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Abstract. Queues with Markovian service process (MSP ) are mainly useful
in modeling and performance analysis of telecommunication networks based on
asynchronous transfer mode (ATM) environment. This paper analyzes a finite
buffer single server batch service (a, b) queue with general input and Markovian
service process (MSP ). The server accesses new arrivals even after service has
started on any batch of initial number a. This operation continues till the
service time of the ongoing batch is completed or the maximum accessible
capacity d (a ≤ d < b) of the batch being served is attained whichever occurs
first. Using the embedded Markov chain technique and the supplementary
variable technique we obtain the steady state queue length distributions at pre-
arrival and arbitrary epochs. The primary focus is on the various performance
measures of the steady state distribution of the batch service, special cases and
also on numerical illustrations.

1. Introduction. Batch service queues have been extensively studied by many
researchers over the last three decades. These queues have wide applications in
many areas, for example, in loading and unloading of cargoes at a seaport, in man-
ufacturing systems, in semiconductor foundries, in transportation systems, in lift
operations, in traffic signal systems, in distribution logistics, etc. Recent applica-
tions include computer networks where jobs are processed in batches with a limit
on the number of jobs taken at a time for processing. For extensive studies related
to batch service queues, see Medhi [20], Chaudhry and Templeton [7], Dshalalow
[8], Gold and Tran-Gia [9], Hébuterne and Rosenberg [16], Chakravarthy [5, 6] and
Gupta and Vijaya Laxmi [15], etc.

In typical batch service queueing models, once the service is started, arriving
customers cannot enter the service station though enough space is available to ac-
commodate them. But in many practical situations the arriving customers are
considered for service with current batch in service with some limitation, for exam-
ple, cinema hall, elevator etc. That is, in the general batch service (a, b) rule, if
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a batch being served does not employ its full capacity of service, late arrivals may
join the ongoing service as long as the number in that service batch is less than a
pre-defined threshold d (a ≤ d < b). The service time of the batch is not changed
by inclusion of such arriving customers in course of ongoing service. Such a batch
is said to be an accessible batch (AB). However, if the number in the service batch
exceeds d, the batch becomes non-accessible for late arriving customers and such
a batch is called non-accessible batch (NAB). This has been considered by Gross
et al. [13] and Kleinrock [17]. The infinite buffer queue with accessible and non-
accessible batch service rule has been studied by Sivasamy [24]. In discrete-time
systems, the same type of model has been studied by Goswami et al. [10] with finite
and infinite buffers. Recently, the infinite buffer discrete time batch service queue
with accessible batch and geometric arrivals and negative Binomial distributed ser-
vice times has been analyzed by Sivasamy and Pukazhenthi [25]. Goswami and
Sikdar [11] have discussed the discrete time batch service GI/Geo(a,b)/1/N queue
with accessible and non-accessible batches using recursive method.

Queueing models with non-renewal arrivals and Markovian services are often used
to model networks of complex computer and telecommunication systems. In such
systems both the arrival and service processes may exhibit correlations which have
significant impact on queueing performance. Markovian arrival process (MAP )
is used to capture the correlation among the inter-arrival times. Similarly, Batch
Markovian arrival process (BMAP ) is used to capture the correlations among the
inter-batch arrival times. BMAP is a versatile Markovian point process (N -process)
which was introduced by Neuts [21] and later formalized by Lucantoni [18]. Like
these non-renewal arrival processes, Markovian service process (MSP ) is a versatile
service process which can capture the correlation among successive service times.
Several other service processes, for example, Poisson process, Markov modulated
Poisson process (MMPP ), PH-type renewal process, Interrupted Poisson process
(IPP ), etc, are the special cases of MSP . For details of MSP , readers are referred
to Bocharov [4], Albores and Tajonar [1], Gupta and Banik [14], etc.

Recently, Banik et al. [3] have analyzed the batch service GI/MSP (a,b)/1/N
queue using the methods of supplementary variable and embedded Markov chain
and obtained the queue length distributions at pre-arrival and arbitrary epochs. It
may be noted that the accessible batch service has more economic utilizations in
providing better service to the queue. For example, in many shuttle transporta-
tion systems, we observe units being transported according to accessibility rule
with some limitation. One can view this as priority services where the late ar-
rival (priority) job gets service without affecting the service time of the ongoing
batch. Therefore, this paper gives an extension of the work of Banik et al. [3].
To be more specific, we present the analysis of a finite buffer general input queue
with Markovian service process and with accessible and non-accessible batch service
i.e., GI/MSP (a,d,b)/1/N queue. Using the supplementary variable and embedded
Markov chain techniques we have obtained the steady state distributions of the
number in the system (queue) at pre-arrival and arbitrary epochs. Some numerical
results have been presented in the form of tables and graphs. As a special case,
when the accessibility limit equals the minimum batch size, i.e., a = d, the present
model reduces to the general batch service GI/MSP (a,b)/1/N queue, Banik et al.
[3]. The model presented in this paper may be useful in polling systems, cinema
theatres, communication routers where the trade-off between batch services and
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arrival times is adopted to capture processing times accurately and to control the
access to the communication media.

