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ABSTRACT 

 
In this study Fractional Reduced Differential Transform Method (FRDTM) is presented 

for solving one dimensional parabolic beam equation. FRDTM is an effective tool to 

solve partial differential equations analytically. This method provides the solution in the 

form of a convergent series with easily calculable terms. The efficacy and accuracy of 

FRDTM is demonstrated by examples, which indicate that the presented method is very 

effective, simple and easy to implement. The plotted graphs illustrate the behavior of the 

solution for different values of time fractional order . 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

There are many problems arising in science and engineering modeled using linear or 

nonlinear partial differential equations. Initial value and Boundary value problem 

in PDEs occur in fluid mechanics, mathematical physics, astrophysics, biology, materials 

science, electromagnetism, image processing, computer graphics, etc. These PDEs 

describe various physical phenomenon including deformation of beams, viscoelastic and 

inelastic flows, transverse vibrations of a homogeneous beam, plate deflection theory, 

engineering and applied sciences (IBiş and Yeşilyurt, 2014). 

The concept of the differential transform was first proposed by (Zhou, 1986) and its main 

applications are to solve both linear and nonlinear initial value problems in electric circuit 

analysis. This method constructs a semi-analytical numerical technique that uses Taylor 

series expansion for the solution of differential equations in the form of a polynomial. 

 It is different from the n-order Taylor series method which requires symbolic 

computation of the necessary derivatives of the data functions. The Taylor series method 

is computationally time-consuming especially for order equation. The differential 

transform is an iterative procedure for obtaining analytic Taylor series solutions of 

equations. It can be said that differential transform method is a universal one, and is able 

to solve various kinds of equations (Biazar et al., 2010). 

Transform method is a mathematical technique that is applied in various fields. This 

technique generates the solutions of partial differential equations; relates solutions of 

difficult partial differential equations to well-known equations and applies to integrable 

equations. For example, Riccati equation is employed to construct generalized solutions 

for ordinary and partial differential equations. Various practical transforms for solving 

various problems were materialized in open literature, such as the Laplace transform, the 

Fourier transform, the traveling wave transform, the Bäcklund transformation, the 

integral transform, the fractional integral transforms, the fractional complex transform. 

Fractional differential equations are viewed as option models to nonlinear differential 

equation. Varieties of them play important roles and tools, not only in mathematics but 

also in physics, dynamical systems, control systems and engineering, to create the 
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mathematical modeling of many physical phenomena. Furthermore, they are employed in 

social science such as food supplement, climate and economics. Fractional differential 

equations concerning the Riemann-Liouville fractional operators or Caputo derivative 

have been recommended by many authors (Ibraim and Dayun, 2014).Determining 

approximate, numerical and exact solutions for fractional differential equations plays a 

significant role. Numerical solutions or analytic solutions are typically difficult to be 

computed. It is therefore, required to impose a process to solve the problem of nonlinear 

fractional differential equations. Recently, one of the most essential and useful methods 

for fractional calculus appeared as complex fractional transform (integral and derivative). 

 Fractional partial differential equations are one of the topics in the analysis of fractional 

calculus theory. And they are differential equations which can be obtained from the 

standard partial differential equations by replacing the integer order time derivative by 

fractional derivative (Masomi et al., 2014) some of these are time fractional heat 

equations, time fractional wave equations , time fractional telegraphic equation ,time 

fractional airy’s equation and so on . 

 In 1695, L’Hospital asked the question as to the meaning of 
n

n

d y

dx
“if 1

2
n  ; that is” what if 

n is fractional?” Leibniz replied that“
1

2d x will be equal to : "x dx x .It is generally known 

that integer-order derivatives and integrals have clear physical and geometric 

interpretations. However, in case of fractional-order integration and differentiation, which 

represent a rapidly growing field both in theory and in applications to real world 

problems; it is not so (Dalir and Bashour, 2010). Since the appearance of the idea of and 

integration of arbitrary (not necessary integer) order there was not any acceptable 

geometric and physical interpretation of these operations for more than 300 years. In 

(Podlubny, 2002) it is shown that geometric interpretation of fractional integration is 

“Shadows on the walls” and its Physical interpretation is ‘Shadows of the past”. 

Beam equations have historical importance, as they have been the focus of attention for 

prominent scientists such as Leonardo daVinci (14
th 

C) and Daniel Bernoulli (18
th C

). 

Practical applications of the Beam equations are evident in mechanical structures built 

under the premise of beam theory. The importance of Beam theory has been outlined in 

the literature over the years (Gunakala et al., 2012). 
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 Examples include the construction of high-rise buildings, bridges across the rivers, air 

craft and heavy motor vehicles. In these structures, beams are used as the basis of 

supporting structures or as the main-frame foundation in axles. Without a proper 

knowledge of beam theory, the successful manufacture of such structures would be 

unfeasible and unsafe. The Euler-Bernoulli beam theory, sometimes called the classical 

beam theory, is the most commonly used. It is simple and provides reasonable 

engineering approximations for many problems. The Finite Element Method (FEM) is 

one of the most powerful tools used in structural analysis. Finite Element Analysis is 

based on the premise that an approximate solution to any complex engineering problem 

can be reached by subdividing a larger complex structure into smaller non-overlapping 

components of simple geometry called finite elements or elements Complex partial 

differential equations  that  describe  these  structures  can  be  reduced  to  a  set  of  

linear  equations  that  can  easily  be  solved  using  this  method. 

