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Abstract
Purpose Visible and near-infrared (Vis-NIR) reflectance mea-
surements may be an alternative technique to identify
suspended sediment sources in streams of headwater catch-
ments. In this study, we examined if Vis-NIR reflectance
measurements are capable of estimating sediment source con-
tributions to sediment yield and compared this technique with
a more conventional (i.e. geochemical) technique.
Materials and methods Two headwater catchments in
Ethiopia, Unta (2,052 ha) and Desera (1,657 ha), were
analysed with the same techniques in order to find similarities
and differences in the results obtained. The first technique
used Vis-NIR spectral analysis as a fingerprint, using a partial
least squares regression model. The second technique was a
quantitative composite fingerprinting technique using geo-
chemical analysis of source materials and suspended sediment
samples. As a comparison, the partial least squares model was
also used on the geochemical data. In August and September
2009, 30 soil samples of three different land uses (landslides,
croplands, and grazing lands) and 21 suspended sediment
samples at the catchment outlet were collected. Source sam-
ples were sieved to <63 μm. Geochemical analyses consisted
of total element concentrations, percentage carbon, percentage
nitrogen, and atom percentage 15N and δ13C. Reflectance
measurements were taken on dried source samples with a
spectrometer.

Results and discussion Neither technique was able to predict
the contributions of the three land use types; they could only
distinguish between landslide and topsoil material. The agree-
ment between the results of both techniques was significant
for the Unta catchment (R2=0.80) but not for the Desera
catchment (R2=0.39). The uncertainty of the technique using
Vis-NIR reflectance measurements was slightly higher than
with the geochemical approach. Both techniques revealed that
topsoil erosion played an important role during storm runoff
discharges. Using the partial least squares model for the geo-
chemical data revealed that uncertainty can differ greatly
when using other statistical techniques.
Conclusions The quantitative composite fingerprinting tech-
nique using spectral signatures from both source and
suspended sediment samples was able to quantify the contri-
bution of two source materials (landslides and topsoil). It
provided a faster and more cost effective alternative to the
conventional geochemical procedure.
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1 Introduction

Transport of sediments in rivers may lead to a series of
problems such as flooding, siltation of reservoirs and chan-
nels, pollution by sediment-fixed contaminants and degrada-
tion of aquatic habitats. Therefore, there is a need for reliable
techniques that allow workers to determine the source (origin)
of that sediment so that target measures can be taken to reduce
sediment production. However, the complex interactions of
sediment mobilization and delivery, in addition to spatial and
temporal variations, make these processes difficult to assess.
Furthermore, there are large costs associated with the long-
term monitoring of large-scale river basins (Collins and

Responsible editor: Hugh Smith

D. Verheyen (*) : J. Diels : J. Poesen
Department of Earth and Environmental Sciences, KU Leuven,
Celestijnenlaan 200 E, 3001 Leuven, Belgium
e-mail: dries.verheyen@ees.kuleuven.be

E. Kissi
Department of Natural Resource Management, School of
Agriculture, Jimma University, POB 378, Jimma, Ethiopia

J Soils Sediments (2014) 14:1869–1885
DOI 10.1007/s11368-014-0938-9



Walling 2004). Traditionally, information on sediment sources
has been collected using direct techniques aimed at quantify-
ing sediment losses at the source location. However, spatial
and temporal sampling constraints, as well as many operation-
al difficulties, hamper the reliability of these techniques (Peart
and Walling 1986). In this respect, the fingerprinting tech-
nique is an indirect technique known to be valuable and
effective for sediment source determination in river catch-
ments (Collins et al. 1998, 2001). The technique is based on
two main assumptions: first, the potential sources of the river
sediment can be discriminated on the basis of their physical or
biogeochemical properties; and secondly, that the measured
properties of source and sediment samples allow for the
determination of the relative importance of the sources.
Several studies have used various geochemical and physical
sediment properties for fingerprinting sediment sources. A
composite fingerprint in combination with a multivariate
mixing model is able to determine the quantitative contribu-
tion of the sources, and this procedure has been successfully
applied to a range of environments (e.g. Collins et al. 1997,
1998, 2001; Walling et al. 1999; Minella et al. 2008; Motha
et al. 2003; Guzman et al. 2013). However, the application of
this technique faces some methodological constraints. Labour
and costs for the analysis of potential sediment sources and
suspended sediment samples for a range of properties can be
very high. Also the statistical procedure does not take into
account the inherent variability of the different sediment
source properties (Collins and Walling 2002). Another con-
straint is that the degree of uncertainty associated with the
numerical solutions of the mixing model cannot be calculated
(Phillips and Gregg 2001, 2003). Recent studies have begun
to deal with these problems by using a Monte Carlo approach
that incorporates source variability (e.g. Franks and Rowan
2000; Small et al. 2002; Motha et al. 2003; Martinez-Carreras
et al. 2010a, b, c; Collins et al. 2010a, b).

Fingerprinting using visible and near-infrared (Vis-NIR)
reflectance measurements may be an alternative method for
determining sediment sources in river catchments (e.g.
Poulenard et al. 2009; Martinez-Carreras et al. 2010a, b;
Evrard et al. 2013; Legout et al. 2013). A requirement for
using a mixing model to estimate sediment source properties
from reflectance measurements is that these reflectance values
show linear additive behaviour (Lees 1997). Multiple scatter-
ing on different components of a mixture may lead to non-
linear behaviour (Keshava and Mustard 2002). Martinez-
Carreras et al. (2010b) tested the linearly additive behaviour
of three colour parameters calculated from reflectance param-
eters of artificial mixtures in the visible wavelength range
(350–700 nm) and observed linearly additive behaviour. A
similar testing by Poulenard et al. (2012) showed good linear
additive behaviour for Diffuse Reflectance Infrared Fourier
Transform Spectroscopy (DRIFTS) in the mid-infrared range.
Further testing of this important requirement for other

sediment types and wavelengths (e.g. NIR) would be desirable
before the method can be applied more widely.