The rest of this paper is organized as follows: Section 2 presents the necessary
notations and description of the model. Section 3 gives the analytic analysis of the
model. Sections 4 and 5 deal with performance measures and numerical results,
respectively and Section 6 concludes the paper.

2. Notations and description of the model. Let us consider a finite buffer
queue wherein the customers inter-arrival times are independent, identically dis-
tributed (i.i.d.) random variables with probability distribution function A(u), prob-
ability density function a(u), u ≥ 0, Laplace-Stieltjes transform (LST)A∗(θ), Re(θ) ≥
0 and mean inter-arrival time 1/λ = −A∗(1)(0) where h(1)(0) is the first derivative
of h(θ) evaluated at θ = 0. The customers are served by a single server in batches
of maximum size b with a minimum threshold value a. However, if the number of
customers in the queue is less than a, the server remains idle until the queue size
reaches a. If b or more customers are present in the queue at service initiate epoch
then only b of them are taken into service and the rest of the customers will wait in
the queue whose size is taken as finite N . It is further assumed that the late entries
can join a batch in course of ongoing service as long as the number of customers in
that batch is strictly less than d (called accessible limit). At every departure epoch,
that is, before initiating service of the next batch, the server may find the system in
any one of the following three cases: (i) 0 ≤ n ≤ a− 1, (ii) a ≤ n ≤ d− 1 and (iii)
n ≥ d. In case (i), the server cannot initiate service, it remains idle. In case (ii), the
server takes the entire queue for batch service and admits the subsequent arrivals
in the batch while the service is on, till the accessible limit d is reached, and such a
batch is called an accessible batch (AB). In case (iii), it takes min(n, b) customers
for the service and does not allow further arrivals into the batch being served even
if the current batch size is not b, that is, when the batch size is greater than or
equal to d, the batch becomes non-accessible (NAB) for late arriving customers.

The Markovian service process is a generalization of the Poisson process where
the services are governed by an underlying m-state Markov chain. With transition
rate Lij , 1 ≤ i, j ≤ m, i 6= j there is a transition from state i to state j in the
underlying Markov chain without a service completion, and with transition rate
Mij , 1 ≤ i, j ≤ m, there is a transition from state i to state j in the underlying
Markov chain with a service completion. The matrix L = [Lij ] has non-negative
off-diagonal and negative diagonal elements, and the matrix M = [Mij ] has non-
negative elements and both have at least one positive entry. Let N(t) denotes the
number of customers served in (0, t] and J(t) be the state of the underlying Markov
chain at time t with state space {i : 1 ≤ i ≤ m}. Then {N(t), J(t)} is a two
dimensional Markov process with state space {(n, i) : n ≥ 0, 1 ≤ i ≤ m}. The
infinitesimal generator of the above Markov process is given by

Q =









L M 0 0 0 · · ·

0 L M 0 0 · · ·

0 0 L M 0 · · ·

...
...

...
...

...
. . .









,

and {N(t), J(t)} is called the Markovian service process (MSP ). Since Q is the
infinitesimal generator of the MSP , we have (L + M)e = 0 where e is a m × 1
vector with all its elements equal to 1. Further, L+M is the infinitesimal generator
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of the underlying Markov chain {J(t)}, there exists a stationary probability vector
Π such that Π(L + M) = 0, Πe = 1. The fundamental service rate of the above
Markov process is given by µ∗ = ΠMe and the lag k coefficient of correlation is
computed by, see [14],

r[k] =
µ∗Π[(−L)−1M]k(−L)−1e− 1

2µ∗Π(−L)−1e− 1
, k > 1.

The case when the server remains idle for certain time interval and then a customer
enters, the service process begins with the initial service phase distribution given
by fj, j = 1, 2, . . . ,m,

∑m
j=1 fj = 1. This phase process is independent of the path

followed by the previous service period. This is called idle-restart service phase
distribution suggested by Neuts [21] and later by Albores and Tajonar [1]. Thus,
a MSP is characterized by the matrices L, M and the phase distribution vector
f = (f1, f2, . . . , fm).

The customers are served according to the Markovian service process and ac-
cessibility to batches with stationary mean service rate equal to µ∗. The traffic
intensity ρ is given by ρ = λ/bµ∗. The state of the system at time t is described by
the following random variables, namely

• Ns(t)
(

Nq(t)
)

= number of customers present in the system (queue),
• U(t) = remaining inter-arrival time for the next arrival,

• ζ(t) =

{

0, if the server is idle or busy with an accessible batch,
1, if the server is busy with a non-accessible batch.

