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Abstract

In this thesis, the analysis of the MagnetoHydroDynamics(MHD) flow of nanofluid

over a porous medium of an exponentially stretching sheet with convective bound-

ary condition in presence of suction/injection is studied. Using a suitable similarity

transformation, the governing partial differential equations are transformed into

a system of nonlinear higher order ordinary differential equations. The resulting

equations are solved numerically by using implicit finite difference scheme known

as Keller box method by implementing in MATLAB. The effects of different parame-

ters such as Brownian motion (Nb), thermophoresis (Nt), Eckert number (Ec),Lewis

number (Le), permeability (Kp), Prandtl number(Pr), Chemical reaction(Rc) are

demonstrated graphically on velocity, temperature and concentration profiles, skin

friction coefficient, surface heat transfer rate and mass transfer rate are presented

graphically as well. Numerical results obtained in the values of skin friction coef-

ficient are compared with previously reported cases available from literature and

they are found to be in a very good agreement.
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Nomenclature
T∞: Ambient fluid temperature.
C∞: Ambient nanoparticles volume fraction.
Bi: Biot number.
DB: Brownian diffusion coefficient.
Nb: Brownian motion parameter.
RC: Chemical Reaction parameter.
Ec: Eckert number.
Q: Heat source/sink parameter.
Le: Lewis number.
Nux: Local Nusselt number.
Shx: Local Sherwood number.
B(x) : Magnetic field strength.
M: Magnetic parameter.
C: Nanoparticles volume fraction.
KP: Permeability.
Pr: Prandtl number.
Nr: Radiation parameter
C f x: Skin-friction coefficient.
Cp: Specific heat capacity at constant pressure.
Uw,Vw: Stretching velocities.
s: Suction/injection parameter.
CW : Surface nanoparticles volume fraction.
Tf : Temperature of heat transfer.
T: Temperature of nanofluid .
k: Thermal conductivity.
DT : Thermophoresis diffusion coefficient.
Nt : Thermophoresis motion parameter.

Greek Symbols
ρ f : Density of nanofluid.
θ : Dimensionless fluid temperature.
β : Dimensionless nanoparticles volume fraction.
η : Dimensionless similarity variable.
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µ: Dynamic viscosity of the base fluid.
(ρc) f : Heat capacity of the base fluid.
(ρc)p: Heat capacity of the nanoparticle.
ν : Kinematic viscosity.
σ∗: Stefan-Boltzmann constant.
ψ : Stream function.
τ: The ratio of the nanoparticle heat capacity and the base fluid heat capacity.
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Chapter 1

Introduction

1.1 Background of the Study

The term nanofluid was proposed by (Choi, 1995), referring to dispersion of nanopar-
ticles in the fluids such as water, ethyle glycol, glycol and propylene. Nanofluid is a
dilute liquid suspension of nanoparticles with at least one of their principal dimen-
sions smaller than 100 nm. It has been found to possess enhanced thermo physical
properties such as thermal conductivity, thermal diffusivity, viscosity and convec-
tive heat transfer coefficient compared with those of base fluids like oil and water.
Less weight fractions of nanoparticles, when dispersed and suspended stably in base
fluid medium, provide drastic enhancements in the thermal properties of base flu-
ids. The vital role of nanofluids is to attain the highest possible thermal properties
with low particle weight fractions by uniform dispersion and stable suspension of
nanoparticles in base fluid medium. In order to achieve this goal, it is crucial to de-
termine the enhancement of thermal energy transport in liquids. Several engineers
and scientists, in the growing nanofluid era, have performed research breakthrough
by investigating unexpected thermal properties of nanofluids and also proposed new
mechanisms behind improved thermal properties of nanofluids.

Many industries have a strong need for improved fluids that can transfer heat
more efficiently. The inherently poor thermal conductivity of convectional fluids
puts a fundamental limit on heat transfer. Therefore, for more than a century sci-
entists and engineers have made great efforts to break this fundamental limit. The
proposed conventional way to enhance heat transfer in thermal system is to increase
the heat transfer surface area of cooling devices and the flow velocity or to disperse
solid particle in heat transfer fluids. The concept of using suspensions of solid
particles to enhance thermal conductivity of convectional heat transfer fluids was
initiated by (Maxwell, 1981). By dispersing millimeter or micrometer sized parti-
cles in liquids, Maxwell was able to enhance the thermo physical properties of base
fluids. However, major problems such as sedimentation, abrasion, clogging micro
channel and high pressure drop prevented the usual micro particles slurries to be
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used as heat transfer fluids. Because of these reasons, the millimeter or micrometer
sized particles suspensions were rejected in heat transfer application.

The boundary layer concept was first introduced by (Prandtl, 1904), which pro-
vides major simplifications. This concept is based on the belief that under special
conditions certain terms in the governing equations are much smaller than others
and therefore can be neglected without significantly affecting the accuracy of the
solution. Most boundary-layer models can be reduced to systems of nonlinear or-
dinary differential equations which are usually solved by numerical methods. The
heat transfer characteristic of viscous fluid over a nonlinear stretching sheet was in-
troduced by (Cortel, 2007). A great number of studies for the boundary layer flow
over a nonlinear stretching sheet under different aspects of heat and mass trans-
fer, slip and convective boundary conditions and so on, are presented by (Hayat
et al., 2009, Abba’s and Hayat, 2011, Rana and Bhargava, 2012, Mabood et al.,
2015). (Yohannes Yirga and Daniel Tesfaye, 2015) analyzed heat and mass transfer
in MHD flow of nanofluids through a porous media due to a permeable stretching
sheet with viscous dissipation and chemical reaction effects. MHD boundary layer
flow of nanofluid and heat transfer over a porous exponentially stretching sheet in
presence of thermal radiation and chemical reaction with suction was presented by
(Babu et al., 2017). Inspired and motivated by results of (Babu et al., 2017) the
purpose of this study is to analyze numerical solution of MHD flow of a nanofluid
over a porous exponentially stretching sheet with convective boundary condition in
the presence of suction/injection by employing the implicit finite difference scheme
called Keller Box method.

