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Abstract
In this study, discrete fourth order implicit linear multistep methods (LMMs) in block
form for the solution of stiff first order initial value problems (IVPs) was presented us-
ing power series as a basis and the Chebyshev polynomials. The method is based on
collocation of the differential equation and interpolation of the approximate solution of
power series at the grid points. The procedure yields four consistent implicit linear mul-
tistep schemes which are combined as simultaneous numerical integrators to form block
method. The basic properties of the method such as order, error constant, zero stability,
consistency, convergence,and accuracy are investigated. The accuracy of the method is
tested with two stiff first order initial value problems. The results are compared with
fourth order Runge-Kutta (RK4) method, and Berhan et al. (2019). All numerical exam-
ples are solved with the aid of MATLAB software and showed that our proposed method
produced better accuracy.
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Chapter 1

Introduction

1.1 Background of the study
In science and engineering, usually mathematical models are developed to help us the
understanding of physical phenomena. These models often yield equations that contain
some derivatives of an unknown function of one or several variables. Such equations
are called differential equations. A differential equation in which the unknown function
is a functions of only one independent variable are called ordinary differential equations
(ODEs). ODEs are very basic and useful mathematical models in many areas, such as
economics, geology, engineering, social science, physics, chemistry, biology, and so
on. Many of these ODEs are known as stiff ODE (Yu, 2004). The exact analytical
solutions of such problems, except a few, are difficult to obtain, so it is common to seek
approximate solutions by means of numerical methods.

In this study we shall be concerned with the construction and analysis of an efficient
numerical method for the approximate solution of the general first order differential
equations of the form:

y′(x) = f (x,y(x)), y(a) = y0, x ∈ [a,b] (1.1)

In mathematics, a differential equation of the form Eq.(1.1) is said to be a stiff
equation if for solving a differential equation certain numerical methods are numerically
unstable, unless the step size is taken to be extremely small and characterized as those
whose exact solution has a term of the form e−cx where c is a large positive constant
(Suli & Mayers, 2003). Stiff problems are problems where certain implicit methods
perform better than explicit ones. Stiffness is a subtle, difficult, and important concept
in the numerical solution of ODEs. It depends on the differential equation, the initial
conditions, and the numerical method (Aliyu et al., 2014).

The developments of numerical methods for the solution of IVPs of ODEs of the
form of Eq.(1.1) has given rise to two major discrete methods (Anake, 2011). One of
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those discrete numerical methods used to solve stiff IVP is multistep methods especially
linear multistep methods (LMMs).

LMM is a computational procedure where by a numerical approximation yn+ j to
the exact solution y(n+ j) of the first order Initial Value Problems (IVPs) of Eq. (1.1)
is obtained. LMMs are very popular for solving first order IVPs. They are also ap-
plied to solve higher order ODE. LMMs are not self-starting hence, need starting values
from single-step methods like Euler’s method and family of Runge-Kutta methods. The
general k-step LMM for the solution of Eq. (1.1) is given by Lambert (1991) as follows:

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j (1.2)

where α ′js and β ′js are constants, αk 6= 0 and at least one of the coefficients α0 and β0
is non zero. If βk = 0, then yn+k is obtained from previous value of yn+ j, h, and fn+ j,
then the k-step method is explicit. If βk 6= 0, then yn+k appears both on the left and right
hand side of the equation, then the k-step method is implicit method.

Several continuous LMMs have been derived using interpolation and collocation
points for the solution of Eq.(1.1) with constant step size using Chebyshev polynomials
as a basis. Chebyshev polynomials are a well-known family of orthogonal polynomials
on the interval [−1,1] associated with certain weight function. Chebyshev polynomi-
als are of great importance in many areas of mathematics, particularly in approximation
theory. There are several kinds of Chebyshev polynomials. The most important kinds of
the Chebyshev polynomials is Chebyshev polynomials Tn(x) of first kind. The Cheby-
shev polynomial Tn(x) of the first kind is a polynomial in x of degree n, defined by the
relation by Rivlin (1990) as follows:

Tn(x) = cos(narccosx), where n≥ 0,and,x ∈ [−1,1] (1.3)

Adeniyi et al. (2006) develop a continuous formulation of some classical initial value
problems by non-perturbed multistep collocation approach using Chebyshev polyno-
mial as basis function. Adeniyi & Alabi (2007) proposed Continuous formulation of
a class accurate implicit linear multistep methods with Chebyshev basis function in a
collocation technique.

Much researchs have been done by the scientific community on developing numer-
ical methods which permit an approximate solution to Eq.(1.1). The most commonly
used numerical method is block method. Block methods have been firstly proposed
by Milne (1953) to be used only as a means of obtaining starting values for predictor-
corrector methods. It is a method which obtained concurrently a block of new values by
computing k number of blocks. It is less expensive in terms of the number of function
evaluations compared to the linear multistep methods. Block methods are self start-
ing, thus avoiding the use of other methods to get starting solutions, except the initial
condition from the problem.
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The development of block methods for solving Eq.(1.1) has been studied by various
researchers. For instance, Mohammed & Yahaya (2010) developed fully implicit four
points block backward difference formula for solving first-order IVPs. They compared
the accuracy of the developed method from the exact solution by taking one simple
example of ODE, but they did not compare the accuracy of the method with the other
existing methods. Akinfenwa et al. (2013) derived Continuous block backward differ-
entiation formula for solving stiff ordinary differential equations. They used polynomial
as a basis function to drive the method. James et al. (2013) developed a half-step con-
tinuous block method using the approach of collocation of the differential system and
interpolation of the power series approximate solution at the grid and off grid points.
Their new method was tested on real life problems namely: Growth model and Mixture
Model. Their results were found to compete favorably with the existing methods in
terms of accuracy and error bound.

Furthermore, many researchers had developed block procedure with LMMs using
different basis functions. One of the basis function is power series. Power series is
a series in which each term is a power function. It can be used to approximate any
function. Any polynomial function can be expressed a power series. Assuming that x0
is an ordinary point of the differential equation, the solution in a powers of x0 actually
do exist, we denote such a solution:

y =
∞

∑
n=0

Cn(x− x0)
n (1.4)

where C′ns are a constants called the coefficient of the series and x is a variable.
Abualnaja (2015) constructed a block procedure with LMMs (for k = 1,2,and 3)

using Legendre polynomial as a basis function for solving first order ODEs. She gave
discrete methods used in block and implement it for solving the non-stiff initial value
problems, being the continuous interpolant derived and collocated at grid and off-grid
points. The results are compared with RK4, but not compared with other existing meth-
ods.

