware of the attack damage eventually. The attack detection techniques

mentioned attempt to detect an ongoing attack in the minimal possible time. In

order to minimize the damage caused by DoS attacks, a reaction scheme must

be employed after an attack has been detected. DoS attacks not only affect the

end-host victim but also congest the intermediate links between the source and

the victim. Attack reaction will be most effective if the attack traffic is filtered as

close to the source as possible.

Attack reaction techniques can be classified into host-based reaction which

takes place only at the end host and network-based reaction which takes place

at intermediate routers (and optionally end-hosts). An example of network-based

reaction is. It uses an online scheme in which intermediate routers learn a

congestion signature based on the victim’s IP address and the volume of traffic

directed towards that IP address. Once a signature has been identified local

congestion control is filter attack traffic. In addition, a Pushback mechanism is

used to request upstream adjacent routers to rate-limit traffic matching a

specified signature. [21], uses a Selective Pushback mechanism that sends

pushback messages to the routers closest to the attack sources directly by

analyzing the traffic distribution change of all upstream routers at the target.

The techniques mentioned above, though effective, require the co-operation of

routers for their implementation. In many cases, a victim may not have access

to such routers. In such a scenario, defense mechanism must be implemented

on the end-host alone. While such techniques cannot completely stop an attack,

they can mitigate the damage caused. An example of such a technique is SYN-

cookies using which a host does not need to keep track of half-open connection

states thereby mitigating the effects of a SYN-Flood.

Another technique is using system and network interface logs on the host to

identify IP address from which malicious traffic is originating and then filtering

32

those using tools such as iptables/net filter. Malicious traffic can also be

identified using a history maintained by the host.

2.5 DDoS Defense deployment location

For the detection and prevention of DDoS attack, four types of designs were

proposed by the researches. Each of the designs have their own benefits and

drawbacks in the detection and prevention of the different types of attacks on -

Figure 2.5: DDoS defense deployment locations [18]

the cloud system. Here below we explained the design of the defense mechanisms

from the state of arts. From our analysis, our defense mechanism also uses one

of the defense system design for our DDoS flooding attack detection in the cloud

system. But, our analysis is limited and considers only the defense mechanisms

to the cloud systems. In the cloud system mostly attacks are generated from the

inside network or external networks. So, the locality of deployment, for DDoS

defense the design of the defense system should have to consider this scenarios.

33

There are four defense systems are designed: source based, network based,

destination and distributed based. When a DDoS attack is detected, and there

is nothing that can be done expect manually fix the problem and disconnect the

victim system from the network. DDoS attacks blocks a lot of resources such as

CPU power, bandwidth, memory, processing time, etc., on the paths that lead to

the targeted system. The main processing time, etc., on the paths that lead to

the targeted system. The goal of any DDoS defense mechanism is based, and

distributed form of attack defense mechanisms.

2.5.1 Source-end DDoS attack defense mechanism

A generic architecture of source-end preventive schemes is shown in Figure 2.6.

This architecture is similar to the victim-end detection architecture. Here a

throttling component is added to impose rate limit on outgoing connections. The

mechanism. The observation engine compares both incoming and outgoing

traffic statistics with some predefined normal profiles.

Figure 2.6: Generic architecture for source-end based DDoS defense [8]

Detecting and stopping a DDoS attack at the source is the best possible defense.

It prevents the possibility of flooding not only on the victim side, but also in the

whole intermediate network. The main difficulty with this approach is that,

34

detecting DDoS attacks at source end is not easy. This is because in these

attacks, sources are widely distributed and a single source behaves almost

similarly as in normal traffic. Another problem is the difficulty of deploying

system at the source end [8].

2.5.2. Access point deployment

Access point deployment is usually deployed in the front-end, back-end or each

virtual machines (VMs) in the cloud computing environment. The front-end is

typically the administrative domain of the cloud service that serves as an

interface between the cloud user and the various cloud components. In

Eucalyptus, for example, this is referred to as the cloud controller, while in Xen,

it is known as dom0.DDoS defenses deployed at the access point distinguish

legitimate packets from malicious packets before granting access to the cloud

computing resource and services. Key limitation of this deployment is that the

access point is generally not the most suitable place for filtering or rate-limiting

as bandwidth might be saturated. However, this approach is most commonly

deployed due to the ease of deployment, and SBTA (Yang et al., 2012) is one

popular example.

2.5.3 Intermediate-network defense mechanism

The intermediate network defense scheme balances the trade-offs between

detection accuracy and attack bandwidth consumption, the main issues in

source-end and victim-end detection approaches. Figure 2.7, shows a generic

architecture of the intermediate network defense scheme, one that can be

employed in any network router. Such a scheme is generally collaborative in

nature and the routers share their observations with other routers. Like a

source-end scheme, these schemes also impose rate limits on connections

passing by the router after comparing with stored normal profiles.

35

Figure 2.7: Generic architecture for intermediate network-based DDoS defense

mechanism [8]

Detection and traceback of attack sources are easy in this approach due to

collaborative operation. Routers can form an overlay mesh to share their

observations. The main difficulty with this approach is deployability. To achieve

full detection accuracy, all routers on the Internet will have to employ this

detection scheme, because unavailability of this scheme in only a few routers

may cause failure to the detection and traceback process. Obviously, full

practical implementation of this scheme is extremely difficult by reconfiguring

all the routers on the Internet [8].Such a deployment can be effective but it is

impractical in a cloud computing environment as the nodes are not controlled

by the same provider and are in different administrative domains. This could,

perhaps, work in private cloud deployment.

2.5.4. Distributed-end or Hybrid Defense architecture

Attack detection and mitigation at distributed ends can be the best strategy

against DDoS attacks. The hybrid defense mechanisms are deployed at (or their

components are distributed over) multiple locations such as source, Victim or

intermediate networks and there is usually cooperation among the deployment

36

points. The core-end is best to rate-limit all kinds of traffic whereas the victim-

end can accurately detect the attack traffic in a combination of legitimate and

attack packets. Therefore, distribution of methods of detection and mitigation at

different ends of the network can be more beneficial [19]. MTF (iyengar et.al,

2014) is an example of a distributed defense deployment.

2.6 Traditional and SDN Networks

Software defined networking is a promising technology which has an ability to

view the entire network. The network infrastructure namely the data planes for

forwarding traffics from cloud network administrative domain to the other

remote domain. The controller on top of this network infrastructure domains ma

nages the flow of traffic with the configure rules. Employing this methodology,

helps us to design a simplified version of a DDoS attacks mitigation solution.

The next section we will explain some of the concepts and features of this

methodology.

2.6.1 SDN: A New Network Paradigm

SDN is a framework that separated the data plane and the control plane of the

network switches and moves the control plane to a centralized application knows

as Network controller. The network controller maintains the entire network thro

ugh a vendor-independent interface called as OpenFlow, which defined the low-

level packet forwarding behaviors in the data plane.

The application layer will have a single view of the network through the control

layer and the whole system looks like one logical switch. The control layer is

where the controller abstracts the network infrastructure from the application

layer. By using the control layer, any configurations and modifications can be

done in real-time. In the infrastructure layer, there is no need for each device to

learn different protocols and the only task left is forwarding.

37

Figure 2.8: Monolithic vs Software-Defined Network Paradigms

In this new network architecture, control is decoupled from the network devices,

and is directly programmable. The network devices become simple packet

forwarding devices, which receive control instructions from a logically centralized

entity known as the controller. By logically centralized we mean that control logic

is to be designed and operated as if it was a centralized application, rather than

a distributed state. However, the controller itself may be a distributed system,

as is in fact the case with production SDNs, such as Google’s private Wide Area

Network (WAN).

Current networks have no powerful control plane abstractions. SDN aims to

solve this problem. The control plane is redefined as three abstractions: a

forwarding abstraction, a state distribution abstraction and a global

management abstraction. The forwarding abstraction allows a software

controller to communicate directly with the data plane, using a common

Application Programming Interface (API) to program the network hardware.

38

Figure 2.9 : SDN architecture and its fundamental abstractions [20]

In SDNs, the materialization of this abstraction is most commonly done using

Open-Flow. The state distribution abstraction shields control programs from the

vagaries of distributed state. Thus, management applications no longer have to

worry about dissemination and collection of state. The logically centralized

controller accomplishes the state distribution abstraction. With the global

management abstraction the network has a logical appearance and can be

managed as a single logical switch, rather than having to program each

individual network device one at a time. The network becomes divided in three

tiers, as seen in Figure 2.11. The switches —now “dumb” packet forwarding

devices are located in the data plane tier; the controller and the network

applications are in the control plane and application tiers, respectively.

39

2.6.2 OpenFlow

OpenFlow [21] is the most common forwarding abstraction in SDNs. It is the first

standard communications interface defined for the exchanging of information

between the controller and the packet forwarding devices. While it is not

mandatory to use OpenFlow, it is nowadays the most common standard used for

the communication between SDN controllers and packet forwarding devices.

OpenFlow started out as a way for researchers to run experimental protocols in

networks used every day. As explained before, networks today are static. A lot of

the algorithms that are used, as well as functions, are fixed in hardware, in the

network device’s chips. This results in a high barrier of entry for new ideas, due

to the enormous installed base of equipment and protocols. Commercial

solutions, meaning proprietary equipment, are closed and inflexible. Research

solutions on the other hand, either have insufficient performance or are too

expensive. OpenFlow, however, attempts to have switches support a broad range

of applications, with high performance and low-cost implementations, all while

being consistent with vendor’s need for closed platforms.