Fingerprinting sediment sources using reflectance mea-
surements are often coupled with advanced multivariate sta-
tistical methods like partial least squares regression (PLSR)
analysis (Wold et al. 2001; Viscarra Rossel et al. 2006b). The
PLSR analysis allows a confidence interval of the predicted
sediment contributions to be calculated. Several recent studies
have used reflectance measurements to estimate sediment
contributions. The spectral measurements can be used to
calculate colour indices (Martinez-Carreras et al. 2010b) or
geochemical properties (Martinez-Carreras et al. 2010a) to use
in a multivariate mixing model. Several studies used the
spectral measurements directly to estimate sediment source
contributions using a PLSR approach (e.g. Poulenard et al.
2009, 2012; Evrard et al. 2013; Legout et al. 2013). It is also
possible to use the spectral measurements directly in a mixing
model using linear spectral mixture analysis (Somers et al.
2010); however, this technique is not yet implemented in
fingerprinting suspended sediment sources. The study of
Evrard et al. (2013) is one of the first attempts to compare
the geochemical fingerprinting method with the spectroscopic
approach using mid-infrared (MIR) spectra. The present study
provides an early attempt of comparing the technique using
the geochemical method and spectra in the Vis-NIR range. An
unresolved question is how uncertainty related to estimates of
sediment source contributions is influenced when reflectance
measurements using PLSR estimates are used instead of con-
ventional sediment fingerprinting using mixing model analy-
ses (Martinez-Carreras et al. 2010a).

2 Study area

The study area is located in the Gilgel Gibe catchment in Kefa
province, Oromiya region, Ethiopia, ca. 260 km southwest of
Addis Abeba (Fig. 1). The Gilgel Gibe catchment is situated
on the south-western Ethiopian plateau. The area is strongly
influenced by past volcanic activity. It is characterised by a
series of basic and subsilicic effusive volcanic rocks, frequent-
ly inter-layered with reddish paleosols of Tertiary age
(Ministry of Mines and Energy 1997). The rocks found in this
area are trachytic or basaltic. The volcanic layers have a
gradient of a few degrees in a south-western direction and
are crossed with fractures and faults. These are related to the
main tectonic alignment of the region, the Ethiopian Rift
Valley (Ministry of Mines and Energy 1997). The elevation
of the Gilgel Gibe catchment is between 1,000 and 3,300 m
above sea level. It consists of a series of gentle sloping low
hills and broad plains surrounded by mountains. The area has
a sub-humid climate with an average air temperature of
19.2 °C and an average annual rainfall of 1,535 mm
(Ministry of Mines and Energy 1997). The rainy season
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covers the months June until October. The two headwater
catchments, Unta (2,052 ha) and Desera (1,657 ha), are situ-
ated about 22 km south of Jimma, near the town of Dedo. The
major soil types of the area are Nitisols, Acrisols and Vertisols
(FAO-UNESCO 1974). Vertisols in the area are limited to flat
valley bottoms, mostly situated in the lower areas, and did not
occur in the two studied catchments. A study of a soil

toposequence in the upland area near Dedo town revealed that
the upland soils were quite similar in their morphological,
physical, chemical and mineralogical characteristics (Tolossa
et al. 2009). Land use consists mainly of cropland. Some plots
are kept as grazing land by the farmers, but such plots are
mostly small and surrounded by hedges or tree rows. Forest is
only found in the highest regions in the catchment. Total forest

Fig. 1 Location of the Gilgel Gibe catchment, Ethiopia, and the headwater Unta and Desera subcatchments. The suspended sediment monitoring
stations, and topsoil and landslide sample sites are indicated on the map
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cover is only 11 %, of which most is exploited by the farmers
(Broothaerts et al. 2012). The region is threatened by land-
slides which affect the siltation of the Gilgel Gibe dam
(Broothaerts et al. 2012). An exploratory study predicted that
the dam will be totally filled with sediment within 20 years if
the siltation continues at the current rate, even though the dam
was planned to serve for 70 years (Devi et al. 2008).

3 Materials and methods

3.1 Sample collection

Samples from sediment source types were taken from represen-
tative areas of different land use. Surface soil samples were
taken from grazing land, cropland (maize (Zea mays L.), barley
(Hordeum vulgare L.), teff (Eragrostis tef (Zucc.) Trotter), sor-
ghum (Sorghum bicolor (L.) Moench) and wheat (Triticum
aestivum L.)), actively eroding channel banks and landslides
using an auger. Care was taken that only material likely to be
eroded was sampled: the top 2 cm of grazing lands and crop-
lands, and active landslides exhibiting erosion. For each catch-
ment (Unta and Desera), 15 soil samples were collected, i.e. five
from each land use type. This number of samples is rather
limited, mainly due to practical reasons, but care was taken to
get representative samples from every land use class. Therefore,
soil sampling was spread as much as possible over the catch-
ments to capture the variation in sediment sources. For the
surface soils of cropland and grazing land, a soil sample
consisted of 10 individual samples of the top 2 cm of the soil
taken at ca. 10 m intervals on a randomly selected transect to
form a composite sample. For the landslides, the samples
consisted of material that was situated close (<5 m) to the river.
Depth-integrated suspended sediment samples from the rivers
were manually taken with a 1.5 l bottle at four equidistant
positions within the cross-section of the river; each sediment
sample used for further analysis was a composite sample from
the four 1.5 l samples collected. The samples were taken at the
monitoring stations at the outlet of the catchments. An effort was
made to collect suspended sediment samples at different water
heights and on as many times as possible. However, no samples
were taken at the lowest flows because sampling at low flow
would provide an amount of sediment that was insufficient for
fingerprinting analysis, as the sampling was not time integrated.
Sediment samples were taken during the rainy season at times
when an event occurred. The sampling program ran from 1
August until 30 September 2009. A total of 21 sediment samples
were collected.

