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                                                    ABSTRACT 

This study aims to analyze analytical solutions of the Couette flow of incompressible fluid 

between two coaxial cylinders, generated due to constant density and viscosity using no-slip 

boundary conditions. Two distinct cases have been identified in Couette flow of incompressible 

fluid between rotating coaxial cylinders. Those are when inner and outer cylinder rotate with 

different angular velocity in the same direction and the outer cylinder rotate with angular 

velocity  Ωo and inner cylinder removed. In each case the steady state velocity and pressure 

distribution in the field are determined. The velocity and pressure profiles of the flows are 

presented and the effect of r on velocity and pressure is discussed.   
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                                     CHAPTER ONE     

1. INTRODUCTION 

1.1. Background of the study 

 

         The geometric simplicity of the flow of a fluid between rotating concentric cylinders has 

attracted the interest of scientists for centuries. Incompressible flow is an approximation of flow 

where flow speed is insignificant everywhere compared to the speed of sound of the medium. 

In fluid mechanics incompressible flow refers to a flow in which the material density is constant 

within a fluid parcel.  If incompressible flow is defined in this way, majority of the fluid and 

associated flow we encounter in our daily life belong to the incompressible category. One of the 

earliest mathematical models of incompressible flow is the famous equation by Bernoulli, who in 

1730 developed the model equation while investigating blood flow by (Quarteroni, 2000). It is 

not surprising that scientists have been investigating incompressible flow analytically, 

experimentally and computationally.  

         Computational study of compressible flow problems in both basic research and engineering 

application has been performed for several decades. Numerical solutions for such basic fluid 

dynamics problems are: flow through a circular cylinder, flow through channels, ducts and pipes 

and flow over a backward facing step were present early as the 1930s (Thorn, 1933) for a 

circular cylinder. Liquid contained in a narrow annulus between two coaxial cylinders, one or 

both of which rotate, experiences a nearly uniform shear rate. In the simplest situation one 

cylinder is stationary and the other is set in motion with either a constant velocity or constant 

torque. Torque measurements and flow visualization are both performed to determine the flow 

characteristics.       

          The flow between two concentric cylinders is well known and studied in fluid dynamics 

problem prominent in the development of rotating machinery. The classical Couette flow 

problem consists of infinitely long concentric cylinders and an incompressible Newtonian fluid 

between them. The Navier-Stokes equation method is used to compute the fluid of pressure and 

velocity field. This kind of methods with applications in various fields of continuum mechanics 

is given by (Nem´enyi, 1951). 
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 Moreover, a number of reviews on the exact solutions for Navier-Stokes equations have been 

published by (Dochan et al., 2000; Hron et al., 2008).  Due to its vast applications in engineering 

and industry, the Couette flow has attracted attention of various researchers. The Couette flow 

comprising concentric rotating cylinder is widely used in many industrial and research process 

found in chemical, mechanical, civil engineering and nuclear engineering. The device can be 

only one cylinder rotating and the other at rest or two cylinders rotating in the same or counter 

direction. Ataide et al. (2003) analyzed the fluid flow in annular regions is an area of great 

interest in the petroleum industry both in the drilling and in the artificial rising of the petroleum.  

Carrasco et al. (2009) analyzed the effects of rotation and axial motion of the inner cylinder 

during the displacement flow between two Newtonian fluids of differing density and viscosity.  

Pressure fluctuations are in some way responsible because large density differences at low 

speeds have very little effect. There is considerable interest in the wakes of axisymmetric bodies 

moving at high speeds, with reference to the detection of reentering missiles.  In this case, the 

most important variables are the temperature and the electron density in the partly ionized gas 

(Demetriades, 1976). There are a large number of experimental and theoretical studies of flow 

between concentric rotating cylinders (circular Couette flow) in the century since the earliest 

studies were conducted by (Mallock, 1888). This motivates the researcher to construct analytical 

solutions of the Couette flow of incompressible fluid between two coaxial cylinders by applying 

appropriate assumptions. The momentum equation is a vector equation obtained by applying 

Newton’s law of motion to a fluid element which is given by (John, 1996). 

                                                   𝜌
𝐷𝑢

𝐷𝑡
= 𝜌𝑔 − ∇𝑝 + 𝜇∇2𝑢    

The equation of continuity for cylindrical coordinates (r,θ,z) is given by (Bird et al., 2007). 

 

𝜕𝜌

𝜕𝑡

1  

𝑟

𝜕(𝜌𝑟𝒗𝑟)

𝜕𝑟
+

1

𝑟

𝜕(𝜌𝒗𝜃)

𝜕𝜃
+

𝜕(𝝆𝒗𝑧)

𝜕𝑧
= 0 

The continuity equation which expresses conservation of mass is given by: 

                                          
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0  
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For incompressible flow this equation is reduced to  ∇. u = 0, where  u is velocity component of 

a fluid which is a function of (t, x, y, z) and  𝜌 is fluid density.  According to Temesgen Degu et 

al. (2016) analytical solutions of steady fully developed flows of incompressible fluid between 

two concentric cylinders generated due to constant density and viscosity using no-slip boundary 

conditions, they used three cases:  

 The outer cylinder rotating with constant angular velocity Ωo and the inner cylinder at 

rest. 

 The inner cylinder rotating with constant angular velocity ΩI and the outer cylinder at 

rest.  

 Both inner and outer cylinder rotating in the same direction with the same constant 

angular velocity ΩI and ΩO  respectively. But in this study, we consider another two cases 

that are different from the above cases. Those are: 

 When inner and outer cylinder rotate with different angular velocity in the same direction 

 The outer cylinder rotate with angular velocity  Ωo and inner cylinder removed and 

additionally torque which is needed to rotate cylinder and free surface shape for rotating 

liquid in cylinder will be studied. So the aim of the study is to construct an analytical 

solution of a circular Couette flow of incompressible fluid between rotating coaxial 

cylinders. 
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1.2. Statement of the problem 

According to other authors, analytical solution of Couette flow problem of rotating coaxial 

cylinders depend on both inner and outer cylinders rotating in the same direction with the same 

angular velocity, the outer cylinder rotating with constant angular velocity Ωo and the inner 

cylinder at rest and the inner cylinder rotating with constant angular velocity ΩI and the outer 

cylinder at rest. But in this study, we consider both inner and outer cylinders rotate with different 

angular velocity in the same direction and the outer cylinder rotate with angular velocity  Ωo and 

inner cylinder removed. The aim of study is to construct an analytical solution of a circular 

Couette flow of incompressible fluid between rotating coaxial cylinder. 