1.2 Statements of the Problem

During the last many years, the study of boundary layer flow and heat transfer over
a stretching surface has achieved a lot of success because of its large number of
applications in industry and technology. Few of these applications are in materials
manufacturing by polymer extrusion, drawing of copper wires, continuous stretch-
ing of plastic films, artificial fibers, hot rolling, wire drawing, glass fiber, metal
extrusion and metal spinning etc. After the pioneering work of (Sakiadis, 1961),
a large amount of literature is available on boundary layer flow of Newtonian and
non-Newtonian fluids over linear and nonlinear stretching surfaces (Khan, 2003,
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Cortel, 2006, Nadeem et al, 2010). Moreover recently, the study of convective heat
transfer in nanofluid has achieved great success in various industrial processes. In
this study, we will analyze MHD flow of nanofluid over a porous medium of an ex-
ponentially stretching sheet with convective boundary condition in the presence of
suction/injection by employing the implicit finite difference scheme called Keller
Box method. As a result, this study is attempted to answer the following questions:

• What are the similarity transformations apply to change the system of partial
differential equations to higher order ordinary differential equations?

• What are the parameters that affect skin friction coefficient, local Nusselt
number and Sherwood number?

• How to formulated the implicit finite difference for solving the governing
partial differential equations?

• What are certain physical parameters influence velocity, temperature and species
concentration.

1.3 Objectives of the Study

1.3.1 General Objective

The general objective of this study is to analyze numerical solution of MHD flow
of a nanofluid over a porous medium of an exponentially stretching sheet with con-
vective boundary condition in the presence of suction/injection by employing the
implicit finite difference scheme called Keller Box method.

1.3.2 Specific Objectives

The specific objectives of the study are:

1. To transform the governing partial differential equations to higher order ordi-
nary differential equations using similarity transformations.

2. To apply Keller box method to solve the nonlinear ordinary differential equa-
tions obtained from the boundary layer equations.
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3. To see the effects of various physical parameters such as Brownian motion
(Nb), thermophoresis (Nt), Eckert number (Ec), Lewis number (Le), perme-
ability Kp, Prandtl number(Pr) on velocity, temperature and concentration of
fluid flow profile.

4. To identify the parameters that affect local skin friction coefficient, surface
heat and mass transfer rate.

1.4 Significance of the Study

The outcomes of this study have the following importance:

• It helps to develop the researchers knowledge on applied mathematics re-
search.

• The result and the method can be used as bench mark for other researchers in
related areas.

• It may familiarize the researcher with scientific communication in applied
mathematics.

• Mathematical simplification in reduction of order differential equations and
reduced number of independent variables.

1.5 Delimitation of the Study

The study is delimited to the governing partial differential equations of laminar
boundary layer and focus only on constructing Keller box method to analyze numer-
ical solution for MHD flow of nanofluid over a porous an exponentially stretching
sheet with convective boundary conditions in the presence of suction/injection.

1.6 Definition of Some Terms

Magnetohydrodynamics: The study of the interaction between magnetic fields
and electrically conducting fluids.
Boundary layer: Is a fluid character that forms in the flow of fluid through a body
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of surface.
Laminar Flow: Occurs when a fluid flows in the parallel layers, with no disrup-
tion between the layers and no cross currents or eddies perpendicular to direction
of flow.
Permeability: Is a measure of the ability of a porous media to transmit fluids.
Similarity transformations: The transformations which reduce the number of in-
dependent variables of a system of partial differential equations at least one less
than that of the original equation are designated similarity transformations.
A steady Flow: Is a flow in which the various physical phenomena like velocity,
pressure and density at any point do not change with time.
Stream Function: Is a function ψ which satisfies continuity equation and defined
as:
∂ψ
∂y = u, −∂ψ

∂x = v

where
u: velocity component in x– direction
v: velocity component in y– direction.
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Chapter 2

Review of Related Literature

2.1 Magnetohydrodynamics(MHD)

Magnetohydrodynamics is the branch of continuum mechanics which deals with the
motion of an electrically conducting fluid in the presence of a magnetic field. The
word magneto hydrodynamic (MHD) is derived from: Magneto-meaning magnetic
field, Hydro meaning liquid and dynamics which means movement. Other variants
of nomenclatures are Hydro magnetics, magneto-fluid dynamics, magneto-gas dy-
namics and so on. The concept of MHD is largely perceived to have been initiated
by (Faraday 1812) when he did the first quantitative observation of magnetohydro-
dynamics. He did experiments with mercury as a conducting fluid flowing in a
glass tube placed in magnetic field and observed that voltage was induced in di-
rection perpendicular to both the direction of flow and magnetic field. He further
showed that when an electric field is applied to a conducting fluid in the direction
which is perpendicular to magnetic field, a force is exerted on the fluid in the di-
rection perpendicular to both electric field and magnetic field. Since then a lot has
been done on MHD and its related fields and (Rao. et al., 1990) studied the heat
transfer in porous medium in the presence of transverse magnetic field.

The effects of the heat source parameter and Nusselt number were analyzed.
They discovered that the effect of increasing porous parameter is to increase the
Nusselt Number. (Kinyanjui et al., 2003) investigated MHD Stokes problem for
a vertical infinite plate in dissipative rotating fluid with Hall current as (Sigey et
al., 2004) presented an investigation on the numerical study on natural convection
turbulent heat transfer in an enclosure. As it is known that, MHD is important
branch of fluid dynamics. Many technological problems and natural phenomena
are susceptible to MHD analysis. Engineers apply MHD principle, in the design of
heat exchangers, in creating novel power generating systems, pumps and flow me-
ters, thermal protection, braking, control and re-entry, in space vehicle propulsion.
MHD convection flow problems are also very important in the fields of stellar and
planetary magnetosphere’s, aeronautics, electronics and chemical engineering. Hy-
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dromagnetic flow of Newtonian fluid and heat transfer over continuous moving flat
surface with uniform suction has been studied by (Prasad et al., 2010). (Kumar i et
al., 1990) studied the effects of induced magnetic field and heat source/sink on flow
and heat transfer characteristic over a stretching surface. (Nazar et al., 2004) in-
vestigated the boundary layer over a moving continuous flat plate in an electrically
conducting ambient fluid with a step change in applied magnetic field.

The magnetohydrodynamics (MHD) equations play an important role in many
areas of astrophysics, space physics and engineering. Typical applications in those
areas require one to capture flow on a range of scales in a way that is as dissipation-
free as possible. As a result, there has been considerable interest in bringing accu-
rate and reliable numerical methods to bear on this problem. The MHD system of
equations can be written as a set of hyperbolic conservation laws.