The fractional calculus (fractional derivatives and fractional integral) involves different 

definitions of fractional operators. For example, Grunwald-letnikov fractional derivative, 

Riemann-Liouville fractional derivative, and rise fractional derivative and caputo 

fractional derivatives. Here in this study, we will consider only Caputo fractional 

derivatives definition of for its certain advantages when trying to model real world 

phenomena with traditional differential equations.  

Mathematical model is a simplified description of physical reality expressed in 

mathematical terms. Thus, the investigation of the exact or approximate solution helps us 

to understand the means of this mathematical model. Many powerful and efficient 

methods have been proposed to obtain numerical solutions and exact solution of 

fractional partial differential equations. These methods include the Adomain 

Decomposition Method, the Variation iterative Method, the Homotopy perturbation 

Method, the Differential transformation Method, the finite difference method, the finite 

element method, the fractional Riccati equation method and so on. In these 

investigations, we note that many authors have sought exact and numerical solutions for 

fractional partial differential equations (Cui et al., 2013). 
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 Reduced differential transform method for finding a new approximate analytic solution 

of fractional partial differential equations has been proposed by (Keskin and Oturanc; 

2010). After, seminar work of Keskin and Oturanc, FRDTM has been adopted to solve 

Vigorous type of differential equation arising in mathematics and other fields of science 

(Singh and Kumar, 2016) .However, the solution of initial value problems (IVPs) of one 

dimensional time fractional parabolic beam equation is not studied by FRDTM in the 

existing literature. Therefore, this study considers the following one dimensional time 

fractional parabolic beam equations:- 

       
2 4

2 4
, , , , 0, , 1u x t x u x t f x t t x m m

t x




 

 
       

     (1.1)  

Subject to initial conditions:         ,0 , ,0tu x f x u x g x                       (1.2) 
 

where  x >0 is the ratio of flexural rigidity of the beam to its mass per unit length and 

 ,f x t  is a function of the variables x and t. 
 

1.2. Statement of the problem 

Even though time-fractional parabolic beam equations can be found in a wide variety of 

engineering and scientific applications, analytical solutions of one dimensional time 

fractional parabolic  beam equations by applying fractional reduced differential transform 

method is not presumably presented in the existing literature. As a result, this study 

mainly focuses on the following problems related to one dimensional time fractional 

parabolic beam equations given by Eq. (1.1). 

As a result, this study mainly focused on: 

 Employing the reduced differential transformed method on time fractional 

parabolic beam equation.  

 Demonstrating the applicability of the method using specific examples.  
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1.3. Objectives of the Study  

1.3.1. General Objective 

The general objective of this thesis is to study solutions of one dimensional time 

fractional parabolic beam equations by fractional reduced differential transform method. 

1.3.2. Specific Objectives 

The specific objectives of the study were:- 

 To use fractional reduced differential transform method to obtain the solution of 

one dimensional time fractional parabolic beam equation. 

 To demonstrate the applicability of the method using specific examples. 

1.4. Significance of the Study 

This study is believed to have the following significances:- 

 It provides techniques of solving initial value problems of one dimensional time 

fractional parabolic beam equation by using reduced differential transform 

method. 

 It helps to develop other researchers’ skill in doing scientific research in 

Mathematics.  

 It will be used as reference material for anyone who works on similar area. 

1.5. Delimitation of the Study 

This study was delimited to find solution one dimensional linear non homogenous time 

fractional parabolic beam equation by using fractional reduced differential transform 

method. The fractional derivative used here is in sense of Caputo fractional derivatives. 
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CHAPTER TWO 

LITERATURE REVIEW 

                                           

In 2011, many physical problems can be described by mathematical models that involve 

partial differential equations. A mathematical model is a simplified description of 

physical reality expressed in mathematical terms. Thus, the investigation of the exact or 

approximate solution helps us to understand the means of these mathematical models 

(Taha, 2011).Several numerical methods were developed for solving partial differential 

equations with variable coefficients such us He's Polynomials (Mohyud-Din, 2009), the 

homotopy perturbation method (Jin, 2008) homotopy analysis method (Alomari et al., 

2008) and the modified variational iteration method (Noor and Mohyud-Din, 2008). 

The Variational Iteration Method has been applied to hand various kinds of nonlinear 

problems, for example fractional differential equations nonlinear differential equations 

nonlinear thermo elasticity and nonlinear wave equations. Adomin Decomposition 

Method, Homotopy Perturbation Method, Homotopy Analysis method and Variation of 

Parameter Method are successfully applied to obtain the exact solution of differential 

equations (Jafaril et al., 2014) and (Cui et al., 2013).  