The study attempts to:  

  Provide the relationship between radius & the velocity of fluid. 

 Find the velocity and pressure of fluid flow of rotating cylinder.  

 Determine the shape of free surface of liquid in rotating cylinder.  

1.3. Objective of the study 

1.3.1. General objective 

 

The general objective of the study is to develop an analytical solution to Couette flow problem 

between rotating coaxial cylinders. 

1.3.2. Specific objective  

The specific objectives of the study: 

 To provide the relationship between radius & the velocity of fluid. 

 To find velocity and pressure of the fluid flow between rotating coaxial cylinder. 

 To determine the shape of the free surface of liquid in rotating cylinder. 
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1.4. Significance of the study 

This study may have the following advantages.  

 It may provide further understanding on the characteristics of fluid between rotating 

coaxial cylinder.  

 It may familiarize the researcher with scientific communications in applied mathematics. 

 It may serve as background information for researcher who works around this area. 

1.5. Delimitation of the study  

The study is delimited to the governing partial differential conservation equations for laminar 

free convection and focuses only on the appropriate assumptions to construct analytical solutions 

for circular Couette flow of incompressible fluid between rotating coaxial cylinder. 

1.6. Definition of terms 

Steady flow is in which the conditions of velocity, pressure and cross-section may differ from 

point to point but do not change with time. 

Newtonian fluids are a real fluid in which shear stress is directly proportional to the rate of shear 

strain (velocity of gradient). 

Couette flow is the flow of a viscous fluid in the space between two surfaces. 

Boundary condition is the condition for the velocity components of a fluid when it makes 

contact with a solid surface.   

Compressible fluid is a fluid in which the fluid density changes when it is subjected to high 

pressure gradients. 

Shear stress(𝝉) is the product of viscosity and the transverse velocity gradient (𝝉 = 𝝁
𝑑𝒖

𝑑𝑦
 ). 

Navier-Stokes equations are the fundamental partial differentials equations that describe the 

flow of incompressible fluid. 

Torque is an action that causes objects to rotate. 

Fully developed: a flow is said to be fully developed if the velocity of the flow does not change 

any more as a function of space in  the direction of the flow. 

https://en.wikipedia.org/wiki/Viscosity
https://en.wikipedia.org/wiki/Fluid
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                                               CHAPTER TWO 

2. LITERATURE REVIEW 

2.1. Incompressible flow 

An incompressible fluid is a fluid whose density does not change when the pressure changes or 

incompressible flow is an approximation of flow where flow speed is insignificant everywhere 

compared to the speed of sound of the medium. According to Dochan et al. (2000) the difference 

between incompressible and compressible Navier-Stokes formulation is in the continuity 

equation. The incompressible formulation can be viewed as a singular limit of the compressible 

one satisfying the mass conservation equation. Therefore, incompressible flow is characterized 

by elliptic behavior of the pressure waves, the speed of which in a truly incompressible flow is 

infinite.   

 

According to Victor (1962), mathematically the incompressible flow formulation poses unique 

issues not present in compressible equations because of the incompressibility requirement. 

Physically, information travels at infinite speed in an incompressible medium, which imposes 

stringent requirements on computational algorithms for satisfying incompressibility as well as 

difficulties in designing downstream boundary conditions. The differences in various methods of 

solving incompressible flow equations originate from strategies of satisfying incompressibility. 

No convincing explanation of the compressibility effects exists clearly pressure fluctuations are 

in some way responsible because large density differences at low speeds have very little effect. 

There is considerable interest in the wakes of axisymmetric bodies moving at high speeds, with 

reference to the detection of reentering missiles. In this case the most important variables are the 

temperature and the electron density in the partly ionized gas (Demetriades, 1976). 
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2.2. Couette flow between two parallel plates  

Couette flow between parallel plates is a classical problem that has important applications in 

power generators, pumps and etc. Couette flow is a classical problem of primary importance in 

the history of fluid mechanics, which is a typical example of exact solutions for Navier-Stokes 

equation. Couette flow is perhaps the simplest of all viscous flows, while at the same time 

retaining much of the same physical characteristics of a more complicated boundary-layer flow 

(Panton, 1996). Since the gap between the barrel and the screw of extruder is small, assuming a 

fluid flowing between parallel plates leads to representative results. Etemad et al. (1994) solved 

the simultaneously developed case of the motion and energy equation for power law fluid 

between parallel stationary plates when the variation of viscosity with temperature and viscous 

dissipation could not be neglected. They solved the problem numerically using finite element 

method and as a special case, calculated the flow and heat transfer characteristics for fully 

developed conditions. The steady flow of a viscous incompressible fluid between two parallel 

flat plates caused by the motion of one of the plates, under constant pressure is quite well known 

as plane Couette flow. Pia (1956), expressed the velocity distribution and temperature 

distribution between two parallel plates. 

 

 

 

 

 

 

 

 

 

                       Figure 1. Flow between two parallel plates. 
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Consider steady incompressible  flow between two infinite parallel horizontal plates as shown in 

the figure 1, above  the flow is in the  x  direction,  hence there is no velocity component in either 

the y or z  direction (i.e. v = 0 and w = 0). The steady-state continuity equation becomes: 

                              
𝜕𝑢

𝜕𝑥
  = 0                                                                                            (1) 

From Eqn.1, we can conclude that the velocity u is a function of both y and z only. Since the 

plates are infinitely wide, it can be argued that the velocity u should not be a function of z, i.e., it 

must be a function of y only, u = u(y). Applying Navier-Stokes equations using the assumptions 

that v = 0, w = 0 and u = u(y), yields 

                                       
𝜕𝑝

𝜕𝑥
  = 𝜇

𝑑2𝑢

𝑑𝑦2
                                                                                               (2) 

                                       
𝜕𝑝

𝜕𝑦
 = -pg                                                                                                   (3) 

                                        
𝜕𝑝

𝜕𝑧
 = 0                                                                                                     (4)  

Eqn. 4, indicates that the pressure is a function of x and y.  Integrating Eqn. 3, to yield  

                                       p = - ρgy + g1(x) 

Hence it can be concluded that   
𝜕𝑝

𝜕𝑥
 is a function of x only.  Now integrate   Eqn. 2, twice with 

respect to y and treat   
𝜕𝑝

𝜕𝑥
  as a constant (with respect to y) to give: 

                                          U = 
1

2𝜇

𝜕𝑝

𝜕𝑥
𝑦2 + C1y + C2 

 

Applying the no-slip conditions (i.e., the fluid is "stuck" to the plates or u = 0 at y = ±h) to 

determine the coefficients as follows: 