2.2 Boundary Layer Flow

Prandtl introduced boundary layer theory in 1904 to understand the flow behavior
of a viscous fluid near a solid boundary. Prandtl gave the concept of a boundary
layer in large Reynolds number flows and derived the boundary layer equations by
simplifying the Navier-Stokes equations to yield approximate solutions. Prandtls
boundary layer equations arise in various physical models of fluid mechanics. The
equations of the boundary layer theory have been the subject of considerable inter-
est, since they represent an important simplification of the original Navier-Stokes
equations. These equations arise in the study of steady flows produced by wall jets,
free jets, and liquid jets, the flow past a stretching plate/surface, flow induced due
to a shrinking sheet, and so on. These boundary layer equations are usually solved
subject to certain boundary conditions depending upon the specific physical model
considered. There are three types of boundary layer flows: velocity boundary layer
flow, thermal boundary layer flow and concentration boundary layer flow.

2.2.1 Velocity Boundary Layer Flow

The velocity boundary layer develops whenever there is flow over a surface. It is
associated with shear stresses parallel to the surface and results in an increase in
velocity through the boundary layer from nearly zero right at the surface to the free
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stream velocity far from the surface. The boundary layer thickness is by convention
defined as the distance from the surface at which the velocity is 99 percent of the
free stream velocity.

2.2.2 Thermal Boundary Layer Flow

The thermal boundary layer is associated with temperature gradients near the sur-
face, and develops when there is temperature difference between the fluid free
stream and the surface. Right at the fluid-surface interface, heat transfer occurs
only through conduction. The thickness of the thermal boundary layer is defined as
that point at which the temperature difference between the fluid and surface is 99
percent of the temperature difference between the free stream fluid and the surface.

2.2.3 Concentration Boundary Layer Flow

The concentration boundary layer develops when there is a difference in concen-
tration of a component between the free stream and the surface. A concentration
profile develops, and the thickness of the concentration boundary layer is defined as
that point at which the difference in concentration between the fluid and the surface
is 99 percent of the difference in concentration between the free stream fluid and
the surface.
(Blasius, 1908) solved the Prandtls boundary layer equations for a flat moving plate
problem and gave a power series solution of the problem. (Sakiadis, 1961) initi-
ated the study of the boundary layer flow over a continuously moving rigid surface
with a uniform speed. (Crane, 1970) was the first one who studied the boundary
layer flow due to a stretching surface and developed the exact solutions of bound-
ary layer equations with parameter. (Gupta and Gupta, 1977) extended the Cranes

work and for the first time introduced the concept of heat transfer with the stretch-
ing sheet boundary layer flow. The boundary layer thickness, signified by, is simply
the thickness of the viscous boundary layer region. Because the main effect of vis-
cosity is to slow the fluid near a wall, the edge of the viscous region is found at the
point where the fluid velocity is essentially equal to the free-stream velocity. In a
boundary layer, the fluid asymptotically approaches the free-stream velocity as one
moves away from the wall, so it never actually equals the free-stream velocity.
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Chapter 3

Methodology
This chapter contains study design, source of information and description of the
research methodology.

3.1 Study area and period

The study was conducted at Jimma University under the department of mathematics
from September, 2018 G.C. to June, 2019 G.C.

3.2 Study Design

The study design was mixed design (i.e., documentary review and numerical simu-
lation design).

3.3 Source of Information

The relevant sources of information for this study were books and published articles
related to the area of the study.

3.4 Mathematical Procedure of the Study

Mathematical procedure is the fundamental part of the work in mathematical re-
search. Hence, to achieve the stated objectives, the following mathematical proce-
dures has been followed:

1. Transforming the governing partial differential equations to nonlinear higher
order ordinary differential equations by introducing similarity transforma-
tions.
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2. Reduce the nonlinear higher order ordinary differential equations to a system
of first order equations.

3. Write the finite difference for the reduced nonlinear higher order ordinary
differential equations.

4. Linearize the algebraic equations by using Newton’s method and write them
in vector matrix form.

5. Solve the linear system by the block tridiagonal elimination technique.

6. Finally a sketching the graphs using MATLAB.
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Chapter 4

Mathematical Formulation,
Numerical Result and Discussion

4.1 Mathematical Formulation

Consider a steady, two dimensional MHD boundary layer flow of a viscous, in-
compressible, electrically conducting fluid over exponentially stretching surface in
a porous medium with permeability Kp subjected to suction/injection in the pres-
ence of magnetic field and heat source or sink. The x-axis is along the continuous
stretching surface and the y-axis is normal to the surface. u and v are the velocities
in the x- and y- directions respectively. TW and T∞ are the wall temperature and the
temperature far from the surface respectively, and CW and C∞ are species concen-
tration at the wall and species concentration far away from the surface respectively.
The physical scheme of the flow problem is depicted in the following figure. An

Figure 4.1: physical model and coordinate system of the given scheme

external magnetic field B(x) is applied along the y direction. A non-uniform per-
meability, radiation heat flux qr, suction/injection, heat source/sink, thermophore-
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sis effect along with volume fraction of nanoparticles is taken in to account. The
boundary layer equation, the steady MHD flow of nanofluid flow over a porous
medium of an exponentially stretching sheet with convective boundary condition in
the presence of suction/injection are governs the present flow subject to the Boussi-
nesq approximations can be expressed in terms of continuity, momentum, energy
and species concentration equations respectively as follows:

∂u
∂x

+
∂v
∂y

= 0 (4.1)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 − δB2

ρ
u− µ

Kp
u (4.2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 +

ν
cp

(
∂u
∂y

)2 + τ[DB
∂T
∂y

∂C
∂y

+
DT

T∞
(
∂T
∂y

)2]

− 1
(ρc) f

∂qr

∂y
+

Q0

ρcp
(T −T∞) (4.3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T ∞
∂ 2T
∂y2 −K0(C−C∞) (4.4)

The boundary conditions are given by:

U =Uw(x), V =Vw(x), h f (Tf −T ) =−k
∂T
∂y

,

C =Cw =C∞ +C0e
x
2l as y → 0

U = 0, T = T∞, C =C∞ as y → ∞ (4.5)

Where u and v the velocity components taken in x and y directions respectively. The
stretching velocity Uw is given by Uw = U0e

x
l where U0 > 0 is stretching constant

and here Vw(x) is the variable wall mass transfer velocity and is given by
Vw(x) = V0e

x
2l with Vw(x) < 0 for suction and Vw(x) > 0 for injection respectively.