OpenFlow operates on the switches’ flow tables. While each vendor’s flow table

maybe different, OpenFlow exploits a common set of functions that run in many

network devices.

The goal is to provide an open protocol to program the flow table indifferent

network devices. This way, network traffic can be partitioned into production

traffic and research traffic. Flows can be controlled, the paths that packets follow

can be chosen, as well as the processing they receive. OpenFlow can be compared

to the instruction setoff a Central Processor Unit (CPU), since it specifies basic

primitives that can be used by external software (in SDN, the controller) to

program the forwarding plane of the network devices.

40

Figure 2.10: OpenFlow protocol architecture

We present the three building blocks of an OpenFlow switch in Figure 2.11: a

flow table, with an action associated with each flow entry; a secure channel

connecting the switch to a remote controller; and the OpenFlow Protocol, which

provides an API for the controller to communicate with the switch. The flow table

Figure 2.11: Flow table entries for matching fields [22], [23]

41

is populated with flow entries of the form h header; action i, as decided by the

remote controller. Packet headers are compared with the header field of flow ent-

ries on the switch. If there is a match, the action associated with the matched

entry is performed on the packet. The switch does not have to know what it

means in term of distributed state, it only knows what it is supposed to do

2.7 OpenFlow Operation

Whenever any data packet from end host arrives at an OpenFlow-enabled switch,

the switch will forward this packet to a control plane for verification. The function

of switch is to encapsulate and forwards the first packet arrives from end host

to an OpenFlow controller on secure link using OpenFlow Protocols (OFP). This

in turn enables the controller to decide whether the flow should be added to flow

table of switches or to discard. OpenFlow switch consists of flow table and secure

channel to communicate with OpenFlow controller using OpenFlow Protocols

(OFP). Each data flow through the network must first get permission from the

OpenFlow controller in order to verify whether communication is permissible by

network policies or not. If controller allows the flow than it will compute the route

and inserts the flow entries in the flowtable of an OpenFlow switch. The flow

table entries done by controller have three fields as shown in Figure 2.12. Once

an entry is done by controller in a switch, all the succeeding packet arrives from

hosts to a switch will match the entry and follow the same path dictated by a

controller.

If entry not found in the flow table than either switch will discard the packet or

it will send to the controller for further processing based on controller decision.

A flow diagram of arrived data packet processing in OpenFlow-enabled switch is

explained in [8].

42

Controller

Host A Host B

1

2

5

3 3

4

Packet Forwarding

New rule deployment

Switch A Switch B

 Figure 2.12: Basic OpenFlow Operations

2.8 SDN Controllers

Controllers offer a uniform and centralized programmatic interface to the entire

network. Much like operating systems provide controlled access to high-level

abstractions for the resources of a computer system, thus facilitating program

development, the controller software is a “network operating system”, providing

the ability to observe and control a network. The interface offered must be

general enough to support a broad spectrum of network management

applications.

The controller does not manage the network itself; applications implemented on

top of it perform the actual management. The controllers form the control plane

of the SDN network and the applications form the management plane. For

example, the controller merely adds and removes flow-entries from the switches’

flow tables on behalf of the network management applications.

43

Some concerns about availability and scalability may arise when devising a

network architecture based on a centralized controller. However, enough

resilience can be achieved by applying standard replication techniques. In fact,

the term logically centralized is an oversimplification. What is important to note

is that the distribution model is our choice to make, and not the network’s

choice. Thus, the controller can be a distributed system built and configured

based on the specific requirements of scalability, resiliency, availability, etc. All

that is needed to maintain is a unified network view. As with any distributed

system, the choice in consistency model offers a tradeoff between performance

and overhead, which influences SDN scalability. Furthermore, the OpenFlow

protocol allows for a switch to be controlled by more than one controller, for

increased performance and resilience.

Controllers present programs with a centralized programming model, allowing

applications to be written as if the entire network were present on a single

machine. This is made possible by logically centralizing the network state.

Controllers also allow programs to be written in terms of high-level abstractions,

such as users and host names, instead of low-level configuration parameters,

like IP and MAC addresses. Management rules can be enforced independent of

the network topology; provided the controller maintains mappings between these

abstractions and the low-level configurations.

2.9 SDN for cloud computing

SDN has many distinct features as aforementioned, and this distinct features

offer many advantages to designing DDoS defending application on the controller

[24].

Separation of the control plane from the data plane: SDN decouples the data plane

from the control plane, and thus makes it possible to easily establish large scale

attack and defense experiments. The high configurability of SDN offers clear

separation among virtual networks, permitting experimentation in a real

44

environment. Progressive deployment of new ideas can be performed through a

seamless transition from an experimental phase to an operational phase.

A centralized controller and view of the network: The controller has network-wide

knowledge of the system and global views to build consistent security policies

and to monitor or analyze traffic patterns for potential security threats.

Centralized control of SDN makes it possible to dynamically quarantine

compromised hosts and authenticate legitimate hosts based on the information

obtained through requesting end hosts and remote authentication dial in user

service (RADIUS) servers for users’ authentication information and system

scanning during registration.

Programmability of the network by external applications: The programmability of

SDN supports a process of harvesting intelligence from existing intrusion

detection systems and intrusion prevention systems. More intelligent algorithms

can be flexibly used based on different DDoS attacks.

Software-based traffic analysis: Software-based traffic analysis greatly enables

innovation, as it can be performed using all kinds of intelligent algorithms,

databases, and any other software tools.

Dynamic updating of forwarding rules and flow abstraction: Dynamic updating of

forwarding rules assists in the prompt response to DDoS attacks. Based on the

traffic analysis, new or updated security policy can be propagated across the

network in the form of flow rules to block the attack traffic without delay.

By Appling the above features of the OpenFlow protocol the proposed defense

mechanism is deploy a flexible, scalable and very simple cost effective system as

an application for the cloud computing environment.

45

Chapter 3

Related Works

This Chapter reviews some of the works that have been done on securing cloud

infrastructure from possible attacks and assuring reliability of cloud services.

Even though cloud computing is in its infant stage, some researches have been

done in the field of security, particularly on DoS attacks in the cloud. Both DoS

and DDoS attacks are serious threats to the Internet. Consequently, it is

necessary to have a more intricate mechanism to determine the malicious traffic

from the legal ones. In this regard, different detection and defense algorithms

have been introduced in the literature for cloud computing and OpenFlow

networks.

In this chapter, we will review some of the previous works on DDoS attacks in

the cloud using SDN methodologies. We also, try to analyze mitigation as well as

detection mechanisms of DDoS attacks in previous works.

3.1 Existing DDoS attack Detection and mitigation works

It is very interesting to know that implementing SDN architecture is proposed

by, Seungwon shin [25] as a method for the intrusion detection in cloud

environment. In the proposed scheme OpenFlow is integrated into the network

structure to control the network flows and diverts the traffic through a path that

it is inspected by the preinstalled security devices (e.g. network intrusion

detection system (NIDS), firewall, etc.). Employing the SDN infrastructure will

simplify the network operator’s job in a huge cloud infrastructure. The changes

in the flow directions and network policies can easily be performed by running

simple scripts on the controller that will install new flow entries on the switches.

The controller itself is not involved in the abnormal activity detection but it is

responsible for calculating the best and shortest paths that will guide the traffic

through the NIDS.

46

In a similar approach Snort, an Intrusion Detection Systems (IDS), is used to

monitor network traffic and measures to identify mischievous activities in the

network. Intrusion prevention System (IPS) is an IDS that has the power to

spontaneously take action towards the suspect events upon attack detection.

Tianyi Xing et al. [26] have implemented an IPS called snortflow by integrating

Snort and OpenFlow modules. In this approach the cloud networking

environment is dynamically reconfigured utilizing the power of OpenFlow

switches in real time to dynamically detect and prevent the attacks.

Kreutz et al. [20] revel the need of building protected and trustworthy SDNs in

the design phase. Bringing replication, diversity and dynamic switch association

to SDN control platform design are the main arguments described as mitigation

methods for several threat vectors that enable the exploit of SDN vulnerabilities.

In the proposed example by implementing a number of replicated controllers the

backup controller will take over if one controller malfunctions. The controllers

must be designed with interoperation capabilities. Meanwhile the switches must

have the ability to dynamically associate to the controllers. To prevent

simultaneous attack on all controllers, controllers’ diversity must be considered

to improve the robustness of the system. FRESCO [27] is an extension of this

work that makes it easy to create and deploy SDN security services.

FRESCO is a framework proposed for easier design of secure SDN networks.

FRESCO presents an OpenFlow security application development framework

that assists in prototyping new compassable security services in OpenFlow

networks. FRESCO offers a library of reusable security modules that can detect

and mitigate different attacks. The scripting API offered by FRESCO enables the

rapid design and development of these modular libraries. Essential security

functions (e.g. firewalls, IDS, attack deflector, etc.) can be simulated by assigning

values to the interfaces and connecting the necessary modules. The modules can

produce flow rules used to enforce the security directives.

47

B. Wang et al. (2015) [6] proposes a DDoS attack mitigation architecture that

integrates a highly programmable network monitoring to enable attack detection

and an adjustable control structure to allow fast and specific attack reaction. To

cope with the new architecture, paper proposes a graphic model based attack

detection system that can deal with the dataset shift problem. The simulation

results show that the architecture can effectively and efficiently address the

security challenges brought by the new network prototype.