                                       C1 = 0   and C2 = -  
ℎ2

2𝜇

𝜕𝑝

𝜕𝑥
 

The velocity profile becomes: 

                                   U =  
1

2𝜇

𝜕𝑝

𝜕𝑥
(𝑦2 − ℎ2) 
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2.3. Circular Couette flow 
 

Couette flow problem consists of infinitely long concentric cylinders and an incompressible 

Newtonian fluid between them. These flows are named in honor of M. Couette (1890), who 

performed experiments on the flow between fixed and moving concentric cylinders. For a system 

with a rotating inner cylinder and stationery outer cylinder, the fluid flow will pass on stable 

circular Couette flow. Circular Couette flow occurs in the gap between two rotating coaxial 

cylinders. The inner cylinder of radius 𝑅𝐼  has the angular velocity Ω𝐼 while the outer cylinder of 

radius 𝑅𝑜 spins at   Ω𝑜. The apparatus has a height L which is much larger than the radius of 

cylinder so that the apparatus height is supposed infinite. Rotating Couette flow is a flow 

between two concentric circular cylinders rotating with different velocities. Due to its simple and 

common geometry it has numerous industrial prototypes. Some examples from most common to 

rather exotic include flows in bearings, flows in particle separators, flows in rotational viscosity 

meters, flow between the drill string that is the inner cylinder to which the drill bit is attached 

and which rotates rapidly in the drilled hole in the drilling of oil wells. The cylindrical 

coordinates system (r, 𝜃, z) in the steady state velocity field is such that:  

                                          

           Fig 2. Circular Couette flow - I 

                            𝑣𝑟 = 0,         𝑣𝜃 = 𝑣𝜃(𝑟),   𝑣𝑧 = 0                                                                  

This 𝑣𝜃(velocity field) is then determined from the integration of the momentum equation      

 𝜌
𝐷𝑢

𝐷𝑡
= 𝜌𝑔 −  ∇𝑝 + 𝜇∇2𝑢. Subjected to the boundary condition and appropriate assumptions 

where, 𝑔 is gravity,  𝜌 𝑖𝑠 density, 𝑝  is fluid pressure and 𝜇 is viscosity.  
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According to Laglois et al. (2014) the motion of fluid contained between two concentric circular 

pipes of constant radii 𝑅𝑂 and 𝑅𝐼 with 𝑅𝐼< 𝑅𝑜, the pipes rotate about their common axis with 

constant angular velocities Ω𝑜 and Ω𝐼 respectively. Since the cylindrical coordinate system is not 

accelerated, the fluid motion is governed by the continuity equation and momentum equation. 

The no-slip condition requires that: 

                                      𝑣𝑟 = 𝑣𝑧 = 0           𝑣𝜃 = 𝑅𝐼Ω𝐼             at r = 𝑅𝐼  

                                     𝑣𝑟 = 0, 𝑣𝑧 = 𝑈       𝑣𝜃 = 𝑅𝑜Ω𝑜,          at r  = 𝑅𝑜  

Flow over rotating cylinders is important in a wide number of applications from shafts and axles 

to spinning projectiles. Also consider the flow in an annulus formed between two concentric 

cylinders where one or both of the cylindrical surface are rotating. As the rotating flow 

associated with discs, the proximity of a surface can significantly alter the flow structure. A 

boundary layer will form on a rotating body of revolution due to the no-slip condition at the body 

surface. The flow about a body of revolution rotating about its axis and simultaneously subjected 

to a flow in the direction of the axis of rotation is relevant to a number of applications, including 

certain rotating machinery and the ballistics of projectiles with spin. Various parameters such as 

the drag, moment coefficient and the critical Reynolds number are dependent on the ratio of the 

circumferential to free-stream velocity. A linear stability analysis was carried out for axial flow 

between a rotating porous inner cylinder and a concentric stationary, porous outer cylinder when 

radial flow is present for several radius ratios.  Murakami and Kikuyama (1980), measured the 

velocity profile and hydraulic loss in a hydro dynamically fully-developed flow region of a 

rotating pipe. The boundary layer on a rotating body of revolution in an axial flow consists of the 

axial component of velocity and the circumferential component due to the no-slip condition at 

the body surface. 
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2.4.  Torque  

Torque is required to rotate an object, just as a force is required to move an object in a line. 

Torque is created by force, but it also depends on where the force is applied and the point about 

which the object rotates. Force is the action that creates changes in linear motion. Torque is 

defined as the tendency to produce a change in rotational motion. The torque imparted by the 

fluid acting on the inner cylinder is defined as the product of the total force acting on the surface 

of the inner cylinder and the lever arm. The total force is determined by evaluating the inward 

pointing momentum flux (-τrθ) at the surface of the cylinder, and then multiplying this result by 

the total external surface area of the cylinder with the lever arm.  
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                                            CHAPTER THREE 

3. METHODOLOGY 

3.1. Study design 

The research is conducted by using both analytical and experimental approaches. 

3.2. Study site and period  

The study is conducted in Jimma University under the College of Natural Science in 

Mathematics Department from October 2016 to September 2017. 

3.3. Sources of information 

The sources of our data are different books, journals, internet, articles and etc.  

3.4. Mathematical Procedure of the study 

The general procedure for solving each problem involves the following steps: 

1. Defining the problem and making reasonable assumptions. 

2. Write down the continuity equation of momentum and simplify them according to the 

assumptions.  

3. Integrate the simplified equations in order to obtain the expressions for velocity & 

pressure.  

4. Constructing analytical solutions for velocity, pressure and torque. 

5. Finally a graph is produced using MATLAB. 

3.5. Ethical consideration 

For this study, I need journals, books, information and other related materials. To collect all the 

above materials the researcher takes permission letter from Jimma University College of Natural 

Sciences Department of Mathematics before collecting the materials. 
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                                               CHAPTER FOUR 

4. RESULT AND DISCUSSION 

4.1. Discussion  

A fluid is incompressible if and only if one of the following conditions are satisfied 

i. ∇u = 0 
ii.  

𝐷𝜌

𝐷𝑡
= 0             

𝑖.e. if the fluid is incompressible, ρ = constant and independent of space and time, The continuity 

equation    
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0, is simplified to  

𝐷𝜌

𝐷 𝑡
= 0. Therefore the continuity equation is reduces 

to ∇·u = 0. Circular Couette flow occurs in the gap between two rotating concentric cylinders. 