The beam son elastic foundation has widely been used in plenty of engineering areas. For 

instance, railway engineering, pipes used in liquid and gas conduction lines, off-shore 

and port foundations some applications in airports, plane- space and petrochemical 

industries biomechanical and dentistry. The importance of beam theory has been outlined 

in the literature over the years. Examples include the construction of high-rise buildings, 

bridges across the rivers, air craft and heavy motor vehicles (Gunakala et al., 2012). 

In these structures, beams are used as the basis of supporting structures or as the main-

frame foundation in axles with the proper knowledge of beam theory. In recent years, 

numerous works have focused on the development of more advanced and efficient 

methods for beam equations such as the Finite Element Method, the classical method, the 

Generalized Integral Transform Technique (GITT), He Parameter Expanding Method 

(HPEM). In the last several years authors have discussed about solution of beam 

equation. For example, (Gunakala et al., 2012) were successes about beam equation in 

using Finite Element method to solve the beam equation with aid of MATLAB. 
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In 2010, another improved reduced differential transform method for finding a new  

approximate analytic solution of fractional partial differential equations has been 

proposed recently been used by Keskin and Oturance. 

In 2014, Al-Amr developed the new application reduced differential transform method 

for the fractional differential equations and showed that RDTM is the easily usable semi 

analytical method and gives the exact solution for both the linear and nonlinear 

differential equations). It is possible to find exact solution or a closed approximate 

solution of a differential equation by using RDTM successfully to solve time fractional 

heat equations, time fractional wave equation, time fraction telegraphic equations, and so 

on. However, solutions of Initial Value Problem of fractional linear non- homogeneous 

beam equations by applying the reduced Differential transform method is yet not found  

in the existing literature. Consequently, this study applied this method to find the 

solutions of one dimensional time fraction parabolic beam equation.   
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CHAPTER THREE 

METHODOLOGY 

3.1. Study area and period 

The study was conducted in the department of Mathematics, college of Natural sciences, 

Jimma University from September, 2018 to September, 2019. 

3.2. Study design 

The study was designed to be done analytically.  

3.3. Source of data 

Important data for this study was collected from books, internets and published research 

articles. 

3.4. Mathematical procedure of the study 

In order to achieve the objective of the study the following basic steps were carried out: 

1. Apply the fractional reduced differential transform method to both sides of Eq. 

(1.1) and (1.2), and obtain a recursion relation for the unknown functions  

       0 1 2 3, , , ...U x U x U x U x  

2. Use the inverse fractional reduced differential transform method to obtain the 

solution of one dimensional time fractional parabolic beam equation. 

3. Mathematica software was used to sketch the solution curves of one dimensional 

 time fractional Beam equation for different values of the fractional order 

derivative . 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4.1. Preliminaries 

This section presents basic definitions and operations or properties related to fractional 

calculus theory. 

4.1.1. Gamma function 

Definition4.1.The Euler - Gamma function,     which is an extension of the fractional 

function to complex and real number arguments as in (Dalir et al., 2010) is defined by  

     1 1

0

,Re 0,ze t dt



                                           (4.1) 

For all 0   with Re   0   and n  ¥ then the following holds: 

    1      

    1 !n n   .In particular,  1 1   

4.1.2. Basic definitions and notations of Fractional Calculus theory 

Some essential definitions of fractional order integrals and derivatives that are presented 

in this study are respectively given by Riemann-Liouville and Caputo.  

Definition 4.2 let , .m ¥ A function :f    belongs the space C  if there exists 

a real number k  with k  such that    ,pf t t g t  where    0,g t C  . 

Moreover, C C  whenever   and mf £ if  m
f £                          (4.2) 

Definition 4.3 let xJ 
 be

 
Riemann-Liouville fractional integral operator and

 
f £ then  

I.         
11

0

, 0

t

tJ f t t f d



   




                                     (4.3) 

II.    0

tJ f t f t                                                                      (4.4) 

For , 1, , 0 , 1f C and           the operator xJ 
satisfy the following properties: 

I. ( ) ( ) ( )x x x x xJ J f x J f x J J f x                                                   (4.5) 

II. ( 1)

( 1)
, 0xJ X X X

   

 

  

  
                                                             (4.6) 
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Remark: The Riemann-Liouville derivative has certain limitations when someone tries to 

model some real physical problems. In their work, Caputo & Mainardi proposed a 

modified fractional differential operator xD
to the theory of viscoelasticity to overcome 

the inconsistency of Riemann-Liouville derivative. The proposed Caputo fractional 

derivative permits us to use initial and boundary conditions involving integer order 

derivatives, which have clear physical interpretations in formulation of problem 

Definition 4.4 If 1 , , 0,m m m t    ¥ then Caputo fractional derivative of f C

(Carpinteri and Mainaridi, 1997) is defined as 

   
 

     
1

0

1
x

m mm m

x x xD f x J D f x x t f t dt
m

 



   
                     (4.7) 

The basic properties of the Caputo fractional derivative xD
are presented in the following 

Lemma. 