3.2 Laboratory analysis

All source material samples were wet-sieved through a 63-μm
mesh, oven-dried at 105 °C andmanually disaggregated using a

pestle and a mortar. Sediment samples were not sieved prior to
drying and disaggregation because particle-size analysis of the
sediment samples taken during the highest flow rates (and with
highest sediment load) indicated they contained little or no
sand. The reflectance of the suspended sediment and source
samples in the Vis-NIR light were determined with an ASD
LabSpec® Pro spectrometer (Analytical Spectral Devices Inc.,
Boulder, CO, USA). This mobile instrument has one Si array
(350–1,000 nm) and two Peltier-cooled InGaAs detectors
(1,000–1,800 nm and 1,800–2,500 nm). The sampling interval
is 1.4 nm at 350–1,000 nm and 2 nm at 1,000–2,500 nm. The
light source is a quartz-halogen bulb of 3,000 K build into the
high intensity probe. Every three samples, a white reference
was measured to calibrate the sensor. The spectral properties of
the sieved and dried source material and suspended sediment
samples were recorded as follows: ±20 g of soil/sediment was
transferred into a small disposable petri dish of 1.0 cm height
and 3.6 cm diameter. The filled cup was gently tapped on the
table, hereafter the surface was carefully levelled with a spatula
to obtain maximum reflection. The cup was placed under the
sensor as close as possible (3 mm). The diameter of the sensor
was 2 cm, resulting in a field of view of 3.14 cm2. Four separate
reflectance readings were taken from each soil/sediment spec-
imen by rotating the cups by 90° after each reading. The final
spectrum was the average of the four reflectance readings.

The geochemical analysis of both the source material and
suspended sediment samples consisted of a range of potential
fingerprint properties. Total element concentrations were
analysed using a digestion with LiBO2 in graphite crucibles
(002380-000 crucible, CML YU40 grade, SCP Science,
Quebec, Canada). After the digestion of the soil sample at
1,000 °C in a muffle furnace, the melt was dissolved in 50 ml
of a 0.42MHNO3-solution. A 1/10 dilution of this solution was
analysed with an ICP-OES (Varian 720ES, Agilent
Technologies Inc., Palo Alto, CA, USA) analyser for macro
elements (Suhr and Ingamell 1966). In addition to total element
concentrations, percentage carbon (C), percentage nitrogen (N),
atom percentage 15N and δ13Cwere also analysed on the ground
samples with an isotope ratio mass spectrometer (ANCA-GSL
20-20, Sercon Limited, Cheshire, UK).

3.3 Discriminating catchment sediment sources

For all statistical analysis, R software was used (R Core Team
2013). For both of the methods (colour and geochemical), the
range of concentrations of different properties and wavelengths
was tested between the source samples and the suspended
sediment samples according toWalden et al. (1997). If properties
or wavelengths of the suspended sediment fell out of the range of
the source samples, these were discarded for further analysis.

In order to discriminate sediment sources using Vis-NIR
spectral measurements, multivariate techniques described by
Lees (1997) and Poulenard et al. (2009, 2012) were employed.
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First, principal component analysis (PCA) was used to deter-
mine the natural clustering of samples. This natural clustering
was used to investigate if the data were capable of determining
sediment source samples by use of the principal components.
The PCA scores were then used as input into a discriminant
analysis.

For the geochemical method, the two-stage statistical selec-
tion procedure described by Collins and Walling (2002) was
used to identify the sediment source. In stage one, all individual
fingerprint properties were tested for their ability to distinguish
between individual source types, using the Kruskal-Wallis H
test. Next, discriminant function analysis (DFA) was used to
identify an optimum composite fingerprint from the fingerprint
properties that passed the H test. Because variables predicting
group membership can be strongly correlated, a stepwise selec-
tion algorithm was used to select a subset of parameters to
predict group membership. The method used was the minimi-
zation ofWilk’s lambda. If all the groupmeans were the same, a
lambda of 1 occurs. A low lambda value means that the
variability within the groups is small compared to the total
variability (Collins et al. 1998). The stepwise forward variable
selection starts with an initial model defined by the fingerprint
property which best separates the groups (lowest lambda). The
model is then extended by including extra properties. The
selection stops if the p value of including another property is
not statistically significant (p>0.05).

3.4 Mixing model

The prediction of source type contributions to the sediment
samples based on Vis-NIR spectra was assessed using a partial
least squares regression (PLSR) model using the package pls
(Mevik and Wehrens 2007). Partial least squares regression is
a modelling technique usually used for quantitative predic-
tions of sample properties. It is used especially when there are
many predictor variables that are strongly correlated. Unlike
principal component regression (PCR), it searches for orthog-
onal factors that maximize the covariance between predictor
(X, spectra) and response variables (y, source type contribu-
tion). In order to calibrate the PLSR model and to test the
linearly additive behaviour of the reflection properties, mix-
tures of source material samples were made depending on the
outcome of the PCA. First, mixtures of pure sources (i.e.
landslide, grazing land, cropland) were made, i.e. only soil
samples of one source were mixed in the same ratio. Then,
mixtures of these ‘pure’mixtures were made to obtain a range
of different source material ratios. These mixtures were then
measured with a Vis-NIR spectrophotometer in order to cali-
brate the model. Model calibration was assessed on individual
soil samples, pure mixtures and ratio mixtures as a whole, so
that the total variability of soil samples was included in the
model. Different pretreatments of the Vis-NIR data were
applied to investigate if they could improve the performance

of the model. The pretreatments that were used were multipli-
cative scatter correction and standardisation (Stenberg et al.
2010). The first step when selecting a PLSR model is to
determine the number of components to include in the model.
The optimal number of components gives the best compro-
mise between the description of the calibration set and the
model’s prediction ability. The PRESS statistic was used to
decide which model to use, and the optimum number of
components is the one with the lowest PRESS statistic. For
comparison, the adjusted coefficient of determination (R2

adj)
and the root mean square error of prediction (RMSEP) were
calculated. In order to calculate the PRESS value, a cross
validation was performed, using at random four or five sam-
ples as a test set. The model was cross validated 10 times, and
the ultimate PRESS value was the mean PRESS value of the
10 cross-validated models.

In order to test the linearly additive behaviour of the spectra,
the reflectance spectra of artificial linear mixture samples of
source types were computed. The reflectance spectrum of such
an artificial sample was calculated as a weighted average of the
source samples that were mixed. The spectra of these artificial
mixtures were used to calibrate a PLSR model that predicts
source type contribution. This model was then applied to the
measured (real) mixture samples. If the model predicts the
contribution of the source in the mixed samples well, then this
reveals the linearly additive behaviour of Vis-NIR spectra.

