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Abstract: 

 In this study, discrete sixth order implicit linear multistep methods (LMM) in block 

form of uniform step size for the solution of initial value problems (IVPs) for ordinary 

differential equations (ODEs) was presented using the Legendre polynomials. The 

method is based on collocation of the differential equation and interpolation of the 

approximate solution of power series at the grid points. The procedure yields four 

consistent linear multistep schemes which are combined as simultaneous numerical 

integrators to form block method. The method is found to be consistent and zero-

stable hence convergent. The accuracy of the method is tested with some standard 

stiff first order initial value problems. The results are compared with fourth order 

Runge-Kutta and with the implicit backward difference methods 2BBDF and 

2BEBDF. All numerical examples show that our proposed method has a better 

performance over the existing methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Block Procedure, Collocation, Interpolation, Legendre Polynomials,       

                    LMM, Stiff.  

 

 



 
 

iv 
 

Table of Contents 

DECLARATION ........................................................................................................... i 

Acknowledgment .......................................................................................................... ii 

Abstract: ....................................................................................................................... iii 

List of Tables ................................................................................................................ v 

List of Figures .............................................................................................................. vi 

Acronym …………………………………………………………………………… vii 

CHAPTER ONE: Introduction ..................................................................................... 1 

1.1. Background of the Study ................................................................................... 1 

1.2. Statement of the Problem ....................................................................................... 5 

1.3. Objective of the study ............................................................................................ 6 

1.3.1. General objective ................................................................................................ 6 

1.3.2. Specific objectives .............................................................................................. 6 

1.4 Significance of the study .................................................................................... 6 

1.5. Delimitation of the study ....................................................................................... 6 

CHAPTER TWO: Review Literature ........................................................................... 7 

CHAPTER THREE: Methodology ............................................................................. 10 

3.1. Study area and period........................................................................................... 10 

3.2. Study Design ........................................................................................................ 10 

3.3. Source of information .......................................................................................... 10 

3.4. Mathematical Procedures ..................................................................................... 10 

CHAPTER FOUR:  Mathematical formulation, Result and discussion ..................... 11 

4.1. Preliminaries ........................................................................................................ 11 

4.2. The derivation of the proposed method: .............................................................. 16 

4.3 The basic properties of the proposed method: ...................................................... 25 

4.4. Numerical examples............................................................................................. 30 

CHAPTER FIVE : Conclusion and Future scope …………………………………...37 

5.1. Conclusion ........................................................................................................... 37 

5.2 Future scope .......................................................................................................... 37 

References ................................................................................................................... 38 

 

 

 



 
 

v 
 

List of Tables 

Table 4.1: Exact and approximate values for problem 1…………………………   (30) 

Table4.2: Comparison of Absolute Errors for problem1………………………...    (31) 

Table4.3: Exact, RK and PM values for problem 1 when………………………..   (31) 

Table4.4: Comparisons of absolute errors of RK and PM for problem1, 0 .2h  ..  (32) 

Table4.5: Maximum Absolute errors of 2BBDF, 2BEBDF and PM for problem2. (33) 

Table4.6: Maximum Absolute Errors of 2BBDF, 2BEBDF and PM for problem3. (34) 

Table4.7: Comparison of maximum absolute errors for RK and PM …………….. (35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

List of Figures 

Figure 4.1: Graphs of Exact, RK and PM for problem 1………………………..   (30) 

Figure4.2: Graphs of Exact, RK and PM for problem 1 when h=0.2……………. (32) 

Figure4.3: Graphs of Exact, RK and PM for Problem 2…………………………  (33) 

Figure4.4: Graph of Exact, RK, PM solution curves for problem 3……………... (34) 

Figure4.5: Graph of Exact, RK and PM for problem 4…………………………... (35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vii 
 

Acronyms: 

2BBDF: 2-point Block Backward Difference Formula 

2BEBDF: 2-point Block Extended Backward Difference Formula 

BDF: Backward Difference Formula 

DDE: Delay Differential Equation 

IVPs: Initial Value Problems 

LMM: Linear Multistep Method 

LTE: Local Truncation Error  

MAE: Maximum Absolute Error 

ODEs: Ordinary Differential Equations 

PM: Proposed Method 

RK: Runge-Kutta 

 

 



 
 

1 
 

CHAPTER ONE 

Introduction 

1.1. Background of the Study 

Many problems in science and engineering can be formulated either in the form of the 

initial value problems or in terms of the boundary value problems. An equation 

involving derivatives of one or more dependent variables with respect to one or more 

independent variables is called a differential equation. A differential equation 

involving ordinary derivatives of one or more dependent variables with respect to a 

single independent variable is called an ordinary differential equation. The order of 

the highest order derivative involved in a differential equation is called the order of 

the differential equation (Shepley, 2004).  Hence, differential equations will typically 

be written in the form ( ) ( , ( )), w h ere '
d y

y x f x y x y
d x

 
 
 .  

Ordinary differential equations frequently occur in mathematical models that arise in 

many branches of science, engineering and economics. Unfortunately it is seldom that 

these equations have solutions which can be expressed in closed form, so it is 

common to seek approximate solutions by means of numerical methods. Nowadays 

this can usually be achieved very inexpensively to high accuracy and with a reliable 

bound on the error between the analytical solution and its numerical approximation. 

