ANALYTIC SOLUTIONS OF INTIAL VALUE PROBLEMS OF
HOMOGENEOUS TIME FRACTIONAL HEAT-LIKE EQUATIONS
USING THE REDUCED DIFFERENTIAL TRANSFORM METHOD

BY

KEBEDE SHIGUTE

ADVISOR: YESUF OBSIE (PhD)

CO-ADVISOR: ADEME KEBEDE (MSC)

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, COLLEGE
OF NATURAL SCIENCES, JIMMA UNIVERSITY, IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCES IN

MATHEMATICS

(DIFFERENTIAL EQUATIONS)

JIMMA, ETHIOPIA
JUNE, 2014




JIMMA UNIVERSITY
COLLEGE OF NATURAL SCIENCES
DEPARTEMENT OF MATHEMATICS

Analytic Solutions of Initial Value Problems of Homogeneous Time Fractional Heat-Like

Equations Using the Reduced Differential Transform Method
By
Kebede Shigute

A Thesis presented to the Department Of Mathematics, College Of Natural Sciences, Jimma
University, in partial fulfillment of the requirements for the degree of Master of Sciences in

Mathematics
(Differential Equations)
Approved by the examiner board Signature

Name:

Chairman

Research Advisors:

External Examiner:

External Examiner




Table of Contents

ACKNOWLEDGMENTS ...ttt sttt sttt st sttt sa e sbe et sat e sbeesbe st esbeenbesanesaeens v
ABSTRACT ..ttt ettt ettt st e s bt et e s st e s ae et e sa e e st e enseentesbeenteeneesaeeseeneesaeents vi
CHAPTER ONE ...ttt sttt sttt sttt eat e s bt et sat e sbeebesst e beentesaeenee 1
L. INTRODUCTION ... .ottt ettt ettt sttt e st e aee et e bt e s abeebeesaseesaeesabeenseenane 1
1.1.  Back ground of the StUAY ......cccuieeiiiieiieee e 1
1.2.  Statements Of the Problem..........ccccviiiiiiiiiiicce e e 4
1.3, Objectives OF the STUAY .....cciieiiiiiieiieie ettt et et bee s eneas 5
1.3.1.  GeNeral ODJECTIVE ..evivuiiiiiiieiiiee ettt ettt st eseaa e sbeeesabeeeens 5
1.3.2. SPECIfIC ODJECLIVES ...uviiiiiiiiiiiieiieicee ettt 5

1.4.  Significance of the StUAY ......ccooiiieiiiieiecee e 5
1.5.  Delimitation of the STUAY ......cccouiiiiiiieiieee e e 6
CHAPTER TWO ..ttt sttt sttt sttt et sbt et eae e sae e b e st e sbeenbesaeenee 7
2. LITERATURE REVIEW ..cciiiiiiiiiiiteieitesteee ettt sttt st s s sae e 7
CHAPTER THREE ..ottt sttt sttt sttt st be st e b e naesaee e 9
3. METHODOLOGY ...coottiitiiiiieiieieeite sttt ettt sttt ettt b st sbe et st enbeensesaeesbeenbesaeenee 9
3.1.  Study Site, Area and Period ..........ccceeeuiiiiiiiiiiieeee e 9

R TR 1 16 A A B 1o ¥4 s USRS 9
330 S0OUICES OF DAtA ...ttt et 9
3.4. Administration and Instrumentation of Information or Data .............cocceeiiiiiinninen. 9
3.5.  Procedure of the StUAY ......c.cooiiiiiiiiiee e 9
3.6, EthiCal ISSUES .. ..eiuiiiiieiie ettt ettt et sttt e 10
CHAPTER FOUR.....ootiieeeee ettt sttt st b et s e sbe e s e e saeennes 11
4. DISCUSION AND RESULTS ....ooiititettete ettt st s 11
4.1 PrEeliMINATIES. ..ccueeiuiiiiieiieet ettt ettt ettt et ettt et e s et e bt e sab e et e e sabe e bt e sbeeebeenaeeens 11



4.1.1 GammMa aNd Beta FUNCEIONS evvueiiieieee ettt ettt e e e et e e ettt e e e et e s e eeaeeesennnnnss 11

4.1.2  Fractional Calculus, Some basic definitions, properties and theorems .................. 11
4.1.3  Reduced Differential Transform Method..........ccccveeviiiiiiieiiiieiiee e 19
4.2 MaIN RESULILS...eouiiiiiiiteee ettt ettt ettt 27

4.2.1 Some new Basic Definitions, Properties and Theorems in n-Dimensional Space

WHETE 71 € N it e 28
4.2.2  Reduced Differential Transform Method in n-Dimensions (7 € N) .......cccccuenneee. 38

4.2.2.1 Reduced Differential Transform Method Procedures for Solving One Dimensional

Homogeneous Time Fractional Heat-like EQUations...........cccocvevieiiniiiinicniiienicecec e 47

4.2.2.2 Reduced Differential Transform Method Procedures for Solving Two Dimensional

Homogeneous Time Fractional Heat-like EQUations..........ccoocveiviiiiniieinieeiiceniec e, 49

4.2.2.3 Reduced Differential Transform Method Procedures for Solving Three

Dimensional Homogeneous Time Fractional Heat-like Equations .........c.cccoceeveviinienicnnnne 51

4.2.2.4 Reduced Differential Transform Method Procedures for Solving n-dimensional

Time Fractional Homogeneous Heat-like Equations, where n>3andneN ..................... 52

4.3 NEW APPICALIONS ....uviiiiiieiiieeeieeeeieeeeiee ettt eestteesteeeeteeesstaeessaaeesseeessseeessseeensseesnseeennses 54
CHAPTER FIVE <.ttt e e e e e e e et e e e e e e e e e e e e e eeeaee s 69
5 Conclusion and FULUIE SCOPES ....uveieriiieiiiiiiieieiie ettt saae e 69
REFERENCES ..ottt sttt sttt sb e e s ne s 71



ACKNOWLEDGMENTS

First of all, I am indebted to almighty God who gave me long life and helped me to pass through
different up and down to reach this time. Next, my Special cordial thanks go to my principal
advisor, Dr. Yesuf Obsie and co-advisor, Mr. Ademe Kebede for their unreserved support,
advice, and guidance. Above all, I would like to express my heart felt gratitude to my wife
Bizuwork Wakgari, my children: Kebek Kebede, Ketinbon kebede, Elias Kebede and my brother
Abdisa Shigute who had the endurance and willingness to accompany and encourage me over the
last one year in my studies leading to this thesis.

Lastly, I would like to thank both differential equation and numerical analysis streams post
graduate students of the year 2013/2014 for their constructive comments and provision of some

references.



ABSTRACT

The main purpose of this study was to develop a scheme to find analytic solutions of multi-
dimensional homogeneous time fractional heat like equations under initial conditions by using
reduced differential transform method. Analytic solutions based on the iteration technique were
proposed (designed) to solve the homogeneous time-fractional heat-like equations in n-
dimensions using Reduced Differential Transform Method subjected to the appropriate initial
condition. The Reduced Differential Transform Method procedures in one, two, three and more
than three dimensions were developed and introduced to obtain the analytic solutions of multi-

dimensional homogeneous time fractional heat-like equations.

To see the effectiveness and applicability of the newly introduced procedures of the Reduced
Differential Transform Method to obtain analytic solutions of initial value problems of
homogeneous time fractional heat-like equations in n-dimensional space (neN ), four test
examples were presented. The results show that Reduced Differential Transform Method is
successfully implemented to obtain analytic solutions of multi-dimensional homogeneous time
fractional linear heat-like equations. Therefore, it can be concluded that the proposed method
can be extended to other fractional partial differential equations which can arise in physics and

engineering.

vi



CHAPTER ONE

1. INTRODUCTION
1.1. Back ground of the study

The fractional calculus is the theory of integrals and derivatives of arbitrary order, which unifies
and generalizes the concepts of integer-order differentiation and n-fold integration, G. Wang and
T. Xu [1]. That is, it is a generalization of ordinary (standard) differentiation and integration to
arbitrary (non-integer) order.

As it has been explained in M. Ishteva, et al. [2], the beginning of the fractional calculus is
considered to be the Leibniz's letter which raised a question: "Can the meaning of derivatives
with integer order be generalized to derivatives with non-integer orders?" to L'Hospital in 1695,
where the notation for differentiation of non-integer order, was discussed.

As in G. Wang and T. Xu [1], even though, fractional calculus is three centuries old as the
conventional calculus, it is not very popular among science and/or engineering community. But,
the subject has the beauty that fractional derivatives as well as fractional integrals are not a local
(or point) property (or quantity). Hence, this reflects the history and non-local distributed effects.
Meaning, this subject can translate the reality of nature better! Therefore, making this subject
accessible as prevalent subject to science and engineering community adds another dimension to
understand or describe basic nature in a better way. Perhaps fractional calculus is what nature
understands, and to talk with nature in this language is therefore efficient. In general, Fractional

calculus is a branch of mathematical analysis that studies the possibility of taking real number,

. . d . .
or even complex number, powers of the differential operator D:d— and the integration operator
X

J. (Usually J is used in favor of I to avoid with other I-like identities).

As it has been discussed in A. Secer [3], there are well-known definitions of a fractional
derivative and integrals of order, a real number & >0 such as Riemann-Liouville, Grunwald-
Letnikow, Caputo, and generalized functions approach from fractional calculus. The most

commonly used definitions are the Riemann-Liouville and Caputo. The Riemann-Liouville



fractional derivative is mostly used by mathematicians but it is not suitable for physical problems
of the real world since it requires the definition of fractional order initial conditions which have
no physically meaningful explanation yet. Caputo introduced an alternative definition which has
the advantage of defining integer order initial conditions for fractional order differential
equations. The Caputo fractional derivative is important because it allows traditional initial and
boundary conditions to be included in the formulation of the problem. So, this Caputo fractional
derivative is the base for fractional differential equations with integer order initial conditions

such as time fractional partial differential equations with integer order initial conditions.

As it was stated in A. Aghili and M.R. Masomi [4], time fractional partial differential equations
are differential equations which can be obtained from the standard partial differential equations
by replacing the integer order time derivative by a fractional derivative. Some of these are time
fractional heat equations, time fractional heat-like equations, time fractional wave equations and

SO On.

Fractional order partial differential equations, as generalizations of classical integer order partial
differential equations, have been used to model problems in fluid flow and other areas of
application, in A. Secer [3]. For example, in order to formulate certain electrochemical problems,

half-order derivatives and integrals are more useful than the classical models, A. Secer [3].

Fractional derivatives provide an excellent instrument for the descriptive and hereditary
properties of various materials and processes. So solving fractional partial differential equations
(FPDEs) is completely important in the circumstance of Applied Mathematics, Theoretical
Physics and Engineering Sciences, in M. Sohail and S.T. Mohyud-Din [5]. In order to better
understand time fractional differential equations as well as further apply them in practical
scientific research, it is important to find their exact solutions, in M. Sohail and S.T .Mohyud-

Din [5].

Mathematical (solution) methods for partial differential equations are varied, and depend on such
equations characteristics, linearity and order. For PDEs, the mathematical (solution) methods are
divided into two general classes which are Analytical methods that strive to find exact formula
for the dependent variable as a function of all independent variables, and numerical methods

which result in approximate values of the dependent variable at prescribed and discrete locations



within a finite domain of the independent variables, B. Richard [6]. But, there are mathematical
methods which can be neither of the two methods. These methods are semi-analytical methods or

semi- numerical methods.

For example, Reduced Differential Transform Method is semi-analytical method, V.K.
Srivastava, et al. [7]. It is an iterative procedure for obtaining Taylor series solution of
differential equations, M. Sohail and S.T. Mohyud-Din [5]. It was first proposed by Keskin in
1986 and successfully employed to solve many types of nonlinear partial differential equations.
As in M. Sohail and S.T. Mohyud-Din [5], Reduced Differential Transform Method successfully
applied to solve multi-dimensional time-fractional heat equations. But, nothing was discussed
about how to solve initial value problems (IVPs) of multi-dimensional homogeneous time
fractional heat-like equations by applying the RDTM in the existing literature in the time before
this study. Motivated by the gap, this study was conducted by extending the works of M. Sohail
and S.T. Mohyud-Din [5] to multi-dimensional homogeneous time fractional heat like-equations

only in the case of finding analytic solutions.
The main purpose of this study was to develop scheme to find analytic solutions of multi-
dimensional homogeneous time fractional heat-like equations of the form:

8“u(xl,x2,---,xn ,t)
ot”

:fl‘ (XI’XZ" ) .’Xn)uxlxl +]2 (‘xl’XZ" ’ .’Xn)uxzxz +-- +f;l (xl ’xZ’. ) .’xn)ux,,x

n

n
(xl,xz,--- ,xn)e Q c R",t>0, 0<a <1
Subject to the initial condition:

n
u(xl,xz,---,xn,O)zgl (xl,xz,---,xn),(xl,xz,---,xn)eQ c R

where u(x,x,, --,x, ,¢) such that u(x,,x,,"--,x, ,t)=q(x,X,,~-,x,)g(t) is analytic and k-
times continuously differentiable with respect to time, t and variables: x,,x,,---, and x, in the
domain of interest,Q < R" which is closed set, f; (xl,xz,---,xn )Vi =1,2,---,n 1is a function and

a is order of time fractional derivative, by the Reduced Differential Transform Method. The

study outlined that the Reduced Differential Transform Method is very effective, simple and



powerful mathematical tool for solving multi-dimensional initial value problems of

homogeneous time fractional heat-like equations analytically.
1.2. Statements of the problem

Engineering and other areas of sciences can be successfully modeled by the use of fractional
derivatives. A. Aghili and A. Motahhari [8] were stated that in reality, the future state of a
physical phenomenon, which might depend on its current state as well as its historical state (non-
local property), can be successfully modeled by using the theory of derivatives and integrals of
fractional order (fractional calculus). But, solving initial value problems of multi-dimensional
time fractional homogeneous heat-like equations by applying Reduced Differential Transform
Method was not presumably presented in the existing literature. As a result, the study was aimed
to fill the gap, and it was intended to answer the following questions:

1. How can we define reduced differential transformed function and its reduced differential

inverse transform in n-dimensions (n € N) for solving initial value problems of multi-

dimensional homogeneous time fractional heat-like equations by applying Reduced
Differential Transform Method?
2. What theorems can we give by using definitions of reduced differential transformed function

and its reduced differential inverse transform in n-dimensions (n € N) for solving initial

value problems of multi-dimensional homogeneous time fractional heat-like equations by
applying Reduced Differential Transform Method?