Lemma: - If  1 , , 1,mm m m and f x C      ¥ then    

1.      t t t t tD D f t D f t D D f t                                                                 (4.8) 

2.  

 

1

1
, 0tD t t t

   

 

  

  
                                                                                (4.9) 

3.    , 0t tD J f t f t t                                                                               (4.10)                                                           

4.1.3. Fractional Reduced Differentia Transform Method (FRDTM) 

In this section, the basic properties of the fractional reduced differential transform 

method are described.The FRDTM is the most easily implemented analytical method 

which provides the exact solution for both linear and nonlinear fractional differential 

equations, is very effective, reliable and efficient, and very powerful analytical approach, 

refer (Gupta, 2011); (Srivastava et al., 2013); (Srivastava, et al., 2014) ;(Singh et al., 

2013) and (Singh and Kumar, 2016). 

Therefore, this study presents the solution of time fractional parabolic beam equation by 

using FRDTM. Consider a function of two variables  ,u x t and suppose that it can be 

represented as a product of two single-valued functions, i.e.  ,u x t    f x g t
.
 

Based on the properties of one-dimensional differential transform method, the function 

 ,u x t can be represented as: 
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          
0 0 0

, i j k

ki j k
u x t F i x G j t U x t

  

  
        

 
(4. 11) 

where  kU x  is called t-dimensional spectrum function of  ,u x t which is also called 

the reduced transformed function of ( , )u x t  

 In fact, the above definition shows that, the concept of fractional reduced differential 

transform is derived from the power series expansion (Keskin and Oturanc, 2010).  

The basic definition and operation of FRDTM as introduced in (Srivastava et al., 2013); 

(Babaei and pour, 2015) and (Miller and Ross, 1993) were given bellow:-

 Definition 4.5  If  ,u x t  is analytic and continuously differentiable with respect to space 

variable x and time variable t in the domain of interest, then the t-dimensional spectrum 

function or the fractional  reduced transformed function of  ,u x t  is given by 
                                                   

                

 
0

1
( 1)

( , ) ( ) ( , )
k

kD k k t t t
R u x t U x u x t






   
                                                   (4.12) 

where  is a parameter which describes the order of time fractional derivative in a 

Caputo sense and  ( )kU x  is the transformed function of the  ,u x t .              

Definition 4.6 The inverse FRDT of ( )kU x is defined as 

 

       1

0

,
k

K K oD
k

R U x u x t U x t t








                               (4.13) 

Now combining Eq. (4.12) and (4.13), we obtain: 

 
0

1
( 1)

0

( , ) ( , )
k

k

k

ok t t t
k

u x t u x t t t











   



                                                 (4.14) 

In particular, if  0ot   equation (4.14) becomes  

1
( 1)

0
0

( , ) ( , )
k

k

k

k t t
k

u x t u x t t











   



                                                              (4.15) 

 Moreover, if α=0 the FRDTM of Eq. (4.15) reduce to classical RDTM. 

Applying the fractional reduced differential transformed operator on both sides of 

equation    ,0u x f x  and    ,0tu x g x , we get respectively  0( )U x f x and 

 1( )U x g x   



  12  
  

Hence using equation (4.13) the function  ,u x t  can therefore be written in a finite 

series as      0

0

, ( , )
n

k

n k n

k

u x t U x t t R x t




   where n represents order of estimated 

solution. Here the tail function ( , )nR x t is negligibly small. In particular, if 
0 0t  this 

equation takes the form    
0

,
n

k

n k

k

u x t U x t 



 . 

Finally, the accurate solution is found by taking limit of the function, i.e. 

             2 3

0 1 2 3

0

lim , , ...k

n k
n

k

u x t u x t U x t U x U x t U x t U x t   





                    (4.16) 

Based on the definition and properties of time fractional reduced differential transform of 

one dimensional beam equation we have the following results (Theorems). 
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Table 4.1Basic properties of one dimensional fractional reduced differential transform, 

(srivastava et al., 2013) and (Abuteen et al., 2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here we have the detail of some of the theorems with their proofs from table 4.1. 

Theorem4.1 If    , ,
r

r
w x t u x t

x





, then,    
r

k kr
W x U x

x





 

Proof   let   kW x  and  kU x t-dimensional spectrum functions of  ,w x t and  ,u x t

respectively and is analytic and K-time continuous differentiable function with respect to 

time t and x in the domain of our interest. Now applying FRDT operator to the left side 

of the equation    , ,
r

r
w x t u x t

x





we get 

No Original Function Transformed function ( FRDTM ) 

1  ,u x t
    

 
0

1
,

1

k

k x k

t t

U u x t
k t






 
  
   

 

2      , , ,w x t u x t v x t        k K KW x U x V x 
 

 

3 

 

   , ,w x t au x t  
   k kW x aU x

 , for arbitrary constant a 

 

4 

 

   , sinmf x t x x t    
  sin

! 2

k
m

k

k
F x x x

k




 
  

 
, ,and    are 

constants 

5    , cosmf x t x x t    
  cos

! 2

k
m

k

k
F x x x

k




 
  

 
  and   are 

constants

 
6    , ,

r

r
w x t u x t

t





          
 

 1

!
1 2 ...