The inner cylinder of radius 𝑅𝐼 has the angular velocity Ω𝐼 while the outer cylinder of radius 𝑅𝑂 

has angular velocity  Ω𝑂. The apparatus has a height L which is much larger than the radius of 

either cylinder so that the apparatus height is supposed infinite. 

                            

                                     

                                Fig.3. Circular Couette flow -II 

The fluid flow analysis aims to determine the relationship between pressure and velocity of fluid 

flow by solving the Navier- Stokes equation which is subjected to a geometric boundary 

condition, which is the interface surface at which a fluid contacts a solid object. In order to solve 

a circular Couette flow of incompressible fluid over a circular cylinder some assumptions are 

necessary, since mathematical expressions become simpler and the solutions are still close to real 

cases. 
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                   Assumptions  

1. The flow is fully developed.  

2. The flow is axisymmetric flow: no change in tangential direction or in 𝜃 direction. 

3. The fluid is Newtonian fluid. 

4. For 𝜃 momentum ,  
𝑑

𝑑𝑟
(

1𝑑

𝑟

(𝑟𝒗𝜃)

𝑑𝑟
) = 0     

             For z momentum,  
𝜕𝑝

𝜕𝑧
  + 𝜌g   = 0 

             For r momentum   
𝜌𝑣𝜃

2

𝑟
   =  

𝜕𝑝

𝜕𝑟
  

                Governing Equations  

The flow between two rotating cylinders are computed by solving the Navier-Stokes equations 

for incompressible fluid in a three dimensional geometry. The governing equations are equations 

of viscos, incompressible fluid flow, known as the Navier-Stokes (N-S) equation. 

The momentum equation is given by; 

                                                𝜌
𝐷𝑢

𝐷𝑡
= 𝜌𝑔 − ∇𝑝 + 𝜇∇2𝑢                                                                                                                                             

The continuity equation expresses conservation of mass which is given by;   

                                                    
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0 

 For incompressible flow this equation reduces to  ∇. 𝑢 = 0, by (Chacon and Lewandowski, 2014). 

As Bird et al. (1987) equation of motion for incompressible Newtonian fluid (Navier-Stokes 

equation) has three components in Cartesian coordinates given by, 

          
𝜕𝒖

𝜕𝑥
+

𝜕𝒗

𝜕𝑦
+

𝜕𝒘

𝜕𝑧
= 0,                                                                                                             

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) =  −

𝜕𝑃

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) + 𝜌𝑔𝑥,                                                             

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) =  −

𝜕𝑃

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2
) + 𝜌𝑔𝑦,                                       

𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
) =  −

𝜕𝑃

𝜕𝑧
+ 𝜇 (

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) + 𝜌𝑔𝑧 ,                            
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Where u, v and w are velocity components in the directions of x, y and z respectively, P is the 

pressure, 𝜇 is the coefficient of viscosity, 𝜌 is the density of the fluid. Equation of motion for 

incompressible, Newtonian fluid (Navier-Stokes equation), three components in cylindrical 

coordinate, 

       
1

𝑟

𝜕(𝑟𝒗𝑟)

𝜕𝑟
+

1

𝑟

𝜕𝒗𝜃

𝜕𝜃
+

𝜕𝒗𝑧

𝜕𝑧
= 0,                                                                                                    (1)                                                                                                                                                                          

    Navier-Stokes equations of cylindrical coordinates for incompressible fluid are given by:                                                                                                 

 𝜌 (
𝜕(𝑣𝑟)

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑟

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑟

𝜕𝑧
−

𝑣𝜃
2

𝑟
) =      

      𝜌𝑔𝑟 −
𝜕𝑝

𝜕𝑟
+ 𝜇 (

𝜕2𝑣𝑟

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝑟

𝜕𝑟
+

1

𝑟2

𝜕2𝑣𝑟

𝜕𝜃2 +
𝜕𝑣𝑟

2

𝜕𝑧2 −
𝑣𝑟

𝑟2 −
2

𝑟2

𝜕𝑣𝜃

𝜕𝜃
),                                                   (2)              

  𝜌 (
𝜕(𝑣𝜃)

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝜃

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝜃

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝜃

𝜕𝑧
+

𝑣𝑟𝑣𝜃

𝑟
) =          

              𝜌𝑔𝜃 −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 (

𝜕2𝑣𝜃

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝜃

𝜕𝑟
+

1

𝑟2

𝜕2𝑣𝜃

𝜕𝜃2 +
𝜕𝑣𝜃

2

𝜕𝑧2 −
𝑣𝜃

𝑟2 −
2

𝑟2

𝜕𝑣𝑟

𝜕𝜃
),                                       (3)                                              

 𝜌 (
𝜕(𝑣𝑧)

𝜕𝑡
+ 𝑣𝑟

𝜕𝑣𝑧

𝜕𝑟
+

𝑣𝜃

𝑟

𝜕𝑣𝑧

𝜕𝜃
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) =  𝜌𝑔𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇 (

𝜕2𝑣𝑧

𝜕𝑟2 +
1

𝑟

𝜕𝑣𝑧

𝜕𝑟
+

1

𝑟2

𝜕2𝑣𝑧

𝜕𝜃2 +
𝜕𝑣𝑧

2

𝜕𝑧2 ),               (4)   

                      by (Tritton, 1998)    
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4.2. Main Results 

4.2.1. Analysis of a circular Couette flow of incompressible fluid between 

rotating coaxial cylinders 

Consider rotating coaxial cylinder with the inner cylinder of radius 𝑅𝐼 has the angular velocity Ω𝐼 

while the outer cylinder of radius 𝑅𝑂 has angular velocity  Ω𝑂  and which is filled with an 

incompressible fluid that can be modeled as a Newtonian fluid. We made the following 

determinations about the fluid flow field:  

                 1. The velocity distribution of the fluid in the cylinders. 

                 2. The pressure distribution of fluid in the cylinders. 

                 3. The relation between pressure and velocity with radius of cylinder.   

 In laminar flow the fluid travels in a circular motion. To verify this we are going to use the 

following.  