3. How can we find analytic solutions of initial value problems of multi-dimensional
homogeneous time fractional heat-like equations in infinite power series form (open form)
using Reduced Differential Transform Method ?

4. How can we determine exact solutions of multi-dimensional initial value problems of
homogeneous time fractional heat-like equations applying Reduced Differential Transform

Method?



1.3.  Objectives of the study

1.3.1. General objective

The general objective of this research was to develop a scheme to find analytic solutions of

multi-dimensional homogeneous time fractional heat-like equations under initial conditions by

reduced differential transform method.

1.3.2. Specific objectives

The specific objectives of the study were:

v To define reduced differential transformed function and its reduced differential inverse

transform in n-dimensions for solving initial value problems of multi-dimensional time-
fractional homogeneous heat-like equations by applying Reduced Differential Transform
Method

To give theorems (mathematical operations) by using definitions of reduced differential
transformed function and its reduced differential inverse transform in n-dimensions for
solving initial value problems of multi-dimensional homogeneous time-fractional heat-like
equations by applying Reduced Differential Transform Method

To find analytic solutions of IVPs of multi-dimensional initial value problems of
homogeneous time fractional heat-like equations in infinite power series (open) form by
using Reduced Differential Transform Method

To determine exact solutions of initial value problems of multi-dimensional homogeneous

time fractional heat-like equations after applying Reduced Differential Transform Method

1.4. Significance of the study

This research is considered of vital importance for the following reasons:

1.

It will develop the researcher skill on conducting scientific research, especially mathematical
research.

It will familiarize the researcher with the scientific communication in mathematics.

It will provide techniques of solving initial value problems (IVPs) of multi-dimensional
homogeneous time-fractional heat-like equations by using Reduced Differential Transform

Method for readers.



4. It will be used as reference material for anyone who will work on similar study.

1.5. Delimitation of the study

Even though, there were different types of time fractional partial differential equations which can
be solved by different analytical, numerical and semi-numerical (or semi-analytical) methods,
the study was delimited to initial value problems of multi-dimensional homogeneous time
fractional heat-like equations and focused only on developing a scheme to find analytic
solutions of multi-dimensional homogeneous time fractional heat-like equations under initial
conditions by the Reduced Differential Transform Method, which is semi-numerical or semi-

analytical method.



CHAPTER TWO

2. LITERATURE REVIEW

Many phenomena in engineering, physics, chemistry and other sciences can be described very
successfully by models using mathematical tools from fractional calculus, i.e. the theory of
derivatives and integrals of fractional non-integer order, M.S.M. Noorani, et al. [9]. Fractional
differential equations have gained much attention recently due to exact description of nonlinear
phenomena. No analytical method was available before 1998 for linear fractional differential

equations.

As it was stated in M.S.M. Noorani, et al. [9], the variational iteration method (VIM), which is
analytical method, was first proposed in 1998 by He to solve fractional differential equations
(seepage flow with fractional derivatives in porous media) and then after it also used to solve
more complex fractional differential equations such as linear and nonlinear viscoelastic models
with fractional derivatives, nonlinear differential equations of fractional order, linear fractional
partial differential equations arising in fluid mechanics ,and the space-and time-fractional KdV
equation. The variational iteration method successfully employed to obtain the approximate

solution of the fractional heat and wave-like equations with variable coefficients.

In 2007, the homotopy perturbation method (HPM) was applied to both non-linear and linear
fractional differential equations and it was showed that HPM is an alternative analytical method
for fractional differential equations. HPM also used to solve the fractional heat- and wave-like

equations with variable coefficients, in M.S.M. Noorani, et al. [9].

In addition, Differential Transform Method (DTM), which is a semi-analytical or semi numerical
technique, was successfully employed to obtain the approximate solutions of the fractional heat-

and wave-like equations with variable coefficients, in M. Mohseni and H. Saeedi [10].

In M. Sohail and S.T. Mohyud-Din [5], Reduced Differential Transform Method was applied to
solve multi-dimensional time-fractional heat equations. But, nothing was discussed about initial

value problems (IVPs) of multi-dimensional homogeneous time-fractional heat-like equations by



applying the RDTM in the existing literature. Motivated by the gap, the works of M. Sohail and
S.T. Mohyud-Din [5] were extended analytically to initial value problems of multi-dimensional

homogeneous time fractional heat like-equations to find analytic solutions.

Therefore, this study was targeted to develop a scheme to find analytic solutions of multi-
dimensional homogeneous time fractional heat-like equations under initial conditions by the

Reduced Differential Transform Method.



CHAPTER THREE

3. METHODOLOGY
3.1. Study Site, Area and Period

This research was conducted to develop a scheme to find analytic solutions of multi-dimensional
homogeneous time fractional heat-like equations under initial conditions by Reduced Differential
Transform Method under Differential Equation Stream of Mathematics Department in Jimma

University from December, 2013 to June, 2014.

3.2. Study Design

The design of the study was analytical design.

3.3. Sources of Data

The information or data which were related to the topic of the study was collected from

secondary sources such as reference books, internet and published research articles (or Journals).

3.4. Administration and Instrumentation of Information or Data

The collection of information or data from secondary sources such as reference books, internet
and published research articles (or Journals) was administered by the researcher. During
conducting this research, consultation for the researcher was administered by the persons whose

field of specialization is related to the study area.

3.5. Procedure of the Study

In order to achieve the objectives of this study, iteration technique, which was used by M. Sohail

and S.T. Mohyud-Din [5], was the standard technique (procedure) of the study.



3.6. Ethical Issues

To collect related data at the place where they were available and to process other related
supports, cooperation request letters were written to the concerned bodies by officials of Jimma
University Natural Science College. In addition, the cooperation request letter from Mathematics
department of Jimma University was taken by the researcher to the institute(s) where these
materials are available to get consent from them. Moreover, rules and regulations of the

institute(s), from which information was collected, were kept by the researcher.
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CHAPTER FOUR

4. DISCUSION AND RESULTS
4.1 Preliminaries

4.1.1 Gamma and Beta Functions
Definition 4.1.1.1 The Gamma function I'(y) is a function which is defined in R. Bronson [11]

as:

I'(y)= J‘ty’le”dt, y>0
0..

Some properties of the Gamma function F( ;/) are the following (Proof Rf. R. Bronson [11]):
i. T (1) =1.

. T(p+)=A(y),Vy>0.

iii.  Whenye N,T'(y+1)=y!

Definition 4.1.1.2 The Beta function B( z, w) in two variables z,w € C is defined by

_T@rw)

B(z,w) C(z+w)

As stated in M. Weilbeer [12], the Beta function possesses the following property:

1 © z—1
B(z,w) = |2l = [ T 4 1
(z,w) i e (1)

4.1.2 Fractional Calculus, Some basic definitions, properties and theorems

Definition 4.1.2.1 As in M. Bayram & M. Kurulay [13], a real function f (x),x > (1s said to be

in the space C,, ue R if there exists a real number (p > x) such that f(x) =x” f,(x), where

£;(x)eCI0, ) and it is Said to be in the space C” if and onl ifw— Ff"MeC meN
1 s p u y dxm - o .

Example 4.1.2.1

11



4 2

+2x, x>0

f(x)=x

Because 1 (x) = xz(xz +2) wheref1 (x) = e 2, f(x) = xzfl (x).

= 2> u, where y € (2, - ) andfl(x) e C[0, )
Lf) =xtr2x?e C (0, )
Y7

d'f(x)
4 _ r®
And /) € Cﬂ (0, -0) & P e Cy (0, o).

Definition 4.1.2.2 The Reimann-Liouville fractional integral operator of order of a function

S(x)eC,, p>—1is defined in S. Momani, et al. [14] as:

X

1 a-1
s (x)={ ) ) S0k a0 @)

Jgf(x) =f(x),a:0
Definition4.1.2.3. For the smallest positive integer m, that exceeds « , the Caputo fractional

derivative of order & , in S. Momani, et al. [14], is defined as:
fo(x) =Jre o (x)

_ ﬁ[u —0" U e, for feClum —1<a <m,x>a
d" f(x)

d—’” ,fora=m
X

(3)

Definition 4.1.2.4 For the smallest positive integer m, that exceeds « , the Caputo time fractional

derivative operator of order « >0 is defined in M. Bayram & M. Kurulay [13] as:

;j(t—f)’""’1 Mdf form—-l<a<m
e T2 | Tna)] T ’
B or” 0"u(x,1)

,fora=meN
ot" f

12



As in S. Momani, et al. [14] for fractional derivative of order a and f such that
a, f>0,m—1<a<m and y>-1,a>0, we have the following properties (proof Rf. M.

Weilbeer [12]):

Lo (a2 1) (x) = (2275 0)(x) = (V27 £) () )
T(y+1
2 Jf(r—a)“%(t—aw (with out proof ) ©)

s (200 =2 1)) = () -Sr @) T s (©

k=0

As in S. Momani, et al. [14], the Reimann-Liouville derivative has certain difficulties to model
real world problems with fractional differential equations since it does not allow the utilization of
derivatives of initial and boundary conditions involving integer order derivatives, which have
clear physical interpretations. But, the Caputo fractional derivative allows the utilization of initial
and boundary conditions involving integer order derivatives, which have clear physical
interpretations. In addition, the derivative of a constant is zero and we can define properly the
initial conditions for the fractional differential equations which can be handled by using an
analogy with the classical integer case. For these reasons, Caputo fractional derivative was

preferred for this study.

Theorem 4.1.2.1 (Integral Mean Value Theorem)

Let f(x)be continuous on [a, b]. Then there is a number & in [a, b] such that

} f(x)dx = f(£)(b—a)( proof Rf.R.Ellis & D. Gulick [15]) (7)

Theorem 4.1.2.2 (General Mean Value Theorem)
As in S. Momani, et al. [14], suppose that f(x)e C([a,b])and D! f(x) € C([a,b]) for0<a <1,

then we have:

1 a
f(x)=f<a)+m(l>:f@)(x—a) (8)

With 0 <& < x,Vxe [a,b] and D” is the Caputo fractional derivative of order & > 0.

Proof:

13



By (2),

(JDL f)(x) = #a) [(x=t)" DI 7 (t)dt (9)

Using the integral mean value theorem, (7), we get

(J“D“f)(x)—— j‘ dtzﬁD“f(Z;)(x—a)”forOS&Sx (10)
On the other hand, from (6), we have

(iDL = f(0) = f(a) (11)
So from (9) and (10), (7) is obtained
Hence,
1

I'(a)

Theorem 4.1.2.3 As in S. Momani, et al. [14], suppose that(D%)" f(x), (D) f(x)e C(a,b],

f(x)=f(a)+ P (8)(t-a)

for 0 <a <1,then we have

(x_a)mx
F(na + 1)

(JI“(DEY" )(x) = (D (D™ f)(x) = (D) f)(a) (12)

Where (DY)" =D;.D?.D?---D? (n-times)
Proof:

From (4), we have
(2 (DY )= (DY £)()
=J (DY f)(x) = (JE (DL £)()]
=J (DY S)E) = (JEDDLY [)(0)]
=J[(DEY'Lf (x) = (JEDE) £ ()]
=J[(DEY'[f (x)=(f(x)- f(@)]], (By using (6))
=J2 (DY) [)(@))

(t-a)"
~D(na+1)

(((D7)" f)(@)) , (By using (5))

Hence,

14



(2 (DY )0 = (D™ f)(x) = (( i )((D“) )a)

Theorem 4.1.2.4 (Generalized Taylor’s Formula)
As in S. Momani, et al. [14], suppose that (D{)" f(x) ¢ C(a,b] for k=0,1,2,---,n+1, where

0<a <1 ,then we have

LRGN, (13)

f(x)=j21§2i_aa)m D DO+ e +1)

+1)
, as<é< x,‘v’xe(a,b]

Proof:

From (12), we have

Z(J (D) )x) = I (DY f)(x) = Z (x D7) f)(a) (14)

)

That is,

100 =@ DD N = )(<D Y )@ (15)

By using (2),

F((n+11)a+1)j.(x t) ((Da) RlOL

By the integral mean value theorem (or equation (7)),

DY f)(x) =

(n+)a a\n+l — 1 a r ”+I
U@ =pa (P D]

D" IXED (e e (16)

(n+)a ; ya \ntl =
O D0 = L )

From (15) and (16), the generalized Taylor’s formula (13) is obtained

Therefore;

CANIGHN

f(x) = 2(" V(D) oot

+1)

15



For o =1, this Caputo generalized Taylor’s formula reduces to the standard (classical) Taylor’s

formula,
(n+1)

noo N (n+1)
0= S 0@+ L) (3—a)

The radius of convergence, R for the generalized Taylor’s series,

i _‘”W) (D) f)(a) (17)

depends on f(x)anda, and is given by:

R li—a tim| L@ D) (@O ) (18)
e D ((n+ Da +1) (DS)" f)(a)‘

Theorem 4.1.2.5 As in S. Momani, et al. [14], suppose (D) f)(x)eC(a,b])  for

9

k=0,12,---,n+1where0<a <1.If x 6[a,b],then

7002 2 ()= 3 QA (19)

In addition, there is a value & with a <& < x so that the error term Ry (x) has the form:

a ((DH " &) (N+D)a
Ry (x) = (N +Da+1) ™% (20)

Proof:

Let (DY) f)(x)eC(a,b])for k=0,1,2,---,n+1where 0< ¢ <1.
Letx e[a,b].

Take N € N such that £=0,1,2,---, N +1.

Then by (13), we have
(N+)e

PONE ()

(x a)
fx)= z T((N+1)a+1)

)((D“) @)+

Assume NV €N to be large enough. Then

16



(N+)a
is negligible. That is, it is almost zero.

(D"
r((N+1)a+1)'(x “)

So,

& Dy “ ia
ﬂx)sPN(x)—zl“r(;a—Qgﬁ”u ay

Then for a value & such thata <& <x . the error term becomes

ary (DD"UE) [ wea
Ry (x) = T((N+Da+1) Ax=a) T

The accuracy of Py (x) increases when we choose large N and it decreases as the value of x

moves away from a. Hence we must choose N large enough so that the error does not exceed a

specified bound. In the following theorem, we find precise condition under which the exponents

hold for arbitrary fractional operators. This result is very useful on our approach for solving

differential equations of fractional order.