!
k k k r

k r
W x k k k r U x U x

k
 


      

 

7 
   , ,w x t u x t

t





      11k kW x k U x 
 

 

8 
   , ,w x t u x t

x





    k kW x U x
x





 

 

9 
   , ,

r

r
w x t u x t

x





    
r

k kr
W x U x

x





 

10    , ,
N

N
w x t u x t

t









 
 

 

1

1
k k N

k N
W U

k

 




  


 
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 
 

 
 

 
1 1

, ,
1 1

o o

k k r

k k k r

t t t t

W x w x t u x t
k t k t x

 

  
 

     
    
         

  

   
 

   
1

,
1

o

r k r

kr k r

t t

u x t U x
x k t x






    
            

Hence    
r

k kr
W x U x

x





.This completes the proofs of the theorem.

 

Theorem 4.2.If    , ,
N

N
w x t u x t

t









, then    
   

1

1

k N

k k Nk
W x U x

 



  

 


 

Proof: let  KW x  and  KU x be t -dimensional spectrum functions of  ,w x t  and  ,u x t  

respectively and is analytic and K-time continuous differentiable function with respect to 

time t and x in the domain of our interest. Applying FRDT operator to the left side 

equation    , ,
N

N
w x t u x t

t









, we obtain 

 
 

 
1

,
1

o

k

k k

t t

W x w x t
k t






 
  
   

 

=
 

  
1

,
1

N

N

k

k t
u x t

k t












 
 

   
 

=
 

 
1

,
1

o

k N

k N

t t

u x t
k t

 

 







 
 

   
 

 

=
 

   
 

1 1
,

1 1
o

k N

k N

t t

k N
U x t

k N k t

 

 

 

  







    
 

      
 

=
 

   

 

   

 

1 1
,

1 1
o

k N

K N

K N

t t

U x

k N
U x t

k k N t





 

  









    
 

      
1 4 4 4 4 4 44 2 4 4 4 4 4 4 43

 

 
 

 
 

1

1
k K N

k N
W x U x

k

 




  


 
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4.2. Main result 

The aim of this study is to obtain analytical solution of one dimensional time fractional 

parabolic beam equation by using fractional reduced differential transform method. This 

is done based on the works of (Keskin and Oturanc, 2010) that was used to solve 

fractional partial differential equations. So, the definitions, theorems and some 

derivations related to FRDTM mentioned in the preceding section were applied here.  

 I.  Consider the one dimensional time fractional homogeneous parabolic beam equation 

in Caputo sense: 

      
2 4

2 4
, , , , 0,0 1u x t x u x t x t

t x




 

 
     

 
           (4.17) 

Subjected to the initial conditions: 

       ,0 , , ,0 ,tu x f x and u x g x x  
 
     (4.18)

 

where  x
 
is constant coefficient and  , 0f x t 

.
 

Applying FRDTM on Eq. (4.17), we get the following recurrence relation: 

 

 
     

4

2 4

2 1

1
k k

k
U x x U x

k x

 





   
 

  
 

  
 

 
   

4

2 4

1

2 1
k k

k
U x x U x

k x




 


   
   

            

(4.19)      

Again applying FRDTM on both sides Eq. (4.18), we obtain 

        0 1,U x f x U x g x         (4.20) 

Using Eqs. (4.19) and (4.20), we get the values of  kU x for different values of k 

recursively .i.e,   

          For k=0,  
 

   
 

   
4 4

2 04 4

1 1

2 1 2 1
U x x U x x f x

x x
 

 

 
   

     
 

For k=1,  
 

 
   

 

 
   

4 4

3 14 4

1 1

3 1 3 1
U x x U x x g x

x x

 
 

 

    
   

     
 

Fork=2,  
 

 
   

 
   

4 8
2

4 24 8

2 1 1

4 1 4 1
U x x U x x f x

x x


 

 

    
    

        
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For k=3 

 
 
 

   
 
 

   
4 4 4

5 3 14 4 4

3 1 1
( )

5 1 5 1
U x x U x x x U x

x x x

 
  

 

         
       

            

   =
 

 
   

8
2

8

1

5 1
x g x

x






  

  
and continue this way.

 

Applying inverse FRDTM on  kU x , we find 

   
0

, k

k

k

u x t U x t 






          

 
 

   
 
 

   

2 3 4

0 1 2 3 4

4 4
2 3

4 4

11
( )

2 1 3 1

U x U x t U x t U x t U x t

f x g x t x f x t x g x t
x x

   

  
 

 

     

  
    

     

K

K

(4.21)                                                                                                                                                                                                                                                                                                                                                          

II. Consider the one dimensional non-homogeneous parabolic beam equation. 

The derivation of solution of non-homogenous one-dimensional time fractional beam 

equation using FRDTM is also treated as in the case of homogenous equation with little 

modification and is shown below. 