The radiative heat flux in the x-direction is considered negligible as compared to
y-direction. Hence, by Using Rosseland approximation for radiation, the radiative
heat flux qr is given by qr =−4σ∗

3k∗
∂T 4

∂y
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where k∗ is the mean absorption coefficient, σ∗ is the Stefan-Boltzmann constant,
we assume that the temperature difference with in the flow sufficiently small such
that the term T 4 may be expanded as a linear function of temperature. This is
done by expanding T 4 in a Taylor series about a free stream temperature T∞ and
neglecting higher order terms we get T 4 = 4T 3

∞T −3T 4
∞

Hence, qr =−16σ∗T 3
∞

3k∗
∂T
∂y

The variable magnetic field B(x), is taken in the form B(x) = B0 e
x
2l , where B0 is

a constant. The permeability KP of the porous medium takes the following form
K(x) = K0 e

−x
l where K0 is reference permeability.

The x axis is taken along the stretching sheet and y axis is perpendicular to the fluid.
The fluid is electrically conducting and the magnetic field is assumed to be applied
in the y direction.
Similarity Transformation
In order to investigate the velocity, temperature and concentration distribution of the
MHD flow of nanofluid over a porous medium exponentially stretching sheet with
convective boundary condition in the presence of suction/injection, the following
dimensionless similarity variables are introduced:

ψ = (2U0ν l)
1
2 e

x
2l f (η) (4.6)

η = y(
U0

2ν l
)

1
2 e

x
2l (4.7)

θ(η) =
T −T∞
Tf −T∞

(4.8)

β (η) =
C−C∞
Cw −C∞

(4.9)

with the velocity components

u =
∂ψ
∂y

=U0e
x
l f ′(η) and

v =−∂ψ
∂x

=−(
νU0

2l
)

1
2 e

x
2l [ f (η)+η f ′(η)] (4.10)

Where ψ(x,y) is the stream function, f (η) is the dimensionless stream function,
f ′(η) is the velocity profile, θ(η) is temperature profile, β (η) is concentration
profile and η is similarity variables.
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Using Equation (4.10) the continuity equation is satisfied as:

∂u
∂x

+
∂v
∂y

=
∂
∂x

(U0e
x
l f ′(η))+

∂
∂y

(−(
νU0

2l
)

1
2 e

x
2l [ f (η)+η f ′(η)])

=
U0

l
e

x
l [ f ′(η)+

1
2

η f ′′(η)]− U0

l
e

x
l [ f ′(η)+

1
2

η f ′′(η)]

= 0

And by using Equations (4.7) – (4.10) the governing partial differential equations
are transformed into non linear higher order ordinary differential equations as fol-
lows:

u
∂u
∂x

+ v
∂u
∂y

= ν
∂ 2u
∂y2 − δB2

ρ
u− µ

Kp
u

U0e
x
l f ′(η)

U0

l
e

x
l [ f ′(η)+

1
2

η f ′′(η)]+U0e
x
l f ′(η)(−U0

l
e

x
l [ f ′(η)+

1
2

η f ′′(η)])

=
U2

0
2l

e
2x
l f ′′′−U0e

2x
l [

δB2
0

ρ
+

µ
K0

] f ′

U2
0
l

e
2x
l [ f ′2 − 1

2
f f ′′] =

U2
0

2l
e

2x
l [ f (3)− (

2δB2
0

ρ
+

2µ
K0

) f ′]

f ′′′+ f f ′′−2 f ′2 − (
2δB2

0
ρ

+
2µ
K0

) f ′ = 0

f ′′′−2 f ′2 + f f ′′− (M+KP) f ′ = 0

Equation (4.3) transformed as follow:

u
∂T
∂x

+ v
∂T
∂y

= α
∂ 2T
∂y2 +

ν
cp

(
∂u
∂y

)2 + τ[DB
∂T
∂y

∂C
∂y

+
DT

T∞
(
∂T
∂y

)2]− 1
(ρc) f

∂qr

∂y
+

Q0

ρcp
(Tf −T∞)
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U0

2l
ηθ ′(η) f ′(η)(Tf −T∞)e

x
l − [

U0

2l
θ ′(η) f (η)(Tf −T∞)e

x
l +

U0

2l
ηθ ′(η) f ′(η)(Tf −T∞)e

x
l ]

= αθ ′′e
x
l

U0

2ν l
(Tf −T∞)+

ν
cp

(
U0

l
)2e

2x
l f ′′2

U0

2ν l
e

x
l + τ[DBθ ′β ′e

x
l

U0

2ν l
(Tf −T∞)(Cw −C∞)

+
DT

T∞
(θ ′)2e

x
l

U0

2ν l
(Tf −T∞)

2]+
16δ ∗

3k∗
T 3

∞
(ρc) f

θ ′′e
x
l

U0

2ν l
(Tf −T∞)+

Q0

ρcp
θ(Tf −T∞).

−U0

2l
e

x
l f θ ′(Tf −T∞) =

U0

2ν l
e

x
l [αθ ′′(Tf −T∞)+

ν
cp

(
U0

l
)2 f ′′2e

2x
l + τ[DBθ ′β ′(Tf −T∞)(Cw −C∞)

+
DT

T∞
(θ ′)2(Tf −T∞)

2 +
16δ ∗

3k∗
T 3

∞
(ρc) f

θ ′′(Tf −T∞)+
Q0

ρcpe
x
l
θ(Tf −T∞)]

αθ ′′+
ν
cp

(
U0

l
)2 f ′′2e

2x
l

1
(Tf −T∞)

+ τDBθ ′β ′(Cw −C∞)+ τ
DT

T∞
(θ ′)2(Tf −T∞)

+
16δ ∗

3k∗
T 3

∞
(ρc) f

θ ′′+
Q0

ρcpe
x
l
θ +ν f θ ′ = 0

θ ′′+
ν

cpα
(
U0

l
)2 f ′′2e

2x
l

1
(Tf −T∞)

+
1
α

τDBθ ′β ′(Cw −C∞)+
1
α

τ
DT

T∞
(θ ′)2(Tf −T∞)

+
16δ ∗

3k∗α
T 3

∞
(ρc) f

θ ′′+
Q0

ρcpαe
x
l
θ +ν

1
α

f θ ′ = 0

θ ′′+
Nr

Nr +1
Pr[ f θ ′+EC f ′′2Nbθ ′β ′+Nt(θ ′)2 +Qθ ] = 0

θ ′′ =− Nr

Nr +1
Pr[ f θ ′+EC f ′′2Nbθ ′β ′+Nt(θ ′)2 +Qθ ] (4.11)