For the quantification of source contributions to sediment
yield using the geochemical method, a modified numerical
mixing model based on that of Collins et al. (2010a, b) was
used. The basic assumption is that a mixing model relates the
fingerprint properties of the suspended sediment samples to
the properties of the three possible source samples (landslide,
cropland, grazing land):

C ̂i ¼
X
j¼1

m

P jSi; j ð1Þ

With C ̂i being the predicted concentration (e.g. mg kg−1)
of the ith fingerprinting property in the suspended sediment
sample, Sij the mean concentration of the ith fingerprint prop-
erty in the source type j (ls = landslide, g = grazing land, c =
cropland), and Pj is the mass fraction of the suspended sedi-
ment sample originating from source j. The proportions sum
up to one and must have a value between 0 and 1:

0≤Pj≤1 ð2Þ

X
j¼1

n

P j ¼ 1 ð3Þ

For each suspended sediment sample, the proportion was
determined by minimizing the sums of squares error (SSE)
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between the fingerprint property concentrations measured on
the suspended sediment sample and those predicted with the
mixing model:

SSE ¼
X
i¼1

n

Ci−
X
j¼1

m

P jSi; jSVi; j

 ! !
=Ci

( )2

Wi ð4Þ

where Ci = the measured value of the ith property of the
sediment samples (mg/kg or g/kg), Pj = the optimised fraction
of sediment contribution, Si,j = the mean concentration of a
fingerprint property (mg/kg or g/kg), Wi = a correction factor
weighting for the discriminatory power of a certain property,
calculated from the scaled H values of the Kruskal-Wallis test
of that property, n = number of fingerprint properties, m =
number of sediment sources, and SVi,j = a correction factor
taking into account the within-source variability of a property
(i) in the samples of a source category (j) calculated as the
inverse of the scaled standard deviation of each property in
each source category. This was done using an algorithm
proposed by Haskell and Hanson (1981) that is implemented
in R (Soetaert et al. 2009). In this calculation, no corrections
have been made for particle size and organic matter. This is
because little is known about the potential errors associated
with the use of correction factors for particle-size composition
and organic matter content (Koiter et al. 2013). The difference
in particle size was minimized by sieving the soil samples to
the <63 μm fraction.

When using geochemical properties for fingerprinting,
there are different types of uncertainties that need to be taken
care of when calculating the sediment source contributions.
The most important type of uncertainty comes from the use of
the mean property values for each sediment source to predict
the proportions in the sediment. This mean value is based on a
number of samples taken for a given sediment source, and
hence subject to sampling error and natural source variability.
Therefore, a Monte Carlo approach according to Collins et al.
(2010b) was used to translate sampling errors and source
variability into uncertainty on the estimated sediment source
contribution Pj. Distributions of each fingerprint property for
each sediment source were calculated using the median and
robust scale estimator (Qn) (Rousseeuw and Croux 1993). A
total of 5,000 numbers (Si,j) were picked out of this distribu-
tion using a random number generator with a non-negative
constraint. These values were then used to solve the mixing
model equation 5,000 times to create a 95 % confidence
interval of the sediment contributions.

In order to better compare the results—because different
fingerprint properties were used, as well as different statistical
procedures—PLSR was also performed on the data of the
geochemical analysis. All data were included that passed the
range test, because the PLSR will decide on the weighting of
the parameters that best predict topsoil contribution. A PLSR
was performed on the geochemical dataset predicting source

type contribution, using only the data from the pure samples.
Here, no mixtures of source samples were analysed geochem-
ically. To truly compare the spectra and geochemical tracers
under the same conditions, the PLSR model of the spectral
data was also performed on pure samples; the mixture samples
were discarded from the analysis.

4 Results and discussion

4.1 Vis-NIR fingerprinting

4.1.1 Vis-NIR reflectance spectra of soil samples

Figure 2 shows typical Vis-NIR reflectance spectra for the
three types of potential source materials and suspended sedi-
ment samples. The spectra of all the samples contain absorp-
tion features corresponding to the bending and stretching of
OH-bonds of free water. These peaks occur in the NIR (700–
2,500 nm) region, at a wavelength of 1,400 and 1,950 nm. The
absorption features at around 2,200 nm are characteristic of
the AL–OH bend plus O–H stretch of clay minerals like
kaolinite and gibbsite. In the visible (400–700 nm) range,
reflectance is related to electronic transitions (Viscarra
Rossel et al. 2006b) and with minerals containing iron like
haematite and goethite (Stenberg et al. 2010). Soil organic
matter can also produce broad absorptions in the visible
region, due to humic acid. The visible region was different
for the landslides compared to that for the grazing and crop-
land. Landslides were more lightly coloured, because they
contain less organic C. Figure 3 plots the mean spectra for
each source type. The differences in albedo of the spectra can
reflect a difference in the grain sizes of the soil samples
(Stenberg and Viscarra Rossel 2010). Although source mate-
rial was sieved trough a 63-μm mesh, landslide samples still
contained relatively more silt than grazing land and cropland
samples. Also the difference in mineralogy between the top
soil (grazing land and cropland) and subsoil (landslides) can
have an influence on the albedo (Viscarra Rossel et al. 2006a).
Soil organic C is also known to decrease reflectance in the VIS
and near-to-shortwave infrared range (Bayer et al. 2012).

4.1.2 Principal component and discriminant analysis
of source materials

Principal component analysis was used as an exploratory
technique to determine the natural clustering of samples, in
order to evaluate overall variability and to find out if sediment
sources can be distinguished. Ten principal components ex-
plain more than 99 % of the variance. The two first principal
components of the data, explaining 98.2 % of the variability,
represent the axes in which the data have the most variability
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(Fig. 4). From the plot, it is clear that landslides can be
separated from grazing lands and croplands. A large overlap
between grazing lands and croplands exists; even the mean
values (centroids) are plotted close to each other. When the
scores of the first 10 principle components of the PCA were
used as input for a discriminant analysis, the separation be-
tween the groups was greater (Fig. 5). Although the separation
of the three source categories is better after discriminant
analysis, there is still a large overlap between the grazing
lands and the croplands. All the landslide samples were placed
in the right category, but only 7 out of the 10 cropland samples
and 8 out of the 10 grazing land samples were correctly
classified. In total, 83.3 % of the samples were predicted to
be in the right category. Even after a maximal separation of the
groups, a distinction between grazing lands and croplands is

difficult to make based on reflectance readings. These results
indicate that Vis-NIR spectra can be used to determine two
types of sediment sources: landslides (i.e. subsoil material);
and topsoils.