Let us define the joint probabilities by

P j
n,0(u, t)du = Pr [Ns(t) = n, J(t) = j, u < U(t) ≤ u+ du, ζ(t) = 0] , u ≥ 0,

0 ≤ n ≤ d− 1,

P j
n,1(u, t)du = Pr [Nq(t) = n, J(t) = j, u < U(t) ≤ u+ du, ζ(t) = 1] , u ≥ 0,

0 ≤ n ≤ N.

In the limiting case, as t→ ∞, the above probabilities will be denoted by P j
n,0(u)

and P j
n,1(u), respectively. Further, let Pn,0(u), (0 ≤ n ≤ d − 1) and Pn,1(u), (0 ≤

n ≤ N) denote the row vectors of order 1 ×m whose j-th components are P j
n,0(u)

and P j
n,1(u), respectively.

3. Analysis of the model. In this section, we shall carry out the analytic analysis
of the model and obtain the queue length distribution at various epochs.

3.1. Steady state distribution at pre-arrival epoch. Consider the system just
before an arrival of a customer which are taken as embedded points. Let t0, t1,,
. . . be the time epochs at which successive arrivals occur and t−n the time epochs just
before the arrival instant tn. The inter-arrival times Tn+1 = tn+1 − tn, n = 0, 1,
. . . are i.i.d. random variables with common distribution function A(u). The state
of the system at t−i is defined as {Ns(t

−
i ), ζ(t−i )}, where Ns(t

−
i ) is the number of

customers in the system and ζ(t−i ) = 0 represents whether the server is idle/busy
with accessible batch and ζ(t−i ) = 1 represents that the server is busy with a non-
accessible batch. In the limiting case, let us assume

P j−
n,0 = lim

i→∞
Pr

[

Ns(t
−
i ) = n, ζ(t−i ) = 0, J(t−i ) = j

]

, 0 ≤ n ≤ d− 1, 1 ≤ j ≤ m,

P j−
n,1 = lim

i→∞
Pr

[

Nq(t
−
i ) = n, ζ(t−i ) = 1, J(t−i ) = j

]

, 0 ≤ n ≤ N, 1 ≤ j ≤ m,
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where P j−
n,0 be the probability that the server is idle or busy with n (0 ≤ n ≤ d− 1)

customers at pre-arrival epoch and P j−
n,1 denotes the probability that the server is

busy with non-accessible batch and n (0 ≤ n ≤ N) customers waiting in the queue
at pre-arrival epoch and the phase of the service process is j. Further, let P−

n,k be
the row vector of order 1×m of pre-arrival epoch probability whose j-th component
is P j−

n,k, k = 0, 1.

Let Sk, k ≥ 0, denotes an m × m matrix whose (i, j)-th element represents
the conditional probability that k batches of customers have been served during an
inter-arrival time and the underlying Markov chain of the service process is in phase
j just before the arrival given that the underlying Markov chain was in phase i at
the previous pre-arrival epoch.

Now observing the state of the system at two consecutive embedded points, we
have an embedded Markov chain whose finite state space is equivalent to Ω =
{(i, j), 0 ≤ i ≤ d − 1, 1 ≤ j ≤ m}

⋃

{(i, j), 0 ≤ i ≤ N, 1 ≤ j ≤ m}. The one step
transition probability matrix (TPM) P̄ of the above Markov chain has dimension
(N + d+ 1) × (N + d+ 1) with four block matrices as given below:

P̄ =

(

Ad×d Bd×(N+1)

C(N+1)×d D(N+1)×(N+1)

)

The pre-arrival epoch probabilities P−
n,0, 0 ≤ n ≤ d−1 and P−

n,1, 0 ≤ n ≤ N can be

determined by solving the system of equations Π = ΠP̄, Πē = 1, using GTH algo-
rithm (Grassmann et al. [12]), where Π = (P−

0,0,P
−
1,0, · · · ,P

−
a,0,P

−
a+1,0, · · · ,P

−
d−1,0,

P−
0,1, . . . ,P

−
N,1) and ē is a (N + d+ 1) dimensional column vector with all its com-

ponents being unity.
Blocks A and B represent the probability of transition from idle/accessible batch

service state to idle/ accessible batch service state and non-accessible batch service
state, respectively. Their elements have the following expressions:

Ai,j =















Im : 0 ≤ i ≤ a− 2, 0 ≤ j ≤ a− 1, i+ 1 = j,
So : a− 1 ≤ i ≤ d− 1, a ≤ j ≤ d− 1, i+ 1 = j,
ψ1(i) : a− 1 ≤ i ≤ d− 1, j = 0,
0 : otherwise.

Bi,j =

{

So : i = d− 1, j = 0,
0 : otherwise.