Equation (4.5) transformed as follow:

u
∂C
∂x

+ v
∂C
∂y

= DB
∂ 2C
∂y2 +

DT

T ∞
∂ 2T
∂y2 −K0(C−C∞)

−U0

2l
f β ′e

x
l (Cw −C∞) =

U0

2δ l
e

x
l DBβ ′′(Cw −C∞)+

U0

2δ l
e

x
l
DT

T∞
θ ′′(Tf −T∞)

−K0β (Cw −C∞)
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−U0

2l
f β ′ =

U0

2ν l
DBβ ′′ (Tf −T∞)

(Cw −C∞)
+

U0

2ν l
DT

T∞
θ ′′(Tf −T∞)−

K0

e
x
l

β

β ′′+Le f β ′− Nr

Nr +1
Pr

Nt

Nb
[ f θ ′+EC f ′′2Nbθ ′β ′+Nt(θ ′)2 +Qθ ]

−LeRcβ = 0

Finally, by using similarity transformations equations (4.6) – (4.9), Equations (4.2)
– (4.4) reduced to non linear higher order ordinary differential equations given by :

f ′′′−2 f ′2 + f f ′′− (M+Kp) f ′ = 0 (4.12)

θ ′′+
Nr

Nr +1
Pr[ f θ ′+EC f ′′2Nbθ ′β ′+Nt(θ ′)2 +Qθ ] = 0 (4.13)

β ′′+Le f β ′− Nr

Nr +1
Pr

Nt

Nb
[ f θ ′+EC f ′′2Nbθ ′β ′+Nt(θ ′)2 +Qθ ]−LeRcβ = 0

(4.14)
Where primes denote differentiation with respect to η . The Magnetic field param-
eter (M), the radiation parameter (Nr), the Prandtl number (Pr), the Eckert number
(Ec), heat source/sink parameter (Q), the wall mass transfer at the sheet (s), the
Lewis number (Le), the chemical radiation parameter (Rc), the Biot number (Bi),
the Permeability (Kp) are given by:

M = 2δB2
0, Kp =

2µ
K0

, Q =
Q0

νρcpe x
l
, Le =

ν
DB

Nr =
3k∗(ρc) f

16δ ∗T 3
∞

, Ec =
1
cp

(
U0

l
)2 ex

l
(Tf −T∞)

, Uw =U0e
x
l

Rc =
DB2lK0

Uw
, Bi =−c

k
(
2ν l
U0

)
1
2 and s =−V0(

2l
νU0

)
1
2
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Where s > 0 (v0 < 0) corresponds to mass suction and s < 0 (v0 > 0) corresponds
to mass injection. With boundary conditions:

f (0) = s, f ′(0) = 1, f ′(∞) = 0, θ(∞) = 0,

θ ′(0) =−Bi[1−θ(0)], β (0) = 1, β (∞) = 0 (4.15)

The physical quantities of interest in this problem are the skin - friction parameter
(C f x), Local Nusselt number (Nux) and Sherwood number (Shx) defined as follow:

f ′′(0) = (2ReC f x)
1
2 ,

Nux

(2Re)
1
2
=−(

x
2l
)

1
2 θ ′(0),

Shx

(2Re)
1
2
=−(

x
2l
)

1
2 β ′(0)

4.2 Method of Solution

Equations (4.12) – (4.14) subject to the boundary conditions (4.15) were solved
numerically by Keller box method which is implemented in matlab. The Keller box
method is an implicit finite difference method that can be used to solve differential
equations. This method has four fundamental steps.

1. First step is converting Equations (4.12) – (4.14) into a system of first order
ordinary differential equations.

2. The second step is approximating the derivatives in system of first order equa-
tions with central difference approximations.

3. The third step is linearizing the nonlinear algebraic equations with Newton′s

method and then casting as the matrix vector form.

4. The fourth step is solving the system of linear equations using block tridiag-
onal elimination scheme with the suitable initial solution.

In this method the transformed differential equations (4.12), (4.13) and (4.14) are
written in terms of first order system ( Mitiku and Devaraj, 2017) for that introduce
new dependent variable u, v, g and k such that

f ′ = u , u′ = v ,
θ ′ = g , β ′ = k (4.16)
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v′+ f v−2u2 − (M+Kp)u = 0 (4.17)

g′+
Nr

Nr +1
Pr[ f g+Ecu2Nbgk+Ntg2 +Qθ ] = 0 (4.18)

k′+Le f k− Nr

Nr +1
Pr

Nt

Nb
[ f g+Ecu2Nbgk+Ntg2 +Qθ ]−LeRcβ = 0 (4.19)

with new boundary conditions

u(0) = 1, θ(0) = 1+
θ ′(0)

Bi
, u(∞) = 0,

f (0) = s, θ(∞) = 0, β (0) = 1, β (∞) = 0 (4.20)

Now, consider the net rectangle in x–η plane as show in figure 4.2 and the net
points are defined as follow:

x0 = 0, xn = xn−1 + kn, n = 1,2, ...,N

η0 = 0, η j = η j−1 +h j, j = 1,2, ...,J (4.21)

Where kn is the △ x–spacing and h j is the △ η–spacing

Here η and j are the sequence of number that indicate the coordinate location.
Now write the finite difference approximation of the ODE, equation (4.16) for the

Figure 4.2: Finite difference grid for the Keller Box method

mid point (xn,η j− 1
2
) of the segment P1P2 using centered difference derivatives, this

called centering about (xn,η j− 1
2
)

f j − f j−1

h j
= u j− 1

2
,

u j −u j−1

h j
= v j− 1

2
,
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θ j −θ j− 1
2

h j
= g j− 1

2
,

β j −β j−1

h j
= k j− 1

2
(4.22)

An ODE of Equations (4.17), (4.18) and (4.19) are approximated by the centering
about the mid point (xn− 1

2
,η j− 1

2
) of the rectangle P1P2P3P4

v j − v j−1

h j
+ f j− 1

2
v j− 1

2
−2u2

j− 1
2
− (M+Kp)u j− 1

2
= 0 (4.23)

g j −g j−1

h j
+

Nr

Nr +1
Pr[ f j− 1

2
g j− 1

2
+Ecu2

j− 1
2
+Nbg j− 1

2
k j− 1

2

+Ntg2
j− 1

2
+Qθ j− 1

2
] = 0 (4.24)

k j − k j−1

h j
+Le f j− 1

2
k j− 1

2
− Nr

Nr +1
Pr

Nt

Nb
[ f j− 1

2
g j− 1

2
+Ec u2

j− 1
2
+Nbg j− 1

2
k j− 1

2

+Ntg2
j− 1

2
+Q θ j− 1

2
]−Le Rc β j− 1

2
= 0 (4.25)