Chu,Yu Hunag et.al (2010) [28] proposes an OpenFlow DDoS Defender that

monitors flows on an open flow switch. If the number of packets received in 5

seconds exceeds 3000 then the number of packets will be studied in per second

duration. If the number packets per second exceed 800 for 5 continuous times

then an attack is detected and the DDoS defender will start dropping the

incoming packets until the flow entry times out.

S.A. Mehdi, (2011) [29] argue that network security tasks should be delegated to

the home and office networks instead of ISPs. In the presented work security

policy implementation is delegated to the downstream networks. Four prominent

traffic anomaly detection algorithms, threshold random walk with credit based

rate limiting, rate-limiting, maximum entropy detector and Network Traffic

Anomaly Detector (NETAD) are implemented in NOX controller and it is observed

that the anomaly detection can function well at line rates without any

performance degradation in the home network traffic. It is suggested that this

approach can monitor the network activities without the need of the excessive

sampling.

K. Giotis et al. (2013) [30] proposed a combined mechanism comprised of data

gathering with sampling, implemented with the use of the sFlow protocol and

anomaly detection algorithm implemented by entropy-based algorithm. Their

mechanism eliminates the flow statistics collection through forwarding tables’

lookup and reduces the required communication between switches and OF

controllers, thus easing the control plane overloading.

48

R. Braga (2010) [31] propose a DDoS detection method built into the NOX

controller based on Self-Organizing Maps (SOM). SOM is an unsupervised

artificial neural network trained with the features of the network flow that is

periodically collected

Figure 3.1: Detection Loop Operation [31]

from the switches. The traffic is classified as either normal or abnormal based

on the SOM pattern. This detection method as shown in figure 3.1, runs in three

modules running periodically within a loop in the NOX controller:

 The flow collector module queries the switches periodically for their flow

tables.

 The feature extractor module extracts the main features that are studied

for DDoS attack detection and gathers them in 6-tuples. The main

elements that are calculated based on the collected features and will be

studied in the next module for the traffic classification include average of

packets per flow, average of bytes per flow, average of duration per flow,

percentage of pair flows, growth of single-flows and growth of different

ports.

 The classifier module must analyze and decide whether the given 6-tuple

corresponds to a DDoS attack.

49

Querying the switches periodically especially in the large scale cloud architecture

with large number of switches will put an extreme overhead on the system and

will eventually affect the performance of the controller. Processing that high

volume of flows in the flow tables is another issue that must also be well-thought-

out.

Lee et al.(2013) [32] propose a collaborative defense model, called coDef, against

large scale link-flooding attacks. CoDef consists of two complementary

mechanisms: collaborative routing and collaborative rate control. They introduce

a specialized server, called the route controller, into each participating AS, which

has complete knowledge of the network topology by participating in the intra-

domain routing protocol (i.e. IGP). The route controller is implemented in an SDN

architecture. In collaborative routing, a congested router sends a congestion

notification message to its route controller. Then, are route control message is

exchanged between route controllers placed in individual ASs to instruct the

source ASs to reroute their traffic, which relieves congestion at that router. The

collaborative rate control mechanism helps to distinguish between bot-

contaminated and uncontaminated ASs. In this case, a router that is subject to

a flooding attack sends rate-control requests to all the ASs to establish the

service priorities of their out-going flows (i.e. high-priority flows, low-priority

flows, and flows to be filtered).

In Xuan, Bettati and Zhao (2001) a collaborative DDoS defense system is

proposed in which routers act as gateways, detecting DDoS attacks locally and

identifying and dropping packets from misbehaving flows. Gateways are installed

and communicate only within the source and the victim domains, thus providing

cooperative defence of a limited scope.

Sumanth M. Sathyanarayana (2011), demonstrates that SDN can be leveraged

to mitigate DDoS attacks efficiently using the pushback technique with their

Frenetic mechanism. Two daemons are implemented in the Open-Flow

controller: a pushback daemon and a rate-limiter daemon. The use of the

50

OpenFlow controller prevents pushback messages from being sent by the

routers, and all communications are handled by the central controller.

Another a Collaborative DDoS defending system is pushback. Pushback has two

components, Pushback [33] and Aggregate-Based Congestion Control (ACC).

Pushback is the routers in the system assume that the congestion of local packet

queue is the sign of DDoS attack and take action to rate limit the identified

aggregates which are responsible for queue congestion according to local policy.

If the congested router cannot control the aggregate itself, it issues a rate limit

request to its immediate upstream neighbors who carry the aggregates traffic to

apply rate limiting to specified excessive flows. These requests will be propagated

upstream as far as the identified aggregates have been effectively controlled. This

approach requests all the routers on the path of aggregate traffic be augmented

with the pushback capability.

Local ACC is triggered when the traffic drop rate at the queue exceeds from the

predefined value of 10%. ACC attempts to identify the aggregate traffic

responsible for this series congestion.it then limits the rate of the traffic

probabilistically dropping from this aggregate until the drop rate reduces below

10%. The amount of packet dropping depends on how much traffic exceeded the

target bandwidth. ACC drops the excess traffic from its identification aggregates

until the drop rate at the output queue is below the predefined level. ACC is not

able to distinguish between the legitimate and attack traffic within an aggrate.it

drops legitimate traffic that belongs to the aggregate as well.

Our work is related to this approach. The pushback messages are the (defense)

rules that would be added to the switches by the controller. The "Preferential

Dropping phase of the Pushback" mentioned by [33]. (Ioannidis, 2001) is

implemented in this work, in which anomalous nodes are removed first from the

flow table of the switch next to the victim, and then successively on all the

switches, one after the other, from the victim node to the malicious node. On the

other hand, the approach presented here does all the calculations at the

51

controller and makes the decisions quickly. The mitigation strategy presented in

this thesis takes advantage of the fact that the SDN controller has information

on the complete network and is able to gather statistics of all the ports in it; with

all this information, a computation can be done using the complete knowledge

of the network and a quick decision can be made so that the attack that is being

performed is stopped.

52

Chapter 4

Proposed Design

As we discussed in the literature reviewed, DDoS attack is the most serious

attack in the cloud environment which consumes the resources of the service

and denying the legitimate user not able to access the service. Implementing

DDoS attacks on the cloud systems and denying services is easy when it

compared to the other networks. Most existing congestion control mechanisms,

are designed to detect and drop packets at or near the destination network where

the packets have already traversed the network and consumed considerable

bandwidth. The aggregate traffic at the destination node may consists of too

much flows. It is more difficult to distingue between legitimate and attacking flow

there. Therefore, some forms of congestion control mechanism that can identify

and handle DDoS attack at their source and collaboration between the different

defense systems for the distributed cloud network systems is required. In this

regard we design a simple, scalable congestion control mechanism which can

detect an attack at the source node and a report an existence of an attack on the

system and performing the attack mitigation process cooperatively. Our defense

solution is based on Software defined networking technology.

SDN is a network architecture that decouples the control plane and the data

plane of network switches and moves the control plane to a centralized

application called network controller. The network controller is in charge of the

entire network through a vendor-independent interface such as OpenFlow,

which defines the low-level packet forwarding behaviors in the data plane. Using

this methodology researchers can program the network from a higher level

without concerning the lower level detail of packet processing and forwarding in

physical devices. As a result, rich functionality in traffic management, routing,

firewall configuration, load balancing etc., which may pertain to specific flows

they control, may be easily developed.

53

Based on this, multiple features and functionalities, of SDN we try to design an

efficient and scalable mechanism for performing anomaly detection and

mitigation in SDN architectures. In order to detect DDoS flooding attacks, the

designed framework requires collaboration between client and server side cloud

computing network architecture. For this reason, the proposed architectural

components should have to suit like the real cloud computing environment. And,

each of the component on the framework should have to coordinate in the traffic

flow collection, analysis and in the prevention process.

In this chapter, we present our pushback approach which detects and mitigates

DDoS attacks at the source node and sends a pushback messages to remote

node, which the controller in our case, in different network domain. In the

process of attack detection and mitigation, pushback has two procedures. The

first one is identifying the flows with high sending rate and secondly, controlling

those flow’s sending rate in the case of DDoS attacks. So, the goal of our work is

to detect and drop most of the malicious packets at the source close to the

attacking sources instead of at the victim network, and sending a pushback

message to the controller for an attack that is generated from the remote network

domain. This ensures that the victim host is not seriously congested at the time

of an attack and allows a minimal level of collateral damage to legitimate traffic.

Normal client requests are therefore able to reach their destination server even

though it is under attack.

In section 4.1 we described an overview of the proposed pushback scheme.

Section 4.2 also present the proposed components for DDoS attack that is

targeted to infrastructure of the cloud domains. In this section each of our

modules are described and explained in detail, and finally we shows the flow of

information and the procedure how the technique is working.

4.1 Pushback Overview

Pushback is a network based solution to prevent DDoS attacks. It contains a

local aggregates-based congestion control (ACC) mechanism for detecting and

54

controlling an aggregate a single router, and cooperative pushback mechanism

in which a router can ask adjacent routers to control an aggregate upstream. Let

us consider figure 4.1 to illustrate the operation of the pushback technique

under a DDoS attack.