Similarly, blocks C and D represent the probability of transitions from non-
accessible batch service state to idle/accessible batch service and non-accessible
batch service state, respectively. Their elements are listed below:

Ci,j =







































S[ i
b
]+1 : a− 1 ≤ i ≤ N − 1, a ≤ j ≤ d− 1, ⌊ i

b
⌋ + 1 = j,

ψ2(i) : a− 1 ≤ i ≤ N − 1, j = 0, ⌊ i
b
⌋ = either a− 1 or a or . . .

or b− 1,

ψ3(i) : 0 ≤ i ≤ N − 1, 1 ≤ j ≤ a− 1, i+ 1 ≥ j, i+1−j
b

, is an
integer,

Ci−1,j : i = N, a ≤ j ≤ d− 1,
0 : otherwise.
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Di,j =







































So : 0 ≤ i ≤ N − 1, 1 ≤ j ≤ N, i+ 1 = j,
S[ i

b
]+1 : d− 1 ≤ i ≤ N − 1, j = 0, ⌊ i

b
⌋ = either d− 1 or d or . . .

or b− 1,

S i+1−j

b
: b ≤ i ≤ N − 1, 1 ≤ j ≤ N − b, i+ 1 ≥ j, i+1−j

b
, is an

integer,
Di−1,j : i = N, 0 ≤ j ≤ N,
0 : otherwise.

where

ψ1(i) =

(

Im −
(

d−1
∑

j=1

Ai,j +

N
∑

j=0

Bi,j

)

)

ef , a− 1 ≤ i ≤ d− 1,

ψ2(i) =

(

Im −
(

d−1
∑

j=1

Ci,j +

N
∑

j=0

Di,j

)

)

ef , 0 ≤ i ≤ N − 1, ⌊i/b⌋ = either a− 1

or a or . . . or b− 1.

ψ3(i) =

(

Im −
(

d−1
∑

j=⌊ i
b
⌋+2

Ci,j +

N
∑

j=0

Di,j

)

)

ef , 0 ≤ i ≤ N − 1,

and [x] and ⌊x/y⌋ represent the greatest integer contained in x and the remainder
obtained after dividing integer x by integer y, respectively. Also, ef is a stochastic
matrix with invariant vector f and Im is an identity matrix of order given in the
suffix.

Remark. It may be remarked here that instead of assuming idle-restart service
phase distribution, if one considers that a new busy period starts with the same
phase where the previous busy period ended, then in this case, the TPM remains the
same as above, but the expressions of ψ1(i), ψ2(i) and ψ3(i) will have the following
changes.

ψ1(i) =diag

(

Im −
(

d−1
∑

j=1

Ai,jee
′

+

N
∑

j=0

Bi,jee
′

)

)

, a− 1 ≤ i ≤ d− 1,

ψ2(i) =diag

(

Im −
(

d−1
∑

j=1

Ci,jee
′

+
N

∑

j=0

Di,jee
′

)

)

, 0 ≤ i ≤ N − 1, ⌊i/b⌋ = either

ψ3(i) =diag

(

Im −
(

d−1
∑

j=⌊ i
b
⌋+2

Ci,jee
′

+

N
∑

j=0

Di,jee
′

)

)

, 0 ≤ i ≤ N − 1,

where e
′

is the 1 ×m row vector with all its elements equal to 1, and diag(W) is
the diagonal matrix.

Further, the matrices Sn which occur in the TPM require numerical integration
for arbitrary inter-arrival times. One can compute these matrices along the lines
proposed by Neuts [23] or by Lucantoni and Ramaswami [19]. However, when
the arrival time distribution is of phase type (PH-distribution), Sn matrices can
be efficiently evaluated without any numerical integration, see Neuts [22]. In the
following theorem we list some results which are needed for the computation of Sn.
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Theorem 3.1. Let the inter-arrival times A(x) follow PH-distribution with irre-

ducible representation (α,T), where α and T are of dimension γ, then the matrices

Sn which occur in TPM are given by

Sn = Un(Im ⊗ T0), 0 ≤ n ≤ N,

U0 = −(Im ⊗ α)[L ⊗ Iγ + Im ⊗ T]−1,

Un = −Un−1(M ⊗ Iγ)[L ⊗ Iγ + Im ⊗ T]−1, 1 ≤ n ≤ N,

and ⊗ denotes the Kronecker product of two matrices.

Proof. Following the steps given in Theorem 3.1 in Neuts [22], the matrices Un and
Sn can be derived, see Gupta and Vijaya Laxmi [15].