         
2 4

2 4
, , , , 0,1 , 0,0 1u x t x u x t f x t t x

t x




 

 
      

 
  (4.22) 

Subject to initial conditions 

       ,0 , ,0tu x f x u x g x   Where   0x  and  ,f x t  is a continuous 

function of the variables x and t.                             (4.23) 

Applying FRDTM on Eqs.(4.22) and (4.23), we get respectively the following  

recurrence relation:- 

 

 
 

 
     

4

2 4

1

2 1
k k k

k
U x x U x F x

k x




 


   
   
                                

(4.24)      

 Again applying FRDTM on both sides Eq. (4.23), we obtain 

       0 1,U x f x U x g x 
                                                      (4.25)  

Using Eqs. (4.24) and (4.25), we get the values of  kU x for different values of k 

recursively. i.e. 

 For k=0,  
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 
 

 
     

 

 
     

4 4

2 0 0 04 4

1 1

2 1 2 1
U x x U x F x x f x F x

x x
 

 

     
        
          

    For k=1, 

 
 

 
     

 

 
     

4 4

3 1 1 14 4

1 1

3 1 3 1
U x x U x F x x g x F x

x x

 
 

 

       
        
        

 

For k=2  

 
 

 
 

 

 
       

4 4

4 0 24 4

2 1 1

4 1 2 1
U x x x f x F x F x

x x


 

 

       
                 

 

For k=3 

 
 

 
 

 

 
       

4 4

5 1 34 4

3 1 1

5 1 3 1
U x x x g x F x F x

x x

 
 

 

       
      
       

 

 For k=4, 

 
 

 

 
 

 
 

 

 
     

 

 

4

4 4
04

4 4

6

2

4

1
2 1

2 14 1
4 1

6 1

x f x F x
xx x

x xU x
F x

F x


 




      
          

          
                

 
 

Similarly  kU x
 
for 5k   can be founds. 

Applying inverse FRDTM to  kU x  we obtain the solution in a series form. 

i.e.     
0

, k

k

k

u x t U x t 





 

           2 3 4 5

0 1 2 3 4 5U x U x t U x t U x t U x t U x t          K  

   
 

 
     

 
 

     

 
 

 
 

 
       

 
 

 
 
 

       

4
2

04

4
3

14

4 4
4

0 24 4

4 4

1 34 4

1

2 1

1

3 1

2 1 1

4 1 2 1

3 1 1

5 1 3 1

f x g x t x f x F x t
x

x g x F x t
x

x x f x F x F x t
x x

x x g x F x F x
x x

 














 

 

 
 

 

  
      

   

   
   

   

       
                 

       
            




K

       (4.26) 
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Hence, as described in Eq. (4.16) we conclude that the above result gives the analytical 

solution of the one-dimensional homogenous and non- homogenous time fractional beam 

equation. 

4.3. Illustrative examples 

In this part we deal with some examples to show the efficiency and accuracy of fractional 

reduced differential transform method (FRDTM) explained in the above sections for 

homogeneous and non-homogenous time fractional beam equation. 

Example 4.1consider one dimensional constant coefficient homogeneous time fractional 

parabolic beam equation 

  
     

2 4

2 4
, , , , 0,0 1, 1u x t u x t x t x

t x




 

 
      

 
¡

 
(4.27) 

Subjected to the initial condition 

   ,0 cos , ,0 sintu x x u x x  
  

(4.28) 

Solution: Applying FRDT operator to both sides of the Eq. (4.27) we obtain the following 

iteration as follow. 

   
2 4

2 4
, ,DR u x t u x t

t x





  
  

  
=

 

 
   

4

2 4

2 1

1
k k

k
U x U x

k x

 




   
 

  
 

 
 

 
 

4

2 4

1

2 1
K k

k
U x U x

k x



 


  
 

   
  (4.29)

 

 Again applying FRDTM operator to both sides of the Eq. (4.28) we obtain the following 

iteration as follow. 

       0 1,0 cos , ,0 sinD D tR u x U x x R u x U x x         (4.30) 

Using Eqs. (4.27) and (4.28), we get the following recursive relation:- 

For k=0,  
 

 
 

 

4

2 4

1 cos
cos

2 1 2 1

x
U x x

x 

  
  

    
 

 
2

cos

2 1

x
U x





 

 

For k=1   
 

 
  

 

 
 

 

 

4 4

3 14 4

1 1 1
sin sin

3 1 3 1 3 1
U x U x x x

x x

  

  

      
    

       
 

For k=2 

 
 

 
  

 

   
 

 

4 4

4 24 4

2 1 2 1 1 cos
cos

4 1 4 1 2 1 4 1

x
U x U x x

x x

 

   

    
    
         
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 
 

4

cos

4 1

x
U x



 

 

For k=3 

 
 

 
  

 

   
 

 

4 4

5 24 4

2 1 2 1 1 cos
cos

4 1 4 1 2 1 4 1

x
U x U x x

x x

 

   

    
    
         

 
 

 
5

1
sin

5 1
U x x





 

 

 

Applying inverse FRDTM to  kU x , it yields  

               2 3 4 5

0 1 2 3 4 5

0

, k

k

k

u x t U x t U x U x t U x t U x t U x t U x t     




       K

 

     
 

 

 

 

 

 

2 3

0

4 5

1cos
, cos sin sin

2 1 3 1

1cos
sin

4 1 5 1

k

k

k

x
u x t U x t x x t t x t

x
t x t

   

 



 



 





    
                 

    
             



K

(4.31)

 

When 1  , equation (4.31) becomes 

 
 

 

   

 

 
2 3 4 5

sin 2 sin 2cos cos
, cos sin ...