Figure 4.1: A DDoS attack in progress [33]

The victim host is the victim of an ongoing DDoS attack. The thick lines shows,

the links for attack traffic flow. In contrast, the thin lines mean the links are in

normal status. Especially, the last link between router R6 and the victim V is the

bottleneck link which is congested by attack traffic. In this situation, the local

aggregate congestion control (ACC) at router R6 detects incoming aggregated

traffic. R6 therefore immediately starts to drop packets belonging to the

Normal Flow

Connecting Links

Internet

Ligitimate

Victim

Host

Router 6

Attacker
Attacker Ligitimate Attacker

Router 4

Router 1 Router 2 Router 3

Router 5

ligitimate

Malicious Traffic

55

aggregated traffic. Because there are more than one aggregated traffic flows from

different links, the pushback technique punishes them equally. Moreover, router

R6 will attempt to cooperate with its upstream routers (R4 and R5) by sending

pushback messages to them if the ongoing congestion is still severe. In fact, the

operation can be recursive. This means that router R4 or R5 will send pushback

messages to their upstream routers. The recursive operation will not end until

congestion of the whole network is relieved.

The design decision in pushback is to separate the rate-limiting and packet

dropping functionality. When congestion of links are detected, the router checks

for anomalous aggregates. If anomaly is detected based on congestion signature

(a congestion signatures is something like a victim node’s IP address or MAC

address), then rate-liming is done on such aggregates. The packets from those

aggregates which are not rate limited are sent to the output queue of the router

as usual. The packets which are dropped both by the rate limiter and the output

queue are sent to the pushback module for an analysis on the attack estimated

to be happening. The pushback daemon checks the dropped packets and update

the congestion signature and adjust the rate limit based on how much

congestion is still detected in the links. For e.g. even after setting a rate limit, if

congestion is detected in the links, then either the rate limit has to be increased

or rate limits have to be applied on the aggregates which might be anomalous.

The router then send pushback messages to the upstream router in order to let

them know that due to a particular signature, congestion is happening at the

links and hence they in turn have to adapt accordingly by limiting their own

rates and dropping certain packets.

56

Figure 4.2: DDoS flooding attack and Collaborative defense mechanism

In SDN, controllers can be implemented as centrally to manage the entire

network and in distributed manner. In this architecture distributed controller

are implanted on the OpenFlow switches. The Ryu controller is running on top

of the OpenFlow switches as the OpenFlow controller to function as both the

pushback daemon and the rate limiter. As a traditional network pushback

technique pushback messages are not sent by the router as the switches do not

communicate and all the communication is done by the controller in case of

OpenFlow networks. Thus, the pushback messages in this case are the rules

Remote_Cloud_Network

B
o
tn

e
ts

Controller

Defense Alert

communication between

the Controllers in different

network domain

Malicious

User

Ligtimate user

Malicious traffic
Normal traffic

Logical Connection

Internet

VM2

VM1

Controller

Victim

Host

Attacker

T
r
a
ff

ic

S
ta

st
ic

s

R
a
te

li
m

it

DDoS Defense at an

Attacker

 Traffic control/Rate

limiting

 Rate Detection and

Identification

 Traffic Monitoring

DDoS Defense at

Victim

 Traffic control/

Rate limiting

 Rate detection and

identification

 Traffic monitoring

OpenFlow

Switch

OpenFlow

Switch

In
g
re

ss

fi
lt

e
r
in

g

T
r
a
ff

ic

S
ta

st
ic

s

57

that would be installed by the controller on the switches, i.e. the communication

between the controller and the switches.

On this implementation, the controller will program the switches to behave as

learning switches, this means that for each MAC address of the hosts, the

switches will store the port on which they have to forward the packet to reach

their destination. If a packet arrives and the switch does not have the MAC

address stored, it will flood all the ports and store the port that replies to the

packet.

This control application will also have a graph that is constructed by obtaining

the network information. This graph is a representation of the network and

gathers information of nodes and links on it. Of the nodes, we know their type

(either switch or host) and their identifier on the network. Each node has a list

of links that contains information of the devices connected to it, the ports each

link is using and statistics of the data that changes according to the network

behavior; an example of this are the bytes that it has received or transmitted and

the latest bytes per second measurement.

But here, our defense mechanism on Figure 4.2, uses different flow of traffic

information of its attack detection, mitigation when the communication is takes

place between a legitimate or attack node and victim node of the cloud network.

In order to determine an existence of DDoS attack in the network, a simple

application will periodically query the statistic of the network nodes traffic

sending rate to the specific node is analyzed from this flow.

The statistics of interest to our implementation is the bandwidth that each host

receives, with this information we can calculate the rate at which the host is

inserting packets to the network, measured by Megabytes per second. Each of

the host’s traffic sending rate is pre-defined. For this implementation, the

threshold that separates normal traffic from unusual traffic is set to a static

value, equal for all the hosts in the network. Any node is allowed to receive the

normal amount of data. When a node starts receiving larger data that from the

58

predefined threshold it is assumed that there has been a congestion which might

be due to a DDoS attack. Once congestion seen in the network, the controller

identifying the switch and the victim node as well as an attacking node. Then

after the application on the controller install a rule on the switches so that they

drop the packets coming from that port or a port that a malicious node is

connected to.

By doing so, it is able to defend against a bandwidth attack before it can congest

the network. For the performance of the above stated functionality, we deigned

a flow monitoring and detection, traceback or an identification of an attack and

mitigation module on the Ryu controller as a simple application. The property of

this defensing mechanism is performed locally and globally with the coordination

between the distributed controllers in the private and public network domains.

4.2 Cooperative defense components

This section presents our scheme to identify attack nodes, and blocking the

DDoS attacks at the source of their OpenFlow switches to minimize the impact

both to the victim and to the cloud network during the attack time. The proposed

DDoS mitigation mechanism consists of the three components. The first one is

flow monitoring component. This component monitoring the rate of an incoming

traffic and measure the flow thorough the connected ports. The measurement

and the decision of an attack existence in the network is based on the calculated

value of the bandwidth. Then the module checks the calculated byte transferred

is above the predefined threshold it identify the situation to the next trackback

or identification component. The module identify the victim node and an

attacking node which carry the attack traffic, and activate packet filtering at

selected points.

59

4.2.1. Traffic (flow) monitoring.

No matter what kind of anomaly detection mechanism, the flow collection is an

important part to get the statistic data. To get this traffic flow information, from

active OpenFlow switches we employed a native OpenFlow messages. More

specifically, the “OFPT_STATS_REQUEST” and “OFPT_STATS_REPLY” OpenFlow

messages have been implemented. The controller application periodically

requests from all the switches to report statistics about the packet matches and

the accesses to their flow tables occurred during the specified time window. Flow

refers to a set of sequential packets which have the same properties traveling

through the same network during a period of time[34]. Table 4.1: shows the flow

entry of OpenFlow switch records the information of a flow naturally [30].

Table 4.1 An Example of flow table entries

When the switch, namely the OFA_switch module, receives this message parses

the flow table and collects all the current flow entries and their counters. All the

information is included in the OFPT_STATS_REPLY OpenFlow message, which is

sent back to the controller. When the controller receives replies from all the

switches presented in the network, update the flow table when a forwarding

lookup process matches a specific flow entry of the flow table.

Here we modified the functionality of an OpenFlow controller role for our

requirement. Our flow monitoring component function as or performing:

monitoring the flow, detect an attack, and identify an attacker. Once traffic

received by the controller from the OpenFlow switches, the controller starts the

monitoring process of incoming traffic. Here the controller keeps measuring each

60

incoming flows’ byte counts for each FLOW and incoming flow PORT to calculate

deltas for bandwidth usage calculation. Therefore, a record of the flow table’s

state for the previous time windows should be kept and compared to the current

Pseudo code 1: Cooperative Flow Monitor

Setp1: initialize the local threshold parameters, the

collaborative detection threshold and the interval ΔT;

Step 2: for each new incoming flow at any router or switch

Step 3: check the Source IP/MAC of the new flow

Step 4: Install OpenFlow rules for forwarding the new

IP/MAC in switch flow

Step 5: continue the monitoring to get the statistics of the

flow

Step 6: Check the received byte for this flow and calculate

bandwidth

Step 7: Save the bandwidth calculated for this flow as f1,

f2, f3 ... fn

Step 8: If the calculated bandwidth for the flow is above from

the pre-defined threshold

Step 9: Call the identification module to identify the victim

whether it is from the local or remote domain.

Step 10: Calculate no sustained attack counts

Step 11: If rate for all flows on the links is below safe level,

increase the sustained no attack count for this link

Step 12: Call the mitigation function

Step 13: Go to step 2

Figure 4.3 Cooperative DDoS flow monitoring algorithm

number of bytes for each flow entry, in order to find the corresponding number

of bytes for the current time widow. The controller maintains different stats for

61

each high rate flow and updates them according to the average bandwidth at the

victim. The rate of a flow of bytes is computed with a moving time window of 2

seconds, which means we are only concerned with the average arrival rate in the

last 2 seconds. When the controller detects those flows whose arrival rate

exceeds a threshold, it likely DDoS attack, tires to find out the OpenFlow switch

where a high rate of traffic is generated from.

In the normal state, hosts in the network send the traffic with normal rate. And,

the recipients are process and response the request normally, but in the case of

an attack the rate of the incoming traffic to the receiving host is maximum. The

recipient cannot process the request and denying the legitimate users request.

The monitoring of the rate of the flow and calculate its average in order to

determine the normal and attack flow. Once the attacking and victim node is

identified, a new iteration of the method update is executed and the controller

pass this information to the attack mitigation component for it its measure.