Suleiman et al. (2015) proposed an implicit 2-point block extended backward differ-
entiation formula for integration of stiff initial value problems and checked the perfor-
mance of their methods by considering stiff problems. Their derived method is better in
terms of accuracy than the two-point block backward differentiation formula (2BBDF).
However, in terms of computation time, the time taken to complete the integration using
the 2BBDF method is better than that in their derived method. The implementation of
their proposed method is based on Newton iteration.

Sunday et al. (2015) developed Chebyshevian basis function-type block method for
the solution of first order IVPs with oscillating solutions. They develop a block method
using Chebyshev polynomial basis function and use it to produce discrete methods
which are simultaneously applied as numerical integrators by assembling them into a
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block method. The efficiency of the method tested by two sampled oscillatory problems
and when compared the results their method performed better than exact solution.

Yakusak & Adeniyi (2015) proposed a four step hybrid block method for first order
IVPs in ODEs by collocation and interpolation techniques and with Chebyshev poly-
nomial of the first kind as basis function. Their developed method is by introducing
four off step points. However, this off step points selected to guarantee zero stability to
generate the method for solving ODEs. Their method is complicated to programing, but
when compared with existing scheme it yielded better accuracy.

Okedayo et al. (2018) developed modified Legendre collocation block method for
solving IVPs of first order ODEs. They proposed block procedure for some k-step
LMMs using the Legendre polynomials as the basis function. Discrete methods were
given which were used in block and implemented for solving the initial value problems,
being continuous interpolant derived and collocated at grid points. Their developed
method is implemented without the need for the development of correctors.

Nweze et al. (2018) developed a class of block procedure with the implicit LMM
in block form for k = 1,2 and 3 using Chebyshev polynomials as a basis function for
solving non stiff initial value problem in ODEs. The accuracy of their method compared
to the exact solution by taking non stiff problems.

Recently, Berhan et al. (2019) extends and Modified the work of Abualnaja (2015).
They constructed a block procedure with implicit LMMs for some k-step (k = 1,2,3 and
4) using Legendre polynomials for solving ODEs. It is an implicit method and used for
solving stiff initial value problems. Their method depends on the perturbed collocation
approximation with shifted Legendre polynomials as perturbation term. However, the
solution of stiff first order IVPs with implicit LMM in block form using Chebyshev
polynomial as a perturbed term has not developed in the forgoing literature.

Perturbation theory is applicable if the problem at hand cannot be solved exactly,
but can be formulated by adding a ’small’ term to the mathematical description of the
exactly solvable problem. It leads to an expression for the desired solution in terms of
a power series in some ’small’ parameter known as a perturbation series, that quantifies
the deviation from the exactly solvable problem. The leading term in this power series
is the solution of the exactly solvable problem (Romero, 2013).

Thus, the aim of this study was to construct block method for some k-step LMMs
(k = 1,2,3, and 4) for the solutions of a general first order IVP in stiff ODEs based
on collocation of the differenial equation and interpolation of the approximate solution
using chebyshev polynomial of first kind as a perturbed term, which is the extension and
modification of the work Nweze et al. (2018). The method is an implicit fourth order
block method which is self-starting and solves stiff ODEs. It improves the accuracy of
the existing method proposed by Berhan et al. (2019) for solving stiff problems.
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1.2 Objectives of the study

1.2.1 General objective
The general objective of this study was to formulate a block procedure with implicit
fourth order LMM using Chebyshev polynomials for solutions of stiff first order IVPs.

1.2.2 Specific objectives
The specific objectives of the present study were:

• To derive a block procedure with implicit LMM using the methods of collocation
and interpolation using Chebyshev polynomial as a perturbed term.

• To show the convergence of the present method by checking its consistency and
zero stability.

• To verify the method using the existing examples.

1.3 Significance of the study
The outcomes of this study have the following importance:

• To find an alternative numerical solution for first order ODE.

• It may give research skills & scientific research procedures for graduate students.

• It may serve as a reference material for interested scholars to conduct their Thesis
on this area.

1.4 Delimitation of the Study
This study was delimited to the construction of an efficient numerical method for the
numerical solution of general first order IVPs given in the following form:

y′(x) = f (x,y(x)), y(a) = y0, a≤ x≤ b. (1.5)
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Chapter 2

Review of Related literatures

2.1 Stiff Ordinary Differential Equation
Many scientific and engineering problems which arise in real-life applications are in the
form of ordinary differential equations (ODEs), where the analytic solution is unknown.
Many of these ODEs are known as stiff ODEs. It is difficult to define stiffness in a
mathematically rigorous manner, various more or less successful attempts at this may
be found in the literature on the subject (Jackiewicz, 2009).

The earliest pioneering of stiffness in differential problems, presented by Curtiss
& Hirschfelder (1952), was apparently far in advance of its time. They named the
phenomenon and spotted the nature of stiffness (stability requirement dictates the choice
of the step size to be very small). To resolve the problem they recommended possible
methods such as Backward Differentiation Formulas (BDF) for numerical integration.
They also gave a definition of stiffness as follows: "Stiff equations are equations where
certain implicit methods ,in particular BDF, perform better, usually tremendous better,
than explicit ones".

Butcher (1985) , who points out that ”systems whose solutions contain rapidly de-
caying components are referred to as stiff differential equations”. He adds that such
problems are important in numerical analysis because they frequently arise in practical
problems and because they are difficult to solve by traditional numerical methods.

Burrage (1989) observe that ”stiffness is a difficult concept to define since it mani-
fests itself in so many different ways but the crucial point is that while the solution to
be computed is slowly changing, there exist perturbations that are rapidly damped but
which complicate computation of the slowly changing solution”.