4.1.3 Partial least squares regression model using mixtures

From the PCA analysis, it could be concluded that it was not
possible to differentiate between topsoils from grazing lands
and croplands using the Vis-NIR spectra of soils. Therefore, a
PLSR model was created that considered all topsoils (from
grazing lands and croplands) as one group and predicted the
topsoil contribution to the suspended sediment. Table 1 rep-
resents the mixing scheme per catchment. In total, 23mixtures
were made per catchment (Unta and Desera). Mixtures were
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made to obtain a range of different topsoil:landslide ratios,
because the PLSR model was mainly intended to predict the
topsoil contribution in the sediment samples. The model with

the lowest PRESS value was chosen as the optimal model.
The best model was the model with no pretreatment and eight
components, and had a PRESS value of 0.652. If no pretreat-
ment is used, no correction is made for the albedo differences
or scatter of the Vis-NIR spectrum. This means that the albedo
difference can be a good predictor of the topsoil contribution
to suspended sediment. The R2adj value was 0.947 and the
RMSE of prediction was 0.091. This means that the error of
the model is 18 %, which is an acceptable error (Fig. 6). This
confidence interval is in agreement with Poulenard et al.
(2009).

Chemometric methods usually are used in chemical analy-
sis to determine the concentration of various chemical com-
pounds. In this study, this approach was used to predict the
fractions of topsoil occurring in suspended sediment samples.
Hereby, the linear additive behaviour of the spectra was tested
by making artificial linear mixtures of topsoil and landslide
samples and calibrating a PLSR model on those linearly
computed mixtures. When the reflectance readings of the
mixtures were applied to that model, the fit had a R2 of 0.97.
The good fit shows that the reflectance measurements of the
mixtures show linear additive behaviour according to the
topsoil contribution. It shows that the spectrum of a mixed
sample is a linear combination of the spectra of pure landslide
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Fig. 5 Plot of the first two linear discriminants from the linear discrim-
inant analysis (LDA) using the principal components analysis (PCA)
scores as input (Unta and Desera samples)

Table 1 Composition of the
source sample mixtures used to
calibrate the partial least squares
regression (PLSR) model. This
table represents the mixing
scheme for one catchment. Iden-
tical mixtures were produced for
both the Unta and the Desera
catchments (LS = landslide, CL =
cropland and GL = grazing land)

Sample label Weight percentage of the classes of source material

Landslide material Cropland
top soil

Grazing land
top soil

Total top
soil

Total
landslide

Pure mixtures

LS 100 0 100

GL 100 100 0

CL 100 100 0

Ratio mixtures

LS CL 10 90 10 90 90 10

LS CL 25 75 25 75 75 25

LS CL 50 50 50 50 50 50

LS CL 75 25 75 25 75 25

LS CL 90 10 90 10 10 90

LS GL 10 90 10 90 90 10

LS GL 25 75 25 75 75 25

LS GL 50 50 50 50 50 50

LS GL 75 25 75 25 75 25

LS GL 90 10 90 10 10 90

LS CL GL 10 10 80 10 10 80 90 10

LS CL GL 10 80 10 10 80 10 90 10

LS CL GL 25 25 50 25 25 50 75 25

LS CL GL 25 50 25 25 50 25 75 25

LS CL GL 33 33 33 33 33 33 67 33

LS CL GL 80 10 10 80 10 10 20 80

LS CL GL 50 25 25 50 25 25 50 50
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and pure topsoil samples. The PLSR model predicted a range
of 15.8–70.2 % for topsoil contribution for the Unta catch-
ment and 19.8–70.0 % topsoil contribution for the Desera
catchment, with an 18.2% error. These measurements indicate
that topsoil erosion plays an important role in both catch-
ments. The PLSR model enabled the calculation of a confi-
dence interval for the predictions of sediment sources. Despite
its importance, this information is often missing in conven-
tional fingerprinting procedures (e.g. Collins et al. 1997,
2001; Collins and Walling 2002, 2004). Only recently, uncer-
tainty associated with sediment source type ascription was
assessed using the Monte Carlo approach (e.g. Motha et al.
2003; Collins et al. 2010b; Martinez-Carreras et al. 2010a, b)
or a likelihood function approach (Minella et al. 2008).

4.1.4 Partial least squares regression model using pure
samples

When only pure samples and no mixtures were used to cali-
brate the PLSR model, almost the same model performance
was acquired. The model with the lowest PRESS value of
0.545 used seven components and had an R2adj of 0.92. The
correlation between the predicted contribution of topsoil to the
suspended sediment with the model using mixtures was 0.98
for Unta and 0.99 for Desera. The main difference is that the
RMSEP value of the model using pure samples was 0.13. This
means that the uncertainty of the prediction rises by 7.8 % if
only pure samples are used to calibrate the model instead of
pure samples and mixtures. It could be argued that with using
mixtures the uncertainty is only reduced artificially by adding
extra data points in the middle of the regression line. The
model based on pure samples only, therefore, better reflects

the uncertainty involved in fingerprinting using spectral
measurements.

4.2 Geochemical fingerprinting

4.2.1 Geochemical analysis of soil samples

The mean concentrations of a range of fingerprint properties
measured in the source samples from the Unta and Desera
catchment and the results of the Kruskal-Wallis H test are
presented in Table 2. In total, eight properties passed the test
with a criticalH value of 7.38. The results in Table 2 show that
a number of selected properties provide powerful source dis-
crimination. For example, C was able to successfully classify
93.3 % of all the source samples, followed by N (83.33 %),
manganese (Mn; 80.0 %), aluminium (Al; 66.7 %), zinc (Zn;
66.7 %), zirconium (Zr, 60.0 %), 15N (56.7 %) and δ13C
(50 %).