Figure 4.3 show, the proposed cooperative flow monitoring algorithm.

4.2.2 Attack Identification

Once an attack has been detected, the next step is identification of an attacking

node and applying the mitigation technique to provide a service for those of the

legitimate clients. Finding a potential group of attackers at the source network

domain controller which has forwarded that group of attack traffic. For an

identification of an attacking node we used some of the characteristics of attack

traffics, such as source IP address or MAC address of a host to detect and identify

attack traffic. The process of identifying a malicious host is based on the report

of the flow monitoring algorithm. The monitoring algorithm check which host is

sending malicious traffic that is above the pre-defined threshold. The malicious

host identification process use, some characteristics of the flow for its attack

identification. Which is the MAC address of the host. Once the MAC address of

the tracing back the source of the router where the attacking node is connected

to it. The control know all of the switches connected in the network through its

62

logical connection mechanism, and it sends flow modification message to the

switch. The switch applies about the flow information that is decided by the

controller. To forward a traffic or drop a traffic through some of it network

interfaces. Identification and response is performed in both of the network

domains. At the victim side network and at the source of the malicious node

network. This helps us to identify attacks quickly and stop them as close to the

source as possible. SDN is providing a better alternative to identify and block

attacking traffic and a victim node on at the source. Because, the OpenFlow

controller has an ability to globally view the entire network.

4.2.3 Attack mitigation on combination of filtering and rate-limiting

Once an attacking node and a victim host is identified, the next step is to rate-

limit the traffic with the identified attack signature. As soon as the attack has

been identified, the mitigation module is called. The purpose of the module is to

rate-limit the traffic with the identified attack signature and to protection in the

network and especially to the victim by dropping all the packets coming from the

adversary. The module is responsible to prepare the match fields of the new flow

entry and emit the “Mitigation” signal to the main controller application to notify

about the new mitigation rule which will be installed.

In the scenario of a DDoS attack, the purpose of a rate limit is not only to lower

the aggregated traffic under the bottleneck link's bandwidth, but also to decrease

the percentage that attack traffic represents of the whole of aggregated traffic. To

control attack traffic, we set up the rate limit on the controller which are close

to the attackers OpenFllow switch interface. For rate-limiting we used the Token

Bucket Filtering (TBF) queuing discipline, as a very light-weight method of

allowing packets to pass only up to a specified maximum rate. To limit the rate

of incoming traffic, we used a TBF rate-limiting mechanism. It triggered to rate-

limit not only the total traffic that arrives at the victim, but also the traffic

associated with each priority band separately.

63

Limiting the rate of the traffic incoming to the victim node is doesn’t stop the

problem in the network. But it limit the attack rate in the network. This need

Pseudo code 2: Mitigation of DDoS attacks

Step 1: If an attacking node in the local domain

Step 2: Identify attackers for the victims and apply an ingress

policy to each attacker

Step 3: If an attacking node is in different network domain

Step 4: Send current rate limit information to remote controller

Step 5: If there are no victims, for a sustained duration, try

remove ingress policies

Step 6: Identify the set of victims attacked by hosts located in

the other domain and directly apply policies to the attackers in

the local domain

Step 7: Increase the count for confidence in a suspected attack

by the identified attacker set if applicable

Step 8: If we have exceeded the confidence count for the local

attacker set, apply ingress policies to all attackers or to a given

attacker's switch/port

Step 9: If the confidence count for an attack exceeds the

provisioned limit check and if the bandwidth consumption on one

of the rate-limited links dropped below a "safe" level and remove

ingress policy

Step 10: If rate for all flows on the links for this port have been

below a safe level for the last couple of statistic readings, remove

the ingress policy

Step 11: Stop forwarding the attack traffic to the victim network

Figure 4.4 Cooperative DDoS attack defense algorithm

another better solution compared to this. Filtering of the traffic is impact or

punish the attacking as well as the legitimate user traffics. Rather than pushing

64

and dropping all the traffic it is better to limiting the attack traffic. Here we

applied rate limiting the impact. From then on, the protection mechanism is set

into motion along the informed path. After detecting that the traffic is stable

enough at the victim end, the last step of the recovery phase will remove rate

limit at all source-end OpenFlow switches. This lets OpenFlow switches serve

legitimate traffic fully. The pseudo code of the algorithm is show in Figure 4.4

4.3 Work Flow

On the process of the DDoS attack detection, the flow of information from source

to destination is analyzed using the components on the design. Each of the

components working in hierarchical manner. One’s input is important to the

other components for generating a result. The inputs from the flow collector and

attack flow identification can be used by the DDos mitigation system. Once flow

is crated to start communication between the server and the client, the flow is

send to the switch using the OpenFlow message. The flow monitoring algorithm

starts monitoring the flow of information between the receiver and the sending

node per-defined with the predefined time duration. The statistics information

that it monitored from all of the switches that are logically connected to the

controller, enable us to me to determine if there is any DDoS happening in the

network. The monitored traffic is calculated every two minute intervals. For our

implementation purpose we have made use of a threshold amount of data = 5Mb,

which every node can handle. When a destination node starts receiving of size of

traffic that is greater than this predefined threshold amount, it is assumed that

a DDoS be happening or it might be due to a temporary spike in the traffic. Once,

it is detected that the threshold value of the data limit is exceeded on a particular

node, we list out all the source nodes which are sending data to sending node as

the first anomalous node. The controller starts the tracing procedure for this

malicious node and switch where the host connected port. The controller have

an ability to globally view all the switches connected to it and all the hosts’

interfaces. Using this behavior the controller can simply identify the attacking

node in all of the network domains. Then finally the controller installs flow

65

modification message to the switch to stop or rate limit the rate of an incoming

flow to the victim node. The rate is limited for the host which is sending to much

traffic than from the pre-defined rate by the controller.

Figure 4.5: Cooperative DDoS attack defense Flow Chart

Start

Initialize the learning

switch module

Listen for the switch

connection

Install flow entries on the

edge switch

Flow in message from

the switch

Is current flow

arrives on edge

switch

Check the

received bytes of

the host

Check the rate of

a traffic to the

interface

Do L2 Learning switch process?

Install flow entries on the switch to

forward the packet

Stop

Identify the malicious node

Install flow entries on the switch to drop

incoming flow entering in the port for a

specified time

Check the flow

SRC IP or MAC

Instruct the switch to rate limit or filter

Is above the

threshold?

66

Once the rate of the traffic is identified by the controller in the local or remote

network domain, the controller sends a pushback message for an attack traffic

that is generated from a malicious node where it is connected. Once the

pushback message received by the controller for remote network request, the

controller sends a pushback reply message to rate limit the traffic to the victim

node OpenFlow switch port interface. Figure 4.5 show the flow of how the

controllers are cooperating in the process DDoS attack defending.

67

Chapter 5

Experimentation and Results

In this section, we evaluate the pushback approach as an attack detection,

identification and mitigation mechanism. We mainly focus on the performance

of our evaluation metrics with low to high traffic volumes. Moreover, we

investigate the benefits of exploiting pushback in order to identify and mitigate

any detected malicious traffic, using the capabilities of the OF Controller (Ryu).

Ryu is a modular event-based OF controller, which is exploited as a high-level

programmatic interface upon network events. Through the API of the Ryu

Controller we implemented all three components as a single Ryu application,

responsible for flow monitoring, periodically rate of flow calculations for an

existence of attack on the system and attack mitigation.

To accomplish the above tasks, we implemented the following Ryu Controller: for

decision making, Minintet for the network simulation, OVS (OpenFlow switch)

for the connection of the data plane and the control plane. Section 5.1 describes

the simulation environment. Moreover, tools that are used in the experiment,

and their usage. Section 5.2 also describes the simulation topology. The last

section describes, the different scenarios with their respective simulation

experiment and evaluation result.

5.1 Environmental Setup

Experiments are conducted on Lenovo Laptop-E51-80 computer which runs

Ubuntu14.04 platform with the Long term support. The laptop has 8GB RAM

and Intel® Core ™ i7-6500U CPU@2.50GHz 2.50GHz processor. For the purpose

our experiment we installed Ryu controller software on our Ubuntu 16.04 LTS

laptop computer. Ryu is a component-based software defined networking

framework. Ryu provides software components with well-defined API that makes

mailto:CPU@2.50GHz

68

it easy for developers to create new network management and control

applications. Ryu supports various protocols for managing network devices,

such as OpenFlow, Netconf, OF-config, etc. Regarding OpenFlow, Ryu supports

fully 1.0, 1.2, 1.3, 1.4 and Nicira Extensions.

Moreover, Ryu is written fully in Python, and therefore it is easy to develop for.

It comes with various applications already written to deploy SDN network, like

Spanning Tree manager, basic switch application for creating forwarding rules,

firewall and routing application. The Ryu architecture is shown in Figure 5.1. It

provides a rich set of APIs allowing developers to create specific application for

managing different aspects of a network according to the operator requirement.

It can support legacy networks along with SDN implementations, and recently a

huge collection of documentation and references has been added that can be

used to create specific application.

Figure 5.1: OpenFlow Ryu controller

69

Furthermore, we installed mininet for our network simulation. Mininet is a tool

to simulate the Software Defined Networks that allows quick prototyping of a

large virtual infrastructure network with the use of only one computer. It enables

us to create virtual prototypes of scalable networks based on software such as

OpenFlow, using primitive Virtualization Operating System. With these

primitives, it allows us to create, interact and customize prototypes for Software

Defined Networks in a very quick way.