Lambert (1991) point out that stiffness occurs when stability requirements rather
than those of accuracy constrain the step length, and that stiffness occurs when some
components of the solution decay much more rapidly than others. Then he propose a
definition that relates to what we observe in practice:"If a numerical method with a finite
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region of absolute stability, applied to a system with any initial condition, is forced to
use in a certain interval of integration a step length which is excessively small in relation
to the smoothness of the exact solution in that interval, then the system is said to be stiff
in that interval".

There have been some strong indications that the theory which underpins stiff com-
putation is now quite well understood, and, in particular, the excellent text of Hairer &
Wanner (1996) has helped put this theory on a firm basis. They also give the definition
of stiffness as follows: "Stiff equations are problems for which explicit methods don’t
work".

LeVeque (2007) observe that ”the difficulty in integrating stiff systems arises from
the fact that many numerical methods, including all explicit methods, are unstable in
the sense of absolute stability unless the time step is small relative to the time scale of
the rapid transient, which in a stiff problem is much smaller than the time scale of the
solution we are trying to compute”.

The development of numerical methods for the solution of IVPs of ODEs of the
form y′ = f (x,y),y(a) = y0 on the interval [a,b] has given rise to two major discrete
methods (Anake, 2011). One of those discrete numerical methods used to solve stiff
initial value problem is Multistep methods especially implicit linear multistep methods.

2.2 Linear Multistep Methods(LMMs)
The numerical method for the solution of the differential equation y′(t) = f (t,y), y(t0) =
y0 , t ∈ [t0,b] are called linear multistep methods if the value of y(t) at t = tn+l use the
values of dependent variable and its derivative at more than one grid or mesh points. An
examples of LMM are Adam-Bashforth method, Adam-Moulton method, and Numerov
method. The idea of multistep methods appears when some information from previous
points has been gained using single step methods. After gaining the information, the
value of f (t,y) at the next step is based on interpolation over that information. Compu-
tation using these multistep methods is in general more accurate than those in single step
methods. LMMs are not as efficient, in terms of function evaluations, as the one step
method and also require some values to start the integration process (Anake, 2011). The
modern theory of linear multistep methods was developed in large measure (Dahlquist,
1956), and has become widely known through the exposition by Henrici (1962). The
general linear multistep methods or k-step methods is given by Lambert (1991) in the
form:

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j (2.1)

where α ′js and β ′js are constants,αk 6= 0 and at least one of the coefficients α0 and β0 is
non zero.
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2.3 Block Method
A block method is formulated in terms of linear multistep methods. Block method have
been firstly proposed by Milne (1953). It preserves the traditional advantage of one step
methods, of being self-starting and permitting easy change of step length (Lambert,
1991). Their advantage over Runge-Kutta methods lies in the fact that they are less
expensive in terms of the number of functions evaluation for a given order. The method
generates simultaneous solutions at all grid points.

A substantial amount of research work has been carried out globally on the appli-
cation of block method to solve numerically the IVPs in ODEs. The techniques for the
derivation of block methods for direct solution of IVPs in ODEs have been discussed
in literature over the years and these include, among others collocation, interpolation,
integral collocation formulation. Basis functions such as, power series, Chebyshev poly-
nomials, trigonometric functions, the Hermite polynomials, Legendre polynomials with
collocation approach have been employed (Berhan et al., 2019).

2.4 Chebyshev Polynomial
Chebyshev polynomials are a well-known family of orthogonal polynomials on the in-
terval [−1,1] whose properties and applications were discovered a century ago by the
Russian mathematician Patnuty Lvovich Chebyshev (1821− 1894). Their importance
for practical computations was rediscovered 60 years ago by Comelious Lanczos the
father of Numerical Analysis (Boyd, 2000). There are several kinds of Chebyshev poly-
nomials. The most important kinds of Chebyshev polynomial is the Chebyshev polyno-
mials of the first kind over the interval [−1,1]. The Chebyshev polynomial possess the
following properties by Sunday et al. (2015). Firstly, |Tn(x)| ≤ 1, x ∈ [−1,1]. Secondly,
Tn(x) is a polynomial of degree n. If n is even, Tn(x) is an even polynomial and if n is
odd, Tn(x) is an odd polynomial. Thirdly, Tn(x) is orthogonal with respect to the weight
function w(x) = 1√

1−x2 . Here, a list of works briefly detailing their scope & magnitude
of block method based on a family of orthogonal polynomials as a perturbed.

Perturbation theory is applicable if the problem at hand cannot be solved exactly,
but can be formulated by adding a "small" term to the mathematical description of the
exactly solvable problem. It leads to an expression for the desired solution in terms of
a power series in some ’small’ parameter known as a perturbation series, that quantifies
the deviation from the exactly solvable problem. The leading term in this power series is
the solution of the exactly solvable problem, while further terms describe the deviation
in the solution, due to the deviation from the initial problem (Romero, 2013).

Abualnaja (2015) constructed a block procedure with LMMs (for k = 1,2,and 3)
using Legendre polynomial for solving first order ODEs. She gave discrete methods
used in block and implement it for solving the non-stiff initial value problems, being the
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continuous interpolant derived and collocated at grid and off-grid points. The results
are compared with RK4, but not compared with other existing methods.

Yakusak & Adeniyi (2015) proposed a four step hybrid block method for first order
IVPs in ODEs by collocation and interpolation techniques and with Chebyshev polyno-
mial of the first kind as basis function. They developed it by introducing four off step
points. However, these off step points are selected in such away that they guarantee zero
stability. Their method is complicated to programing, but when compared with existing
scheme it yielded better accuracy.

Okedayo et al. (2018) developed modified Legendre collocation block method for
solving IVPs of first order ODEs. They proposed, block procedure for some k-step
LMMs, using the Legendre polynomials as the basis function. Discrete methods were
given which were used in block and implemented for solving the initial value problems,
being continuous interpolant derived and collocated at grid points. Their developed
method is implemented without the need for the development of correctors.

Ajileye et al. (2018) derived hybrid block method algorithms for solution of first
Order IVPs using Power series as a basis. They adopted the method of collocation and
interpolation of power series approximation to generate the continuous formula. Tested
the accuracy of their method by considering two examples.

Nweze et al. (2018) developed a class of block procedure with the implicit LMM
in block form for k = 1,2 and 3 using Chebyshev polynomials as a basis function for
solving non stiff initial value problem in ODEs. The accuracy of their method compared
to the exact solution by taking non stiff problems.