                  In r direction vr = function of (t, r, θ, z) 

                  In z direction vz = function of (t, r, θ, z) 

                  In θ  direction vθ = function of (t, r, θ, z) 

Flow conditions are no change in the axial or in z direction is assumed. Thus  

                   In r direction vr = function of (t, r, θ, z) 

                   In z direction vz = 0 

                   In θ direction vθ = function of (t, r, θ, z) 

In cylindrical coordinates r, θ and z continuity equations for incompressible fluids are given by:    

1

r

∂(rvr)

∂r
+

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0 

           Implies that   
1

r

∂(rvr)

∂r
= 0,   since  

∂vθ

∂θ
  and   

∂vz

∂z
   is zero  

 The velocity component in r direction is not constant in order to satisfy flow through the walls 

and therefore we need to choose vr = 0. From this we get;  

                   In r direction vr = 0 

                   In z direction vz = 0 

                   In θ direction vθ = function of (t, r, θ, z) 
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Now we are going to use the momentum equation which is a vector equation obtained by 

applying Newton’s law of motion to a fluid element. The r, θ  and  z component of the Navier 

Stokes equation in cylindrical coordinates for the incompressible fluid with constant viscosity are 

given by, 

Radial component: ρ (
∂(vr)

∂t
+ vr

∂vr

∂r
+

vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
−

vθ
2

r
) =  

                                                           −
∂p

∂r
+ μ (

∂2vr

∂r2 +
1

r

∂vr

∂r
+

1

r2

∂2vr

∂θ2 +
∂2vr

∂z2 −
vr

r2 −
2

r2

∂vr

∂θ
).        (5)                                                                                                                 

Tangential component:  ρ (
∂(vθ)

∂t
+ vr

∂vθ

∂r
+

vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z
+

vrvθ

r
) = 

                                                           −
1

r

∂p

∂θ
+ μ (

∂2vθ

∂r2 +
1

r

∂vθ

∂r
+

1

r2

∂2vθ

∂θ2 +
∂2vr

∂z2 −
vθ

r2 −
2

r2

∂vr

∂θ
).    (6) 

Axial component:  ρ (
∂(vz)

∂t
+ vr

∂vz

∂r
+

vθ

r

∂vz

∂θ
+ vz

∂vr

∂z
) = −

∂p

∂z
+ μ (

∂2vz

∂r2
+

1

r

∂vz

∂z
+

1

r2

∂2vz

∂θ2 +
∂2vz

∂z2 )           (7)                                                                                                                                                   

From radial component of the momentum equation we have: 

                                              ρ (
vθ

2

r
) =

∂p

∂r
 .                                                                                 (8)    

From axial component of the momentum equation we have:  

                                              
∂p

∂z
= 0                                                                                              (9) 

From tangential component of the momentum we have: 

                                              
d

dr
(

1d

r

(rvθ)

dr
) = 0                                                                             (10)                                                                                                                          

To get tangential velocity component (vθ)  integrate equation (10). 

                   ∫  
d

dr
(

1d

r

(rvθ)

dr
) = 0                                                  

                           
1

r

d(rvθ)

dr
= C1 

                           
d(rvθ)

dr
=  C1r    

And again integrate with respect to r 

                       ∫
d(rvθ)

dr
dr = ∫ C1r dr 
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                         rvθ =
C1r2

2
+ C2         (Dividing both side by r) 

                         vθ =
C1r

2
+

C2

r
                                                                                                      (11) 

Where C1 and C2 are unknown constants, then equation (11) is the velocity distribution. 

To get pressure distribution substitute equation (11) in equation (8) 

                     ρ (
vθ

2

r
) =

∂p

∂r
 

                      ρ [
C1

2r

4
+

C2
2

r3 +
C1C2

r
] =

∂p

∂r
 

                    ρ [
C1

2r

4
+

C2
2

r3 +
C1C2

r
] dr = dp                                                                                  (12) 

Integrating equation (12) we can get: 

                     ρ ∫ [
C1

2r

4
+

C2
2

r3 +
C1C2

r
] dr = ∫ dp 

                    p = ρ [
C1

2r2

8
−

C2
2

2r2 + C1C2lnr] +C*                                                                        (13) 

 Where C* is the constant of integration. Now equation (13) is the pressure distribution of fluid 

in the cylinder. 
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                                                 Case I 

Consider two cylinders with the inner and the outer cylinder rotating in the same direction with 

constant angular velocity Ω𝐼 and Ω𝑂 respectively. Determine the steady state velocity distribution 

and the pressure distribution in the field. (In the case of Ω𝐼  ≠  Ω𝑂) 

 

                             0 

                                           I 

 

 

The boundary conditions are that the fluid no slip at the surface of the two cylindrical surfaces. 

When the inner and outer cylinders are rotating, then the BCs are:   

 B.C.1.   at r = RO   ⟹    vθ = ΩORO 

 B.C.2.   at r = RI    ⟹    vθ = ΩIRI 

Depending on this boundary condition we can find vθ 

                   At   r = RO  ⟹    vθ = 
C1RO

2
+

C2

RO
= ΩORO                        (14) 

                   At  r = RI   ⟹  vθ =
C1RI

2
+

C2

RI
= ΩIRI                                                                   (15)   

From equation (14) we have:      C1RO
2 + 2C2 = 2ΩORO

2 

From equation (15) we have:       C1RI
2 + 2C2 =  2ΩIRI

2      

Solving simultaneously we have can get C1 and C2   then: 

                   C1   =  
2(Ω0R2

O − ΩIR2
I)

 R2
O − R2

I 
                                                           

                   C2   =   - 
R2

OR2
I 

 R2
O − R2

I 
(ΩO − ΩI) 
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Substituting these values for constants of integration into equation (11) we get the final 

expression for the velocity profile. 

                         vθ =
C1r

2
+

C2

r
           

                      vθ  =  
( 

2(Ω0R2
O − ΩIR2

I)

 R2
O − R2

I 
)r

2
  +  

− 
R2

OR2
I 

 R2
O − R2

I 
(ΩO−ΩI)

r
           

                      vθ   = 
1

R2
0 − R2

I
[(Ω0R2

0 − ΩIR
2

I)r −  R2
OR2

I (ΩO − ΩI)
1

r
]                                 (16) 

Equation (16) is velocity profile. 

   

                                 Figure 4.a. Velocity profile, r ∈ [0.2, 4]       
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                                     Figure 4.b. Velocity profile, r ∈ [0.2, 0.8]       

From Figure 4.a and 4.b, we observe that as the value of radius increases the velocity of fluid 

flow increases and also when the values of radius decreases the velocity of fluid flow in cylinder 

decreases. So velocity is affected by motion of the fluid. 