Theorem 4.1.2.6 As it was stated in S. Momani, et al. [14], suppose that £ (x) = x"g(x) where

A>-1 and g(x) has the generalized Taylor’s series g(x)zZan(x—a)”“ with radius of

n=0
convergence, R>0,<a <I.

Then
D;D! £ (x)=D;" £ (x)

for x € (0,R)if:

a) p<A+land o is arbitrary or

b) p>A+1land yis arbitrary, and a, for £ =0,1,2,---,m—1< S <m.
Proof:

a) In case of f#<A+1, from definition of Caputo fractional deferential operator (3) and from

property (5), we have

i i [(na+24+1)
Dﬂ — Dﬂ _ na+/1:
O s s F

Since A—f >—-1,and

17

(x _ a)na+ﬂ—ﬂ



> F(na—i—l—i—l) na+i-p
D’ D" — 7 (v —
2D (%) nz_;‘a"l“(na+/1—/5’+l) (x=a)

[(na+A+1) T(na+i-p+1)

- _ no+A-Lf-y
=nz_;‘a" [(na+A-pB+1) F(na+/1—ﬂ—7/+1)( %)

& D(na+a+1)  D(na+i-p+1)
_;‘a” [(na+A—pB+1) T(na+A-f-y+1)
=D f(x)

b) For the other case f > A +1, from definition of Caputo fractional deferential operator (3) and

X (23)

from property (5), we have

DI f(x)= iaan(x_a)naﬂ _ ian T(no+A+1)
n=0

_ na+i-pf
= "T(na+-p+1) (x=a)

b

Since 41— <—land

d F(l’laﬁ'/’t"'l) na+i-p
D’ D* — D’ (x—
2D (%) nz_:;a”l“(na+/1—,b’+1) b (x=a)

& [(na+A+1) T(na+i-pB+1) (
_;)a" C(na+A-B+1)T(na+A-p—y+1)

—a )na+ﬂ—ﬂ—y

K I(na+A+1)  T(na+A-p+1)
_;a" [(na+A-B+1)T(na+A-L-y+1)

=D ()

(X _ a)noﬁ-ﬂ—ﬂ—y

So, based on the generalized Taylor’s formula, the generalized differential transform of the k™

derivative of function f(x) in one variable, F, (k) and the differential inverse transform of

F,(k), f(x), where f(x) is analytic and continuously differentiable, are defined in S.

a

Momani, et al. [14] as follows.

Definition 4.1.2.5.If the function f(x) is analytic and k-times differentiable continuously with
respect to in the domain of interest, then the generalized differential transform, F, (k) and is

defined in S. Momani, et al. [14] as:

18



O e (AT i ) (24)

Xo=a

Definition 4.1.2.6.The differential inverses transform of U, (x), f(X) 1s defined in S. Momani, et

al. [13] as:
£5) =20, (3) =) (25
o 1 o . . .
Substituting = (ka+1){6tk“ f (x)l_o for U (x) from (24) in (25) using (17) one can obtain
that:
c 1 aKlI Ka
100=3 iy )] e (26

4.1.3 Reduced Differential Transform Method

The basic definitions of the reduced differential transform and differential inverse transform in

[5,7, 17 and 18] were discussed as follows.

Let RDT denotes the reduced differential transform operator and denotes the inverse reduced

differential transform operator.

Definition 4.1.3.1 As in [5, 17, 18], if the function u(x,?) is analytic and differentiable
continuously with respect to time variable t and variable in the domain of interest, then the

reduced transformed function 1is defined as:

1 aka’

RDT[u(x,l)] =U, (x) = F(ka N 1) {8/‘“ u(x,t)l_o (27)

Where « is a parameter describing the order of the time fractional derivative in Caputo sense

and U, (x) is transformed function of u(x,?).

Definition4.1.3.2.  The  reduced  differential  inverses transform  of U, (x) ,

RDT™! [u(x,t)}or u(x,t) is defined as follows in[5, 17,18]:

19



RDT™ [u(x,t)] = u(x,t) =>U, (x)tK“ (28)

k=0

1 aka
Substitutin u(x,t for U, (x) from equation (27) in equation (28), one can
e ] )| or () o cquation 2) i ssusion 25

obtain that:

(e =3~ (KL - 1){ ad u(x,t)L e (29)

k=0

Definitions 4.1.3.1 and 4.1.3.2 were stated in [5] and [17] for solving time fractional heat
equations and time fractional non-linear evolution equations having time fractional derivative
order, @ such that 0 < o <1respectively. These definitions were also stated in [17] for solving
Caputo time fractional-order hyperbolic telegraph equation having time fractional derivative

order, such that 0 < a < 2.

Even though, the definitions of t-dimensional spectrum function (or the Reduced Transformed
function) and the reduced differential inverse transform of the transformed function and the
mathematical operations (theorems) of Reduced Differential Transform Method in two
dimensions were not stated in M. Sohail and S.T. Mohyud-Din [5] and V.K. Srivastava et al. [7],
they were used for solving time fractional heat equations and two dimensional time-fractional
telegraph equations respectively.

Definition 4.1.3.3 As in V.K. Srivastava, et al.[7], if the function u(x,y,z,t)1s analytic and
differentiated continuously with respect to time variable t and space variables x,yand z in the
domain of interest, then the t-dimensional spectrum function (or the reduced transformed

function), U, (X, y, z) is defined as:

RDT [u (x,y,z,t)] =U, (x,y,z) — r(kolt - 1){88:1{ u (x,y,z,t)} (30)

Where « is a parameter describing the order of the time fractional derivative in Caputo sense and

1,=0

Uy (x,y,z) is t-dimensional spectrum function of u(x,y,z,?).

20



Definition 4.1.3.4.The differential inverses transform of U, (x,y,z), RDT"' [u(x, y,z,t)]

or u(x,y,z,t) is defined as follows in V.K. Srivastava, et al [7]:

RDT™! [u(x,y,z,t)] =u (x,y,z,t) = iUk (x,y,z)tK“ (31)
k=0
Substituting ; iu(x, y,z,t) for U, (x, y,z) from equation (30) in equation (31),
F(ka+l) ot* o

one can obtain that:

© Ka
u(x,y,z,t) = Z F( ! [Stm u(X, ¥, Z,t)} e (32)

o Ka+1) =0

Definitions 4.1.3.3 and 4.1.3.4 were stated in V.K. Srivastava, et al. [7] for solving two and three
dimensional time-fractional telegraphic equations having time fractional derivative order, & such
that 0 < o < 2. But, nothing was said about the definition of t-dimensional spectrum function (the
reduced transformed function), the definition of the reduced differential inverse transform of the
reduced transformed function and mathematical operations (theorems) of Reduced Differential
Transform Method in two dimensions in V.K. Srivastava, et al. [7] even though their idea was
used for solving two dimensional time-fractional telegraph equations.

In addition, nothing was said about the definition of t-dimensional spectrum function (the
reduced transformed function), the definition of the reduced differential inverse transform of the
reduced transformed function and mathematical operations (theorems) of Reduced Differential
Transform Method in three dimensional space in M. Sohail and S.T. Mohyud-Din[5] but their
idea was used for solving time fractional heat equations.

Some of the mathematical operations (theorems) in one dimension performed by reduced

differential transform method [5, 17, 18] were stated and discussed as follows.

Theorem 4.1.3.1 If w(x,t),u(x,t) and v(x,t)be analytic and k-times continuously differentiable

functions with respect to time t and x in the domain of interest, Q € R which is closed set such

that

21



w(x,t)=u(x,t)+v(x,z), then W, (x)=U,(x)xV, (x) ,where W, (x),U,(x)and V, (x) are

reduced differential transform of w(x, t) U (x, Z) andv(x, t)

Proof:

respectively.

Let w(x,t),u(x,t) and v(x,z) be analytic and k-times continuously differentiable functions with
respect to time t in the domain of interest, QeR which is closed set such that
w(x,t)=u(x,t)+v(x,z), where k=1,2,---

Let W, (x), U,(x) ¥, (x) and ¥, (x)be t-dimensional spectrum functions of w(x,),u(x,t)
and v(x,?) respectively.
Now we want to show that

W, (x)=U, (x)27; (x).
Then

RDT[w(x,t)]= RDT [ u(x,t)+v(x1)]

where pp7 denotes the reduced differential transform operator.

1 aka 1 aka
By definition 4.1.3.1 , = ;1) Ev(x,
y definition 4.1.3.1, F(ka+ 1) {8#‘“ w(x t)l_o F(ka +1) {8#‘“ ( u(x t) v(x t))}

1=0

= ! o w(x t) = ! o~ u(x t) t ! o v(x t)
I(ka+1) ot V7 D(ka+1)[ ot 77| | T(ka+1)[ o

1=0 15=0

Then

1

W, (X) =Uk(x)in (x) , since W, (X):F(ka+1){§;:’ w(x,l)} ) .

By definition 4.1.3.1,

o™ u(x t) and V, (x)— ! o™ v(x t)
ol ] Y T(ka ) ot

Uk(X):F(kaH){

0

Thus,
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w(x,t) =u(x,t)iv(x,t) =W, (X) =U, (X)i V. (X)
Therefore, if w(x,t)=u(x,t)£v(x,t), then W, (x)=U,(x) £V, (x)
Theoremd.1.3.2. If w(x,t)=au(x,t), then W, (x)=0aU, (x) ,where W,(x) and U, (x)

arc

reduced differential transform of w(x,t) and u(x,t)

Proof:

respectively.

Let w(x,t) and u(x,t) be analytic and k-times continuously differentiable functions with
respect to time t and x in the domain of interest, Q e R which is closed set such that
w(x,t) :,B(x,t) , where [ is constant and £ =1,2,---

Let W, (x) and U, (x) be t-dimensional spectrum function of w(x,t)and u(x,?) respectively.

Now we want to show that ¥, (x) =pU,(x).

Then RDT [w(x,t)] =RDT [ﬂu(x,t)], where RDT denotes the reduced differential transform

operator.

Then,
RDT[w(x,t)] = ,BRDT[u(x,t):I.
By definition 4.1.3.1,

Lo onl p b [ e
D(ka+1)[ o 277 | o " T(ka+1)[ o 7]

0

But by definition 4.1.3.1,

)= g 0| ) ”(”)l

0=V.

Then
W, (x)=BU(x).
Thus,
w(x,t)=pu(x,t) =W, (x)=pU, (x).
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n

Theorem 4.1.3.3 If w(x, t)= g

u(x,t), then W, (x)=(k+1)(k+2)--(k+n)U,,, (x)

n

Proof:
Let w(x,t) and u (x,t) be analytic and k-times continuously differentiable functions with respect

n

) ) ) ) . 0
to time t and in the domain of interestQ e R which is closed set such that w(x,t) = P u (x,t),

where k=1,2,---
Let W, (X) and U, (x)be t-dimensional spectrum functions of w(x,t) and u(x,?) respectively.

By definition 4.1.3.1, we get

1 aka
RDT[W(X,I):I =W, (x)= F(ka N 1) [8#‘“ w(x,t)}

0

Where RDT denotes the reduced differential transform operator

Since

vl = Se) 1) =) Bl St |

For

1| o (o
cnio- o]
’ 1,=0

()] Sl Gutna| |

0=

o) = | S )

1y=0

Wi (%)= k('l(cl: . l)[( 2; u(x’t)ﬂ, "

0

(k+1)(k+2)(1<+3)---(k+n)k![( o ﬂ .

Ki(k+n)! oo (1)

W (x) =

)=

WK(x)(k+1)(k+z)(z<+3)---(k+n)((k+1n)ﬂ cad u(x,t)ﬂtoo}
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By definition4.1.3.1,
Wi (x)=(k+1)(k+2)(K+3)---(k+n)U,,,(x).

Thus,

n

W(x,t)z

u(x,t) = Wy (x) = (k+1)(k +2)(K +3)-(k +n)U,., (x).

n

n

Therefore, if w(x,t)=——u(x,t) then W, (x)=(k+1)(k+2)(K +3)---(k+n)U,,, (x)

o _I'(Ka+Na+1)

Theorem 4.1.3.4 1f w(x.1) = Zzu(x.1). then ¥, (x) === 57
a+

Ugin (X)

Proof:

Let w(x,t) and u (x,t) be analytic and k-times continuously differentiable functions with respect

to time t and in the domain of interest QeR which is closed set such that

Na
w(x,t) =

u(x,t), where k =1,2,--

atNa
Let W, (x) and U, (x)be t-dimensional spectrum function of w(x,¢) and u(x,?) respectively.

By definition 4.1.3.1, we get
1 aka

RDT[w(x,t) | =Wy (x)= (e 1) {82‘“ w(x,t)l K

Where RDT denotes the reduced differential transform operator.

But
Na

W) =0 ()

Then
1 aka aNu
w. = .
K(x) F(ka+1)|:atka ( atNot u(x’t)j:|t Y

By multiplying with

F(KO(+N6¥+1) (x)— F(KO(+N(I+1) aka oNe u(x t)
F(Ke+Na+l)" “V7 T(ka+1)I(Ka+Na+1)| o o™ )] -

0=
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I'(Ka+Na+1) 1 ot
o) e o]

By definition 4.1.3.1,

akaJrNa

Uy (x)= ! { Py e ))Lo

I'(Ka+Na+1)

I'(Ka+Na+1)

= Wy (x): F(ka+1) Uk+N(x).

o I'(Ka+Na+1)

Thus, w(x,t)= e u(x,t)=We(x)= F(ka+1) Upy (%)

Theorem 4.1.3.5

Ifw(x,t)=x"t"  then W, (x)=x" &(k—n),where x"5(k—n)= {:)’,i{fkk::n
Proof:
From (28),

w(x,1)=x"t", can be written as w(x,t) = ix’” S(k—n)t*
k=0

Where n=ka= a =1 (since both k & n are natural numbers).

0

Now, taking the reduced differential transform (27) of [W(}C,t)szm ) (k—n)tk”‘}, we get
=0
Lifk=n

W, (x)=x" &(k—n),where x"S(k—n)= {0, Fken
Hence, the theorem holds true.

2 2
0 u(x,t), then W, (x)= 0

ox’ ox’

Theorem 4.1.3.6 If w(x,7) = U, (x).

Proof:
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Let w(x,t)and u(x,t) be analytic and k-times continuously differentiable functions with respect

to time t and x in the domain of interest, Qe R which is closed set such that

2

w(x.t)= u(x,t), where k =1,2,---

ox
Let W, (X) and U, (x) be t-dimensional spectrum function of w(x,t) and u(x,t) respectively.