Recently, Berhan et al. (2019) extends and Modified the work of Abualnaja (2015).
They constructed a block procedure with implicit LMMs for some k-step (k = 1,2,3
and 4) using Legendre polynomials for solving stiff IVPs. Their method depends on the
perturbed collocation approximation with shifted Legendre polynomials as perturbation
term.

As introduced in the literature, there are a growing research works on the devel-
opment of different numerical methods to get a better approximate solution for stiff
first order ODEs with a family of orthogonal polynomial functions,as there is no one
best method for all types of problems. While the central activity of numerical analysts
is providing accurate and efficient general purpose numerical methods and algorithms,
there has always been a realization that some problem types have distinctive features
that they will need their own special theory and techniques (Butcher, 2000). Owing
this, in this study we proposed a discrete implicit LMM in block form for the solution
of stiff first ODEs using the power series as a basis function and Chebyshev polynomial
as a perturbed term. The derived method was implemented in block mode which has
the advantages of being self-starting, zero-stable, consistent and convergent.
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Chapter 3

Methodology

3.1 Study period and site
The study was conducted in Jimma University under the department of Mathematics
from September 2018 to October 2019 G.C.

3.2 Study Design
The study employed documentary review design and experimental design use of MAT-
LAB.

3.3 Source of Information
The relevant sources of information for the study were books, published articles, related
studies from Internet.

3.4 Procedure of the Study
In order to achieve the stated objectives, the study followed the following steps:

1. Discretization of the interval [xk,xn+k].

2. Define the power series solution of first order IVPs.

3. Truncate the obtained power series.

4. Transform the given interval [xk,xn+k] into the interval [−1,1].
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5. Apply the derivative for the obtain truncated power series and then add a perturbed
term using Chebyshev polynomial and step 3.

6. Formulate the system of equations using the techniques of interpolation and col-
location by applying on step 2 and step 4 respectively, at different grid points.

7. Solve the resulting system of equation.

8. Write MATLAB code for the method.

9. Validate the schemes by using examples and then compare with other results.
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Chapter 4

Mathematical Formulation, Result and
Discussion

4.1 Preliminaries
In this section, we shall be concerned with the construction and the analysis of numerical
methods for stiff first order ordinary differential equations of the form:

y′(x) = f
(
x,y(x)

)
, y(a) = y0, x ∈ [a,b] (4.1)

The following terms and concepts have been used in the formulation of the proposed
method.

Definition 4.1 (Rivlin, 1990)
The Chebyshev polynomials Tn(x) of the first kind is a polynomial in x of degree n,
defined for x ∈ [−1,1] by the relation:

Tn(x) = cos(narccosx), n = 0,1, · · · . (4.2)

By combining the trigonometric identity with the above definition we obtain the funda-
mental recurrence relation :

Tn+1(x)−2xTn(x)+Tn−1(x) = 0, T0(x) = 1, T1(x) = x (4.3)

for n≥ 0.
We may immediately deduce from (4.3), that the first six Chebyshev polynomials of the
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first kind are:

T1(x) = x
T2(x) = 2x2−1
T3(x) = 4x3−3x
T4(x) = 8x4−8x2 +1 (4.4)
T5(x) = 16x5−20x3 +5x
T6(x) = 32x6−48x4 +18x2−1

Definition 4.2 Change of range
If a function is defined on [a,b], it is sometimes necessary for the applications to ex-
pand the function in a series of orthogonal polynomials in this interval. Clearly the
substitution

x =
2

b−a
[t− b+a

2
], a < b (4.5)

transforms the interval [a,b], of the t- axis in to the interval [−1,1], of the x- axis (Suli
& Mayers, 2003). The Chebyshev polynomials of first kind is orthogonal polynomial in
the interval [−1,1].

Definition 4.3 Power series
The power series solution of a function is given in the form:

y(x) =
∞

∑
j=0

a j(x− x0)
j, where, x0 is a constant. (4.6)

If x0 = 0, we have

y(x) =
∞

∑
j=0

a jx j (4.7)

4.2 Derivation of the proposed method
In this section, we drive the discrete method to solve Eq.(4.1) at a sequence of nodal
points xn = x0 + nh where h is the step length and defined by h = xn+ j − xn+ j−1 for
j = 0,1, · · · ,k and n is the number of steps which is a positive integer.
Let the power series solutions of the Eq. (4.1) be

y(x) =
∞

∑
j=0

a jx j. (4.8)
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then the approximate solution will be:

y(x) =
k

∑
j=0

a jx j ,xn ≤ x≤ xn+k. (4.9)

The first derivative of Eq. (4.9) is given by

y′(x) =
k

∑
j=0

ja jx j−1 ,xn ≤ x≤ xn+k. (4.10)

Substituting Eq.(4.10) into Eq.(4.1), we obtained

y′(x) =
k

∑
j=0

ja jx j−1 ≈ f (x,y). (4.11)

Now, by adding the perturbed term τTk(xn+ j) for j = 0(1)k to Eq.(4.11), we obtained:

k

∑
j=0

ja jx j−1 = f (x,y)+ τTk(xn+ j). (4.12)

where τ is a perturbed parameter (determined by the values of fn+k ) and Tk(xn+ j) is the
kth Chebyshev polynomial obtained by the recursive formula:

T0(x) = 1,T1(x) = x & Tk+1(x)−2xTk(x)+Tk−1(x) = 0. (4.13)

From Eq.(4.5) we have

x =
2

b−a
[t− b+a

2
], a < b. (4.14)

This implies that:

x =
2t− (b+a)

b−a
. (4.15)

, or equivalently it is the same as

x =
2xn+ j− (xn+k + xn)

xn+k− xn
k = 1,2,3,4 · · · . (4.16)

To derive the proposed method for each k, k = 1,2,3,4 · · · we should follow the follow-
ing steps. First, we take the Chebyshev polynomials Eq. (4.4) and use Eq. (4.16) to con-
vert in to the range [−1,1]. Using Eq. (4.16) collocate each Tk(x) at xn+ j, j = 0,1,2, · · ·k
to obtain Tk(xn+ j) , where Tk(xn+ j) is the Chebyshev polynomial at Xn+ j such that
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−1≤ Tk(xn+ j)≤ 1
from Eq.(4.11) we deduce that:

a1 +2xa2 +3x2a3 + ...+ kxk−1ak = f (x,y)+ τTk(xn+ j). (4.17)