To find the pressure distribution using equation (13) 

         p = ρ [
C1

2r

8
−

C2
2

2r2 + C1C2lnr] +C*    

   p = ρ [
(

2(Ω0R2
O − ΩIR2

I)

 R2
O − R2

I 
)

2

r

8
    −   

(− 
R2

OR2
I 

 R2
O − R2

I 
(ΩO−ΩI))

2

2r2 + (
2(Ω0R2

O − ΩIR2
I)

 R2
O − R2

I 
) (− 

R2
OR2

I 

 R2
O − R2

I 
(ΩO − ΩI)) lnr] + C*     

   p = ρ
1

(R2
o − R2

I)2 [(
1

2
(ΩoR2

0 − ΩIR
2

I)
2r)  − 2R2

OR2
I(ΩoR2

0 − ΩIR
2

I)(ΩO − ΩI)lnr −
1

2
(

RO
4RI

4(ΩO−ΩI)2

r2 )] +C*                                        

Where C* is constant integration.                                                                                              (17)
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                                             Figure.5.a. Pressure profile, r ∈ [0.2, 4] 

                                    Figure.5.b. Pressure profile, r ∈ [0.1, 3] 

From Figure 5.a and 5.b we observe that the increasing values of radius  between two cylinders 

have an increasing effect on the pressure and also the decreasing value of radius between two 

cylinders have a decreasing pressure of fluid flow. 
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                                                    Case II 

The inner cylinder is removed and the outer cylinder rotates with constant angular velocity Ω2. 

Determine the steady state velocity distribution and the pressure distribution in the field.  

 

 

 

 

 

 

The boundary conditions are that the fluid does not slip at the cylindrical surfaces.                                         

Then the BCs are:   

             B.C.1. at r = R2,   𝑣𝜃 = Ω2R2                                                                                             18 

             B.C.2. at r = 0,    𝑣𝜃 = finite                                              19 

From eq. (18) and (19) we can get: 

                      𝑣𝜃 =
𝐶1𝑅2

2
+

𝐶2

𝑅2
 =  Ω2𝑅2                                                                                           20 

                      𝑣𝜃 = Finite at r = 0                                                                                                   21 

From eq. (21) we can get, 𝐶2 = 0 and using equation (20), 

                     
 𝐶1𝑅2

2
+

0

𝑅2
   =  Ω2𝑅2 

                      𝐶1 = 2Ω2                                                                                                                  22 

To get velocity profile in this case using equation (11), 

                          𝑣𝜃 =
𝐶1𝑟

2
+

𝐶2

𝑟
          

                         𝑣𝜃 =
2Ω2𝑟

2
+

0

𝑟
    

                            𝑣𝜃 = Ω2𝑟                                                                                                           (23) 
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                       Figure 6.Velocity profile, r ∈ [0, 2]       

From figure 6, we observe that as the value of radius increases then velocity of the fluid 

increases and also when the values of radius decreases the velocity fluid flow also decreases, so 

the relation between radius and velocity of fluid flow is direct proportionality.  

To get pressure profile under these case using equation (8),          

                        
𝜕𝑝

𝜕𝑟
  =  𝜌 (

𝒗𝜃
2

𝑟
)     

                           
𝜕𝑝

𝜕𝑟
  =  𝜌 (

(Ω𝑂𝑟 )2

𝑟
)     = 𝜌 (

Ω𝑜
2𝑟2

𝑟
)     

                         
𝜕𝑝

𝜕𝑟
  = 𝜌Ω𝑜

2 r   and integrate both sides with respect to r 

                      ∫ dp = ∫ 𝜌Ω𝑜
2 r dr    

                         p =   
1

2
𝜌Ω𝑜

2𝑟2 + C*                                                                                            (24) 
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Where C* can be evaluated by specifying the value of the pressure, 

                𝑃 = 𝑃𝑅𝑂
  at r = 𝑅𝑂  that is, 

                C*  = 𝑃𝑅𝑂
− 

1

2
𝜌Ω𝑜

2𝑟2 

Equation (24) is called pressure profile when the inner cylinder is removed. 

                                      

                         Figure.7. Pressure profile, r ∈ [0, 2] 

As we observe from figure 7, when the value of radius is increased the pressure of fluid flow 

increased and if the value of radius decreased the pressure of fluid flow also decreased.   
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4.2.2. Analysis of torque which is needed to rotate cylinder 

I. Consider two long concentric cylinders with the outer cylinder rotating with constant angular 

velocity Ω𝑜 and the inner cylinder at rest. Determine the torque of fluid which is exerted to the 

outer cylinder. The boundary conditions (BCs) are that the fluid does not slip (no-slip) at the 

surface of the two cylindrical surfaces. When the outer cylinder is rotating and the inner cylinder 

is fixed, then the BCs are:     

                 at  𝑟 = 𝑅𝑜 ,                𝒗𝜃 = 𝑅𝑜 Ω𝑜, 

                 at  𝑟 = 𝑅𝐼 ,                𝒗𝜃 = 0. 

                From this we can find 𝒗𝜃 at  𝑟 = 𝑅𝐼                 

                 𝒗𝜃 =
𝐶1𝑅𝐼

2
+

𝐶2

𝑅𝐼
= 0, 

              then implies that   𝐶2 = −
𝐶1𝑅2

𝐼

2
 

              Similarly at  𝑟 = 𝑅𝑜,   𝒗𝜃 = 𝑅𝑜Ω𝑜, 

                                    
𝐶1𝑅𝑜

2
+

𝐶2

𝑅𝑜
= 𝑅𝑜Ω𝑜, 

                and then 2𝑅𝑜
2Ω𝑜 = 𝐶1𝑅𝑜

2 + 2𝐶2                                                                              (25) 

After substituting  𝐶2 in to equation (25) we obtain  

                 𝐶1 =
2𝑅𝑜

2

𝑅𝑜
2− 𝑅𝐼

2 Ω𝑜 and  𝐶2 =
−𝑅𝑜

2𝑅𝐼
2

𝑅𝑜
2− 𝑅𝐼

2 Ω𝑜 

Substituting those values for constants of integration into 𝑣𝜃 =
𝐶1𝑟

2
+

  𝐶2

𝑟
   yields the final 

expression for the velocity profile given by: 

                                 𝑣𝜃 =
𝑅𝑜

2

(𝑅𝑜
2− 𝑅𝐼

2)

1

𝑟
(𝑟2 − 𝑅𝐼

2)Ω𝑜 .                                                                (26)                                                                  

Shear stresses of the fluid are obtained by: 

               τrθ = ηr
d

dr
(

vθ

r
). Replacing  vθ from equation (26) we can get: 
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                            τr θ = ηr
d

dr
(

Ro
2

(Ro
2− RI

2)

1

r
(r2−RI

2)Ωo

r
)   =   ηr

d

dr
(

Ro
2

(Ro
2− RI

2)
(r2−RI

2)Ωo

r2 ) 

The derivative of these with respect to r gives: 

                             τrθ =  2η
Ro

2 RI
2

Ro
2− RI

2 Ωo
1

r2
                                                                                   (27)  

The shear stress exerted by the liquid to the outer cylinder is 

                              τw =  - τrθ| r = R0 =   − 2η
Ro

2 RI
2

Ro
2− RI

2 Ωo
1

R0
2 

                              τw
  
=   − 2η

 RI
2

Ro
2− RI

2 Ωo                                  (28) 

The torque T per unit height L at the outer Cylinder is: 

                        
T

L
  = 2πR0

2 (−τw) 

                         
T

L
  = 2πR0

2 (− 2η
 RI

2

Ro
2− RI

2 Ωo) 

                          
T

L
  = 4ηπ

Ro
2 RI

2

Ro
2− RI

2 Ωo 

                         T = 4ηπ
Ro

2 RI
2

Ro
2− RI

2 ΩoL                                   (29) 

Equation (29) is the torque which is exerted by the liquid to the outer cylinder. 