Here f j− 1
2
=

f j + f j−1

2
, g j− 1

2
=

g j +g j−1

2
, k j− 1

2
=

k j + k j−1

2

, . . . β j− 1
2
=

β j +β j−1

2
(4.26)

By using equation (4.26), equations (4.23) – (4.25) becomes

f j − f j−1 −
h j

2
(u j +u j−1) = 0 (4.27)

u j −u j−1 −
h j

2
(v j + v j−1) = 0 (4.28)

θ j −θ j−1 −
h j

2
(g j +g j−1) = 0 (4.29)

β j −β j−1 −
h j

2
(k j + k j−1) = 0 (4.30)
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v j − v j−1 +
h j

4
( f j + f j−1)(v j + v j−1)−

h j

2
(u j +u j−1)

2

−
h j

2
(M+Kp)(u j +u j−1) = 0 (4.31)

g j −g j−1 +
Nr

Nr +1
Pr

h j

4
[( f j + f j−1)(g j +g j−1)+Ec(u j +u j−1)

2

+Nb(g j +g j−1)(k j + k j−1)+Nt(g j +g j−1)
2]

+
Nr

Nr +1
Pr

h j

2
Q(θ j +θ j−1) = 0. (4.32)

k j − k j−1 +Le
h j

4
( f j + f j−1)(k j + k j−1)−

Nr

Nr +1
Pr

h j

4
[( f j + f j−1)(g j +g j−1)

+Ec(u j +u j−1)
2 +Nb(g j +g j−1)(k j + k j−1)+Nt(g j +g j−1)

2]

+
Nr

Nr +1
Pr

h j

2
Q(θ j +θ j−1)−LeRc

h j

2
(β j +β j−1) = 0 (4.33)

Now linearize the non linear system of equation (4.27) –(4.33) using the Newton′s

linearization scheme. That is, we assume for (i+1)th iterations

f i+1
j = f i

j +δ f i
j etc. (4.34)

Substituting equation (4.34) into the above equations and dropping the quadratic
terms in δ f i

j, δui
j, δvi

j, δgi
j, δki

j, δθ i
j and δβ i

j, we obtain a tridiagonal system of
algebraic equations.

δ f j −δ f j−1 −
h j

2
(δu j +δu j−1) = (r1) j (4.35)

δu j −δu j−1 −
h j

2
(δv j +δv j−1) = (r2) j (4.36)

δθ j −δθ j−1 −
h j

2
(δg j +δg j−1) = (r3) j (4.37)

δβ j −δβ j−1 −
h j

2
(δk j +δk j−1) = (r4) j (4.38)
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(a1) jδv j +(a2) jδv j−1 +(a3) jδ f j +(a4) jδ f j−1 +(a5) jδu j

+(a6) jδu j−1 = (r5) j (4.39)

(b1) jδg j +(b2) jδg j−1 +(b3) jδ f j +(b4) jδ f j−1 +(b5) jδv j

+(b6) jδv j−1 +(b7) jδk j +(b8) jδk j−1 +(b9) jδθ j

+(b10) jδθ j−1 = (r6) j (4.40)

(c1) jδk j +(c2) jδk j−1 +(c3) jδ f j +(c4) jδ f j−1 +(c5) jδg j +(c6) jδg j−1

+(c7) jδv j +(c8) jδv j−1 +(c9) jδθ j +(c10) jδθ j−1 +(c11) jδβ j

+(c12) jδβ j−1 = (r7) j (4.41)

Where

(a1) j = 1+
h j

4
( f j + f j−1) , (a2) j =−1+

h j

4
( f j + f j−1)

(a3) j = (a4) j =
h j

4
(v j + v j−1) , (a5) j = (a6) j =−

h j

2
[2(u j +u j−1)+(M+Kp)]

(b1) j = 1+
Nr

Nr +1
Pr

h j

4
[( f j + f j−1)+Nb(k j + k j−1)+2Nt(g j +g j−1)]

(b2) j =−1+
Nr

Nr +1
Pr

h j

4
[( f j + f j−1)+Nb(k j + k j−1)+2Nt(g j +g j−1)]

(b3) j = (b4) j =
Nr

Nr +1
Pr

h j

4
[(g j +g j−1) , (b5) j = (b6) j =

Nr

Nr +1
PrEc

h j

2
(v j + v j−1)

(b7) j = (b8) j =
Nr

Nr +1
PrNb

h j

4
(g j +g j−1) , (b9) j = (b10) j =

Nr

Nr +1
PrQ

h j

2
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(c1) j = 1+Le
h j

4
( f j + f j−1)−

Nr

Nr +1
PrNt

h j

4
(g j +g j−1)

(c2) j =−1+Le
h j

4
( f j + f j−1)−

Nr

Nr +1
PrNt

h j

4
(g j +g j−1)

(c3) j = (c4) j = Le
h j

4
(k j + k j−1)−

Nr

Nr +1
Pr

Nt

Nb

h j

4
(g j +g j−1)

(c5) j = (c6) j =− Nr

Nr +1
Pr

h j

4
[( f j + f j−1)+Nb(k j + k j−1)2Nt(g j +g j−1)]

(c7) j = (c8) j =− Nr

Nr +1
Pr

Nt

Nb

h j

2
(v j + v j−1) , (c9) j = (c10) j =− Nr

Nr +1
PrQ

h j

2

(c11) j = (c12) j = Le Rc
h j

2
and

(r1) j = f j−1 − f j +
h j

2
(u j +u j−1)

(r2) j = u j−1 −u j +
h j

2
(v j + v j−1)

(r3) j = θ j−1 −θ j +
h j

2
(g j +g j−1)

(r4) j = β j−1 −β j +
h j

2
(k j + k j−1)

(r5) j = v j−1 − v j −
h j

4
( f j + f j−1)(v j + v j−1)+

h j

2
(M+Kp)(u j +u j−1)

+
h j

2
(u j +u j−1)

2
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(r6) j = g j−1 −g j −
Nr

Nr +1
Pr

h j

4
[( f j + f j−1)(g j +g j−1)+Ec(u j +u j−1)

2

+Nb(g j +g j−1)(k j + k j−1)+Nt(g j +g j−1)
2]− R

R+1
Pr

h j

2
Q(θ j +θ j−1)

(r7) j = k j−1 − k j −Le
h j

4
( f j + f j−1)(k j + k j−1)+

Nr

Nr +1
Pr

h j

4
[( f j + f j−1)(g j +g j−1)

+Ec(v j + v j−1)
2 +Nb(g j +g j−1)(k j + k j−1)+Nt(g j +g j−1)

2 +2Q(θ j +θ j−1)]

+LeRc
h j

2
(β j +β j−1)

With the boundary conditions

δU0 = 1, δUJ = 0, δ f0 = s, δθ0 = 1+
θ ′(0)

Bi

δθJ = 0, δβ0 = 1, δβJ = 0

Hence the linearized system of equations (4.35) – (4.41) can be written in the matrix
form as

Aδ = r (4.42)

Where

A =



[A1] [C1]

[B2] [A2] [C2]
. . . . . . . . .