Interpolating Eq.(4.9) at x = xn, collocating Eq.(4.17) at the collocating points xn+ j
for j = 0(1)k and substituting the relation xn+k = xn + kh, we get a system of (k+ 2)
equations with (k+2) parameters as shown below:

a0 +a1xn +a2x2
n + · · ·+akxk

n = yn

a1 +2a2xn +3a3x2
n + · · ·+ kakxk−1

n − τTk(xn) = fn

a1 +2a2(xn +h)+3a3(xn +h)2 + · · ·+ kak(xn +h)k−1− τTk(xn+1) = fn+1
...

a1 +2a2(xn + kh)+3a3(xn + kh)2 + · · ·+ kan+k(xn + kh)k−1− τTk(xn+k) = fn+k

(4.18)

Eq. (4.18) is a square matrix in the form

AX = b (4.19)

where

A =



1 xn x2
n x3

n . . . xk
n

0 1 2xn 3x2
n . . . kxk−1

n −Tkxn

0 1 2(xn +h) 3(xn +h)2 . . . k(xn +h)k−1−Tk(xn +h)

...
...

...
... . . . ...

0 1 2(xn + kh) 3(xn + kh)2 . . . k(xn + kh)k−1−Tk(xn + kh)


,

X = [a0,a1,a2, · · ·ak,τ]
T , and b = [yn, fn, fn+1, · · · fn+k]

T

Now, the required numerical scheme of the proposed method will be obtained, if we
interpolate Eq. (4.9) at xn+k as follows:

yn+k = a0 +a1xn+k +a2x2
n+k + ...+akxk

n+k (4.20)

and substitute the values of the parameters τ,a0,a1,a2, ..., and ak in Eq.(4.20). Now in
this study,we will drive the proposed block implicit LMM only for k = 1,2,3,4
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4.2.1 Derivation of the method for k=1
Using Eq.(4.13) the chebyshev polynomial is T1(x) = x and by applying Eq.(4.16) at
collocating points xn and xn+ j, we get:

T1(xn) = T1(−1) =
2xn− xn+1− xn

xn+1− xn
=−1

T1(xn+1) = T1(1) =
2xn+1− xn+1− xn

xn+1− xn
= 1 (4.21)

Thus, Eq.(4.18) becomes:

a0 +a1xn = yn

a1 + τ = fn (4.22)
a1− τ = fn+1

which gives the matrix form
1 xn 0

0 1 1

0 1 −1




a0

a1

τ

=


yn

fn

fn+1

 (4.23)

Solving the matrix above gives the value

τ =
1
2
( fn− fn+1)

a0 = yn−
1
2
( fn + fn+1)xn (4.24)

a1 =
1
2
( fn + fn+1)

Substituting this values in Eq.(4.20), we obtain:

yn+1 = yn +
h
2
( fn + fn+1) (4.25)

Therefore, Eq.(4.25) is the numerical scheme when k = 1, which is the well-known
trapezoidal rule.
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4.2.2 Derivation of the method for k=2
Using Eq.(4.13) the Chebyshev polynomial for k = 2 is T2(x) = 2x2−1 and by applying
Eq.(4.16) at collocating points xn ,xn+1 and xn+2, we get:

T2(xn) = T2(−1) = 1
T2(xn+1) = T2(0) =−1 (4.26)

T2(xn+2) = T2(1) = 1

Thus, Eq.(4.18) becomes:

a0 +a1xn +a2x2
n = yn

a1 +2a2xn− τ = fn

a1 +2a2xn+1 + τ = fn+1 (4.27)
a1 +2a2xn+2− τ = fn+2

which gives the matrix form

1 xn x2
n 0

0 1 2xn −1

0 1 2xn+1 1

0 1 2xn+2 −1





a0

a1

a2

τ


=



yn

fn

fn+1

fn+2


(4.28)

Solving the matrix above gives the value

τ =
1
4
(− fn +2 fn+1− fn+2)

a0 = − 1
4h

(3h fnxn +2h fn+1xn−h fn+2xn + fnx2
n− fn+2x2

n−4hyn)

a1 =
1

4h
(3h fn +2h fn+1−h fn+2 +2 fnxn−2 fn+2xn) (4.29)

a2 = − 1
4h

( fn− fn+2)

Substituting this values in Eq.(4.20), we get:

yn+2 = yn+1 +
h
2
( fn+1 + fn+2) (4.30)

Therefore, Eq.(4.30) is the numerical scheme when k = 2.
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4.2.3 Derivation of the method for k=3
Using Eq.(4.13) the Chebyshev polynomial for k = 3 is T3(x) = 4x3−3x and by apply-
ing Eq.(4.16) at collocating points xn ,xn+1 , xn+2 and xn+3, we get:

T3(xn) = T3(−1) =−1

T3(xn+1) = T3(
−1
3
) =

23
27

(4.31)

T3(xn+2) = T3(
1
3
) =
−23
27

T3(xn+3) = T3(1) = 1

Thus, Eq.(4.18) becomes:

a0 +a1xn +a2x2
n +a3x3

n = yn

a1 +2a2xn +3a3x3
n + τ = fn

a1 +2a2xn+1 +3a3x3
n+1−

23
27τ = fn+1 (4.32)

a1 +2a2xn+2 +3a3x3
n+2 +

23
27τ = fn+2

a1 +2a2xn+3 +3a3x3
n+3− τ = fn+3

which gives the matrix form

1 xn x2
n x3

n 0

0 1 2xn 3x2
n 1

0 1 2xn+1 3x2
n+1 −

23
27

0 1 2xn+2 3x2
n+2

23
27

0 1 2xn+3 3x2
n+3 −1





a0

a1

a2

a3

τ


=



yn

fn

fn+1

fn+2

fn+3


(4.33)
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Solving the matrix above gives the value