By definition 4.1.3.1, we get

RDT [ w(x,t) =W, (x)= r(kolg +1) {;k:; w(x’t)lo

Where RDT denotes the reduced differential transform operator

Then

1 ok (8 1 . 0’
Wy (x)= (ke 1) 20| ¢ u(x,t) , since w(x,7)= poE u(x,t)

=0

Wi (x)= 2;2 (r(kolwl)[s; (u(x’t))_t_oJ

But from definition 4.1.3.1,

U, ()= F(kolﬁl){ - (u(x,t))}

t=0

Then
62
WK (X) :wUk()C)
) 0 0
Thus, 1fw(x,t) = o u(x,t),then w, (x) = ?UK (x) .

4.2 Main Results

To the best of the researcher knowledge till now no one has developed scheme (procedures) to
find analytic solutions of multi-dimensional homogeneous time fractional heat-like equations
under initial conditions by Reduced Differential Transform Method. Due to this, the work of M.
Sohail and S.T. Mohyud-Din [5] were extended by the researcher to develop procedures to find

analytic solutions of one, two, three and more than three dimensional homogeneous time
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fractional heat-like equations separately under initial conditions by Reduced Differential

Transform Method only in analytical case.

4.2.1 Some new Basic Definitions, Properties and Theorems in n-Dimensional Space
where ne N

In this sub-section, definitions: 4.1.2.1, 4.1.2.2 and 4.1.2.3 in one dimension were extended to n-

dimensions (#€N) and new definitions: 4.2.1.1, 4.2.1.2 and 4.2.1.3 were introduced to n-
dimensions (HEN) respectively. In addition, theorems: 4.1.2.2, 4.1.2.3, 4.1.2.4, 4.1.2.5 and
4.1.2.6 were extended to n-dimensions (neN) and new theorems: 4.2.1.1, 4.2.1.2, 4.2.1.3,

4.2.1.4 and 4.2.1.5 were introduced in n-dimensions (7€ N ) respectively.

Definition 4.2.1.1 Let a function u(x,x,, -, x,, t) be analytic and k-times continuously
differentiable with respect to time, t and X,,X,,---, andx, such that u(x,x,, -, x,, t)=
q(x,,x,, -+, x,)g(t) where (x,x,, -+, x,) is element of domain of interest, & < R" which is
closed set, and ¢ > 0.

Then u(x,,%,, -+, X,, t)is said to be in the space C, (Qx(O, oo)), ue Rif there exists a real
number ( p > u ) such that u(x,x,, -+, x,, t)=1"1(t)q(x,,x,, -+, x,) and g(t)=1"I(t) ,where
q(xl,xz, ey xn)eC(Q),l(t)e[O, o) and also u(x,,x,, -, x,, t)is Said to be in the space

0"u(x,,x,, =+, x,, t)

C (Qx(0, )) if and only if P

eC,,me N.

3 3 3 3
Example 4.2.1.1 u(x,,x,, -+, X,,, t)=(t8+2t5)(4+x—é+%+%+%), t>0.

3 3 3 3
X, X X X
Because U x,x,---,xn,t :ts(t3+2)4+_1+_2+_3+ 4
(x,,, ) 4+ ot oot )
3 xPox) ox x)]
where U (X, X,y X,, t)=(¢ +2)(4+ 2+ 4 B Ty
1050 ) G 6 "6 6

D).

no

f(x) = z5u1 (X5 X500 X

= 5>, where yt € (5, -o0) anduy (X}, Xy, ***5 X, 1) e C(QX[0, «))
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3 3 3 3
X

g u(xl,x2,---, X, t)=(t8+2t5)(4+%+%+?3+%)e cﬂ(Qx (0, ©))

And
ou(x,x,, -, x,, t)
ot

=u" € C,(QX (0, ).

8
u(x,x,, -+, x,, t)e €, @X (0, -0) &

Definition 4.2.1.2 Let u(xl,xz, X, t) be analytic and k-times continuously differentiable
with respect to £,X,,X,,---, and x, such that u(x,x,, -, x,, t)= ¢(x,x,, -, x,)g(t), where
(X, %, -+, x,) € QcR” and 1 €(0, 00). Then the Reimann-Liouville time fractional integral

operator of order & >0of the function u(x,,x,, -, x,, t)eC, (QX(O, oo)), 1 >—1 is defined

as:
1 t a-l1
— |- X, e X, E)dE, 0
Jou (2,2, 0, X, 1) = F(a)g( &) u(xxy, ooy X, §)dE, 0> )

Jgu(xl,xz, X, t) =u(x1,x2, X, t),a:O
Definition 4.2.1.3 Let u(xl,xz, X, t) be analytic and k-times continuously differentiable
with respect to t,x;,x,,"--, and x, such that u(xl,xz, X, t)= q(x;,%,, =+, xn)g(t) , where
(x,%,, =+, x,)e QcR" and te(O, 00). Then for the smallest integer, m that exceeds « ,

Caputo time fractional derivative of order « > 0 is defined as:

0”
Diu(x,,%,, +, X,,t) = u(x,%,, -, X,.1)

ot”
: o"
;j(t—g)m-“-l (%, ’x"’t)df,form—1<a<m
_ L(m—a)s L™ (34)
Gmu(xl,xz,---,xn,t) y
,fora=m
ot"

For time fractional derivative of order a and B such that &, >0, m—1<a<m, m—1<f<m

and y >—1, we have the following properties:

L (o) (5550 = ,o8) = (0T ) (5,355 -5 3,00) =5 ) (3,5, -5 %,00) - (39)
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[o+y+)
m-1 (’91( tk
3. (J(;le()zu)(xlaxb X ) u(xl Xystts Xn,l‘)_z& (xl X5ty n’O)E (37)
k=0 :
Proof:
Propertyl

Letu(xl’xz’ T X t)z CTTEHS x”)g(t)’ where (x,x,, -, x,)e QcR" and tE(O’ OO)

be analytic and k-times continuously differentiable with respect tot,x,,x,, -+, and x, .

Then

(Jedu)(xxy, 0 x,00) = (Je T (93, -+, x,)g (1)

=q(x,%,, -+, X)) J5 @) (t)]

= q(x,, %y, -+, )0 T7 ) () (By (4))

= (ST g0x, %, -+, x,)(g (1)

(o) (600 3,00) = (7 Ty (35 - ,00) (38)
And (JET5u) (%%, -0 x,00) = (JET5 ) (9%, -+, x,)2 (1))

=q(x,%,, -, x,)(J5 5 g (1))

=q(x, %, -+, x,)(J; g (t)) By 4)

= (I g%, -+ x,)2 (1)

= (5 )q(x, %, -+, x,)g (1)

:(J(f‘*ﬁu)()q,xz, X, t) (39)
Thus,
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JPTu)(x,x,, -, x ,t)=(JPu)(x,x,, -, x , t
(TT5u) (3152, -, x,08) = (I3 u) (%, )

Hence by (38) and (39), (35) is obtained, i.e.

(Jg’Joﬁu)(xl,xz, TN xn,t)z(JoﬁJoau)(xl,xz, X ,t)=(Joa+ﬁu)(xl,x2, e, X, ).

Property 2

Letu(xlﬁxz’ Tt Xy t): q(x, Xy, =, xn)g(t) te(O, OO)

, where (x,,x,, -, x,)e QcR" and

be analytic and k-times continuously differentiable with respect to,x,,x,, -+, and x, .

Y
Letf(t)_t , with  +1>0

Then by equation (2),

1 t
Jot =——|(t—x)""1"d
R P

t a-1 x
Jg’ﬂ:L (l—fj N — | Pdx
Ia)y, t

t a-1 4
Jot = Lta—lw.[(l _fj (f dx
') 0 t t

. d
Lets:f,wnhds:—x ,wherex=0=s5=0 ,andx=t=>s=1.
t t

1 1
J =—— " |(1=95)*" ¢"tds
0 F(a) !( ) S

1 1
J =—— (-9 ¢'ds
0 F(a) '([( ) S

1 ‘ e
Jgt}’ = _r( ) ta+yj(1_s)a—ls(7 1) ldS
o 0

By equation (1),

Jag_ 1 ea I'(e)'(y +1)
0 (@) C(a+y+1)
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__T+D) e
INa+y+1)

I'(y+1) prea

Hence, J;t" =
I'a+y+1)

Property 3

Letu(xl,x2, X, t): q(x;,x,, -+, xn)g(t), where (x,,x,, -+, x,) e Qc R" and te(O, oo)be

analytic and k-times continuously differentiable with respect to#,x,,x,, -+, and x, .
(Jg‘Dgu)(xl,xz, T xn,t) = (Jg‘Dg‘)(q(xl,xz, T xn)g(t))

= (95,0 -+ 2 EDER)())

. " e m—1 tk
Since by (6), (Jy D, g)(t) = g(t)_zg(k) (O)F
k=0 2
(4o o xNIEDFR(Y)) = g3, x,,)[g(r)—gg‘“(O);—! ]

m-—1 tk
=q(x,x,, -, x,)g(1)—q(x,,x,, -, xn)zg(”(o)p
k=0 .

m—1

tk
= g%, 3, 0 x)g (0 = X alx s, o x,)g " (0)
k=0 :

m—1 ak

tk
= u(X1 X' )x,,’t)_ ~ ottt “(X1 X " ,xn,O)ﬂ
o m—1 ) tk
Hence, (J¢Du (%3, -+, %,.t) =t (X%, -+, X,.0) = D u (500,00 1)
k=0 .

Theorem4.2.1.1 Suppose that u(x,,x,, ---, x,,t) e C(Qx[0,b]) such thatu(x,,x,, ---, x,,) =
q(x;,%,, =+, xn)g(t) g()eC[0,b])) Dju(x,x,, -, x,,t)e C(Qx[0,b]) and D; g(¢) € C[0,b]) ,

for O<a <1, (x,x,, -, x,)eQcR"and t¢ [0,b], then we have:

UKy s Xl = (XX s X,00) o (DEu(x,xy, o X, ENC (40)

I'(a)

with 0< & <1, where (x,, x,, -+, ¥ )eQ C R" andze [0,b], and D = O (X2 7 %,.1)

ot*

1s the

Caputo time fractional derivative of order o > 0.
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Proof:

From (33), we have

t
(Jy Du)(x,,x,, =+, X,,t) = I D u xl,x2, ey X, &)d& (41)
0

(J(?Dgu)(xl’xza T xn,t)zq(xl,xz, T xn) 1 I(t_é:)a_l D(;Zg(é:s)dé::

Using the integral mean value theorem (7), we get

a o 1 [24 ( -1
(J()Dou)(xpxza"'a xnat)ZQ(xpxza"'axn) a D g J.t_ dé

= (Jy Dyu)(x,,x,, ==+, X,,t) =

s 5 (-8

zﬁDgu(xl,xz,m, X, E_,)t“forOSZ;St (42)

On the other hand, from (37), we have
,0) (43)

(JoDgu)(x,,x,, oy X, ,8) =u(x,, Xy, =y X, ,8) —u(X;, Xy, =+, X

So, from (42) and (43), (40) is obtained

Hence,

u(x,x,, -, x ) =u(x,x,, -, x,0)+ Diu(x,x,, -+, x &)t
1972 n 1972 n 0 1972 n

1
[(a)
Theorem 4.2.1.2 Suppose that(D{)" u(x,,x,, -+, x,,t), (D&)"'u(x,,%,, -+, x,,t)e C(Qx(0,b]),

for 0 <a <1,then we have

(J(;na(D:)mu)(xlax25 T xnat)_(J(ngrl)a(D(?)mHu)(xlaxz: T xnat)
tn‘la

- (DY )1y e, X,,0)) (44)

I (ma + 1)
Where (D;)" =Dy .Dy.Dy --- Dy (m-times)
Proof:

From (35), we have
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(J(;'m(D()a)mu)(xDxZo T xnat)_(J(()mﬂ)a(Dg)mHu)(xlaxza Y xnat)
=J3 " (((DF)"w) (%, %y, =+, X,,0) = (Jg (D))" u)(x,, %, -+, X,,,0))
=Jo ((Dy)" u) (X, %y, =5 x,,8) = (S DeO(DG )" u)(xp, %5, -+, X,,1))

=J," (D))" u)(x,,x,, -+, x,,0))by using equation(37).
tma
=———((Dy)"u)(x;, %, -+, x,,0))
T (ma+1) by using (36)
Theorem 4.2.1.3 Suppose that u(xl,x2, X, t) =q(x;,%x,, -, xn)g(t) e C(Qx[0,b]) ,

(D&Y u(x,,x,, -+, x,,t) € C(Qx(0,b]), for k=0,1,2,---,m+1,where 0< & <1, then we have

— N tia (Q)Z)Wlu)(xpxza 5 n’ é) (m)
Mot %) ;F(iOH (@Y1 55,00 F((m+1)a+1)

0<&<t,Vre( 0] (45)

9

Proof:

From (45), we have

Z[Jéa(D:)iu)(xlaxza ) xnat)_J(giﬂ)a(D:)Hlu)(xl:xza Y Xn,t)]
i=1

i

=21y (O 03 5,0) (46)

i=1
That is,

u(x1’x2a ) xn’t)_(J(()"HI)O‘(D(;Z)’”H”)(XI,xz, ) xn’t)

_Z )((D ) u)(x,,%,, -, x,,0) (47)

Applying the integral mean value theorem yields
(J(()erl)a (D(()x )m+1u)(x1 Xy, e X, ,t)

1 0 m+1 a +1
:F((m+1)a+1)-([(t_ ((D ) ) (X, %, -+, X, §)d&
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1

_ a )"l ‘ _ (m+)a
_F((m+1)a+1)((D°) u)(%, %, axnai)l(f )" de

(m+l)a

. (Dg)mﬂu)(xloxz’ s Xy 98)
 T((m+1)a+1) (48)

From (47) and (48), equation (45) is obtained.
In case of =1, equation (45) becomes

m m+1 t

t
u(xla-xza : axnat) ZF? (xl s Xy st O)+ u(xl,xz, X, f)

,with 0< & < l,Vlf(O,b]

The radius of convergence, R for the generalized Taylor’s series of g (t) ,

0 ia
t

ZW((D:)?)(O) in

i=1

0 i © io
t

Zr(mﬂ) ((2PEDIEFE-IE xn,O)Of”;qoﬁ,xz, x”)r(ia+1)

(D) 2)(0)  (49)

i=1

depends on g(¢)and is given by:

Rt tim | et (D5 )(0)] (30)
won [T ((m + Da +1) (D{)" 2)(0) |

Theorem4.2.1.4 Suppose (D; ) u)(x,,x,, -+, x,,t)e C(Qx(0,b]) , fork =0,1,2,-+-,m+1, where

O<a<l. If (xl,xz, e xn)fﬂgR” and t 6[0,b],then

Z((Da) u)(x,,%,, -+, x,,0) i (51)

u(xl Xyttt xn,t) =Py (xl Xy ity Xt

(za+1)
In addition, there is a value & with 0 <& <t so that the error term R}, (x,,x,, ---, x,,¢) has the
form:
Ry, (x,,x,, - Z((Da M“u)(xl,xz, s %,,0) e (52)
I'((M+1a+1)
Proof:
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Let u( Xp Xy xn,t) be analytic and k-times differentiable with respect to ¢, XXy and X,

such that u(y, x> x 1) = q(X;, %y, -+, x,)g(#) in terms of functions of single variable.
Since

(DY (%55, -+, %,,1) e CQ@x(0,b]), (D) )(#) € C[0,b]and

Q(xlaxza ) xn) € C(Q) .
From theorem 4.1.1.4 (equation (19)), we know that

;) 8)(0)
)= p Z(( Y 2NO0)

(ia+1)
Multiplying both sides of this equation by g(x,, x,, --*, x,) , we get

g(x,x,, =, xn)g(t); q(x,,x,, =, x,)RY (t)

3 ((D(;Z)iu)(xl s X5 s xn,O) ia
XD I (ia +1) !