[BJ−1] [AJ−1] [CJ−1]

[BJ] [AJ]
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δ =



δ1

δ2

δ3

δ4

δ5

δ6

δ7


, r =



r1

r2

r3

r4

r5

r6

r7


The elements of the matrix A are block matrix of order 7×7

A1 =



0 0 0 1 0 0 0
−d1 0 0 0 −d1 0 0

0 −d1 0 0 0 −d1 0
0 0 −d1 0 0 0 −d1

(a2)1 0 0 (a3)1 (a1)1 0 0
(b6)1 (b2)1 (b8)1 (b3)1 (b5)1 (b1)1 (b7)1

(c8)1 (c6)1 (c2)1 (c3)1 (c7)1 (c5)1 (c1)1


, f or j = 1

A j =



−d j 0 0 1 0 0 0
−1 0 0 0 −d j 0 0
0 −1 0 0 0 −d j 0
0 0 −1 0 0 0 −d j

(a6) j 0 0 (a3) j (a1) j 0 0
0 (b10)1 0 (b3) j (b5) j (b1) j (b7) j

0 (c10) j (c12) j (c3) j (c7) j (c5) j (c1) j


, f or 2 ≤ j ≤ J

B j =



0 0 0 1 0 0 0
0 0 0 0 −d j 0 0
0 0 0 0 0 −d j 0
0 0 0 0 0 0 −d j

0 0 0 (a4) j (a2) j 0 0
0 0 0 (b4) j (b6) j (b2) j (b8) j

0 0 0 (c4) j (c8) j (c6) j (c2) j


, f or 2 ≤ j ≤ J
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C j =



−d j 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 −d j

(a5) j 0 0 0 0 0 0
0 (b9) j 0 0 0 0 0
0 (c9) j (c11) j 0 0 0 0


, f or 1 ≤ j ≤ J−1

Here, d j =
h j
2 and

δ1 =



δv0

δg0

δk0

δ f1

δv1

δg1

δk1


, δ j =



δu j−1

δθ j−1

δβ j−1

δ f j

δv j

δg j

δk j


f or 2 ≤ j ≤ J

r j =



(r1) j

(r2) j

(r3) j

(r4) j

(r5) j

(r6) j

(r7) j


, f or 1 ≤ j ≤ J

The solution of equation (4.42) can be obtained using block elimination method,
which consist of forward and backward sweeps
Forward sweep:
To solve equation (4.42), we use LU factorization for decomposing matrix A into a
product of a lower triangular matrix L and an upper triangular matrix U as follows:

A = LU (4.43)
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Where

L =



[γ1]

[β2] [γ2]
. . . . . .

[βJ−1] [γJ−1]

[βJ] [γJ]


,

U =



[I] [Γ1]

[I] [Γ2]
. . . . . .

[I] [ΓJ−1]

[I]


[I] is the identity matrix of order 7×7 and [γ j]and [Γ j] are 7×7 which elements are
determined by the following equations:

[γ1] = [A1] (4.44)

[A1][Γ1] = [C1] (4.45)

[γ j] = [A j]− [B j][Γ j−1], j = 2,3, ...,J (4.46)

[γ j][Γ j] = [C j], j = 2,3, ...,J−1 (4.47)

Backward sweep
Substituting equation (4.43) into equation (4.42), we get

LUδ = r (4.48)

If we define,

Uδ =W (4.49)
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Then equation (4.48) becomes

LW = r (4.50)

Where W = [w1,w2, ...,w j−1,wJ]
T , w j are the 7×1 column matrices.

The elements W can be found by solving equation (4.50)

[γ1][w1] = [r1] (4.51)

[γ j][w j] = [r j]− [β j][w j−1], f or 2 ≤ j ≤ J (4.52)

Once the elements of W are found, we can find the solution of equation (4.49) by
using recursion relations

[δJ] = [wJ] (4.53)

[δ j] = [w j]− [β j][w j−1], f or 1 ≤ j ≤ J−1 (4.54)

These calculation are repeated until convergence criterion is satisfied and calcula-
tions are stopped when

|δv(i)0 |< ε

Where ε is desired level of accuracy. In this study, the value of ε = 10−6.
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4.3 Results and Discussion

The comparison of values of − f ′′(0) for M = 0, Nr = KP = s = 0, Ec=0 and RC = 0
Magyari and Keller Bhatt. and Layek Babu et.al Present