τ = 1
64(9 fn−27 fn+1 +27 fn+2−9 fn+3)

a0 =− 1
192h2 (165h2 fnxn +81h2 fn+1xn−81h2 fn+2xn +27h2 fn+3xn +95h fnx2

n−45h fn+1x2
n

−99h fn+2x2
n +49h fn+3x2

n +16 fnx3
n−16 fn+1x3

n−16 fn+2x3
n +16 fn+3x3

n−192h2yn)

a1 =
1

192h2 (165h2 fn +81h2 fn+1−81h2 fn+2 +27h2 fn+3 +190h fnxn−90h fn+1xn

−198h fn+2xn +98h fn+3xn +48 fnx2
n−48 fn+1x2

n−48 fn+2x2
n +48 fn+3x2

n)

a2 =
1

192h2 (−95h fn−45h fn+1−99h fn+2 +49h fn+3 +48 fnxn−48 fn+1xn−48 fn+2xn

+48 fn+3xn)

a3 =
1

12h2 ( fn− fn+1− fn+2 + fn+3)

(4.34)

Substituting this values in Eq.(4.20), we get:

yn+3 = yn+2 +
h

96
(−3 fn + fn+1 +55 fn+2 +43 fn+3) (4.35)

Therefore, Eq.(4.35) is the numerical scheme when k = 3.

4.2.4 Derivation of the method for k=4
Using Eq.(4.13) the Chebyshev polynomial for k = 4 is T4(x) = 8x4− 8x2 + 1 and by
applying Eq.(4.16) at collocating points xn ,xn+1 , xn+2 , xn+3 and xn+4 ,we get:

T4(xn) = T4(−1) = 1

T4(xn+1) = T4(
−1
2
) =
−1
2

C4(xn+3) = T4(0) = 1 (4.36)

T4(xn+2) = T4(
1
2
) =
−1
2

T4(xn+4) = T4(1) = 1

Thus,Eq.(4.18) becomes:

a0 +a1xn +a2x2
n +a3x3

n +a4x4
n = yn

a1 +2a2xn +3a3x2
n +4a4x3

n− τ = fn

a1 +2a2xn+1 +3a3x2
n+1 +a4x3

n+1 +
1
2

τ = fn+1

a1 +2a2xn+2 +3a3x2
n+2 +a4x3

n+2− τ = fn+2 (4.37)

a1 +2a2xn+3 +3a3x2
n+3 +a4x3

n+3 +
1
2

τ = fn+3

a1 +2a2xn+4 +3a3x2
n+4 +a4x3

n+4− τ = fn+4
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which gives the matrix form

1 xn x2
n x3

n x4
n 0

0 1 2xn 3x2
n 4x3

n −1

0 1 2xn+1 3x2
n+1 4x3

n+1
1
2

0 1 2xn+2 3x2
n+2 4x3

n+2 −1

0 1 2xn+3 3x2
n+3 4x3

n+3
1
2

0 1 2xn+4 3x2
n+4 4x3

n+4 −1





a0

a1

a2

a3

a4

τ


=



yn

fn

fn+1

fn+2

fn+3

fn+4


(4.38)

Solving the above system of equation with a suitable method ,we obtain:

τ = 1
12( fn+3− fn + fn+1− fn+2− fn+4)

a0 =− 1
48h3 (44h3 fnxn +16h3 fn+1xn−24h3 fn+2xn +16h3 fn+3xn−4h3 fn+4xn +34h2 fnx2

n

−32h2 fn+1x2
n−24h2 fn+2x2

n +32h2 fn+3x2
n−10h2 fn+4x2

n +10h fnx3
n−16h fn+1x3

n

−4h fn+2x3
n +16h fn+3x3

n−6h fn+4x3
n + fnx4

n−2 fn+1x4
n +2 fn+3x4

n− fn+4x4
n−48h3yn)

a1 =
1

24h3 (22h3 fn +8h3 fn+1−12h3 fn+2 +8h3 fn+3−2h3 fn+4 +34h2 fnxn−32h2 fn+1xn

−24h2 fn+2xn +32h2 fn+3xn−10h2 fn+4xn +15h fnx2
n−24h fn+1x2

n−6h fn+2x2
n

+24h fn+3x2
n−9h fn+4x2

n +2 fnx3
n−4 fn+1x3

n +4 fn+3x3
n−2 fn+4x3

n)

a2 =− 1
24h3 (17h2 fn−16h2 fn+1−12h2 fn+2 +16h2 fn+3−5h2 fn+4 +15h fnxn−24h fn+1xn

−6h fn+2xn +24h fn+3xn−9h fn+4xn +3 fnx2
n−6 fn+1x2

n +6 fn+3x2
n−3 fn+4x2

n)

a3 =
1

24h3 (5h fn−8h fn+1−2h fn+2 +8h fn+3−3h fn+4 +2 fnxn−4 fn+1xn +4 fn+3xn

−2 fn+4xn)

a4 =− 1
48h3 ( fn−2 fn+1 +2 fn+3− fn+4)

(4.39)

Substituting this values in Eq.(4.20), we get:

yn+4 = yn+3 +
h

48
( fn−2 fn+1−4 fn+2 +34 fn+3 +19 fn+4) (4.40)

Therefore, Eq.(4.40) is the numerical scheme when k = 4.
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Generally, the proposed block procedure with the implicit LMM is given by:

yn+1 = yn +
h
2
( fn + fn+1)

yn+2 = yn+1 +
h
2
( fn+1 + fn+2)

yn+3 = yn+2 +
h

96
(−3 fn + fn+1 +55 fn+2 +43 fn+3) (4.41)

yn+4 = yn+3 +
h

48
( fn−2 fn+1−4 fn+2 +34 fn+3 +19 fn+4)

4.3 Analysis of the Method

4.3.1 Order and error constant of the Method
According to Lambert (1991) the general K-step LMM for solving Eq.(4.1) is written
in the form:

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β j fn+ j (4.42)

where α ′js and β ′js are coefficients of the method to be uniquely determined, h is a con-
stant step size.
By using the substitutions yn+ j = z j and h fn+ j = z j where z is a variable and j =
0,1,2, · · · ,k, for the LMMs given in Eq. (4.42), we introduce at this point a polyno-
mial which is known as characteristic polynomials:

ρ(z) =
k

∑
j=0

α jz j and σ(z) =
k

∑
j=0

β jz j (4.43)