3 4 5 6

x xx x
u x t x xt t t t t

  
      

   

  2 3 4 5cos sin cos sin
, cos sin ...

2! 3! 4! 5!

x x x x
u x t x xt t t t t

 
       

 
2 4 6 3 5 5

, cos 1 ... sin ...
2! 4! 6! 3! 5! 5!

t t t t t t
u x t x x t

   
            

   
 

 , cos cos sin sinu x t x t x t  =  cos x t which is the exact solution of equation   (4.27). 

Example 4.2 considers one dimensional constant coefficient homogeneous time 

fractional parabolic beam equation with constant coefficient. 

       
2 4

2 4
, , , , 0,0 1, 1u x t x u x t x t x

t x




  

 
      

     
(4.32) 

Subjected to the initial condition    ,0 sin , ,0 0tu x x u x 
    

(4.33) 

Solution: - applying FRDTM operator to both side of the Eqs. (4.32) & (4.33) we obtain 

the following iteration:- 
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   
2 4

2 4
, ,DR u x t u x t

t x





  
  

  
 

 

 
   

4

2 4

2 1

1
k k

k
U x U x

k t

 




   
 

  
 

 
 

 
 

4

2 4

1

2 1
K k

k
U x U x

k x



 


  
 

   
    (4.34) 

       0 1,0 sin , ,0 0D D tR u x U x x R u x U x   
  (4.35)

 

From (4.34) and (4.35), we get the following recursive relation. 

Fork=0,  
 

 
 

   

4 4

2 04 4

1 1 sin
sin

2 1 2 1 2 1

x
U x U x x

x x  

  
     

       
 

Thus,  
 

2

sin

2 1

x
U x


 

 
 

For k=1  
 

 
 

 

 
 

4 4

3 14 4

1 1
0 0

3 1 3 1
U x U x

x x

 

 

    
    

     
 

For k=2  
 

 
 

 

     

4 4

4 24 4

2 1 2 1 sin sin

4 1 4 1 2 1 4 1

x x
U x U x

x x

 

   

     
                 

 

 
 

4

sin

4 1

x
U x



 

 

For k=3  
 

 
 

 

 
 

4 4

5 34 4

4 1 3 1
0 0

5 1 4 1
U x U x

x x

 

 

    
  

     
 

The differential inverse transform  kU x :-

 

 
0

( , ) k

k

k

u x t U x t 




  

         2 3 4

0 1 2 3 4( , ) ...u x t U x U x t U x t U x t U x t        
 

 
   

2 4sin sin
, sin

2 1 4 1

x x
u x t x t t 

 
    

   
K

 

 
   

2 41 1
, sin 1 ......

2 1 4 1
u x t x t t 

 

 
         

 (4.36)
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 
   

2 41 1
, sin 1 ......

3 5
u x t x t t

 
       

   

When 1  is substituted in equation (36) we get the following result: 

 
  2 41 1

, sin 1 ...... sin cos
2! 4!

u x t x t t x t
 

     
 

 

 this is exactly the exact solution the given problem Eq. (4.32). 

Example 4.3   solves the fourth order parabolic beam equation with variable coefficient 

by using FRDTM. 

       
2 4

4 3 7

2 4

6
, 1 , cos ,0 1, 0, 0,1

7!
u x t x u x t x x x t x t

t x






   
          

          

           

(4.37)
 

Subjected to the initial condition 

   76
,0 ,0 0,0 1, 0

7!
tu x x and u x x t    

     
(4.38)

 

On equation (4.37) applying FRDTM, we get the following recurrence relation: 

 

 
     

4
4 3 7

2 4

2 1 6 1
1 cos

1 7! ! 2
k k

k k
U x x U x x x x

k x k

 




       
        

      

 
 

 
   

4
4 3 7

2 4

1 6 1
1 cos

2 1 7! ! 2
k k

k k
U x x U x x x x

k x k



 


       
         
          (4.39) 

where   4 3 76 1
cos

7! ! 2
k

k
F x x x x

k

   
     
   

. 

Again applying FRDTM on both sides equation (4.38), we obtain 

   7

0 1

6
0,0 1

7!
U x x andU x x   

     (4.40) 

Using Eqs. (4.39) and (4.40), we get the values of  kU x recursively. 