In order to create a network, Mininet emulates links, hosts, switches, and

controllers. Mininet uses the lightweight virtualization mechanisms built into the

Linux OS, processes running in network namespaces and virtual Ethernet pairs,

and creates a virtual network by placing host processes in network namespaces.

For network connection of host processes, Mininet connects them with virtual

Ethernet (veth) pairs.

After all system setup we started the experimentation. For the experiment we

created a hierarchical network topology which is shown on Figure 5.2. The

mininet python code is also modified for our simulation. With a simple mininet

scrip on can build a large network consists of different network infrastructure

5.2 Simulation topology

For our experiment, we use six switches. From this six switches, three switches

are connected to each other to form a hierarchal network which consists of an

edge switch and an access switch that it directly connected to the end-devices.

Each of this networks is managed by their own controller to act as a private net-

work. Moreover, the controllers on OpenFlow switches are securely or logical

connected to the OpenFlow switches in the domain. Figure 5.2: shows, the

Network topology used in the experiment. The role of this devices whether they

are in the private or in public networks is the same as one of the switch at the

top of a topology used as an upper layer network device, function as routing

traffic for a single network domain to the other network domains. Furthermore,

which is connected to the same devices. Two of this act as an access switch and

70

they connected to four virtual machines that are members of this network are

become the agents for DDoS attack.

Figure 5.2 Simulation Network setup

One of the agent host then is used to generate malicious packets to attack flow

table resource on each switch and finally, attacks flow table in the controller.

The final goal is to flood the victim node, rendering them unable to provide

normal service to legitimate users. In time of an attack, normal clients may also

send legitimate request packets to the victim node. However, they may not pass

through and suffer drops due to the series congestion in the victim network.

On the controller two applications are running on top of Ryu framework, one for

configuring the switches to allow connectivity between themselves and host

machines and another application developed by us get flow information, analyze

and finally mitigate for an attacks in the system all as a single application.

Ryu Controller

Defense Alert between

the Controllers

Intra Domain

Attack

Hosts

Malicious traffic

Normal traffic

Logical Connection

Internet

Ryu Controller

Victim

Hosts

Inter Domain

Attack

T
ra

ff
ic

S
ta

st
ic

s

R
a

te

li
m

it

OpenFlow

Switch
OpenFlow

Switch

Local Domain Remote Domain

71

5.3 Mininet Simulation parameter

To simulate our proposed system we designed two network domains on the

mininet tool, each of which consists a legitimate machine and an attacking

machine. As figure 5.3 depicts, there are 6 levels of OpenFlow switches. The links

between the two OpenFlow switches S1 and S4 is configured with 10Mbps. The

links between the 2 levels of OpenFlow switches is also, 5 Mbps bandwidth for

each of the network domains. In addition to this the each of the virtual machines

are connected with 2 Mbps of bandwidth with the OpenFlow switches interfaces.

The victim (AAh1) is connected with the OpenFlow switch by a 2 Mbps bottleneck

link. Rate limit decision is made by a centralized control point, which is a

controller deployed on the network domains. In order to adapt to the dynamic

changes, rate limit decision is refreshed every 2 seconds.

Figure 5.3: Mininet Virtual Network setup

Table 5.1, lists parameters of mininet configuration for the 3 groups of

experiments. An attack threshold is set for the victim host when it receives more

than 1Mbps of traffic in its compunction. Moreover, we set 4Mbps traffic that a

72

host should have to process an incoming traffic rate though its interfaces. Some

group includes two experiments, in which different attack traffic patterns are

used.

Table 5.1: Mininet Emulation parameters

Parameters Values

Attack threshold bandwidth on host 1Mbps

Attack threshold bandwidth on port 4Mbps

Attack stopping threshold after applying an ingress
policy

5 se

Decision time (sustained count) 5 sec

Traffic Monitoring interval 2 sec

All users including attackers and legitimate users begin to send packets at an

independent random time between 0 and 4 seconds.

5.4 Traffic generation

To analyze our proposed system in the detection and mitigation process we used

different data traffics. To simulate this traffic either it is normal or attack traffics

we used Iperf. Iperf is a simple but powerful tool originally developed by

NLANR/DAST for measuring performance and troubleshooting networks. It can

be used to measure both TCP and UDP bandwidth performance by allowing the

tuning of various parameters and UDP characteristics. Iperf uses the client-

server architecture which needs to be at the opposite ends so that client can

generate traffic and server can receive it. Once the generation is completed, both

client and server report the performance results based on the protocol used.

5.5 Simulation and Result

Here we describe our experiments and analyze the results. Each of the

experiment is simulated based on the performance evaluation metrics such as,

Throughput, link bandwidth, and communication and computational overhead.

All of the experiment is to evaluate the result of an attack and the defensing

73

mechanism at the normal environment and in attack duration. On the

experiment we measured and evaluated the rate of traffic flowing between nodes

to identify an existence of an attack. Moreover, we monitored the bandwidth of

the link between the legitimate client and the virtual application server.

5.5.1 Throughput measurement

We experimented the throughput between the client the server at normal traffic

using TCP. Throughput is the total number of bits transmitted within a given

amount of time. The servers are running with different port numbers. We

monitored the communication traffic for every two second in the server side. Iperf

tool is used for the measurement of bandwidth of the link in the performance

analysis process. In order to analyze the throughput result we running Iperf

command on each of the virtual machine.

Here, we have created host h1 as a server node and hosts h5 as a client nodes.

We started Iperf measurement on both of the client node and server node in

parallel. A TCP and UDP throughput performance analysis between server and

client is shown in figure 5.4. The first experiment or the TCP protocol experiment

is for the analysis of throughput during normal traffic flow between the client

and the server in different network domain.

In our experiment a server starts listening on a default port 5001 having default

TCP window size of 85.3 KB. From the experiment in Figure 5.4, we can see that

the Y axis of the figure, represent the throughput measurement, and the X axis

represents the time during that the experiment was done. The red line on the

figure also represents the throughput of aggregate TCP traffic rate arriving at the

bottleneck link of the traffic during normal traffic periods, and the pencil color

represents the UDP traffic throughputs monitored within 2 seconds interval. The

h5 client sends a 40.7 GB of data is to be transferred to its communication server

which is h1 within 20 s of time interval. We also set a monitoring time interval

for the throughput. Thus, the available throughput from the result is 15.2 Gbps.

A throughput can be increase by increasing TCP window size.

74

Figure 5.4: Throughput of TCP and UDP without defense

For measuring the throughput of UDP, we have done the same procedure like in

TCP. The only difference in the experiment is setting some parameter changes.

Which is the bandwidth of the link. At the client side we specified the bandwidth

to use, 10 Gbps for this case, because iperf only uses 1Mbps of default

bandwidth for UDP connection.

Unlike TCP, in UDP throughput get affected by different network parameters.

Since, UDP is unreliable protocol, the factors affecting throughput are out of

order delivery of packets, network jitter, and packet loss during transmission,

etc. Moreover in UDP protocol, there is no sync between server and client nodes,

hence, 936 MB of data noted at server site and 957 MB of data noted at client

site is transferred in 20 s of time interval, which gives throughput of 787 and

803 Mbps at server site and client site respectively.

In the second of our experiment, we also measured the throughput of TCP and

UDP traffic during normal traffic flow and in DDoS attack with the

implementation of our rate limiting mechanism. Figure 5.5 shows as, the ability

0

5

10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

T
rh

o
u

g
h

p
u

t(
G

B
)

Time(sec)

Throughput measurment

TCP traffic UDP traffic

Transfer Data rate = 40.7 GB

Transfer data rate = 0957 GB

75

Figure 5.5: Throughput of TCP and UDP with defense

of our rate limiting technique in detecting the DDoS attacks. The throughput of

TCP and UDP traffic without a defense mechanism is very high while the

throughput of legitimate traffic is very low during an attack periods. The

pushback technique shows good performance in protecting legitimate traffic in

the figure 5.5. However, it seems to make no effort to control attack traffic once

the legitimate traffic has been served properly. The reason is that the pushback

technique lacks the ability to distinguish between attack and legitimate traffic

when a diffused DDoS attack happens. Therefore, the pushback technique

attempts to forward as much traffic as possible in order to lower the collateral

damage for legitimate traffic.

Our DDoS defense framework, succeeds in lowering attack traffic while

maintaining QoS for legitimate traffic. More aggressive attack traffic will be

dropped more often because source-end edge OpenFlow switches have a lower

rate limit value. However, we found a minor disadvantage in our rate limit

mechanism during the process of traffic recovery. The phenomenon happens

because the rate limit mechanism tries to remove the rate limit while an attack

is still going. Moreover, our defense mechanism shows the cooperation between

source node controller and the victim node controller in different network

domains in the process of recovering.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

Tr
h

o
u

gh
p

u
t(

K
b

p
s)

Time(sec)

Throughput measurment

Ligtimate traffic Attack traffic

76

In the experiments, our DDoS defense framework achieves even better

performance and successfully maintains QoS of legitimate traffic by using the

rate limit mechanism, while throttling back the amount of attack traffic.

5.5.2 Bandwidth measurement

In communication networks, bandwidth denotes the amount of data a link can

carry. This is a metric which directly reflects the allocation of bandwidth in the

normal and attack traffic is transmitted between the sending and the receiving

host in the network. In the measurement of an allocation of bandwidth of the

link, the fraction of attack traffic bandwidth is the value of attack traffic

bandwidth over sum of attack and legitimate traffic bandwidth.