3.2. Steady state distribution at arbitrary epoch. To obtain the queue length
distribution at arbitrary epoch, we develop relations between distributions of num-
ber of customers in the system (queue) at pre-arrival and arbitrary epochs. For
this we make use of the supplementary variable technique. Now relating the states
of the system at two consecutive time epochs t and t + dt and using probabilistic
arguments, in steady state, we obtain the following system of differential-difference
equations:

−
d

du
P0,0(u) =

d−1
∑

k=a

Pk,0(u)M + P0,1(u)M, (1)

−
d

du
Pn,0(u) = Pn,1(u)M + a(u)Pn−1,0(0), 1 ≤ n ≤ a− 1, (2)

−
d

du
Pn,0(u) = Pn,0(u)L + Pn,1(u)M + a(u)Pn−1,0(0), a ≤ n ≤ d− 1, (3)

−
d

du
P0,1(u) = P0,1(u)L +

b
∑

k=d

Pk,1(u)M + a(u)Pd−1,0(0), (4)

−
d

du
Pn,1(u) = Pn,1(u)L + Pn+b,1(u)M + a(u)Pn−1,1(0), 1 ≤ n ≤ N − b,(5)

−
d

du
Pn,1(u) = Pn,1(u)L + a(u)Pn−1,1(0), N − b+ 1 ≤ n ≤ N − 1, (6)

−
d

du
PN,1(u) = PN,1(u)L + a(u)[PN−1,1(0) + PN,1(0)]. (7)

where Pn,0(0) and Pn,1(0) are the respective rates of arrivals. Let us define

P∗
n,0(θ) =

∞
∫

0

e−θuPn,0(u)du and P∗
n,1(θ) =

∞
∫

0

e−θuPn,1(u)du, Re(θ) ≥ 0.
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Here Pn,0 ≡ P∗
n,0(0), Pn,1 ≡ P∗

n,1(0) are the arbitrary epoch probabilities. Multi-

plying (1) to (7) by e−θu and integrating with respect to u from 0 to ∞, yields

− θP∗
0,0(θ) =

d−1
∑

k=a

P∗
k,0(θ)M + P∗

0,1(θ)M − P0,0(0), (8)

−θP∗
n,0(θ) = P∗

n,1(θ)M +A∗(θ)Pn−1,0(0) − Pn,0(0), 1 ≤ n ≤ a− 1, (9)

−θP∗
n,0(θ) = P∗

n,0(θ)L + P∗
n,1(θ)M +A∗(θ)Pn−1,0(0) − Pn,0(0),

a ≤ n ≤ d− 1, (10)

−θP∗
0,1(θ) = P∗

0,1(θ)L +

b
∑

k=d

P∗
k,1(θ)M +A∗(θ)Pd−1,0(0) − P0,1(0), (11)

− θP∗
n,1(θ) = P∗

n,1(θ)L + P∗
n+b,1(θ)M +A∗(θ)Pn−1,1(0) − Pn,1(0),

1 ≤ n ≤ N − b,(12)

−θP∗
n,1(θ) = P∗

n,1(θ)L +A∗(θ)Pn−1,1(0) − Pn,1(0),

N − b+ 1 ≤ n ≤ N − 1, (13)

−θP∗
N,1(θ) = P∗

N,1(θ)L +A∗(θ)[PN−1,1(0) + PN,1(0)] − PN,1(0). (14)

Post-multiplying (8) - (14) by the vector e, adding them and using (L + M)e = 0,
we get

d−1
∑

n=0

P∗
n,0(θ)e +

N
∑

n=0

P∗
n,1(θ)e =

1 − A∗(θ)

θ

{

d−1
∑

n=0

Pn,0(0) +

N
∑

n=0

Pn,1(0)

}

e.

Taking the limit as θ → 0, using the normalization condition,
d−1
∑

n=0
Pn,0 +

N
∑

n=0
Pn,1 =

Π and after simplification we get

d−1
∑

n=0

Pn,0(0)e +
N

∑

n=0

Pn,1(0)e = λ. (15)

The left hand side of (15) represents the probability that an arrival is about to
occur, which is equal to the arrival rate of customers.

3.2.1. Relation between distributions at arbitrary and pre-arrival epochs. Relating
the pre-arrival epoch probabilities P−

n,0, 0 ≤ n ≤ d − 1, P−
n,1, 0 ≤ n ≤ N, with

their rates Pn,0(0), 0 ≤ n ≤ d − 1, Pn,1(0), 0 ≤ n ≤ N , applying Baye’s theorem
and using (15), we obtain

P−
n,0 = Pn,0(0)/λ, 0 ≤ n ≤ d− 1; P−

n,1 = Pn,1(0)/λ, 0 ≤ n ≤ N. (16)

Our main objective is to obtain the distribution of number of customers in the
system (queue) at arbitrary epoch. This is discussed in the following theorems.
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Theorem 3.2. The arbitrary epoch probabilities are given by

PN,1 = λP−
N−1,1(−L)−1,

Pn,1 = λ
(

P−
n−1,1 − P−

n,1

)

(−L)−1, N − b+ 1 ≤ n ≤ N − 1,

Pn,1 =

(

Pn+b,1M + λ
(

P−
n−1,1 − P−

n,1

)

)

(−L)−1, n = N − b,N − b− 1, · · · , 1,

P0,1 =

( b
∑

k=d

Pk,1M + λ
(

P−
d−1,0 − P−

0,1

)

)

(−L)−1,

Pn,0 =

(

Pn,1M + λ
(

P−
n−1,0 − P−

n,0

)

)

(−L)−1, a ≤ n ≤ d− 1.