There was a small difference in C for grazing lands
(3.67 %), which was a little higher than that for croplands
(2.94 %), but was highly different from that for landslides
(0.65 %). This is because landslide material consists mainly of
subsoil (weathered rock), which contains little or no C from
vegetation. The small difference in C between grasslands and
croplands is explained by the fact that grasslands in this area
are overgrazed, and therefore cannot sequester much C. Also,
grazing lands are situated on lands that can no longer be used
for crop production. Therefore there is a rotation of alternating
land use between cropland and grazing land, so that differ-
ences between these two land use types will become less
distinct (Smith and Blake 2014). Percentage N follows the
same trend as C.

There were also no differences in δ13C measurements for
the soils under grazing land and croplands. The dominant
crops of the cropland are maize, teff and sorghum, which are
C4-type plants. Also most tropical grasses have a C4-type
metabolism. The ranges of the δ13C values of C4-type plants
are between −6 and −19‰, whereas for C3-type they are
between −24 and −34‰ (Smith and Epstein 1971). The lower
value of the landslide samples could be explained by the
presence of forest (tree) vegetation, 50 to 100 years ago.
Tree species are C3-type species, and the roots of the trees
could have provided a lower δ13C value to the subsoil com-
pared to the topsoil of grazing land and cropland.

There was a large difference in concentration of Mn be-
tween landslide and topsoil samples. Mn has two oxidation
states, +II which is more mobile and + IV. The solubility of
Mn in soils is mainly affected by pH and redox potential. This
normally leads to higher Mn bioavailability in flooded soils.
The saturated subsoil of landslides reduces the Mn and makes
it more mobile and hence more easily leached. In the topsoil of
grazing land and cropland Mn retention by cation exchange
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capacity and ligand exchange reactions will reduce leaching of
Mn to the subsoil (Patrick and Turner 1968).

Table 3 gives the geochemical and organic matter proper-
ties of the suspended sediment samples. The range of organic
C (0.41–3.13 %) is situated between that of the source sam-
ples, but most sediment samples have values that are quite
high. This is possibly due to an enrichment effect of the
organic matter associated with the clay content that is related
to sediment transport. Another possible explanation could be
that there was another source with a high C content.

4.2.2 Discriminant function analysis of source materials

The optimum composite fingerprint, given in Table 4, is capa-
ble of classifying 93.3 % of the source samples. The finger-
printing properties are not capable of classifying all sediment

sources in the right category. This is because there is an overlap
between the grazing lands and the croplands. No single prop-
erty for both sediment source types was different enough to
differentiate between the two sources. On the other hand, the
difference in fingerprinting properties of landslides with those
of the grasslands and croplands was very clear. Because of this,
it is better to merge grazing lands and croplands in the same
category, i.e. topsoils. Now, the source ascription of the sedi-
ment is only distinguishing between two main sediment source
types, i.e. landslides and topsoils. This also makes the source
ascription more reliable. There would be too much uncertainty
in the prediction if three source types would have been used.
The Kruskal-Wallis H test is performed again, now for topsoil
and landslide as sediment sources. The same composite fin-
gerprint was calculated, now classifying 100 % of source
samples in the correct category.

Table 2 The ability of individual fingerprint properties to distinguish sediment source type, assessing the Kruskal-Wallis H test and discriminant
function analysis (DFA)

Mean concentration Kruskal-Wallis DFA

Fingerprint property Landslides
mean

CV (%) Cropland
mean

CV (%) Grazing land
mean

CV (%) H valuea P value Significance Correctly classified
samples (%)

Al (g kg−1) 117 10 90 13 87 14 19.38 <0.001 *** 67

As (mg kg−1) 26 27 29 36 29 56 0.20 0.904

Ba (mg kg−1) 392 36 385 12 380 23 0.28 0.869

Ca (g kg−1) 6.19 85 3.80 33 3.41 31 1.44 0.486

Cr (mg kg−1) 142 71 117 37 138 57 0.07 0.965

Cu (mg kg−1) 35 46 35 22 34 22 0.29 0.865

Fe (g kg−1) 85.2 21 92.9 18 86.3 18 2.39 0.303

K (g kg−1) 8.14 79 8.33 24 7.78 33 0.64 0.727

Mg (g kg−1) 7.19 56 5.12 37 4.41 28 4.66 0.097

Mn (g kg−1) 1.13 31 3.24 20 3.20 20 19.40 <0.001 *** 80

Na (g kg−1) 6.86 111 3.85 26 3.87 35 0.06 0.968

Ni (mg kg−1) 89 63 71 32 80 41 0.84 0.658

P (g kg−1) 1.43 62 1.17 14 1.16 18 0.01 0.995

Sc (mg kg−1) 22 27 18 28 17 35 5.27 0.072

Si (g kg−1) 198 10 201 9 202 11 0.26 0.879

Sr (mg kg−1) 112 67 67 28 66 36 4.86 0.088

Ti (g kg−1) 14.6 28 15.9 30 13.8 36 1.56 0.459

V (mg kg−1) 214 35 238 33 199 37 2.52 0.284

Zn (mg kg−1) 146 18 224 14 214 15 16.85 <0.001 *** 67

Zr (mg kg−1) 485 38 1054 24 1083 23 16.85 <0.001 *** 60

%N 0.05 59 0.28 12 0.35 15 22.43 <0.001 *** 83

atom% 15N 0.38 0 0.38 0 0.38 0 12.16 0.002 ** 57

%C 0.65 56 2.94 10 3.67 14 23.08 <0.001 *** 93

δ13C ‰ −22.38 9 −19.27 7 −19.11 6 12.31 0.002 ** 50

DFA discriminant function analysis, Al aluminium, As arsenic, Ba barium,Ca calcium,Cr chromium,Cu copper, Fe iron,K kalium,Mgmagnesium,Mn
manganese, Na sodium, Ni nickel, P phosphorus, Sc scandium, Si silicium, Sr strontium, Ti titanium, V vanadium, Zn zinc, Zr zirconium

*P<0.05; **P<0.01; ***P<0.001
a Critical H value=7.38
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4.2.3 Mixing model

Figures 7 and 8 show the probability density functions (pdf) of
the median contributions from topsoils and landslides for the
Unta and the Desera catchment as obtained with the geochem-
ical fingerprinting technique. The uncertainty because of var-
iation in concentration of properties of the source samples
ranged between 5.4 and 10.7 % for the Unta and 4.0 and
9.4 % for the Desera catchment. Topsoil erosion plays a
significant role in the Unta catchment; the contribution of
topsoil material to the sediment yield ranged between 3.6
and 59.3 %. For the Desera catchment, landslide processes

are the dominant processes that contribute sediment to the
river. Here, the topsoil contribution ranged between 0.8 and
18.4 %.