= Q(x17x2:

((Da) q(x;,%,, -+, x,)8(0) o
Z (ia+1) !

:u(xlaxza"'axnat)gpj\? (xlaxza Tty X

Since
u(x1’x2’.”’xn’0) = q(xlaxzo Tt xn)g(o) s

i((Da) u(.xl’.xz’ “’-X:n’o) e
— I(icr+1) '

M(xlaxz,-.-,xn,l‘)gpﬁj (xl,xz, L X

, (equation (51))
From theorem 4.1.1.4 (equation (19)),

R“ (t) ((Da)Mﬂg)(‘f) ()(M+l)a

Y T((M+Da+1)
= q(xlaxza Tt xn)Rﬁ (l):q(xlsz’ e x ) (((l()]‘l)—i_l)ga)ffl)) ( )(N+l)a
: e )2 @D 00, X)) v
= R (e T((M +Da+1) 0

((D:)M+lu)(x1 s Xy 07y xnag) t(M+1)a
(M +Da+1) '

SRy (%3, e, X 08) = (Equation 52 holds true).
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We must choose M large enough so that the error does not exceed a specified bound. From the
next theorem, we find precise condition under which the exponents hold for arbitrary fractional
operators. This result is very useful on our approach for solving partial differential equations in
n-dimensions of fractional order.
Theorem 4.2.1.5 Suppose that u(x,,x,, ---, x,,£) =q(x,,x,, -+, xn)g(t) =q(x,x,, -+, xn)l(t)ti ,
Where g(t) =/ (t)tl , A>—1and /(¢) has the generalized Taylor’s series /(¢)= Zaiti“ with
i=0

radius of convergence R>0,0< a <1. Then

D] DJu(x,,x,, -+, x,, t) =Dy u(x,x,, -, x,, t) (53)
, for te (0,R)if:

a) p<A+land is arbitrary or

b) p>A+1land yis arbitrary, and a, for k =0,1,2,---,;m—1< f <m.

Proof:
Let u(xl,x2, BT xn,t)zq(xl,xz, ) xn)g(t):q(xpxza BT xn)l(t)ti,

Where g(t)=1(t)* ,A>-1

Let /(¢) has the generalized Taylor’s series l(t)=2anti“ with radius of convergence R>0,
i=0

O<a<l.

a) Incaseofﬁ<’1+1’ﬂ_’1<1,

r DB =
Di{Dju(x,,x, -+ x,,t)= DgDoﬂ(q(xl,xz, . xn)g(t))
:CI(XI,XZ, T xn)DgDOﬂ(g(t))

:q(x17x29 ) xn)Dg+ﬂ(g(t)) :by (223)

= D;""[q(x,%,, -+, x,)8(1)]
= Dg+ﬂu(x1,x2 o X,l)

Thus,
DoyDoﬂu(xlaxz xn’t):Do”ﬂu(xl’xz o X,,1)
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b) Incaseofﬂ>i+1’ﬂ_’1>1,
D} Djfu(x,,x, -+ x,,6)= D{ D} (4(x,,%,, -+, x,)g (t))
=q(x,,x,, -+, x,)D{ D (g(t))
=q(x,%,, -+, x,)D{""(g(1)) , by (22b)
=D} (q(x,%,, -+, x,)g(1))
=D]"Pu(x,,x, -+ x,,t)
Thus,

DgDoﬂ”(xl’xz X, )= Doﬁﬂ”(xlaxz ot X,,1)

4.2.2 Reduced Differential Transform Method in n-Dimensions (7 € N)

In this section, the Reduced Differential Transform Method [16] that is used to obtain analytic
solutions for the initial value problems of homogeneous time fractional heat-like equations in n-

dimensions, was newly introduced and discussed.
There is Caputo fractional derivatives of order « such that 0 <o <1of u(xl,x2, ey xn,t)with

respect to time, t at a point (xl,x2, ey xn,O) in n-dimensions (7€ N ) in the initial value

problems of homogeneous time fractional heat-like equations in n-dimensions. This makes that
the reduced differential transform method can be used to obtain analytic solutions of initial value
problems of homogeneous time fractional heat-like equations in n-dimensions. So, based on

generalized Taylor’s formula of Caputo time fractional derivative in n-dimensions (7€ N) or
equation (49), the reduced differential transform of the k™ derivative of function

u(xl,xz, X, t) with respect to time at to= 0 denoted by
F, (O, O,---O,k)orU «(xX,x,,---,x) and the reduced differential inverse transform of
F, (0,0,---,O,k) orU,(x,,x,, -+, x,) denoted by u(xl,xz, X, t), where u(xl,xz, X, t)

such that u(xl,x2, X, t) = q(xl,x2, e xn)g(t) is analytic and continuously differentiable
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with respect time t and Xx;,x,, ---,and x, in n-dimensional space in the domain of interest(which

is closed set), Q —c R" , were defined and introduced as follows:

Definition 4.2.2.1

If the functionu(x;,x,, ---, X,,t) such that u(x,,x,, -, x,, t)=¢(x,x,, -, x,) g(¢) is analytic

and k-times differentiable continuously with respect to time t and variables x,,x,, ---,and x, in

the domain of interest, then the t-dimensional spectrum function (the reduced transformed

function) is denoted by U, (xl,x2,- --,xn) or F, (0,0,- --,O,k) and is defined as:

1 «
F, (0,0,---,O,k):Uk (xl,xz, e xn):m[(gﬂ )ku(xl,xz, e xn,t)]

15=0

1 aka
:l"(ka+1) atkau(xl’xZ""axnat) (54)

1y=0

, where a such that 0 < <1is a parameter describing the order of the time fractional derivative

in Caputo sense and UK(xl,xz, N X”)OI"F; (0,0,u-,O,k) is t-dimensional spectrum function of

u(x,x,, -+, X,,1).

Definition 4.2.2.2.The reduced differential inverses transform of U, (xl,xz, ey xn) is denoted

by u(x,,x,, -+, x,,t) and is defined as:
u(xl,xz,---,xn,t):iUk(xl,xz,---,xn)tK“ (55)

, Where « , such that 0 < <1is a parameter describing the order of the time fractional derivative

in Caputo sense

1 aka
Substituti 3 Xyy sty X, fi 54) in (55 i 51), btai
ubstituting F(ka+l){8tk“ u(x,x, X, )LO rom (54) in (55) using (51), one can obtain
that:
u(x,x , e, X ,t)z 3 ! o u(x,x o, X ,t) ke (55)
v &S (ka+l) ot T "
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So, (55) 1s reduced differential inverses transform of (54). The mathematical operations (or
theorems) performed by Reduced Differential Transform Method, which were deduced from

equations (54) and (55), were introduced and stated by the researcher as follows.

Theorem 4.2.2.1 If w(x,x,, -, x,,¢),u(x,1),u,(x,,t), -, and u, (x,,t) be analytic and k-
times continuously differentiable functions with respect to time t and x;,x,, --- and x,
in the domain of interest, Q € R” which is closed set such that

w(x,%,, -+, x,,0) =u, (x,0) 2u, (x,,0) £+ +u, (x,,7)
then

W, (x,%,, -+, x,) =U, (%) 2 U, (x,) £ U, (x,).
Proof:
Le w(x,x,, -, x,,t), u,(x,,1), u,(x,,¢), -, and u,(x,,t) are analytic and k-times
continuously differentiable functions with respect to time t in the domain of interest, Q € R”
which is closed set such w(x,,x,, -+, x,,t) =u, (x;,¢) £ u, (x,,0) £+ Fu, (x,.1).
Let W, (x,,x,, -+, x,), Uy, (x,), Uy, (x,),---,and U,, (x,) be t-dimensional spectrum functions
of w(x,,x,, -+, X,.t),u; (x,,0),u, (x,,t),---,andu, (x, ,7) respectively.
Now we want to show that W, (x,,x,, -+, x,) =U, (x,) 2 U, (x,) £---2 U, (x,)
Take reduced differential transform of both sides of

w(x,%,y, -, x,,0) =u (x,0) 2y (x,,0) £ £u, (x,,,0).
That is,

RDT[w(x,,x,, -+, X,.t) | = RDT [ u, (x,.2) £ u (x,,0) £+ +u, (x,.1)]

, where pprdenotes the reduced differential transform operator.

By definition 4.2.2.1 or equation (54),

1 aka
RDT =
[w(xl,xz, , xn,t)] ( 1)[ e w(xl,xz, R xn,t)l .
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= ! & u (x t) t ! il u (x t) t.-t ! & U (x t)
T(ka+1)| o " “T(ka+1)| o 2] 7 T T(ka+l)| ot Y

15=0 (=0 1y=0

Then

W, (xl’x2’ B xn):Ulk(xl)iUZk(Xz)i'”iUnk(Xn) , since

aka

1
I/Vk (xpxza ) xn)zr(ka+1)|:6tka W(xl,xz, o xn,t):|’0—0.

By definition 4.2.2.1 or equation (54),

1 o 1 o
Ulk(xl):l“(kaﬂ)[@t"“ * (x“t)lo_o’ Ua (x:) :F(ka+1)[8t"“ " (x”t)} e and

1,=0
1 aka
U = .
0= o))

Thus,

w(xl,xz, e, xn,t) :ul(xl,t)iru2 (x2,t)i---iun (x t):Ulk (xl)iU2k (xz)i---iUnk (xn).

Theorem 4.2.2.2 If w(x,,x,, -+, x,,t) = u(x,,x,, -+, x,,t), then

Wk(xl,xZ, ooy xn,t)=aUk(x1,x2, ey xn).

Proof:

Let w(xl,xz, -, xn,t) and u(xl,xz, - xn,t) be analytic and k-times continuously
differentiable functions with respect to time t, and x;,x,, ---, x, in the domain of interest,
Q e R"” which is closed set such that w(xl,xz, e, xn,l) :ﬂu(xl,xz, e, xn,t) , VP which are
constants and k =1,2,---

Let W, (x,x,, -, x,) and U, (x,x,, -, x,) be t-dimensional spectrum function of
w(xl,xz, e xn,t) and u(x,,x,, -+, x,,t) respectively.

Now we want to show that , (x,,x,, ---, x,) = U, (x,,%,, -+, x,) .

Then RDT[w(xl,xz, e, xn,t)] :RDT[ﬁ'u(xl,xz, e xn,t)], where RDT denotes the reduced

differential transform operator.
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Then
,RDT[w(xl,xZ, e xn,t)] =ﬁRDT[u(xl,x2, e xn,t)]

By definition 4.2.2.1 or equation (54),

! o w(x Xyyttoy X t) =p ! o~ u(x Xyy iy X t)
C(ka+1) ae* 072 27 DT (ke +1) ot 0T T

But

W, (3,5, ,n):r(kéﬂ){s:; (3,35, ,xn,t)} and

U, (x5, ,xn)zr(k;+l)[§tiiu(xl,x2, ,xn,t)}
Then

e (5 5)=BU, (5,50 1),

(0 oms 00) =A%, s 5 0) W, (X1 s %) =BU, (300 -, X, ).
Therefore,

if w(xl,xz, e xn,t) :ﬁu(xl,x2, e xn,t),then w, (xl,x2, e, xn):BUk (xl,xz, e xn)

n

Theorem 4.2.2.3 Ifw(xl,xz, e xn,t): o u(xl,xz, el xn,t), then

W, (xl,xZ, T xn)=(k+1)(k+2)---(k+n)Uk+n (xl,xZ, e, x,).

Proof:

Let w(x,,x,, -+, x,,¢)and u(x,,x,, -+, x,,t) be analytic and k-times continuously differentiable
functions with respect to time t and the variables x,x,, --- and x, in the domain of interest,

Q e R"which is closed set such that

n

= u
o™

w(xl,xz, e xn,t) (xl,xz, e xn,t), where k£ =1,2,---

Let W, (x,x,, -, x,) and U, (x,x,, -, x,) be t-dimensional spectrum function of
w(xl,xz, ey x”,t) and u(x,,x,, -+, x,,t) respectively.

By definition 4.2.2.1 or equation (54), we get
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ka
RDT[w(xl,xz,---,xn,t)}zWK(xl,xz,---,xn)z ! {6 w(xl,xz,---,xn,t)}

[(ka+1)| or*

Where RDT denotes the reduced differential transform operator.

Since

n

ot"

We(x;,x,), 0, X,) = ! o [ u(x,x,, -, x,,t)
K\71>72> s Yn F(k(Z-i—l) atka atn 12742 > Vo L

w(xl,x2,~~-,xn,t): u(xl,xz,--~,xn,t),

1|0 (o
For a=1, W, (xl,xz, . xn)zp{ﬁiﬁu(xl’xz’ R Xn,t)ﬂ
: =0

1o (o
WK(xlaxza ) xn)zg{ﬁ(wu(xlaxza ) xnat)]

dt=0

1 ak+n 8n
WK(x17x27”.7xn) |: ( (xlaxza”'axnat) i|
=0

:k_! atk+n Eu
k+n)! | ok
Wi (X, x5 000, x,) = k(!(k+21)![£ otk u(xl,xz, o xn,t)jl—o
(k D0k +2)-(k+n)kI[ (&
Wi (%525, 05 X,) = k!(k—l—n()! ) {( atkﬂlu(xl,xz,m,xn,t)jl—o

We(x,x,, -, xn):(k+1)(k+2)---(k+n){(kjn)'H o u(xl,xz, X,

By definition 4.2.2.1 or equation (54),
We(x,%,x,)=(k+1)(k+2)(K+3)---(k+n)U,, (x.%,,",x, ).