The polynomial ρ(z) and σ(z) respectively the first and second characteristics polyno-
mials (Lambert, 1991).
Moreover, following Henrici (1962), the approach developed in Lambert (1991) and
Suli & Mayers (2003), we define the local truncation error associated with Eq.(4.42) by
the difference operator:

`[y(x) : h] =
1

h∑
k
j=0 β j

 k

∑
j=0

[α jy(xn + jh)−hβ j f (xn + jh)]

 . (4.44)

Assuming y(x) is sufficiently differentiable solutions and expanding the test function
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y(x+ jh) and its derivative y(x+ jh) in Taylor series about x give us:

y(x+ jh) = y(x)+( jh)y′(x)+
( jh)2y′′(x)

2!
+ · · ·+ ( jh)py(p)(x)

p!
+ · · · . (4.45)

y′(x+ jh) = y′(x)+( jh)y′′(x)+
( jh)2y′′′(x)

2!
+ · · ·+ ( jh)p−1y(p)(x)

(p−1)!
+ · · · . (4.46)

substituting Eqs. (4.45) and (4.46) into Eq. (4.44) after collecting like terms we obtain:

`[y(x) : h] =
1

hσ(1)
[C0y(x)+C1hy′(x)+C2h2y′′(x)+ · · ·Cp+1h(p+1)y(p+1)(x)] (4.47)

where, σ(1) is the value of the second characteristic polynomial at z = 1 and

C0 =
k

∑
j=0

α j

C1 =
k

∑
j=0

(
jα j−β j

)
(4.48)

Cp =
k

∑
j=0

(
jp

p!
α j−

jp−1

(p−1)!
β j

)
, for p≥ 2.

According to Lambert (1991), Eq.(4.41) is order p, if in Eq. (4.47)

C0 =C1,= · · ·=Cp = 0, & CP+1 6= 0.

In this case, the number Cp+1
σ(1) is called the error constant of the method.

By using the above properties, let us drive the order and error constants of the pro-
posed method for each steps.

Now, for k = 1, we have α0 = −1,α1 = 1,β0 = 1
2 , and β1 = 1

2 . Thus, from Eq.
(4.48), we obtain:

C0 = α0 +α1 = 0
C1 = α1− (β0 +β1) = 0

C2 =
α1

2
−β1 = 0

C3 =
α1

6
− β1

2
=− 1

12
6= 0

Therefore, for k = 1 the order is 2 and the error constant is − 1
12 .
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For k = 2, we have α0 = 0,α1 =−1,α2 = 1,β0 = 0,β1 =
1
2 , and β2 =

1
2 . since, from

Eq. (4.48), we get:

C0 = α0 +α1 +α2 = 0
C1 = α1 +2α2− (β0 +β1 +β2) = 0

C2 =
α1

2
+2α2− (β1 +2β2) = 0

C3 =
α1

6
+

8α2

6
− (

β1

2
+2β2) =−

1
12
6= 0

Hence, for k = 2 the order is 2 and the error constant is − 1
12

For k = 3, we have α0 = 0,α1 = 0,α2 = −1,α3 = 1,β0 = − 3
96 ,β1 = 1

96 ,β2 = 55
96 ,

and β3 =
43
96 . since, from Eq. (4.48), we get:

C0 = α0 +α1 +α2 +α3 = 0
C1 = α1 +2α2 +3α3− (β0 +β1 +β2 +β3) = 0

C2 =
α1

2
+

4α2

2
+

9α3

2
− (β1 +2β2 +3β3) = 0

C3 =
α1

6
+

8α2

6
+

27α3

6
− (

β1

2
+

4β2

2
+

9β3

2
) = 0

C4 =
α1

24
+

16α2

24
+

81α3

24
− (

β1

6
+

8β2

6
+

27β3

6
) =− 7

96
6= 0

Since for k = 3 the order is 3 and error constant is − 7
96 .

For k = 4, we have α0 = 0,α1 = 0,α2 = 0,α3 =−1,α4 = 1,β0 =
1

48 ,β1 =− 2
48 ,β2 =

− 4
48 ,β3 =

34
48 , and β4 =

19
48 . Since, from Eq. (4.48), we get:

C0 = α0 +α1 +α2 +α3 +α4 = 0
C1 = α1 +2α2 +3α3 +4α4− (β0 +β1 +β2 +β3 +β4) = 0

C2 =
α1

2
+

4α2

2
+

9α3

2
+

16α4

2
− (β1 +2β2 +3β3 +4β4) = 0

C3 =
α1

6
+

8α2

6
+

27α3

6
+

81α4

6
− (

β1

2
+

4β2

2
+

9β3

2
+

16β4

2
) = 0

C4 =
α1

24
+

16α2

24
+

81α3

24
+

256α4

24
− (

β1

6
+

8β2

6
+

27β3

6
+

64β4

6
) = 0

C5 =
α1

120
+

32α2

120
+

243α3

120
+

1024α4

120
− (

β1

24
+

16β2

24
+

81β3

24
+

256β4

24
) =− 17

360
6= 0

Hence, for k = 4 the order is 4 and error constant is − 17
360

Therefore, the order and the error constant of Eq.(4.41) are given by table below.
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Table 4.1: Order and Erroe constant of the scheme

step size Error Error constant

k = 1 2 − 1
12

k = 2 2 − 1
12

k = 3 3 − 7
96

k = 4 4 − 17
360

4.3.2 Stability Analysis of the block Method
This section presents the stability analysis of the method, that is Eq.(4.41). We begins
by presenting the definition of zero-stability taken from (Suli & Mayers, 2003).

Definition 4.4:- A linear multistep method (LMM) is said to be zero stable if no
root of the first characteristics polynomial has modulus greater than one and that any
root with modulus one is simple.
In other words an LMM is said to be zero stable if

|z| ≤ 1 and, if z is a repeted root, then |z|< 1 (4.49)

Based on the definition 4.4, let us clarify the zero stability of the block method for
each scheme as follows:
For k = 1, we have

ρ(z) = z−1 = 0, implies z = 1,and |z| ≤ 1 is satisfied.

For k = 2, we have

ρ(z) = z2−1 = 0,which implies z = 1,& z =−1.
since in both cases |z| ≤ 1 is satisfied.