− f ′′(0) 1.281808 1.28180838 1.281807536 1.2818061586
In order to validate the numerical results, we first compare the present result with
the results obtained by Magyari and Keller, Bhattacharyya and G.C.Layek and
Babu et.al as shown in above Table without the presence of magnetic field pa-
rameter, chemical reaction parameter, viscous dissipation, radiation parameter and
nonporous stretching sheet. The values of − f ′′(0) from the table are found to be
in a good agreement and moreover, the present method improves the works of the
aforementioned scholars.
In this study, the system of nonlinear higher order ordinary differential equations
(4.12)–(4.14) subject to the boundary condition (4.15) were solved numerically em-
ploying Keller box method. By taking the step size △ η = 0.01 in η and within the
interval [0,η∞], the effect of different parameters like Magnetic field parameter (M),
Biot number(Bi), Permeability (Kp), Eckert number (Ec), Heat source/sink param-
eter (Q), Thermophoresis (Nt), Lewis number (Le), Chemical reaction parameter
(RC), Prandtl number(Pr), Radiation parameter (Nr) on velocity, temperature and
concentration profiles, skin friction coefficient, surface heat transfer rate and mass
transfer rate have been analyzed graphically.
For instance, Figures 4.3– 4.5 show the effects of magnetic field parameter, Biot
number and Permeability on velocity profile respectively, while the other parame-
ters are being kept constant. From Figure 4.3 it is observed that the velocity profile
decreases for the positive values of Magnetic field parameter, due to an increase in
resisting force and consequently, velocity declines in the η– direction with bound-
ary layer thickness. As an increase of magnetic field parameter, the fluid velocity
showing higher in injection than suction. From Figure 4.4, one can observe that
increasing Biot number has no effect on velocity profile. This might be due to the
fact that Biot number is a ratio of convective to conductive heat transfer. Figure
4.5 illustrates that velocity profile decrease for higher values of the Permeability
parameter. That is the boundary layer thickness decreases for large values of poros-
ity parameter. Figures 4.6 – 4.9 show the effects of Biot number, Eckert number,
Heat source/sink parameter and Thermophoresis parameter on temperature profile
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respectively, provided that the other parameters are constant. The effect of Biot
number on temperature profile is significant as it is depicted in Figure 4.6. From
the Figure one can observe that increasing Biot number increases the fluid temper-
ature in suction. However, increasing Biot number decreases the fluid temperature
in injection. Figure 4.7 reveals that enhancement of Eckert number rises fluid tem-
perature and also the fluid temperature is higher in injection situation than suction.
Figure 4.8 depicts the presence of heat source or heat generation effect (Q > 0),
which shows an increase the thermal state of the fluid causing the thermal boundary
layer to increase. In the event that the strength of the heat source is relatively large,
the maximum fluid temperature does not occur at the wall but rather it occurs in
the fluid region close to it. Conversely, the presence of heat sink or heat absorption
effect (Q < 0) causes a reduction in the thermal state of the fluid, thus produc-
ing lower thermal boundary layer. From Figure 4.9, it is observed that increasing
thermophoresis parameter rises temperature of the fluid with enhancement of it in
injection than suction.
Effects of Lewis number and Chemical reaction parameter on concentration of the
nanoparticles are displayed in Figures 4.10 and 4.11 respectively. From both Fig-
ures it is indicated that increasing each of the parameters reduces concentration of
the nanoparticles. As we have seen earlier that Biot number has no effect on ve-
locity of the nanofluid, similar effects of the Biot number on species concentration
of the nanoparticles has been observed as it is depicted in Figure 4.12. Figure 4.13
describes the effect of Magnetic parameter and Permeability on Skin friction coef-
ficient. As we observe from the figure, increasing in magnetic field parameter and
Permeability increases the skin friction coefficient and showing higher in suction
than injection. Figure 4.14 shows the effect of Eckert number and Thermophore-
sis parameter on Nusselt number. The Figure tell us the surface heat transfer rate
decreases with increasing both Eckert number and Thermophoresis parameter. Be-
sides the surface heat transfer is higher in suction than injection. Figure 4.15 in-
dicates the effect of Permeability and Chemical reaction parameter on Sherwood
number. The surface mass transfer rate is higher in suction than injection.
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Figure 4.3: Effect of the parameter M on velocity profile.
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Figure 4.4: Effect of the Biot number Bi on velocity profile.
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Figure 4.5: Effect of permeability parameter K p on velocity profile.
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Figure 4.6: Effect of the Biot number Bi on temperature profile.
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Figure 4.7: Effect of Eckert number Ec on temperature profile.
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Figure 4.8: Effect of heat source-sink parameter Q on temperature profile.
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Figure 4.9: Effect of thermophoresis parameter Nt on temperature profile.
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Figure 4.10: Effect of Lewis number Le on concentration of nanoparticles.
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Figure 4.11: Effect of chemical reaction parameter Rc on concentration of nanopar-
ticles.
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Figure 4.12: Effect of the Biot number Bi on concentration of nanoparticles.
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Figure 4.13: Effect of permeability parameter K p and magnetic parameter M on
skin friction coefficient.
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Figure 4.14: Effect of Eckert number Ec and thermophoresis parameter Nt on sur-
face heat transfer rate.
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Figure 4.15: Effect of permeability parameter K p and chemical reaction parameter
Rc on surface mass transfer rate.
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Chapter 5

Conclusion and Scope for the Future
Work

5.1 Conclusion

In this study, analysis of numerical solution of MHD flow of nanofluid over a porous
medium of an exponentially stretching sheet with convective boundary condition in
the presence of suction/injection was considered. The governing nonlinear par-
tial differential equation were transformed into higher order nonlinear ordinary
differential equation and solved numerically by Keller box method. The veloc-
ity, temperature, and concentration profiles along the porous medium of an expo-
nentially stretching sheet with convective boundary condition in the presence of
suction/injection were studied and the results were shown graphically. The skin-
friction coefficient, the rate of heat transfer and mass transfer were analyzed.
From the present study, we found that:

1. Increasing the magnetic parameter M and permeability parameter Kp reduces
velocity of the nanofluid, but showing higher in injection than suction.

2. Effect of Biot number on velocity and concentration of nanoparticles is very
less. But significant effect of Biot number on temperature of the the fluid is
observed.

3. Enhancement of Eckert number (Ec), heat source/sink parameter (Q) and
thermophoresis parameter Nt rise temperature of the nanofluid.

4. Increasing Lewis number (Le) and chemical reaction parameter (Rc) reduces
concentration of the nanoparticles.

5. Increasing magnetic field parameter (M) and permeability parameter (Kp),
the skin friction coefficient increases higher in suction than injection.
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6. Rising of Eckert number (Ec) and thermophoresis parameter (Nt) reduce sur-
face heat transfer rate, but being higher in suction than injection.

7. Increasing chemical reaction (Rc) and permeability parameter (Kp) rises the
mass transfer rate with higher in suction than injection.

5.2 Scope for the Future Work

In the this thesis, numerical solutions obtained for Magnetohydrodynamics (MHD)
flow of nanofluid over a porous medium of an exponentially stretching sheet with
convective boundary condition in the presence of suction/injection was studied by
employing the implicit finite difference scheme called Keller Box method. So,
one can find the solution of the problem discussed above by considering unsteady,
turbulent flow, two dimensional MHD boundary layer flow of a viscous, incom-
pressible, electrically conducting fluid over exponentially stretching surface in a
porous medium with permeability Kp subjected to suction/injection in the presence
of nonuniform transverse magnetic field.
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