To analyze the link bandwidth allocation we started an IP flooding or attack

traffic from the malicious node h5 to the server h1. Also, we a set the

transmission duration for 15 seconds. The IP flooding attack traffic is monitored

from the local virtual machine within 2 seconds monitoring time.

Figure 5.6: Allocated Bandwidth during normal and attack periods

Figure 5.6 illustrates the allocated bandwidth rate for the link under normal and

attack periods. Moreover, the rate of a bandwidth without and with defense

mechanism is used in the experiment.

0.1

0.8

0.9

0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
e

rc
e

n
ta

ge
 o

f
B

an
d

w
id

th

Attack Bandwidh = 10Mbps

Normal traffic Attack traffic

No defense With defense

77

In the experiment 10Mbps and 4Mbps of an attack IP traffic and normal traffic

is sent to the victim host respectively. From the figure we see that an allocated

bandwidth of the link without the implementation of any defense mechanism in

the system is about 1 Mbps. This is calculated from an attack traffic is over the

sum of an attack and normal traffic sent to the victim host. In the figure the

yellow color shows the normal traffic and the green color is also showing the rate

of an attack traffic. For an analysis an allocated bandwidth with implementation

of our defense mechanism we generated the same rate of a normal and an attack

traffic to the same host. The result shows as, 1Mbps of bandwidth is allocated

for the link during this experiment.

According to the rule of a rate limiting implemented on the controller lower the

amount of attack traffic reaches the victim node in the network. This is because

fully deployed rate-limiters police attack traffic at different aggregation points on

the traffic tree and thus manage to control it well. Moreover, this result also

shows that the attack is detected and is stopped before reaching the victim node.

5.5.3 Drop rate of an attack traffic

The drop rate of attack traffic has been used for the purpose of evaluating the

effectiveness of a DDoS defense system before. However, most researchers think

it fails to capture whether legitimate service continues during the attack. For

example, even if all attack traffic can be dropped by the edge router at the victim

end, legitimate traffic may not be delivered properly simply because the edge

router has no resources left to serve it. In fact, the edge router might be

completely busy just in dropping attack traffic during the attack. In our experim-

Table 5.2: Drop rate of an attack traffic

Experiments Drop rate

No defense 0.254

With Pushback 0.12

78

 ents, we use the drop rate as a metric of the packet level to evaluate the

distributed DDoS defense system. If we can demonstrate that the framework can

effectively drop attack traffic at the source ends, it indirectly demonstrates that

the framework can sustain QoS for legitimate traffic at the victim end. After we

compare results in the two experiments in Table 5.2 we find the network without

DDoS defense, attack traffic is only dropped in the edge router at the victim end

due to a lack of resources. This shows that the normal congestion control

mechanism cannot protect QoS for legitimate traffic from going down. Pushback

drops attack traffic at upstream routers.

The reason is its lack of ability to differentiate between legitimate and attack

traffic in a DDoS attack, and the consequent decision to throttle attack traffic

just enough to maintain QoS for legitimate traffic.

5.5.4 Drop Rate of Legitimate Traffic

The drop rate of legitimate traffic is a direct metric which reflects the collateral

damage for legitimate traffic. A good DDoS defense system always attempts to

reduce collateral damage while lowering attack traffic as much as possible. In

Table 5.3, we present the drop rates of legitimate traffic in the two experiments.

The network without DDoS defense drops a large number of legitimate packets

Table 5.3: Drop rate of legitimate traffic

Experiments Drop rate

No defense 0.56

With Pushback 0.29

due to congestion at the bottleneck link. Pushback DDoS defense framework

show a much better performance to sustain QoS for legitimate traffic, meaning

that collateral damage is very low.

79

5.5.5 Communicating and computational overhead

In this section, we discuss the communication and computation overhead of

network resources in our scheme. According to our algorithm, when

communication starts between the requesting node and victim node the

controller starts monitoring of the flow of information and to calculate its rates.

Monitoring the rates of the flow of information is a continuous process for the

controller. Therefore, there is a communication overhead for the network during

Figure 5.7: System CPU consumption at different traffic rate

the attack. Even though, there is a trade of between DDoS attack detection with

the flow collecting and an effective attack detection and mitigation process. The

communication between the controller and the OpenFlow switches is done by

OpenFlow messages. So, the number of messages communication is not depends

on the size of the topology.

When a switch receives the packet from any source for the first time it will install

the flow entry in the flow table. When a switch learns all the nodes from the

network, the complete flow establishment has taken place. The ping command

in Mininet is used to check the connectivity of the entire network. It sends the

message from every host to all other hosts. The CPU usage is measured for this

0

20

40

60

80

100

120

0 0.5 1 1.5 2 2.5

C
P

U
 U

ti
liz

at
io

n

time(sec)

CPU Measurment

Normal traffic Attack traffic

80

initial flow establishment. Figure 5.7 shows that the CPU usage is during an

attack time rather than at normal state. When attacks occur, the CPU utilization

Figure 5.8: System CPU consumption at different traffic rate with defense

quickly reaches a peak (around 97%) in less than 2s. The possible reason is that

the host is receiving too much IP flood traffic from a malicious node within a

specific time period. When the Ping command is not fired there is a normal flow

of traffic and the CPU usage result shows the normal process.

After we applying our rate traffic rate limiting mechanism the CPU consumption

during normal and an attack duration is minimize. Figure 5.8, show the

percentage of the CPU usage labeled with Red and in pencil color. The CPU usage

during an attack period is limited which is compared to the previous result. The

main reason is that the our proposed DDoS attack monitoring system sends flow

modification message to the controller to limit the rate of an incoming traffic

through the interfaces of this malicious node is connected.

5.6 Result Discussion

Form our experimental result we shown that our proposed system cant detected,

identified and finally mitigated the attack in the cloud system in the distributed

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
P

U
 U

ti
liz

at
io

n

time(sec)

CPU Measurment

Normal traffic Attack traffic

81

manner. Each of the controller in SDN framework can identify an attacker in

different network domains. The detection and identification of attack and an

attacking node is done at the source of the node and replying a pushback

response for the controller in other domain. The following discussion explains

the overall result of the attack detection, identification and the mitigation of the

proposed framework.

5.6.1 Local attack detection

For identify an attack controller monitoring the incoming traffic from the hosts

to the OpenFlow switch periodically A protects hosts AAh1 and AAh2 by

monitoring flows on all 3 switches in its domain for high bandwidth (5 Mbps)

Identify an attacker check each host to check if it is sending data to the victim

and its data rate is above a threshold (1 Mbps).

Figure 5.9: Attack indentation at the local domain

An attack traffic generated from the local network identified by the host’s MAC

82

address and its associated port the attack traffic initiated from. Identify the

attacker and an interface which is connected to it.

Ryu controller and Mininet are launched in two different terminals as we can see

on the figure 5.9. Ryu on the left, show how the controller measures the bit rate

through the OpenFlow switch interfaces. Moreover, it identifies the victim host

in the topology using its MAC address. On the right side of the figure node AAh2

which is a host from the public network domain generating an attack flow to the

victim host IP address. An IP address of the victim host is 10.1.1.1 and, which

is a cloud services exists in the private network domain. So, here the controller

is easily monitor the rate of an incoming flow from all of OpenFlow switches

connected to the distributed controllers. After the flow monitoring, the controller

calculates the Bitrate. The Bitrate is calculated within 2 seconds interval. After

the 2 second interval of flow monitoring, the controller identify the attacking host

and the interface where which is connected to it. Once the attacking host is

identified the controller install flow rule to drop or rate limit the rate of an

incoming traffic from its local domain. This provides a space for those of

legitimate clients to access the service.

5.6.2 Cooperative Defense

Implementing OpenFlow controller in the internet can be in centralized and

distributed manner. Once it implemented in the distributed manner the

controller oversees the entire network where they are connected to these network

flows between the network devices. Controllers are sharing flow information for

their analysis. For each of the commination traffic controllers are make a

decision based on the flow. Based on this, the figure 5.10 shows, how the

controllers in participating in the process of attack analysis and reaction for the

Inter domain attack between the different cloud networks and send a push back

request to the other controller for attack traffic control.

On the right side of the screen shoot, host BBh2 (a host from the public network

domain) generating a flooding attack to the remote server in the private network

83

domain. The controller in its domain send a pushback request message to the

upstream OpenFlow switches. After the pushback message received by the

controller the controller responding to the pushback request to apply filtering of

a traffic to an interface where the flooding traffic initiated from. After some time,

the connected host is stopped the sending of malicious traffic to the victim host,

and then the traffic filtering rule process is removed from the controller.

Figure 5.10: DDoS attack defense cooperation between the controllers

Moreover, in real scenario, with centralized architecture as in OpenFlow, the

central network controller can co-ordinate with its switches and take the right

decisions in a minimal time provided correct DDoS detection happens, by

employing strategies like blocking the malicious node at the ingress router itself

than going for a Pushback way of handling. But, our approach of Pushback takes

care that even if the detection went wrong (false positive or due to spike in the

network) and was not actually a DDoS attack, then during the phase of the

pushback, the negation rule on the wrongly assumed malicious node can be

removed and simultaneously ensure that the entire network is safe.

84

Figure 5.11: DDoS attack defense cooperation between the controllers

DDoS defense in real system have to cope with complicated scenarios like

deception by the malicious nodes thought spoofing of their IP address, but still

our implementation shows that defense can be erected quickly through software

defined networking.