Thus,

n

W(xl,xz, R xn,t)=%u(xl,x2, R xn,t)

=W (x,%,, -, x,)=(k+1)(k+2)---(k+n)U,., (x,x,, -, x,).

n

Therefore; w(x,,x,, -+, x,,t) = = u(x,x,, -, x,,t), then
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Wy (xl,xZ, cee, xn):(k+1)(k+2)(K+3)---(k+n)Uk+n (xl,xZ, cee, xn)

aNa

Theorem 4.2.2.4 If w(x,x,, -+, xn,t):Wu(xl,xz, -+, X,,t) , then

(-1t

K+N (x19x27 Tt xn)'

Proof:

Let w(xl,xZ, ey xn,t) and u(xl,xz, e, xn,t) be analytic and k-times continuously
differentiable functions with respect to time t, and the variables: x,x,, -+ and x, in the domain

) L o
of interest, Q € R" which is closed set such that w(xl,xz, ey x,,,t) ZW“(%’%’ S x,,,f),

where k =1,2,---
Let W, (x,x,,--,x,) and U, (x,x,, -, x,) be t-dimensional spectrum function of
w(xl,xz, e xn,t) and u(x,,x,, -+, x,,t) respectively.

By definition 4.2.2.1 or equation (54), we get

1 o

RDT 5 Xny t0, , =W I N = s Ay 7Ty N
[W(xl X X, t)] K(xl X, xn) F(ka+1){8tk“ W(xl X, Xy )1 .

Where RDT denotes the reduced differential transform operator.

aNa
But w(xl,xz, - xn,t) :Wu(xl,xz, e xn,t)

ThenW, (x,,x,, -+, x,) = ! o [ o™ u(x Xy, ol X t)
K 192> s Vp F(ka+l) Gtka atN“ 19V2 s My .

By multiplying the right hand side with

I'Ka+Na+1 oke ( oNe
n)_ ( ) |: ( (xl’x2’ (XN xn’l‘)ji|
t,=0

I'(Ka+Na+1) (5 3 ) = .
e T(ka+1) I (Ka+Na+1)| o | o™

I'(Ka+Na+1)" "

I'(Ka+Na+1 1 pretNe
T
1,=0

0=

T(ka+1) | I'(Ka+Na+1)

) 1 aka+Nu
Since U,, (xl,xz, e xn): F(Ka+Na+l)[8tka+N“ (u(xl,xz, e xn,t))}

t,=0
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iy , I'(Ka+Na+1)
, by definition 4.2.2.1 or equation (54), W, (x,,x,,"-,x, )=

Uiin (xlaxza"’axn)~

F(ka+l)
Thus,
aNa
W(xl,xz, oee xn,t)zﬁu(xl,xz, RN xn,t)
I'Ka+Na+1
:>WK(XI,)C2,"',XH): (F(ka—i—l) ) k+N(x1’x25"'axn)'

Therefore, w(x,x,, -+, x,,t)=

aNa
at Na

I'(Ka+Na+1)
F(ka +1)

u(xl,xz, ceey xn,t), then WK (xl,xz, ore, xn): Uk+N(x1,x2, ) x,,)

Theorem 4.2.2.5 If w(x,,x,, -+, x,,t) = g(x,,x,, =+, x,)t", then

W, (g(xl,xz, e, xn)t”):g(xl,xz, o, x,)0(k—n)=

g(xl,xz, e xn), ifé‘(k—n)zl,wherek=n
O,ifé‘(k—n):O, wherek # n '

Proof:
From definition 4.2.2.1,

w(x,x,, -+, x,,1) = g(x,x,, -+, x,)¢" can be written as

5

w(xl,xz, e xn,t):ig(xl,xz, e xn)é'(k—n)tk, where n = na for a =1,
k=0

So, from the definition of reduced differential inverse transform (4.2.2.2) or equation (55), we

have
RDT?l(W(xlaxb Tty Xn,t)) :RDTil(ig(xlaxb ) xn)é‘(k_n)tk)'
k=0

Then

Wy (xl,xZ, e, xn):g(xl,xZ, O xn)5(k—n)
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B g(xl,xz,---,xn), ij‘&(k—n)zl,where k=n
B O,ifé'(k—n =0, where k #n

Hence, the theorem holds true.

Theorem 4.2.2.6
IfM)(xpxza Y xnat):z 8 zu(xpxza Y xnat)a then Wk(xla-xia Y xn):z_zUK(x]aXQa Y xn)a
=OX; =OOX;
i=1,2,---,n
Proof:

Let  w(x,x,, -, x,,t) and u(x,x,,--, x,,/) be analytic and k-times continuously

differentiable functions with respect to time t and variables: x;,x,, -+ and x, in the domain of

n 2

interest, Q € R” which is closed set such that Wt s x,01) :tzﬂ: Ox

2u(xl,xz, ore, xn,t)’

where k =1,2,---

Let W, (xl,x2, e xn) and U, (x,,x,, -, x, be t-dimensional spectrum function of

n
w(x,x,, -+, x,,¢) and u(x,,x,, -+, X,,t) respectively.

By definition 4.2.2.1 or equation (54), we get

1 aka
I:W(xl’xZ’ b xn’t)} K (xl’xz, ’ xn) F(ka +1)|:6tka W(x“xz, ’ xn,t):|to_0

Where RDT denotes the reduced differential transform operator

. r 9
Since w(x,,x,, -, xn,t):z (X%, 0, X,,1),
i=1 axl

1 o & &
A %) 7 PP el CE
i= X

15=0
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w, (x,x,~--,x ):Zn: o ! o™ (u(x,x,~--,x,t))
AT " 2\ T(ka +1)| o' v B

i=l axl
But from definition 4.2.2.1,

1 aka
U, (x,x,, -, x,)= (u(xl,xz,u-,xn,t))
1,=0

[ (ka+1)| o'
Then
n 62
Wy (x17x2’ ’xn): 7 Ui (2%, 05 x,)
i=l1 axl
Thus,
n 82 n 82
w(xl,xz,---,xn,t)zz 2u(xl,xz,---,xn,t):H/Vk(x):z 2UK(xl,xz,---,xn).
i=1 axl i=1 axl
n az n az
Ifw(xl,xz,--~, xn,t): 2u(xl,xz,--~, xn,t),then Wk(xl,xz,n-, xn)zz 2UK(xl,xz,n-, xn)
i=1 8x1 i=1 axl

As a result, using definitions 4.2.2.1 and 4.2.2.2, and mathematical operations (theorems) 4.2.2.1,
4222,4223,4224, 4225 and 4.2.2.6, the Reduced Differential Transform Method [16]
procedures for solving initial value problems of one, two, three and more than three dimensional
homogeneous time fractional heat-like equations, where neN were newly developed and

explained separately by the researcher as in the following four sub-sections.

4.2.2.1 Reduced Differential Transform Method Procedures for Solving One Dimensional
Homogeneous Time Fractional Heat-like Equations

Under this sub-section, Reduced Differential Transform Method procedures for solving one
dimensional homogeneous time fractional heat-like equations of the following form was newly

developed and introduced.

1. Take one dimensional homogeneous time fractional heat-like equations of the form:

aa

szl(xl)u”,x eQcR,it>0,0<ac<l.,u_ _ ok (57)
ot 1% 1 1% axlz

Subject to initial condition:

u(xl,O):gl(xl),xlngR (58)
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Where €2 is closed set

2. Apply reduced differential transform in one dimension to both sides of each of equations (57)

and (58). That is,

aa
RDT{%} = RDT':f1 (xl)ux]xl },xl eQcR,it>0,0<a<1 (59)
RDT[u,(x,,0)]= RDT| g,(x,)]. x,€QcR, (60)

Where €2 is closed set

By theorem 4.2.2.4 for
= 0%u I'(K 1
N=1, RDT a(:lﬂ) _ (Ka+a+1) (%)
t [(ka+1)

By theorems 4.2.2.5 and 4.2.2.6,

RDT[ £, (), ] = i (5) 2 12 Uy (%)

By theorem 4.2.2.5,

RDT[u(xl,O)] =U, ()c1 )= <8 (xl)
3. After applying definition 4.2.2.1 in one dimension for n=1 and theorems 4.2.2.1-4.2.2.6 in

one dimension (forn =1) to equations (59) and(60) ,we can obtain iteration formulae:

I'Ka+a+1 a2
(F(ka+1) ) U (%)= fl(xl)ax U, (x),x,€QcRt>0,0<a<l (61)

1
Uo(xl)zgl(xl),QQ]R (62)

Where €2 is closed set

4. Substituting equation (62) in equation (61) successively by straight forward iteration, we can
obtain the U,(x,) values, ie. U, (x),U,(x),U;(x), - values Vk=1,2,3,--- in one
dimension.

5. Taking the reduced differential inverse transform of the set of values of U,(x),
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{U, (x1 ) : k=0,1,2,---} by using definition 4.2.2.1 (equation (54)) in one dimension
Vk=0,12,---, we can obtain analytic solution of the problem, which can be given in the
form of equations(57) and (58) ,as:

u(x,t)=Uy(x)+U, (x)t° +U, (x,)1** +U, (x,)>, - Vk =1,2,3,- (63)
in infinite power series (open) form. Taking the special case (a=1), the exact solution of the

problem which can be given in the form of equations(57) and (58) can be obtained from

equation (63)in closed form.

4.2.2.2 Reduced Differential Transform Method Procedures for Solving Two Dimensional
Homogeneous Time Fractional Heat-like Equations
Under this sub-section, Reduced Differential Transform Method procedures for solving two
dimensional homogeneous time fractional heat-like equations was newly developed and

explained as follows.

1. Take two dimensional time fractional homogeneous heat-like equations of the forms:
o%u(x,,x,,t
(a—lz)z /i (xl,xz)u” + £, (xl,xz)u” ,(xl,xz)e QcR*t>0,0<a<l (64)

tll had St 242

Subject to the initial condition:
u(xl,xz,O):gl(xl,)cZ),()cl,)cz)ch;]R2 (65)
Where €2 is closed set

2. Apply reduced differential transform in two dimensions to both sides of each of equations

(64) and (65). That is,

RDT{aau (ax;;xz’t):l =R, [f1 (xl,x2 )uxlx] } + R, [fz (xl,x2 )uxm] (66)
RDT |u(x,,x,,0)]=RDT| g,(x,.x,)] (67)

By theorem 4.2.2.4 in two dimensions for
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kel (xl > Xy )

N =1, RDT[GQ”(%W)} _I'(Ka+a+l)

ot I'(ka+1)
By theorems 4.2.2.5 and 4.2.2.6 in two dimensions,

2

0
RDT[f1 (xl,xz)uxlxl ] =f (xl,xz)ax—zUk (xl,xz)

1

By theorems 4.2.2.5, R, [u (xl,xz,O)] =U,(x,x,)=g (x,x,)

. After applying definition 4.2.2.1 in one dimension (for n=1)and theorems 4.2.2.1-4.2.2.6 in

two dimensions ( for n =1) to equations (66) and (67), we can obtain iteration formulae:

I'Ka+a+1 0? 0?

(F(ka+1) )Uk+1(x1,x2)=fl(xl) 5x12 Uk(x1’x2)+fz(xl’xz)WUk(xlﬁxz)’
(x,x,)eQcR*,t>0,0<a <1 (68)
Uo(xl,xz):gl(xl,x2),(xl,x2)ngR2 (69)

Where €2 is closed set

Substituting equation (69) in equation(68) successively by straight forward iteration, we
can obtain the U, (x,x,) values, ie. U (x,x,),U,(x,x,),U,(x,x,), - values
Vk =1,2,3,--- in two dimensions.

. Taking the reduced differential inverse transform of the set of values of U, (xl,xz),
{U, (xl,xz): k=0,1,2,---} by using definition 4.2.2.2 (equation (55)) in two dimensions
Vk=0,1,2,---, we can obtain the analytic solution of the problem which can be given in the

form of equations (64) and (65) as:
u(x,x,,t) =Uy (x,%,) +U, (x,x,) 1% +U, (x,,2,) 2% + U, (%, %, )£+ Vhk =1,2,-- (70)
in infinite power series (open form).Taking the special case (a=1), the exact solution of the

problem which can be given in the form of equations (64) and (65) can be obtained from

equation (70) in closed form.
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4.2.2.3 Reduced Differential Transform Method Procedures for Solving Three Dimensional
Homogeneous Time Fractional Heat-like Equations

Under this sub-section, Reduced Differential Transform Method Procedures for solving three

dimensional homogeneous time fractional heat-like equations of the following form was newly

developed and explained.

1.

2.

3.

Consider three dimensional time fractional homogeneous heat-like equations of the form:

O%u(x;,x,,x,,t
( gtaza 35 ): fl()cl,xz,)c3)uxlxl + f, (xl,xz,x3)uxzx2 + 1 (xl,xz,x3)ux3x3,

(xl,xz,x3)ngR3,t>0,0<aSl (71)

Subject to the initial condition:

u(xl,xz,x3,())= g, (xl,xz,x3), (x,,%,,x;) e Q c R’ (72)

Where €2 is closed set

Apply reduced differential transform in three dimensions to both sides of each of equations

(71) and (72). That is,

ad
RDTl: u(x19§29x3at):| - RDT[fl(xl,xz,x3)u” ]+RDT[f2 (), %5, x5 Ju, ]+
at 11 242
RDT[f3 (xl,xz,x3)ux3x3] (73)
RDT[u(xl,xz,x3,0)]=RDT[gl(xl,xz,x3)] (74)

By theorem 4.2.2.4 in 3-dimensions for N=1,

o r(K 1
RDT{ ”(xvxz,xs’t)}: (Kata+ )Uk+1(x1,x2,x3)

or” I(ka+1)

By theorems 4.2.2.5 and 4.2.2.6 in 3-dimensions,

2

0
RDT[f2 ()cl,)cz,)c3)ux2x2 } = f, (xl,xz,x3)ax—2Uk (xl,xz,x3)

2

By theorems 4.2.2.6, RDT[u (xl,xz,x3,0)] =U, (x,%,,%,) =g, (x,%,,x;)

After applying definition 4.2.2.1 in three dimensions(n=3) and theorems 4.2.2.1-4.2.2.6 in

three dimensions ( for n=3) to equations (73) and (74), we obtain iteration formulae:
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I'Ka+a+1 & &
( )Uk+l (xl’XZ’XS) zfl(xlaxzaxs)_zUk (xlaxz’x3)+fz(x1’xz’x3)_2Uk (x15x25x3)+

I(kea+1) ox, ox,
2
jg(xl,xz,)@)%Uk (x.%,%), (%,%,%)eQcR1>0,0<a<l (75)
3
Uy (x,%,,%)=g, (%,%,,%), (x,%,%)eQc R’ (76)

Where €2 is closed set
4. Substituting equation (76) in equation (75) successively by straight forward iteration, we can

obtain the U, (x,,x,,x;) values, i.e. the values of,

U (x,%,%), U, (x,%,,%,), Uy (x,%,,%, ), Vk=1,2,3,-- in three dimensions.