Proof. Setting θ = 0 in (10) - (14) and using (16), we obtain the result of the
theorem.

Here, one may note that from Theorem 3.2, we cannot get {Pn,0}
a−1
0 . However,

these can be obtained using the following theorem.

Theorem 3.3. The arbitrary epoch probabilities {Pn,0}
a−1
0 are given by

Pn,0 = P−
n−1,0 − P

∗(1)
n,1 (0)M, 1 ≤ n ≤ a− 1,

where P
∗(1)
n,1 (0), (1 ≤ n ≤ a− 1) can be obtained from

P
∗(1)
N,1 (0) =

(

PN,1 − P−
N−1,1 − P−

N,1

)

(−L)−1, (17)

P
∗(1)
n,1 (0) =

(

Pn,1 − P−
n−1,1

)

(−L)−1, N − b+ 1 ≤ n ≤ N − 1, (18)

P
∗(1)
n,1 (0) =

(

P
∗(1)
n+b,1(0)M +

(

Pn,1 − P−
n−1,1

)

)

(−L)−1,

n = N − b,N − b− 1, · · · , 1, (19)

P
∗(1)
0,1 (0) =

(

b
∑

k=d

P
∗(1)
k,1 (0)M +

(

P0,1 − P−
d−1,0

)

)

(−L)−1, (20)

P
∗(1)
n,0 (0) =

(

P
∗(1)
n,1 (0)M +

(

Pn,0 − P−
n−1,0

)

)

(−L)−1, a ≤ n ≤ d− 1. (21)

Finally, the only unknown quantity P0,0 is obtained by using the normalization

condition, i.e., P0,0 = Π−
( d−1

∑

n=1
Pn,0 +

N
∑

n=0
Pn,1

)

.

Proof. Differentiating (9) - (14) with respect to θ and using (16), the result of the
theorem follows.

Thus, once we know the pre-arrival epoch probability distributions from sub-
section 3.1 we can obtain the arbitrary epoch probabilities from Theorem 3.2 and
Theorem 3.3.

4. Performance measures. Performance measures are one of the important fea-
tures of queueing systems as they reveal the efficiency of the queueing system under
consideration. Once the state probabilities at pre-arrival and arbitrary epochs are
known, we can evaluate the various performance measures such as:

• the average queue length (Lq) is given by Lq =
∑a−1

n=0 nPn,0e+
∑N

n=0 nPn,1e,

• the probability of loss or blocking (Ploss) is given by Ploss = P−
N,1e,
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• the average waiting time in the queue (Wq) of a customer using Little’s rule
is given by Wq = Lq/λ

′, where λ′ = λ(1 − Ploss) is the effective arrival rate.

4.1. Waiting time analysis. Here we present the waiting time distribution in the
queue of an admitted customer under the First-Come First-Served (FCFS) service
discipline for GI/MSP (a,d,b)/1/N queueing model for the special case a = 1. If a
customer upon arrival finds the server idle or busy with an accessible batch, then
he will be served immediately, so that his waiting time in the queue is zero. Now
assume that the server is busy with a non-accessible batch and n (0 ≤ n ≤ N)
customers waiting in the queue. Let φk(θ) be the LST of the probability function
that k batches of customers have been served within a time u and the service process
upon completion of service passes to phase j and the service process has been in
phase i at the beginning of service. Since the probability that the service of a batch
of customers is completed in the interval [u, u+du] is given by the matrix eLuMdu,
see Gupta and Banik [14] and the total service time of k batches of customers is
the sum of their service times, we have

φk(θ) = φk
1(θ), k ≥ 2,

where φ1(θ) =

∞
∫

0

e−θueLuMdu = (θIm − L)−1M.

Therefore, the LST of the actual waiting time distribution is given by

W ∗
A(θ) =

1

1 − Ploss

N−1
∑

n=0

P−
n,1φ

[ n
b ]+1

1 (θ).

The mean waiting time in the queue is given by

WA = −W
∗(1)
A (0)e =

1

1 − Ploss

N−1
∑

n=0

P−
n,1

[n
b ]

∑

k=0

(−L−1M)k(−L)−1e.

It may be noted here that the numerical value of the average waiting time in the
queue obtained through waiting time analysis matches exactly with the one obtained
earlier using Little’s rule, as it should be.

5. Numerical results. Extensive computational work has been carried out to
demonstrate the applicability of the analytical results obtained in previous sections.
It also gives some insight into the behavior and application of the model. All the
computations have been done in double precision in Mathematica software and
the results are reported here up to six decimal places. Some numerical results are
presented here in the form of tables and graphs.