85

Chapter 6

Conclusion

The currently vulnerable internetworking cloud system and the growing number

of Internet crimes inspires much research to increase Internet security and

protect it from intrusions. Distributed denial of service is a major threat that

cannot be addressed through isolated actions of sparsely deployed defense

nodes. Instead, various defense systems must organize into a framework and

inter-operate, exchanging information and service, and acting together, against

the threat.

The purpose of this research work is to design and evaluate a SDN-based

cooperative pushback defense framework for flooding attack in cloud computing

environment. In our approach when a communication begins, each of the

controller starts monitoring the rate of incoming flow periodically. The monitored

traffic is above from the pre-defined threshold, the controller automatically

identify an attacking node in the network. Then the mitigation of an attacking

process is continues. Each of the components in the framework works

hierarchical fashion in the process of defense. We simulated and investigated

our DDoS cooperative defense mechanism with different tools. Mininet, Ryu and

Iperf are tools used for virtual topology creation, application program developing

and performance analysis respectively. Using this tools we conducted different

experimental scenarios. Each of our experiment is evaluated with our

performance metrics, throughput, link bandwidth measurement, time delay and

communication and computational resources. We analyzed this results of each

experiment on each approaches and draw a comparison about the result

obtained during normal and attack periods. Finally, in the discussion section we

clearly explained the how our cooperative DDoS defense mechanism is

performing and handling for attacks in the private or local domain as well as

attack in public domains.

86

In the final of our work, we able to contribute some solution to the cloud tenants,

private cloud administration bodies about a simple defense mechanism for

flooding attack that exits in the cloud network domain. To describe some our

contribution:

 With the complete mechanism, we protect SDN-based cloud networks

against both DoS and DDoS attacks. We identified the attackers or

detecting the attackers and stopping this attack before causing large

problem in the network. Traffic of trusted users is still handled normally

throughout the process.

 We also designed a flexible, and scalable detection and mitigation of

different kinds of attacks on the cloud computing. In addition to this we

done an experiment and analysis how the proposed system detect attacks

accurately and easily through extensive testing scenarios.

 The implementation of the proposed method brings no modifications on

current routing software. On the other hand, our proposed method can

work independently as an additional module on OpenFlow switches for

monitoring and recording flow information, and communicating with its

upstream and downstream distributed OpenFlow controller when the

pushback procedure is carried out.

 In order to evaluate the efficiency of our detection system we used different

important metrics for traffic and attack analysis. From the experiment

performance evaluation we investigated pushback can be a defense

mechanism for distributed attacks on the cloud environment by deploying

distributed DDoS attack defending controllers at the local and remote

network domain.

Even though a number of DDoS attack defense mechanism are proposed by

many research works, the attacks and its impact in the Internet and cloud

computing is exponential growing and the attacking techniques are changing

from day to days. So that, the result of this research provides its own

contribution to the ongoing researches in this domain area.

87

6.1 Limitation

There are a few aspects that need future discussion and some implementation

and operational issues need to be addressed before pushback cloud be more

robust in combating against DDoS attacks and deployed in the Internet. The

main limitation of this filtering scheme is that if the attack does not use spoofed

addresses then this filtering scheme will fail. Botnets with huge armies of

thousands of zombies do not even care to spoof the source address; in such cases

the strategy adopted by the Ingress/Egress filtering will fail.

Secondly, traffic monitoring is generates overhead when the controller requests

trigger reports (to verify the data traffic behavior of a specific incoming flow) and

periodic reports (to calculate the minimum number of packets per successful

connection—parameter) from the switches. Hence, we must to balance between

report period and overhead to get the optimal benefit.

88

References

[1] P. Ankita and F. Khatiwala, “Survey on DDoS Attack Detection and

Prevention in Cloud,” vol. 3, no. 2, pp. 43–47, 2015.

[2] R. Udendhran, “New Framework to Detect and Prevent Denial of Service

Attack in Cloud Computing Environment,” vol. 12, pp. 87–91, 2014.

[3] N. Wu and J. Zhang, “Workshop on Information Assurance Investigation

of Pushback Based Detection and Prevention of Network Bandwidth

Attacks,” pp. 416–423, 2004.

[4] T. M. Gil and M. Poletto, “MULTOPS : a data-structure for bandwidth

attack detection.”

[5] D. Attacks, A. Rising, and S. D. Mitigation, “Real-Time SDN and NFV

Analytics for DDoS Mitigation.”

[6] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS attack protection in the

era of cloud computing and Software-Defined Networking,” Comput.

NETWORKS, vol. 81, pp. 308–319, 2015.

[7] M. Aamir et al., “Software-Defined Networking : A Comprehensive Survey,”

IEEE Commun. Mag., vol. 3, no. 1, pp. 1–31, 2013.

[8] M. H. Bhuyan, H. J. Kashyap, and D. K. Bhattacharyya, “Detecting

Distributed Denial of Service Attacks : Methods , Tools and Future

Directions.”

[9] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, “1 DDoS

Attacks in Cloud Computing: Issues, Taxonomy, and Future Directions,”

vol. 1, no. 1, 2017.

[10] M. C. Fight and A. T. Attacks, “InfoSec Reading Room.”

[11] I. Sriram and A. Khajeh-hosseini, “Research Agenda in Cloud

Technologies,” 2008.

[12] M. K. Srinivasan, K. Sarukesi, P. Rodrigues, M. S. Manoj, and P. Revathy,

89

“State-of-the-art cloud computing security taxonomies - A classification of

security challenges in the present cloud computing environment,” Proc.

Int. Conf. Adv. Comput. Commun. Informatics - ICACCI ’12, p. 470, 2012.

[13] S. O. Kuyoro, “Cloud Computing Security Issues and Challenges,” no. 3,

pp. 247–255, 2011.

[14] E. Aguiar, Y. Zhang, and M. Blanton, “An Overview of Issues and Recent

Developments in Cloud Computing and Storage Security,” pp. 1–31.

[15] A. Shawish and M. Salama, “Cloud Computing : Paradigms and

Technologies,” pp. 39–68.

[16] A. Bonguet and M. Bellaiche, “A Survey of Denial-of-Service and

Distributed Denial of Service Attacks and Defenses in Cloud Computing,”

2017.

[17] B. B. Gupta, S. Member, R. C. Joshi, and M. Misra, “Distributed Denial of

Service Prevention Techniques,” vol. 2, no. 2, pp. 268–276, 2010.

[18] “D-WARD : Source-End Defense Against Distributed Denial-of-Service

Attacks,” 2003.

[19] K. M. Prasad, a R. M. Reddy, and K. V. Rao, “DoS and DDoS Attacks:

Defense, Detection and TracebackMechanisms -A Survey,” vol. 14, no. 7,

2014.

[20] D. Kreutz et al., “Software-Defined Networking : A Comprehensive

Survey,” pp. 1–61.

[21] B. N. Astuto, M. Mendon, X. N. Nguyen, K. Obraczka, B. N. Astuto, and

M. Mendon, “A Survey of Software-Defined Networking : Past , Present ,

and Future of Programmable Networks To cite this version :,” 2014.

[22] N. Yu et al., “Software-Defined Networking : A Comprehensive Survey,”

IEEE Commun. Mag., vol. 3, no. 1, pp. 1–31, 2013.

[23] B. Heller, “OpenFlow Switch Specification,” Current, vol. 0, pp. 1–36,

2009.

[24] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-Defined Networking (SDN

90

) and Distributed Denial of Service (DDoS) Attacks in Cloud Computing

Environments : A Survey , Some Research Issues , and Challenges,” vol.

18, no. 1, pp. 602–622, 2016.

[25] S. Shin and G. Gu, “CloudWatcher: Network Security Monitoring Using

OpenFlow in Dynamic Cloud Networks.”

[26] T. Xing, D. Huang, L. Xu, C. Chung, and P. Khatkar, “SnortFlow : A

OpenFlow-based Intrusion Prevention System in Cloud Environment,”

2013.

[27] S. Shin et al., “FRESCO : Modular Composable Security Services for

Software-Defined Networks,” vol. 2, no. February, 2013.

[28] “A Novel Design for Future On-Demand Service and Security,” pp. 385–

388, 2010.

[29] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting Traffic Anomaly

Detection Using Software Defined Networking ∗,” pp. 161–180, 2011.

[30] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and V.

Maglaris, “Combining OpenFlow and sFlow for an effective and scalable

anomaly detection and mitigation mechanism on SDN environments,”

Comput. NETWORKS, 2013.

[31] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS Flooding Attack

Detection Using NOX / OpenFlow,” pp. 408–415, 2010.

[32] S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef : Collaborative Defense

Against Large-Scale Link-Flooding Attacks,” pp. 417–427.

[33] J. Ioannidis and S. M. Bellovin, “No Title,” pp. 1–12.

[34] R. Wang, Z. Jia, and L. Ju, “An Entropy-Based Distributed DDoS

Detection Mechanism in Software-Defined Networking,” 2015.

91

Declaration

The work contained in this thesis has not been previously submitted to meet

requirements for an award at this or any higher education institution. To the

best of my knowledge and beliefs, the thesis contains no material previously

published or written by another person except where due reference is made.

Declared by: Ashenafi Meshesha

Signature ……………………………. Date ……………………

Confirmed by advisor: Dr. Towfik Jemal (PhD.)

Signature ……………………………. Date ……………………