5. Taking the reduced differential inverse transform of the set of values of U, (xl,xz,x3) ,
{U, (xl,xz,x3): k=0,1,2,---} by using definition 4.2.2.2 (equation (55)) in one dimension
Vk=0,1,2,---, we can obtain analytic solution of the problem which can be given in the

form of equations(71) and (72) as:
u(%,%,,%5,8) = Uy (3, )+ U, (3,2, )19 +U, (3,0, 3, ) 22 +U; (x5, )£, Wk =1,2,3,-+ (77)

in infinite power series (open form).Taking the special case (a=1), the exact solution of the
problem which can be given in the form of equations (71) and (72) can be obtained from

equation (77) in closed form.

4.2.2.4 Reduced Differential Transform Method Procedures for Solving n-dimensional Time
Fractional Homogeneous Heat-like Equations, where n>3andneN

Under this sub-section, Reduced Differential Transform Method Procedures, which is used in ideal
world (but not in the physical world), for solving more than three dimensional initial value problems
of time fractional homogeneous heat-like equations of the following form was newly developed and

explained .

1. Consider n-dimensional time fractional homogeneous heat-like equations of the form:
0%u(x,,x,,,x, ,t)

ot”
+fn (xlbxza'nbxn)uxnxn’(xl’x2’.“’xn)€ Q c R" > O, O0<a<l (78)

= fi (‘xl’x2’”."xn)ux1xl + f2 ('xl’x2’.”’xn)ux2x2 +

Subject to the initial condition:
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u(xl,xz,u-,xn,O)=g1 (xl,x2,~~-,xn),(x1,x2,~-,xn)ngR” (79)
where n>3 andne N , and Q is closed set.

. Apply Reduced Differential Transform to both sides of each of equations (78) and (79) in n-

dimensions. That is,

U3, %Xt
RDT|: ( ata ):|:RDT[j{(xl,xz’-.-’xn)uxlxl]+RDT|: 2(x1’x2’“"xn)ux2x2:|+.“+

RDT|:fn (xlrxza"'ﬂxn)uxnx,,} (80)

RDT[u(xl,xz,---,xn,O)] :RDT[g1 (xl,xz,---,xn )J (81)

By theorem 4.2.2.4 in n-dimensions where n >3 and n € N for N=1,

Ui (xl’xz""axn)

RDTl:O“u(xl,xz,---,xn,t)} _ I'(Ka+a+1)

ot” I'(ka+1)
By theorems 4.2.2.5 and 4.2.2.6 in n-dimensions, where n >3 and ne N

82

2
ox,

RDT[f1 (xpxz,--uxn)uxlxl]=fl(xpxza"-,xn) U, (5,3, ).

By theorems 4.2.2.5 and 4.2.2.6 in n-dimensions where 7 >3 andneN

82
RDT[f2 (xl,xz,..-,xn)uxzxz]Zfz(xl,xz,...’xn)ax—zUk (xl,xz’...,xn)

2

By theorems 4.2.2.5 and 4.2.2.6 in n-dimensions, where n>3 andne N |

82

RDT[f3 (xl’x2’“.’xn)ux3x3] :fs(xlaxza"'axn)ax_z
3

U, (xl,xz,---,xn)

By theorems 4.2.2.5 and 4.2.2.6 in n-dimensions, where n>3 andne N |

82
—2Uk (xl’xz,...,xn)

s ] o
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3. After applying definition 4.2.2.1 in n-dimensions, where n>3 and n€N and theorems

4.2.2.1-42.2.6 in n-dimensions, where n>3and neN to equations (80)and (81), we can

obtain iteration formulae:

F(FK(Z;fI;I)UM (xl,xz,---,xn):fl(xl,xz,---,xn)%Uk (xl,xz,---,xn)+
ol 0’
fz(xl,xz,---,xn)gzzUk (xl,xz,---,xn)+---+fn(xl,xz,---,xn)@Uk (xl,xz,---,xn) ,
(x,%,,,x,)€eQcR" 1>0, 0<a <l (82)
Uy (x,%,,--,x, )=g, (%, x,,-,x, ), (x.x,,,x,)e Qc R” (83)

Where €2 is closed set

4. Substituting equation (83) in equation(82) successively by using straight forward iteration, we
can obtain theU, (x,,x,, -, x, ) values, i.e.
U, (xl,x2,---,xn), U, (xl,x2,---,xn), U, (xl,x2,---,xn),---valuest =1,2,3,--- in n-dimensions,
where n e N.

5. Taking the reduced differential inverses transform of the set of values of U, (x,,x,,x;) ,
{U, (x,x,,++,x,): k=0,1,2,---} by using definition 4.2.2.2 (equation (55)) in n-dimensions
Vk=0,1,2,---, the analytic solution in infinite power series (open form) for the problem which

can be given in the form of equations(78)and (79) is
u(x],xz,---,xn, ):UO (xl,xz,---,xn)+U1 (xl,xz,---,xn)t“ +U, (xl,xz,---,xn)tm +
Us (3% Xy, ) 00% oo W =1,2,3,0+- (84)

Taking the special case (a=1), the exact solution of the problem which can be given in the form

of equations (78)and (79) can be obtained from equation (84) in closed form.

4.3 New Applications

In this section, to validate the efficiency and applicability of the newly introduced and explained
Reduced Differential Transform Method Procedures under the sub-sections 4.2.2.1, 4.2.2.2,
4.2.2.3 and 4.2.2.4 for solving initial value problems of homogeneous time fractional heat-like

equations in the domain of interest, four test examples of which: one in one dimension, one in
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two dimensions, one in three dimensions and one in 4-dimensions (where n >3 and n € N) were

presented as follows.

Example 4.3.1 Consider the one dimensional homogeneous time fractional heat-like equations

a 2
th :%xz 2xz‘,xe[l,100],t>o,ae(o,l] (85)

Subject to initial condition:

u(x,0)=x*, xe[1,100] (86)

Then the analytic solution for the problem is

ta t2a t3a t4a

F(a+l) T(2a+1) T(Ga+l) T(da+1)

u(x,t):x4 1+

in infinite power series form (or in open form) and hence for special case (0=1), the exact

solution of the problem is u (x,t) = x"e'in a closed form.

Solution:

By taking Reduced Differential Transform (RDT) on both sides of equations (85) and (86), we

obtain the iteration relation:

I'(Ka+a+1) 1L
I'(Ka+1) Usea (x) = T (axz UK(x)j (87)
U, (x) =x* (88)

Where is the reduced transformed function, which is the t-dimensional spectrum function

Using equation (88) in equation (87), we obtain successively the values of

Uy (x),Vk=1,23,....

For k=0, MUKH(X):ixz(a—ZUK(X)jD MUI(X)zix{a—ZUO(x)j
I'(a+1) 12 ox (1) 12 { ox

But, we have U, (x)=x" from equation (86).
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X
Ui(x)= I(a+1)

4
X

e {at)= v-rel;

T T(a+)

(1) =1xI(1)=T(1+1)=1!=1]

U=y

For k=1,

I'(ka+a+1)

1 r(2a+1)
ey o= 250 |= FEE o=

. :ixz( 822( x* D: F(2a+1)U gL
12" | a2\ T@+ T(a+1)

F(2a+1)U
I'(a+1) 2 (%)

U, (x):

4
X

4 1 4
r(205+1)(’C ) U= (x)= F(2a+1)(x )

U (%)= rQa+1)

Fork=2,

I'(ka+a+1)

1 ,( & I'(3a+1)
v "y =— —U U
I (ka+1) e (¥) =5 (8)62 k(x)jj r(2a+1) >V

x):%xz(aﬁ; (r(zx;ﬂ)D: Us(x)=

I'(3a+1)
- F(2a+l)U3(
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I'(ka+a+1) 1 2( 0’

2
U (x)=Lx F(4a+1)U 1 0
I'(ka+1) 12

22902 iy 001 20

I'(4a+1) 1 L[ & x* x*
= T(3a+1) Vi) =3 [ze{F(3a+1)D: U4(x):r(4a+1)

Ua(x)= r(4);+1)'
Thus,
U, (x)=x*,U, (x) = F();Jr 1) U, (x) :F(#itl)’US (x) :1—'(#44-1)’(]4 (x) :F(#A‘Jrl)’m (89)

Now by definition 4.2.2.2 (or equation 55) for n=1,

u(x,t)= iUk (x)t* =U, (x)+U, (x)t" +U, (x) 2> + Uy (x) 2 + U, (x) 1% +---
k=0
4 4 4 4
By equation (87), u(x,t)=x"+ X e X pa X i x a

F(a+1) T(2a+1) I'(3a+1) +F(4a+1)
Thus, the analytic solution for the problem is

ta t2a t3a t4a

u(x’t):x{“_F(a+1)+F(2a+1)+F(3a+1)+1“(4a+1)+m

in infinite power series (or
open) form.
For the special case o=1, u (x,l) becomes

I P A i = pl=nlVn=
u(x,t)=x {1+1!+2!+3!+4!+ ,since I'(p+1)=p!=nl,Vn=12,
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3 4
t
u(x,t)=x4e’ (':e’ =1+—+—+—+—+---j

Thus, for the special case (a=1), the exact solution of the problem is u (x,t) = x"e" in closed form.

Therefore, the analytic solution for the problem is

toz t2a t3a t4a

u(x’t):x{nr(a+1)+r(2a+1)+F(3a+1)+F(4“+1)

+} in infinite power series form
(or in open form) and hence for the special case (0=1), the exact solution is u(x,t)= x*e’ of
equation the problem in a closed form.

Example 4.3.2.Consider the two dimensional homogeneous time fractional heat-like equations

o0u

1 ,0°u 1 ,0%u
P e 2 <x, y<T7, >0, 0<a<l 90
ar 20 o 20 o Y (%)

With initial condition:

u(x,y,O):x2+y2 ,—x/?ﬁ x,y<7 (91)
Then the analytic solution for the problem is
2+y2 a x2+y2 2a x2+y2 3a x2+y2 4a

o in infinit
F(a+1)t +F(2a+l) +F(3a+1) +F(4a+1) o e

u(x,y,t) =x° +y2 +

power series form (or in open form) and hence for the special case (0=1), the exact solution is

t

u(x,y,t) = (x2 +y2)e in closed form

Solution:

By taking Reduced Differential Transform (RDT) on both sides of equations (90) and (91) and
then applying theorems 4.2.2.1 — 4.2.2.2, we get the iteration relation:
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I'Ka+a+l) 1 ,( & 1 ,( ¢
—~ - - U =—x| —=U —y ==U
I'(Ka+1) ca (%) 2x{6x2 K(x’y)}rzy o’ « (%)

U, (x,y) =x? +y2
Where is the t-dimensional spectrum function (the transform function)

Using equation (93) in equation (92), we successively obtain the values of

Uy (x,p) , for Vk=1,2,3,...

I'(a+1 1 ,( o 1, &
Fork =0, ;(1) )Ul(x,y)=Ex2(¥UO(x,y)jwtzyz(?Uo(x,y)J
. o . () +y7)
Since U, (x)=x"+y* from equation (93), Ul(x,y)——F(OH_l) .
U, (x)= X +y (=) =1xr(1)=r(1+1)=11=1).
: I(a+1)
X+’
U, (x)=2Y
(%) I(a+1)

I'(2a+1 1 ol 1 0’
Fork=1, ﬁl]z(x,y)zgxz(yl]] (x,y)j+5y2(¥l]] (X,y)j

%Uz<x,y>=;x2[%1(§22ii>ﬁ*éf[ai—i(?ilf%ﬁ

U(x ): TF(a+1) x*+y°
T r(2a+1) IT(a+l)

X'+

U2 (X,y) = m

I'Ga+l) 1 L[ &
Fork=2, ———U =—x} =—U il U
or " T'Qa+) (3.7) 2 (ax2 2(x’y)j+2y (@c2 Z(x’y)j
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I'(2a+1)

F(a+1)

_I'Ca+l)) x> +y°
- I(3a+1) T (2a+1)

US(x,y)

X+
I'Ga+1)

- U, (x,y) =

T'(da+1)

Fork =3,
I'Ga+1)

1 ,( & 1,
U4(x,y)=§x ¥U3(x,y) +§y

I'(4a+1)

1 L, &> x*+)° 1 L[ &
U S L
p(ry)=gx (axz(F(2a+1) 27 oy

o)
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$U3 (x,y)j

1 L[ &2 ¥+ 1 ,[ &
U _2 -
(% y)=7x (axz(l“(3a+l) 2V 57

Xt 4y’
U, (x, y)=
(%) I'Ga+1)

I'(3a+1)

I'(4a+1)
F(3a+l)

X+
AU, (x, y) =Y
(%) I(4a+1)

Thus,

Uy(0) =2 437U () =22 oy

et e )

Fx(23; y+21) D

+y X +)
l = DY
1)’ () I(4a+1)

Now by definition 4.2.2.2 (or equation (55) in two dimensions (n=2), u(x,t)=>U, (x)t""

=U, (x)+U, (x)1“+U, (x)£** + U, (x) £ +U, (x)t** +--- Vb =1,2,--.

By equation (94),
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2 2 2 2 2 2 2 2
X +y a X +y 2a X +y 3a X +y 4a

I'(a+1)  I'(2a+1) +F(3a+1) I'(4a+1)

u(x,y,t)=x2 +y2 +

Thus, the analytic solution of the problem is

2+ 2 2+ 2 2+ 2 2+ 2 ) ) )
u(x, y,t) =x"+y* + YTV qe XTIV pey YTV pey X TV gde g n infinite
I'(a+1) I'Ca+1) I'Ga+1) I'(4a+1)

power series (or open) form.
For the special case o=1, u (x, y,t)becomes

2 3 4
u(x,y,t):(x2+y2){1+1£!+t2—!+5+;—!+~-- , since F(p+l)=p!=n!,‘v’n=1,2,---

2 3 4 5
. t t
Since et :1+t+5+§+z+§+"', we get u(X,y,t):(xz +y2)€t.