A hypothesis is that at low flows, the contribution of
landslides is the highest. Table 5 gives an overview of the
sediment samples taken with the corresponding stage height,
sediment load and predicted topsoil contribution for both
methods (Vis-NIR using PLSR modelling of mixtures and
geochemical using the mixing model). The lowest flow mea-
sured (52 cm flow depth at the Desera catchment on 15/08/09)
corresponds to a landslides contribution of 99.1±1.9 %. This
low flow almost corresponds to the base flow in the rainy

Table 4 Results of the stepwise
discriminant function analysis for
identifying an optimum compos-
ite fingerprint for discriminating
source types (landslide, grazing
land, cropland)

Step Fingerprint property Wilks lambda Samples classified
correctly (%)

1 %C 0.07676 93.3

2 %C + Mn 0.06058 90.0

3 %C + Mn + Zr 0.05066 93.3

Fig. 7 Probability density functions for the predicted median contribu-
tions from each source type to sediment yield in the Unta catchment using
the geochemical technique. Results are given for suspended sediment

samples collected on different dates. P in one day (02/09/2009) indicates
sediment sample was taken during peak flow
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season. These flows occur between the rain showers. In this
period, no soil erosion on cropland or grassland occurs. The
only sediment that reaches the river is landslide material,

which is directly connected to the river. Landslides can con-
tribute to river sediment for a long time after the rain event,
because the landslides are still active (Broothaerts et al. 2012).

Fig. 8 Probability density functions for the predicted median contribu-
tions from each source type to sediment yield in the Desera catchment
using the geochemical technique. Results are given for suspended

sediment samples collected on different dates. P in one day (02/09/
2009) indicates sediment sample was taken during peak flow

Table 5 Stage height, sediment concentration and predicted topsoil
contribution of the suspended sediment samples taken. Two samples were
taken on 02/09/2009, and the record marked with ‘P’ after the date

indicates the sediment sample was taken during peak flow. Stage height
readings were recorded at a bridge further downstream where the Unta
and Desera Rivers have merged

Unta Desera

Date (d/m/y) Stage height
(cm)

Sediment
conc.(g/l)

Topsoil contribution (%) Stage height (cm) Sediment conc. (g/l) Topsoil contribution (%)

Vis-NIR Geochemical Vis-NIR Geochemical

14/08/09 85 4.59 54.9 41.7 85 4.63 70.0 18.4

15/08/09 52 4.89 43. 0.9

20/08/09 62 1.49 70.2 59.3 62 2.95 41.8 15.2

22/08/09 62 3.11 17.6 3.7 62 3.49 64.7 2.7

30/08/09 58 0.64 15.8 24.5

31/08/09 60 0.70 33.8 29.2

02/09/09 98 4.27 23.0 14.2 80 13.36 37.5 4.7

02/09/09P 80 5.52 48.5 29.4 98 49.39 49.9 11.4

05/09/09 70 2.91 22.2 6.1 70 2.09 19.8 4.8

07/09/09 64 0.74 32.2 35.5 64 0.74 44.1 10.6

08/09/09 65 2.31 53.9 27.8 65 4.04 43.8 5.7

10/09/09 80 5.17 44.0 19.8 80 4.06 44.0 5.4
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At peak flows, more erosion of topsoils occurs. Most of the
samples were taken directly after or during the rainfall event,
mainly on the falling limb of the hydrograph. At these mo-
ments, a significant contribution from topsoils can be ob-
served. The difference between the Unta and the Desera
catchment is that in the Desera catchment the landslides
contribute relatively more to the sediment load of the rivers
(Broothaerts et al. 2012). The Unta and Desera Rivers are very
responsive, because the catchments are small, and the topog-
raphy is undulating. Therefore, the Unta and Desera Rivers are
narrow and incised and all the sediment that erodes into the
stream will be transported directly through the river system.
No storage of fine sediment will take place in the riverbed.
Further downstream, in the broader valleys, storage of fine
sediments will take place.

4.2.4 Partial least squares modelling of geochemical
fingerprints

The PLSRmodelling based on the geochemical fingerprints of
the source samples contains six components that explain
25.4 % of the variance. The value of the PRESS statistic
was 0.778, the R2adj was 0.88 and the RMSEP was 0.156.
The elements with the highest loadings on the first component
are Al, Mn, Zn, Zr, N, 15N, %C and δ13C ‰. These high
loadings correspond to the elements that passed the Kruskal-
Wallis test in the mixing model. The first component explains
9.4 % of the variance. In the other components, elements that
did not pass the Kruskal-Wallis test like Fe, Ti, V, Cr, Na and
Ni have also a high loading. The model predicts a range of
topsoil contributions for the Unta catchment of 14.7–67.9 %
and 11.6–46.1 % for the Desera catchment. The correlation
between both solutions of the mixing model and the PLS
model for the geochemical fingerprints are 96.1 % for the
Unta and 90.8 % for the Desera catchment. Overall, the PLSR
model predicts somewhat higher contributions than the
mixing model. The main difference is the higher amount of
uncertainty for the PLSR model, which is 30.2 %.

4.3 Comparison of the models

Figure 9 shows the correlation plots of the results from the two
fingerprinting techniques used to assess sediment source as-
cription in the two catchments. The comparison is made for
the PLS model based on reflectance readings using mixtures
and for the mixing model based on geochemical analysis of
the data. For the Unta catchment, a correlation coefficient of
0.80 between the two methods is obtained. This means that
almost the same results have been achieved using Vis-NIR
spectra of sediment samples as compared to the conventional
technique. For the Desera catchment, the correlation coeffi-
cient is only 0.39.