For k=0,  
 

 
   

 4
4 3 7

2 04

1 06 1
1 cos

2 1 7! 0! 2
U x x U x x x x

x

     
                  

 

 
 

 4
7 4 3 7

4

1 06 6 1
1 cos

2 1 7! 7! 0! 2
x x x x x

x

       
          
         
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 

 
  3 4 3 7

1 6
1

2 1 7!
x x x x x



   
           

 

 

 
4 3 4 3 7

1 6

2 1 7!
x x x x x



  
         

 

 
7

1 6

2 1 7!
x



  
     

 

 
 

7

2

1 6

2 1 7!
U x x



 
  
   

 

For k=1,  
 

 
   

4
4 3 7

3 14

1 6 1
1 cos

3 1 7! 1! 2
U x x U x x x x

x





       
         
         

 

 

 
     

4
4 3 7

4

1 6
1 0 0

3 1 7!
x x x x

x





     
       
     

 

 3 0U x   

For k=2  
 

 
     

4
4 3 7

4 24

2 1 6 1
1 cos

4 1 7! 2!
U x x U x x x x

x





     
        
       

  = 
 

 
 

 

 

4 3 7

4
7

4

6

2 1 1 6 7!
1

4 1 2 1 7! 2!

x x x

x x
x



 

  
               

      
 
 

 

 =
 

 

 

 
   

4 3 7

3

6

2 1 1 7!
1

4 1 2 1 2!

x x x

x x


 

  
           

    
 
 

 

      =
 

   

4 3 4 3
7

2 1 6

4 1 2 1 2! 7!

x x x x
x



 

     
          

 

 
 

  
 

 

 

4 3 74 3

4

2 1 6 2 1

4 1 2! 4 1 7!2! 4 1

x x xx x
U x

 

  

    
  
     

 

For k=3  
 

 
     

4
4 3 7

5 4

3 1 6 1
1 0 0

5 1 7! 3!
U x x x x x

x





     
       
     

 

 5 0U x   
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For k=4

 
 

 

   

 

   

 

   

 

 

 

4 3 4 3

6

7

2 1 4 124 1 12 1 2 1
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Applying inverse FRDTM to  kU x us can find that: 
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4.41 

When 1  in Eq. (4.41), we get the exact solution of question (4.37) as shown below. 

i.e, 
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The solution curves of one dimensional time fractional homogenous and non-

homogenous beam equations given in Examples 4.1, 4.2 and4.3 for different values of 

time fractional order   are depicted below in Figure 4.1,Figure4.2 and Figure 4.3 

respectively. 
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For   = 0.25 For   = 0.5 

  

For   = 0.75 For   = 1.00 

Figure 4.1: 3D plots of the solution of one dimensional time fractional beam equation 

        (Example 4.1) 
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For   = 0.25 For   = 0.5 

  

For   = 0.75 For   = 1.00 

Figure 4.2: 3D plots of the solution of one dimensional time fractional beam equation  

(Example 4.2) 
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Figure 4.3: 3D plots of the solution of one dimensional time  fractional beam equation  

 (Example 4.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  28  
  

4.4. Discussions  

The fractional reduced differential transform method (FRDTM) has been successfully 

applied in partial deferential equation on one dimensional time fractional parabolic beam 

equation subjected to the given initial condition which gives rapidly converging series 

solutions.  

The fractional reduced differential transform method was used by straightforward 

substitution without employing linearization and simply uses iterative recurrence 

relationships. The efficiency and capability of the present method have been checked via 

three examples. 

The obtained solution was in excellent agreement when compared with the solution done 

by Variational Iterative Method (VIM) and Adomian Decomposition Method (ADM) 

(wazwaz, 2009).  

The graphs show the results obtained for homogenous and non-homogenous time 

fractional parabolic beam equation for the different values of order  .When the values 

of approaches to one (  1) the graphs approaches to the graph of the exact solution. 

When,    the graph exactly fits with the graph of the exact solution of one 

dimensional time fractional parabolic beam equation.   
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE SCOPE 

5.1. Conclusions 

In this study, we presented fractional reduced differential transform method for solving 

one dimensional parabolic beam equation. The obtained solutions disclose that FRDTM 

is very effective and convenient. The present study has confirmed that the fractional 

reduced differential transform method offers great advantages of straight forward 

applicability, computational efficiency and high accuracy.We also notice that the series 

solutions obtained by the fractional reduced differential transform method are in excellent 

agreement with the solution given by the Adomain Decomposition Method (ADM) and 

the Variation iterative Method (VIM), refer to book Partial Differential Equations and 

Solitary Waves Theory (Wazwaz, 2009, pp.406-412). Moreover, the performed 

computations show that the FRDTM is much easier than to apply the Adomain 

Decomposition Method (ADM) and the Variation iterative Method (VIM) as it takes very 

tiny amount of computation. 

 

5.2. Future scope 

The techniques used in this work can also be applied to solve linear and non-linear time 

fractional partial differential equation and multi-dimensional physical problems emerging 

in various fields of engineering and applied sciences. 
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