II. Consider two concentric cylinders with the inner cylinder rotating with constant angular 

velocity ΩI and the outer cylinder is fixed. Determine the torque of fluid which is exerted to 

inner cylinder. The boundary conditions are that the fluid does not slip at the surface of the two 

cylindrical surfaces. When the inner cylinder is rotating and the outer cylinder is fixed, then the 

BCs are:   at  𝑟 = 𝑅𝑜 ,      𝑣𝜃 = 0, 

                at  𝑟 = 𝑅𝐼 ,        𝑣𝜃 = Ω𝐼𝑅𝐼. 
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From this we can find 𝑣𝜃          

          at  𝑟 = 𝑅𝑂    𝑣𝜃 =
𝐶1𝑅𝑂

2
+

𝐶2

𝑅𝑂
= 0, and we have   𝐶2 = −

𝐶1𝑅2
𝑂

2
 

           at r = 𝑅𝐼 ,      𝑣𝜃 = 𝑅𝐼Ω𝐼  

Implies that  
𝐶1𝑅𝐼

2
+

𝐶2

𝑅𝐼
= 𝑅𝐼Ω𝐼  and then  2𝑅𝐼

2Ω𝐼 = 𝐶1𝑅𝐼
2 + 2𝐶2                                              (30)                                        

After substituting 𝐶2 in to equation (30), we obtain   

                 𝐶1 =
2𝑅𝐼

2

𝑅𝑜
2− 𝑅𝐼

2 Ω𝐼 and  𝐶2 =
−𝑅𝑜

2𝑅𝐼
2

𝑅𝑜
2− 𝑅𝐼

2 Ω𝐼. 

Substituting of those values for constants of integration into  𝑣𝜃 =
𝐶1𝑟

2
+

𝐶2

𝑟
, then velocity profile 

is given by;  

                  𝑣𝜃 = (
2𝑅2

𝐼Ω𝐼

𝑅2
𝐼−𝑅2

𝑂
) (

𝑟

2
) − (

𝑅𝑜
2𝑅2

𝐼Ω𝐼

𝑅2
𝐼−𝑅2

𝑂
) (

1

𝑟
), 

                  𝑣𝜃 =
𝑅𝐼

2

(𝑅𝐼
2− 𝑅𝑂

2)

1

𝑟
(𝑟2 − 𝑅𝑂

2)Ω𝐼                                                                             (31)           

Shear stresses of the fluid are obtained by:   

                 τrθ = ηr
d

dr
(

vθ

r
)       

                    τr θ = ηr
d

dr
(

RI
2

(RI
2− RO

2)

1

r
(r2−RO

2)ΩI

r
)   =   ηr

d

dr
(

RI
2

(RI
2− RO

2)
(r2−RO

2)ΩI

r2 )  

                  τrθ =  ηr (2
Ro

2 RI
2

RI
2− Ro

2 ΩI
1

r3) 

                 τrθ =  2η
Ro

2 RI
2

RI
2− Ro

2 ΩI
1

r2                                        (32)                  

The shear stress exerted by the liquid to the inner cylinder is:    

                τw = - τrθ| r = RI   =  − 2η
Ro

2 RI
2

RI
2− RO

2 ΩI
1

RI
2 
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                τw
  
=   − 2η

 Ro
2

RI
2− RO

2 ΩI                                  (33) 

The torque T per unit height L to the inner cylinder: 

                          
T

L
  = 2πRI

2 (−τw) 

                          
T

L
  = 2πRI

2 (− 2η
 Ro

2

RI
2− RO

2 ΩI) 

                          
T

L
  = 4ηπ

Ro
2 RI

2

RI
2− RO

2 ΩI 

                         T = 4ηπ
Ro

2 RI
2

RI
2− RO

2 ΩIL                                                (34) 

Equation (34), is the torque which is exerted by the liquid to the inner cylinder. 

4.2.3. Free surface shape for cylindrical vessel rotating about its own 

axis 

 I) let us consider the inner cylinder and outer cylinder rotates with equal angular velocity when 

the inner and outer cylinders are rotating, then the BCs are:     

                       At 𝑟 = 𝑅𝑜 ,         𝒗𝜃 =  Ω𝑂𝑅𝑂 

                        At  𝑟 = 𝑅𝐼 ,         𝒗𝜃 = Ω𝐼𝑅𝐼 

                        From this we can find  𝑣𝜃 

                   At 𝑟 = 𝑅𝑂         𝒗𝜃 =
𝐶1𝑅𝑂

2
+

𝐶2

𝑅𝑂
= Ω𝑂𝑅𝑂                                                                (35) 

                   At 𝑟 = 𝑅𝐼           𝒗𝜃 =
𝐶1𝑅𝐼

2
+

𝐶2

𝑅𝐼
= Ω𝐼𝑅𝐼                                                                   (36) 

From equation (35), we have: 𝐶1𝑅𝑂
2 + 2𝐶2 = 2Ω𝑂𝑅𝑂

2 

From equation (36) we have: 𝐶1RI
2 + 2𝐶2 = 2ΩIRI

2 

Solving equation (35) and equation (36), simultaneously and we get 
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               𝐶1 = 2Ω𝑂  &  𝐶2 = 0  Since Ω𝐼 = Ω𝑂 = Ω 

 Then the velocity distribution is given by: 

                                   𝑣𝜃 =
𝐶1𝑟

2
+

𝐶2

𝑟
  

                                   𝑣𝜃 =
2Ω𝑂𝑟

2
+

0

𝑟
 

                                   𝑣𝜃 = Ω𝑟                                                                                                    (37) 