The results achieved by the Vis-NIR method seem to
overestimate the contributions of topsoil to sediment yield as
compared to the conventional technique in both catchments.
As a control, PLS modelling for landslide contributions to the
suspended sediment showed that landslide contributions were
underestimated compared to the geochemical technique (data
not shown here); thus providing the same results. For the
Desera catchment, the overall estimates of topsoil contribu-
tions are low (Fig. 9). The range of topsoil contributions using
the geochemical method (0.01–0.18) is smaller compared to
the Vis-NIR method (0.23–0.73). The mixing model of the
geochemical technique constrains the contributions between 0
and 1 (Eq 2). This constraining of the data is needed, because
otherwise no useful data would be calculated. Further
constraining the contributions with a priori information may
reduce uncertainty even more (Collins et al. 2010a), although
this constraining can only be applied if a clear explanation of
the basis for such constraints is given. If these constraints are
to be applied with confidence, catchment-specific data have to
be used. It could be that due to the constraining, the uncer-
tainty of the solution is estimated as being lower. This
constraining can have an influence on the estimation of the
uncertainty of the sediment contribution if the contribution is
close to 0 or 1. In the plot of the Desera catchment, the
uncertainty ranges get smaller with lower topsoil contribu-
tions. Normally, in linear models, prediction uncertainty will
be higher at the extreme values of the regression. Uncertainty
of the PLS model is higher because the model was not
constrained.

In order to know the influence of the statistical technique
used, PLSR modelling for topsoil contributions was also per-
formed on the geochemical data. Figure 10 shows the correla-
tion plot when using the same statistical technique on the
different data sets (geochemical and spectroscopic). Here, the
comparison is made between the PLSR model based on reflec-
tance readings using pure samples only and for the PLSR
model based on geochemical fingerprints. For the Unta catch-
ment, the correlation coefficient is 0.66 and for Desera it is
0.52. Overall, there is less overestimation for the Unta catch-
ment, but in the Desera catchment the topsoil contribution is
still overestimated relative to the PLS regression based on the
spectroscopic data. The range of topsoil contributions is higher
for the Desera catchment using a PLSR model with geochem-
ical fingerprints (12–46 %) compared to the mixing model (1–
18 %). Also, the two models used different weightings (i.e.
correction factors) for all parameters. Note the high uncertainty
(31 %) related to PLSR modelling for the geochemical data.
The main reason for this is that in the calibration procedure
only the data from the pure source samples were used. Here, the
total variability of the source samples is used to calibrate the
model. In the Monte Carlo approach (e.g. Motha et al. 2003;
Collins et al. 2010b), the robust scale estimator (Qn) is used to
reflect the uncertainty of the source samples in calculating the
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contribution.Qn provides a lower range of values than the total
variability. Also, if the PLSR model had been constrained, this
would lead to a lower uncertainty value.

The mean spectrum of the suspended sediment samples for
the Desera catchment (Fig. 2) has a higher albedo than that
from the Unta catchment. In the visible region, they are
positioned closer together than in the NIR region. The only
small difference in the visible region can explain the agree-
ments in percentage topsoil contribution from the two catch-
ments, calculated with the Vis-NIR model. This is because a
lot of weight is given to the loadings in the visible region of
the spectrum of the first component of the PLSR (data not
shown here). However, the conventional method shows a
large difference between the two catchments. The value of
mean %C in the suspended sediment is lower in the Desera
(1.24 %) than in the Unta catchment (1.84 %). This can
explain the lower topsoil contribution in the Desera catchment
using the geochemical method. The difference in %C is not
reflected in the reflectance measurements of the suspended
sediment in both of the catchments, only a little in the NIR
region of the spectrum. Validation of the fingerprinting results
by erosion measurements can give information on which
processes contribute the most sediment to a river. Using

different property sets to calculate sediment source ascription
will probably always produce somewhat different results.
Field observations revealed that a larger area in the Desera
catchment is affected by landslides (Broothaerts et al. 2012),
supporting the conventional analysis. These findings suggest
that the Vis-NIR technique overestimated the contribution of
topsoil erosion in the Desera catchment. However, a good
agreement between the results for both methods in the Unta
catchment was achieved. This suggests that Vis-NIR spectros-
copy could be a good alternative technique to predict source
type contributions of suspended sediment samples.

5 Conclusions

This study aimed to compare fingerprint procedures based on
two different techniques: one using geochemical analysis of
both source and sediment samples, and the other using spec-
troscopic (Vis-NIR) measurements of those samples. In com-
paring the spectral measurements with the conventional geo-
chemical technique using a mixing model, a good agreement
between both techniques was found in one of the study
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Fig. 9 Correlation between
results from the geochemical
method using a mixingmodel and
the Vis-NIR method using
mixtures in both catchments
(Unta and Desera) used for
fingerprinting. Bars indicate the
uncertainty related to each
technique
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the Vis-NIR data only using pure
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fingerprinting. Bars indicate the
uncertainty related to each
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catchments. In the other catchment, there was little agreement,
and the spectroscopic technique systematically overestimated
the topsoil contribution. We found that Vis-NIR reflectance
spectra exhibit linear additive behaviour, which is a require-
ment when using a PLSR model to estimate sediment source
contributions.

Predictions of sediment source contributions based on the
spectroscopic technique combined with PLSR had wider con-
fidence intervals than predictions based on the geochemical
technique with a mixing model (and Monte Carlo sampling to
derive confidence intervals). But this difference in uncertainty
was related to the difference in statistical technique used (PLS
regression vs. mixingmodel), and not to the type of data it was
based on (Vis-NIR spectra vs. geochemical data). When
PLSR was used to estimate sediment source contributions
from both types of data, the uncertainty was similar.

Fingerprinting procedures based on spectral reflectance
signatures are attractive because of their simplicity in labora-
tory analysis. Moreover, the costs in both time and equipment
compared with the geochemical fingerprinting approach are
small. Therefore, it provides a good means of assessing
suspended sediment source ascription in small river basins,
and in particular for situations where many suspended sedi-
ment samples need to be analysed (i.e. when variations in
sediment sources during rainfall events are to be examined).
Our results confirm that fingerprinting based on Vis-NIR
spectra offers great potential and the values obtained are
comparable to more established techniques such as those
based on geochemical fingerprints.
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