Thus, for the special case (0=1), the exact solution the problem is u(x,y,t):(x2 + yz)et in

closed form.

Therefore, the analytic solution of the problem is

2, 2 2, 2 2, 2 2, 2
X +y o, Xty pel X +Y s Xty

u(x,y,l)=x2+y2+
I'(a+1) I'Ca+1) I'Ga+1) I'(4a+1)

in infinite power series (or open) form and hence for the special case (a=1), the exact solution of

the problem is u(x, y,¢) = (x2 +y° )et in closed form.

Example 4.3.3 Consider the three dimensional homogeneous time fractional heat-like equation

a 2 2 2
Ou_ [z LW 10w 10w 10u)\x_ <% i50,0casl (95
ot” 3sinxyz 3 )\ yzox™ xz 0Oy~ xyozm ) 3 2

Subject to initial condition:
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u(x,y,z,O)z—(xyz—sinxyz),7;—3 x,y,zSZ— (96)

Then the analytic solution is

_ - ,W_Sin)gz a _(W_W) 20 ,W_Sin)gz 3a | —(JQZ—SIHJQ/Z) 4o
et =S ) | ) e

in infinite power series form (or in open form), and hence for the special case (a=1), the exact

solution is
u(x,y,z,t)=—xyzcosht+xyzsinh +sin xyz cosh 7 —sin xyzsinh, in closed form

Solution:

By taking Reduced Differential Transform (RDT) on both sides of equations (95) and (96) and
applying theorems 4.2.2.1 — 4.2.2.2, we get the iteration relation

I'(Ka+a+l) (w1 ii iﬁ lﬁ
F(K(Z-i—l) UK+1 (x,y,z) - [3511,1)9/2 3}()/2 @Cz UK(x’y’Z)+)‘z @}2 UK(X,_)/‘,Z) X aZ2 UK(X,yaZ)j (97)
Uy (%.3:2) = (07 —sinz) (%)

Where U, (x,y,z) is the t-dimensional spectrum function (the transformed function)

Using equation (98) in equation (97) , we successively obtain the wvalues of

Uy (x,0.2),Vk=1,23,...

For k=0,

I'(a+]) xz 1)1 & 1 & 1 &
U - Loy ey 17
() (x%0,2) [3sinxyz 3)(3),2 o o(x,y,2)+3xz e o(%.,2) e o(%,2.2)

I'(1)xyz —sinxyz
U, (x,y,2)= ()F(a+l) (-r(1)=1)
U, (v, 2) = 2SN 02

F(a+l)
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For, k=1

F(Za—i—l) xyz 11 ¢ 1 & 1 82
U =- ——||—=U A § 19y
F(a+1) 2(x,y,z) (3 sinxyz 3}[);2 ox? 1(x,y,z)+ xz Oy l(x,y,z) a2 l(xayaz)j

2 : 2 :
1 0 [xyz s1nxyz]+L8 [xyz s1nxyz]+

F(2a+l)U ( ) xyz 1 ;ze F(a+l) xz Oy* F(a+1)
— X, V,z)=— =
F(O{'i‘l) 2 s Vs 3 Sinxyz 3 L 82 xyZ_Sin Xz
xp oz’ I(a+1)
. —(xyz —sin xyz)
U (wnz)= r(2a+1)
For k=2,

)y - LY PR CANG 19y 1oy
r'(2a+1) 1 (o2,2) (3 sinxyz 3}()/2 o (02)+ xz oy’ (x..2) xy ox® ’ (x’y’Z)]

1o {—(xyz—sinxyz)} 1 o’ {—(xyz—sinxyz)j
) t—— +
Fothu () PO e e e
A 1) s Ve Z )=~ N -
F(2a+1) 3 3sinxyz 3 ia_Z —(xyz —sin xyz)

xyox’ | I(2a+1)

. Xyz —sin xyz
U (ae) < B

Thus,

Uy (x,3,2) =—(0z—sinmgz), U, (x,,2) :%, ,(x) :%,Q(x,%z) =

Xyz — Sinxyz
Xz —SUz | %
r(Ba+1) (99)
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Now, by definition 4.2.2.2 (or equation (55) in three dimensions

X A t Z.O:Uk X ,Y,Z =U, (X,y,z)+U1 (x,y,z)t“ +U, (X,y,z)tza +U, (X,y,z)t3“ +
k=0
By equation (99),

Xyz —sinxyz , N —(xyz—sinxyz) 20 | XVZ—SINXYZ 5,
I'(a+1) I'(2a+1) I'(Ba+1)

u (x, ¥, Z,t) = —(xyz - sinxyz) +

Thus, the analytic solution for the problem is

wz=sinyz . ~(0Z-simgz) 5, gz-simyz ,, —(0z-sinnz) o,
F(a+1) F(2a+1) F(3a+1) F(4a+1)

u(x, Y, Z,t) =—(x_yz—sinxyz) +

in infinite power series form (or in open form).

: t £
For the special case o=1, u(x,y, z,l) =(xyz —sinxyz){—l +———+——--}

FRPIN B VAT

u(x,y,z,t) =(xyz—sinxyz) _£1+ﬁ+. . .]_{H_i_,_. . ]

2 3
. t . t
Since cosht :1+5+---andsmht :t+§+---, we get

u(x, y,z,t) = (xyz —sinxyz)[ (- cosh ) +sinh¢].
Thus, u(x, y,z,t) = —xyz cosh + xyz sinh ¢ + sin xyz cosh  —sin xyz sinh ¢

Therefore, the exact solution of the problem is

u(x,y,z,t)=—xyzcosht+xyzsinh 7 +sin xyz cosh 7 —sin xyzsinh in closed form.
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Therefore, the analytic solution of the problem is

z—singz ,  —(0z-simyz) pa | ESIMZ 5 ~(wz—sinyz) .,
F(a+1) F(2a+1) F(3a+1) F(4a+1)
, in infinite power series form (or in open form), and hence for the special case (a=1), the exact

4.

u(x,y,z,t) :—(xyz—simg/z) +

solution of the problem is

u(x,y,z,t)=—xyzcosht+xyzsinh 7 +sinxyz cosh 7 —sin xyzsinh in closed form.

Example 4.3.4 Consider the four dimensional homogeneous time fractional heat-like equation

0%u 1 x’ 1 x)} 1 x 1 x;]
=l —+—4lu, +|—+—=lu, | —+——|u, | —+—|u,,
ot” x 6 Tolx, 6 =olx, 6 =olx, 6 o

1< x,x,,x;,x, <100, 0 < <1 (100)

With initial condition:

3 3 3 3
u(xl,xz,x3,x4,0):4+%+xg +xg +xg , 1< x,,x,,x,,x, <100 (101)

Then the analytic solution of the problem is

u(x Xo.Xao X 1‘)_— 4.|__13 _|__23 _|_L3 LS 1+ ta + tza + t3a doeen
19A29A39

in infinite power series form (or open) form, and hence for the special case (0=1), the exact

3 3 3 3
solution of the problem is u(x,,x,,%;,%,,¢) = (4 + % + ?2 + % + %j e’ in closed form.
Solution:

By taking Reduced Differential Transform (RDT) on both sides of equations (98) and (99) and
then applying theorems 4.2.2.1 - 4.2.2.6 for n=4, we obtain the iteration relation:
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Ka+a+l 1 x’)o° 1 x°) &
e et o % [ U onmn 5 U onnon)
1 x° 2 1 x> ) 02
+[Z+%jWUK()Cl,xz,x3,x4)+(z+%jWUK(XI,XZ,X3,X4) (102)
3 3 3 3
Uo(xl,xz,x3,x4)=4+%+i+%+% (103)

, where Uy (xl,xz,x3,x4) is the t-dimensional spectrum function (the transformed function).

Using equation (103) in equation (102) , we successively obtain the values of

Uy (xl,x2,x3,x4), Vk=1273,...

For k=0,
I'a+1 1 3 82 1 3\ &2
;—(I))U](xl’xz’x3’x4):[;l—i_x_éj?zzUo(x1:x2:x3ax4)+(x—2+%j@Uo(x],xz,x3,x4)

1 x°)o° 1 x°) &
+(_+LJ UO (xlaxzaxSax4)+[_+ij_2U0 (x],xz,x3,x4)

x, 6 )ox x, 6 Jox,
1 x' x) xS x)
SU N (xx,05,x, ) =———— | 4+ -+ 2+ 24 2
(352,53, F(a+1){ 6 6 6 6
For k=1,

I'(2a+1 1 x’) 0 1 ) o
gUz (%505, ) = (_er_lJWQ (xl,x2,x3,x4)+(x—+%JWUl (2,%,%5,%,)
2 2 2

1 x') @ 1 ox') @
+(—+LJ_2Ul(x15x25x3ax4)+[_+ij_Ul(xl’x2’x3’x4)
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r(2a+1)

1 x’) & 1 23 8
—7 o U =|—+—1— |—U — 42 |2 U
F(a+1) 3 (x1:x2:x3)x4) [xl + 6 j6x22 2 (x1:x2:x3:x4)+[x2 + 6 j6x22 2 (xl,xZ,x3,x4)

1 ) 8 1 x°) &
+(x—3+%J¥ U, (xl,xz,x3,x4)+(—+%jFU2 (25,25, )

3 X4 Xy

1 x' ox} ox ox;
---U3<x1,xz,x3,x4>=m{‘”?+%+%+%

Thus,
3 3 3 3 3 3 3 3
X, X X, 1 x~ X X X,
U, (x,%,,X5,%, ) =4+ + 24+ 2424 U (x,%,,%,%, ) =———| 4+ + 2+ 2+ 4
o (31,%,,%,) 6 6 6 6 (2,23, F(a+l){ 6 6 6 6}
1 x* ox oxd oxp
U)o | -
; 4+x'_3+x_23+x3_3+x_43 (104)
I'Ba+l)) 6 6 6 6

By definition 4.2.2.1 (or equation (54) in 4-dimensions and by equation (104),

o0

Ka
u(xl,xz,x3,x4,t) = z Uy (xl,xz,x3,x4)t .
k=0

3 3 3 3 3 3 3 3
u(x1ax2ax3ax4at):4+%+%+%+%+ﬁ|:4+%+?+%+%j|ta+
o+

3 3 3 3 3 3 3 3
; 4+x_1+i+i+xi t2a+; 4+X_1+XL+XL+XL t3”‘+...
I'(2a+1) 6 6 6 6 I'(3a+1) 6 6 6 6

Thus, the analytic solution for the problem is

u(x Xo X0 X t)_— 4.|._13 +_23 +_33 +L3 1+ " + t20’ + t3a RN
1942 9A39 4y
6 6 6 6 F(OC-FI) F(20€+1) 1 (3a+1)

in infinite power series (open) form.
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For the special case o=1, u(xl,xz,x3,x4,t) = (4—%——

3 3 3 3
xT X, Xy X
Thus, u(x;,X,,%;,x,,1) = (4+_'+_2+4+_]ez.
6 6

Therefore, the exact solution of the problem is

3 3 3 3
x xS xS X .
u(%,%,,55,%,,1) = (X, %, X3, X,,1) = (4 +?+L+—+%jet in closed form.

3
6
Therefore, the analytic solution of the problem is

3 3 3 3 2 3 4
X X X X t t t .. . .
u(x,%,,%,%,,0)=| 4+ + 2+ 242 || 1+ —+—+—+—+--- | in infinite power series
1 2 3 4 6 6 6 6

form and hence for the special case (X =1 , the exact solution of the problem is

3 3 3
X, X%

3
u (%, %,,%;,x,,1) = [4+%+?+?+%j e' in closed form.
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CHAPTER FIVE

5 Conclusion and Future Scopes

In this study, new applications of Reduced Differential Transform Method were introduced to
handle multi-dimensional initial value problems of homogeneous time fractional heat-like
equations. The definitions of transformed function and the reduced differential inverse transform
of the transformed function were developed and introduced in n-dimensional space (n € N) for
solving multi-dimensional initial value problems of homogeneous time fractional heat-like
equations with the values of the time fractional derivative of order, a such that 0 < <1. Six
mathematical operations (theorems) which were performed by the Reduced Differential
Transform Method, were deduced from these definitions for solving multi-dimensional initial
value problems of homogeneous time fractional heat-like equations in n-dimensional space
(neN). Consequently, the Reduced Differential Transform Method procedures in one, two,
three and more than three dimensions were developed and introduced to obtain analytic solutions

of multi-dimensional homogeneous time fractional heat-like equations.

To see the effectiveness and applicability of the Reduced Differential Transform Method through
newly introduced procedures to obtain analytic solutions of multi-dimensional initial value
problems of homogeneous time fractional heat-like equations in n-dimensional space (n € N),
four test examples were presented. The Reduced Differential Transform Method was
successfully implemented to obtain analytic solutions of multi-dimensional homogeneous time
fractional heat-like equations. The analytic solutions obtained by reduced differential transform
method are infinite power series for appropriate initial conditions in open form while the exact

solutions obtained for special case ((a =1) are in closed form. That is, whena =1, the analytic

solutions of multi-dimensional initial value problems of homogeneous time fractional heat-like
equations in n-dimensional space (7 € N) in infinite power series become the exact solutions of
the standard (ordinary) multi-dimensional heat-like equations. The results show that the Reduced
Differential Transform Method is a powerful mathematical tool for solving multi-dimensional

initial value problems of homogeneous time fractional heat-like equations analytically. Thus, we
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conclude that the proposed method can be extended to solve other fractional partial differential
equations (specially, time fractional partial differential equations) with variable coefficients
which can arise in physics and engineering. That is, the work presented in this study leaves a lot
of room for future research. The following are some of the items which deserve further

investigation:

& Reduced Differential Transform Method for numerical solutions of initial value problems of
homogeneous time fractional heat-like equations.

# Reduced Differential Transform Method for initial value problems of homogeneous time
fractional non-linear heat-like equations.

& Reduced Differential Transform Method for initial value problems of non-homogeneous time
fractional heat-like equations.

# Reduced Differential Transform Method for initial boundary value problems of

homogeneous time factional heat-like equations.
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