For k = 3, we have

ρ(z) = z3− z2 = z2(z−1) = 0,which implies z = 0,& z = 1.
since in both cases |z| ≤ 1 is satisfied.

For k = 4, we have

ρ(z) = z4− z3 = z3(z−1) = 0,which implies z = 0,& z = 1.
since in both cases |z| ≤ 1 is satisfied.

Therefore, our method is zero stable.
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4.3.3 Convergence of the Method
Convergence is an essential feature that every acceptable LMM must possess. This
section discuss the convergence of the proposed block method.
Definition 4.5 (Lambert, 1991)
A LMM is said to be consistent if it has order at least one.
In other words, from E.q (4.48), we verify that

C0 = ρ(1) =
k

∑
j=0

α j, and C1 = ρ
′(1)−σ(1) =

k

∑
j=0

(
jα j−β j

)
(4.50)

So, According to Faul (2018) consistence is expressed by the relations :

ρ(1) = 0, and ρ
′(1) = σ(1) (4.51)

Owing to this expression , the method is consistent.

Definition 4.6 (Dahlquist, 1974)
Consistency and zero stability are the necessary and sufficient conditions for the con-
vergence of any numerical schemes. That means:

convergent= consistency + zero stability.

Since our method is both consistent and zero stable, it is thus converges.

4.4 Numerical Example
The mode of implementation of our method is by combining the schemes Eq.(4.41) as a
block for solving Eq.(4.1). It is a simultaneous integrator without requiring the starting
values except the initial condition from the problem. To assess the performance of the
proposed block method, we consider two stiff first order initial value problems. The
maximum absolute errors (MAXAE) of the proposed method is compared with that of
fourth order Runge-Kutta (RK4), and the method developed by Berhan et al. (2019)
namely block procedure with implicit method using shifted Legendre polynomial as a
perturbed term. All calculations are carried out with the aid of MATLAB software.

Example 1: Consider the first order stiff ODE, LeVeque (2007)

y′(x) =−2100(y− cos(x))− sin(x), y(0) = 1, x ∈ [0,1] (4.52)

The exact solution is

y(x) = cos(x)
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Example 2: Consider the first order stiff ODE, Faul (2018).

y′(t) =−1000000(y− 1
t
)− 1

t2 , y(1) = 1, x ∈ [1,2] (4.53)

The exact solution is

y(t) =
1
t

Table 4.2: Maximum Absolute errors of RK4, Berhan et al. (2019) and the present method for
Example 1.

h RK4 Berhanet al. (2019) PresentMethod

10−1 1.22516e+74 1.22516e−5 5.86307e−7

10−2 2.41053e+304 9.67880e−8 5.71593e−9

10−3 1.53563e−7 6.46040e−11 3.33170e−11

10−4 5.09304e−12 3.33844e−13 3.33844e−13

10−5 1.22125e−15 4.10783e−15 4.10783e−15
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Table 4.3: Maximum Absolute errors of RK4, and the present method for Example 2.

h RK4 presentMethod

10−1 7.507779e+178 1.265948e−8

10−2 5.115563e+298 1.129138e−10

10−3 4.207597e+298 9.959812e−13

10−4 1.091337e+300 9.769963e−15

10−5 5.898859e+301 2.220446−16

10−6 3.352874e−14 2.220446−16

Figure 4.1: Maximum absolute Error of Berhan et al. (2019) and the present method
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4.5 Discussion
The block procedure that we have presented in this thesis showed that it solved stiff
ODEs numerically. The method gave an accurate result for the general first order ODE
and the approximate solution is obtained from the solved problem showed that the effi-
ciency of the numerical method. This method used polynomial interpolation point along
with collocation point to solve stiff ODEs. In doing this two stiff problems have been
solved and the approximate solution is obtained for this two expriments elucidates the
accuracy of the proposed method.

It is observed from the tables that, as the step size h decreases, the method is more
accurate (as shown in table 4.1 and 4.2) than RK4 and Berhan et al. (2019). i.e., In table
4.1 for h = 10−1 RK4 divergent, Berhan et al. (2019) convergent but the present method
is more converge. for h = 10−2 RK4 divergent and Berhan et al. (2019) convergent but
the present method is more convergent. for h = 10−3 RK4 convergent and Berhan et al.
(2019) convergent but the present method is more convergent, for h = 10−4 RK4 con-
vergent and both Berhan et al. (2019) and the present method are similarly convergent,
for h = 10−5 RK4 more convergent than Berhan et al. (2019) and the present method
but Berhan et al. (2019) and the present method similar to convergent. In table 4.2 for
h= 10−1 to h= 10−5 RK4 divergent but the present method increase the convergent, for
h = 10−6 RK4 convergent but the present method more convergent. From the graph we
also observed that the maximum absolute error of the proposed method is more accurate
than the maximum absolute error of Berhan et al. (2019).

Generally, the performances of our method as shown in tables 4.1 and 4.2, are better
than the existing methods for the same step size.

4.5.1 Conclusion
This study presented a block procedure with implicit linear multistep method based
on power series used as a basis and Chebyshev polynomials used as a perturbed term
for solving stiff first order IVPs. A collocation approach along with interpolation at
some grid points which produces a family of maximal fourth order schemes have been
proposed for the numerical solution of stiff problems in ODEs. The properties of the
Chebyshev polynomials are used to introduce the proposed problems to system of equa-
tions which are solved by a suitable method. The desirable property of a numerical
solution is to be have like the theoretical solution of the problem which can be seen
in the above experimental results. The method is tested and found to be consistent,
zero stable and convergent. We implement the method on two numerical examples and
the numerical evidences shows that the proposed method perform favorable when com-
pared with existing scheme as it yielded better accuracy and effective for stiff problems.
Therefore, our method is simple and better to solve stiff IVPs when compared with the
existed methods.
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4.5.2 Future Scope
In this study, a collocation approach which produces a block procedure with implicit
LMM based on power series used as a basis and Chebyshev polynomials using as a
perturbed term for solving stiff first order IVPs with non uniform orders has been pro-
posed. Hence, further research should be performed to enhance the order of the differ-
ential equation and taking into consideration the off grid points to produce a method of
uniform orders. Also performed for solving nonlinear differential equations.
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