Table 1 presents the queue length distributions of PH/MSP (3,5,7)/1/10 queue
at pre-arrival and arbitrary epochs. Various performance measures are also listed
at the bottom of the table. The PH representation is taken as α=[0.35 0.65],

T=
[

−4.812 1.543
2.673 −6.941

]

with mean 1/λ = 0.267617 and MSP is represented by

L=
[

−5.79 0.79
0.60 −0.837

]

, M=
[

5.00 0.00
0.024 0.213

]

with stationary service rate µ∗ = 2.33892

and phase distribution vector f = [0.6 0.4]. Therefore, the stationary probability
vector is Π = [0.441301 0.558699] and traffic intensity is ρ = 0.228231.
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Table 1. Distribution of number of customers in the
PH/MSP (3,5,7)/1/10 queue

pre-arrival (P j−

n,k) arbitrary (P j

n,k)

n j = 1 j = 2
m=2
∑

j=1

n j = 1 j = 2
m=2
∑

j=1

P
j−
0,0 0.073650 0.049100 0.122751 P

j
0,0 0.115562 0.009366 0.124928

P
j−
1,0 0.083520 0.055680 0.139200 P

j
1,0 0.087934 0.051580 0.139514

P
j−
2,0 0.090636 0.060424 0.151059 P

j
2,0 0.093487 0.057811 0.151298

P
j−
3,0 0.044339 0.058531 0.102870 P

j
3,0 0.043720 0.058434 0.102154

P
j−
4,0 0.023754 0.053240 0.076995 P

j
4,0 0.023454 0.053099 0.076553

P
j−
0,1 0.017057 0.049301 0.066357 P

j
0,1 0.016943 0.049202 0.066144

P
j−
1,1 0.010373 0.042739 0.053112 P

j
1,1 0.010275 0.042591 0.052865

P
j−
2,1 0.007179 0.036722 0.043902 P

j
2,1 0.007129 0.036590 0.043719

P
j−
3,1 0.008844 0.034317 0.043162 P

j
3,1 0.008852 0.034262 0.043114

P
j−
4,1 0.005318 0.028968 0.034286 P

j
4,1 0.005266 0.028851 0.034117

P
j−
5,1 0.003627 0.024307 0.027934 P

j
5,1 0.003600 0.024207 0.027807

P
j−
6,1 0.002708 0.020339 0.023047 P

j
6,1 0.002692 0.020255 0.022947

P
j−
7,1 0.002135 0.016999 0.019132 P

j
7,1 0.002124 0.016926 0.019050

P
j−
8,1 0.001732 0.014195 0.015928 P

j
8,1 0.001724 0.014136 0.015860

P
j−
9,1 0.001427 0.011852 0.013278 P

j
9,1 0.001420 0.011802 0.013223

P
j−
10,1 0.007128 0.059861 0.066989 P

j
10,1 0.007098 0.059610 0.066710

Sum 0.383427 0.616573 1.000000 0.431280 0.568720 1.000000

Lq = 1.463290, Wq = 0.404160, Ploss = 0.031076

In Table 2, we have presented the sensitivity analysis of E2/MSP (a,d,16)/1/20
queue for the average queue length and blocking probability. This has been done
by varying a and d, and fixing other parameters as λ = 3.2, ρ = 0.4, b = 16 and
N = 20. We have considered particularly three different service time distributions:

• Poisson with MSP representation L = −0.5, M = 0.5,

• Set 1 MSP with L=
[

−0.430 0.006252
0.500 −8.6252

]

, M=
[

0.400 0.023748
2.500 5.6252

]

,

• Set 2 MSP with

L =

[

−0.5724 0.0424 0.00
0.0260 −0.128098 0.020
0.00 0.030 −2.090

]

, M =

[

0.030 0.00 0.50
0.00 0.078098 0.004
2.015 0.005 0.04

]

.

The above three service time distributions have the same service rate µ∗ = 0.5
and f is taken as 1.0, [1.0 0.0] and [1.0 0.0 0.0], respectively. Set 1 and Set 2
MSPs have lag 2 correlation coefficient 0.041 and 0.144, respectively. For E2 inter-

arrival time, the PH-type representation is taken as α=[1.0 0.0], T=
[

−γ γ
0.0 −γ

]

with λ = γ/2 and by suitably varying γ one can get various values of ρ. One can
observe from this table that the performance measures Lq and Ploss increase with a
but decrease as the accessibility limit d increases for all service time distributions.
This shows that with accessible batch service the performance of the system has
improved. Thus, our model has more economic background than the regular batch
service queue. Further, Lq and Ploss increase as the correlation coefficient of the
service time distribution increases.

Figures 1 and 2 show the effect of traffic intensity (ρ) on the average waiting
time in the queue (Wq) for different values of a and d, respectively. In Figure 3,
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Table 2. Sensitivity analysis of E2/MSP (a,d,16)/1/20 queue for
the average queue length and blocking probability.