The pressure is given by   
𝜕𝑝

𝜕𝑟
  = 𝜌 (

𝑣2
𝜃

𝑟
)  = 𝜌

Ω2𝑟2

𝑟
  = 𝜌Ω2r 

                                
𝜕𝑝

𝜕𝑟
  = 𝜌Ω2r        integrating with respect to r 

 ∫
𝜕𝑝

𝜕𝑟
  = ∫ 𝜌Ω2r  

                                ∫ 𝑑𝑝  = ∫ 𝜌Ω2r dr 

                                P(r, z) = 
1

2
𝜌Ω2𝑟2 + f1 (z)                                                                              (38) 

Substitute in z component      
∂p

∂z
  = - 𝜌g  

                               
𝑑𝑓1

𝑑𝑧
  = - 𝜌gz + c                                                                                              (39) 

Substituting equation (39), in equation (38) 

                         P(r, z) = 
1

2
𝜌Ω2𝑟2 - 𝜌gz + c                                                                                 (40) 

Let z0 be height of liquid in cylinder at r = 0 and p = p0   where p0 is atmospheric pressure,                    

we can get the constant c which is given by: 

                       c = p0 + 𝜌gz0                                                                                                         (41) 

Substituting equation (41) in equation (40) 

                      p =   
1

2
𝜌Ω2𝑟2 - 𝜌gz + p0 + 𝜌gz0              

                     p =  
1

2
𝜌Ω2𝑟2 – 𝜌g (z - z0) + p0 

Then p – 𝑝0 = 0 = 
1

2
𝜌Ω2𝑟2 – 𝜌g (z -zo) 



31 
 

                   𝜌g (z -zo ) =  
1

2
𝜌Ω2𝑟2  

                  z = zo +  
1

2𝑔
 Ω2𝑟2     where zo is height of cylinder.                                                   (42) 

 

    Figure 8. Free surface shape of fluid in cylinder -I 

II. Let us consider the inner cylinder is removed and outer cylinder rotate with angular velocity 

of Ω0. From equation (23) we have   𝑣𝜃 = Ω𝑂𝑟  and using r- component the pressure is given by               

                                  
𝜕𝑝

𝜕𝑟
  =  𝜌 (

𝑣𝜃
2

𝑟
)    

                                  
𝜕𝑝

𝜕𝑟
     =  𝜌(Ω0)2r                                                                                         (43)  

                                Integrating equation (43) with respect to r 

                                ∫ 𝑑𝑝  =  ∫ 𝜌(Ω0)2𝑟𝑑𝑟 

                               P (r, z) = 
1

2𝑔
 𝜌(Ω0)2𝑟2 + f1(z)                                                               (44) 

Substitute in z momentum we obtain  

                                  
𝜕𝑝

𝜕𝑧
  = -𝜌g   

                                 
𝑑𝑓1

𝑑𝑧
  = -𝜌gz + c      

                                f1 (z) = -𝜌gz + c     substituting in equation (44) we obtain: 

                                P = 
1

2𝑔
 𝜌(Ω0)2𝑟2 - 𝜌gz + c                                                                          (45) 
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Let z0 be height of liquid in cylinder at r = 0 and p = p0, where p0 is atmospheric pressure, we can 

get the constant c which is given by c = 𝑝0 + 𝜌gz0                                                                                                       (46)                                                                                                               

Substitute equation (46) in equation (45) we obtain 

             P = 
1

2𝑔
 𝜌(Ω0)2𝑟2- 𝜌g (z -𝑧0 ) + 𝑝0    

             0 = p – 𝑝0 = 
1

2
 𝜌(Ω0)2𝑟2- 𝜌g (z -𝑧0 )  

              𝜌g (z - 𝑧0 )  =  
1

2
 𝜌(Ω0)2𝑟2  

              z = z0 + 
(Ω0)2𝑟2

2𝑔
                                                                         (47)  

  

Figure 9.  Free surface shape of fluid in cylinder -II 

From figure 8 & 9 we conclude that the shape of free surface of fluid in cylinder is parabola. So 

the shape of the free surface of liquid in rotating cylinder at steady state has a parabolized shape. 
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                                       CHAPTER FIVE 

                       CONCLUSIONS AND FUTURE SCOPE 

5.1. Conclusion 

In this study two cases are presented for a flow of an incompressible fluid between two rotating 

coaxial cylinder. Namely, when inner and outer cylinder rotate with different angular velocity ΩI 

& Ωo respectively in the same direction and the outer cylinder rotate with angular velocity  Ωo 

and inner cylinder removed.  In a circular Couette flow of incompressible fluid, the velocity field 

involves only  𝑣𝜃  and the magnitude is a function of the radial coordinate.  

In a circular Couette flow of incompressible fluid, the pressure distribution is a function of  𝑟. 

From Figure 4.a and 4.b, we observed that as the value of radius increases the velocity of fluid 

flow increases and also when the values of radius decreases the velocity of fluid flow in cylinder 

decreases. That is, the more close the fluid no-slips at the boundary, the less its velocity is 

affected by the motion of the boundary. From Figure 5.a. and 5.b, we can observe that increasing 

the radius between two cylinders has an increasing effect of pressure; also the decreasing value 

of radius between two cylinders, pressure of fluid flow is decreasing. 

From figure 6, we observe that as the value of radius increases the velocity of the fluid increases 

and also when the value of radius decrease the velocity fluid flow also decreases, so the relation 

between radius and velocity of fluid flow is direct proportionality.  As we observe from figure 7, 

when the value of radius increases the pressure of fluid flow increases and if the value of radius 

decreases the pressure of fluid flow also decreases. 

A free surface is a surface between two homogeneous fluids, for example between liquid and the 

air in the Earth's atmosphere. If a liquid is contained in a cylinder rotating around a vertical axis 

coinciding with the axis of the cylinder, as we see from figure 8 & 9 the free surface is parabolic. 

This parabolic shape is used to create liquid mirror telescope. Liquid mirror telescope is a 

telescope made from a reflective liquid. Liquid mirrors rotate in the shape of a parabola, this 

shape needed for the liquid mirror to be able to collect and focus incoming starlight. 
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5.2. Future Scope  

In fluid mechanics, incompressible flow refers to a flow in which the material density is constant 

within a fluid parcel. Incompressible fluid flow between rotating coaxial cylinders has received 

notable attention in fluid mechanics, applied mathematics and chemical engineering. Based on 

this, it can be recommended that the upcoming post graduate student and other researchers who 

are interested in this area to use the result of this as platform and make further investigation in 

Couette flow when three coaxial cylinders rotating in different angular velocity. 
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