Lq

d (a, b) Poisson Set 1 MSP Set 2 MSP

(2, 16) 2.642640 3.542920 6.394280
9 (5, 16) 3.521270 4.339710 6.455860

(8, 16) 5.085560 5.797840 7.388260

(2, 16) 1.611280 2.327170 5.498380
12 (5, 16) 2.466090 3.113520 5.498920

(8, 16) 3.847760 4.433610 6.205540

(2, 16) 0.996278 1.514890 4.737900
15 (5, 16) 1.824370 2.282120 4.755580

(8, 16) 3.087470 3.500220 5.388320

Ploss

d (a, b) Poisson Set 1 MSP Set 2 MSP

(2, 16) 0.021015 0.037948 0.191489
9 (5, 16) 0.023409 0.041215 0.169154

(8, 16) 0.028531 0.048097 0.158408

(2, 16) 0.012414 0.024515 0.168886
12 (5, 16) 0.014000 0.026862 0.146448

(8, 16) 0.017168 0.031518 0.133238

(2, 16) 0.007286 0.015540 0.147935
15 (5, 16) 0.008278 0.017130 0.126924

(8, 16) 0.010189 0.020174 0.113691

we have considered the effect of the arrival rate (λ) on Wq. We have considered

E2/MSP (a,d,b)/1/20 queue with d = 10, b = 15 for Figure 1, a = 3, b = 11 for
Figure 2 and a = 3, d = 6 for Figure 3. The arrival time distribution is E2 and
the service time is Set 1 MSP as discussed in Table 2. From Figures 1 and 2 we
observe that as ρ increases, Wq initially decreases and then increases steadily.

From Figure 1, as a increases, the deviations are more for smaller ρ and converge
to the same value for lager values of ρ. Further, as a increases, Wq also increases
for a fixed ρ. In Figures 2 and 3, we observe that as d and b increase Wq decreases.
Also, as ρ or λ increases, Wq initially decreases and then increases steadily. Thus,
the suitable choice of threshold batch sizes a and b and accessible limit d make the
system more utilizable from the design point of view.

Figures 4 and 5 show the effect of ρ on the average queue length (Lq) and blocking

probability (Ploss), respectively for E2/MSP (3,6,9)/1/30 queue with the arrival time
distribution E2 and the service time distributions Poisson, Set 1 MSP and Set 2
MSP as discussed in Table 2. In Figure 4, we observe that as ρ increases, Lq

shows a steady increase for all service time distributions. We may also note that
up to certain level say ρ = 1.0, Lq increases as the correlation coefficient increases.
But with further increase of ρ, the effect is reversed. In particular for ρ > 1.3, Lq

corresponding to the highly correlated MSP , i.e., for Set 2 MSP will be the least.
High correlation among service times affect the system upto certain level of traffic
intensity, and thereafter the effect is quite steady.

In Figure 5, it can be seen that as ρ increases, Ploss increases steadily. Further,
for fixed ρ, Ploss corresponding to highly correlated MSP is the highest. As ρ
increases the deviations become smaller.
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Figure 1. Effect of ρ on Wq.
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Figure 2. Effect of ρ on Wq.

Figure 6 depicts the effect of buffer size (N) on blocking probability (Ploss) for
E2/MSP (3,6,9)/1/30 queue using Poisson, Set 1 MSP and Set 2 MSP as given
above. We have taken λ = 2.25 and ρ = 0.5. On can observe from the figure that
as N increases, Ploss decreases and asymptotically approaches its minimum value.
Ploss is very high for Set 2 MSP compared to Poisson and Set 1 MSP .

An examination of these figures gives the following results:

• For fixed value of ρ, the system performance increases when a is small and d
is large, and for fixed value of λ, larger values of b yields better performance,
as observed in practice.
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Figure 3. Effect of λ on Wq.
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Figure 4. Effect of ρ on Lq.

• As λ or ρ increases Wq initially decreases then increases and asymptotically
approaches its maximum value, whereas Lq and Ploss show a steady increase.

• As N increases Ploss decreases and asymptotically approaches to its minimum
value for all service time distributions. One may note here that for fixed N ,
Ploss is more for highly correlated service time distribution.

6. Conclusions. This paper analyzes a finite buffer single server accessible and
non-accessible batch service queue with general input and MSP services. The sup-
plementary variable and the embedded Markov chain techniques have been used
to obtain the steady state queue length distributions at pre-arrival and arbitrary
epochs. The tables and figures show that the performance of the queueing system
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Figure 5. Effect of ρ on Ploss.
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Figure 6. Effect of N on Ploss.

is not only affected by the arrival and service patterns but also by the correlations
among service times of batches of customers. This queueing model has significant
applications in the areas of transportation systems, telecommunication systems,
computer networks, etc. The techniques used in this paper can be applied to an-
alyze more complex models under batch arrival batch Markovian service process
GI [x]/BMSP (a,d,b)/1 queue in both finite and infinite buffers. Further, the cost
analysis of the models to obtain the optimum limits of the threshold values may
become an interesting topic for future investigation.
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