In this study we are concerned with the construction and analysis of numerical 

method for solving first-order initial value problems for ordinary differential 

equations of the form:  

0 0

'( ) ( , ( ))

( ) , (1)

y x f x y x

y x y



  

The field of numerical analysis not only develops methods but also analyses them by 

three central concepts such as convergence, stability and order.  

 Linear Multistep Method (LMM) is a computational procedure where by a numerical 

approximation
n j

y


to the exact solution ( )
n j

y x


of the first order Initial Value 

Problems (IVPs) of (1) is obtained. In LMM to find the th
k  approximate value we use 

the already calculated previous k  approximate values.  Given a sequence of equally 

spaced mesh points
n

x with step size h , the general k-step LMM is as given in 

(Lambert, 1973): 
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 
0 0

2

k k

j n j j n j

j j

y h f 
 

 

 
                    

where the coefficients
0 1

, , . . . ,
k

    and 
1

, , . . . ,
o k

   are real constants. In order to 

avoid degenerate cases, we shall assume that 0
k

  and that 
0

 and 
0

 are not both 

equal to zero. If 0 ,
k

   then
n k

y


 is obtained explicitly from previous values of ,
j

y

( , )
j j

f x y , where 0 ,1, 2 , ... , 1j k   and the k  step method is said to be explicit. 

On the other hand, if 0 ,
k

  then appears not only on the left-hand side but also on 

the right, within
,

( )
n k n k

f x y
 

due to this implicit dependence on
n k

y


the method is 

then called implicit. Equation(2) is called linear because it involves only linear 

combinations of the 
n j

y


and the ( , ), 0,1, ...,
n j n j

f x y j k
 

 for the sake of 

notational simplicity, henceforth we shall often write nf
 
instead of ( , )n nf x y .The 

linear multistep method in equation  2  generates discrete schemes which are used to 

solve first-order ODEs. A family of two-steps block generalized Adams methods were 

developed for the solution of Non-stiff IVPs in ODEs (Abudullahi et al., 2014). 

However stiff differential equations arise in many areas of science and technology. 

Their solutions are known to be numerically unstable with many numerical methods, 

unless the step size taken is extremely small. A linear system of ODEs with constant 

coefficients is called stiff, when all its eigenvalues have negative real part and its 

stiffness ratio is large. A system is stiff, if certain components decay much faster than 

others. For one thing, it is possible even for a scalar problem to be stiff even though 

for a scalar problem the stiffness ratio is always one since there is only one eigenvalue 

(Randall, 2004). Brugnano et al. (2011) proposed the methods that have unbounded 

region of absolute stability to overcome the stability restriction on the step size for the 

solution of stiff IVPs. One of the most popular methods for solving stiff ODEs of the 

form (1) is the backward differentiation formula (Curtiss and Hirschfelder, 1952), 

which is a linear multistep method. Suleiman et al. (2015) proposed an implicit 2-

point block extended backward differentiation formula for integration of stiff initial 

value problems and checked the performance of their methods by considering stiff 

problems. A number of researchers have developed LMM of the type (2) for the 

solution of first order IVPs in ODEs. Moreover, power series has also being 
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extensively used in literature for the same purpose. James et al. (2013) developed a 

continuous block method using the approach of collocation of the differential system 

and interpolation of the power series approximate solution at the grid and off grid 

points. 

The interpolation problem is to construct a function ( )q x  that passes through each 

values of ( )f x at grid points
0 , 1 2

, , ...,
n

x x x x . To find a function ( )q x the interpolation 

requirements ( ) ( ), 0 ,
j j

q x f x j n   are satisfied. The points 
0 1

, , . . . . , nx x x
 
are 

called the interpolation points. The property of passing through ( )
j

f x is referred to us 

interpolating the data. The function that interpolates the data is an interpolant or an 

interpolating polynomial (Doron, 2010). If 
0 1
, ,......., nx x x  are distinct, then for 

any 
0 1

( ), ( ), ..., ( )nf x f x f x
 
there exists a unique polynomial ( )

n
q x  of degree 

n  such that the interpolation conditions ( ) ( ), 0,1, ...,n j j
q x f x j n 

 
are 

satisfied.  

A collocation solution h
u

 
to a functional equation (for example an ordinary 

differential equation) on an interval I is an element from some finite-dimensional 

function space (the collocation space) which satisfies the equation on an appropriate 

finite subset of points in I (the set of collocation points) whose cardinality essentially 

matches the dimension of the collocation space . If  initial conditions are present, then

h
u will usually be required to fulfill these conditions, too. For initial-value problems 

in ordinary differential equations such collocation methods were first studied 

systematically in the late 1960 (Harmann, 2004). Suppose that ODEs of equation (1), 

is to be solved over the interval
0

,x x h 
 

 . Choose 
1 2

0 ... 1 .nc c c     The 

corresponding (polynomial) collocation method approximate the solution y  by the 

polynomial p of degree n  which satisfies the initial condition 
0 0 ,

( )p x y  and the 

differential equation ,0 0 0
'( ) ( ( ))p x f x p x  at all collocation points

0 k
x x c h   

for 1, 2 , .. . , .k n  This gives conditions which matches the 1n   parameters needed 

to specify a polynomial of degree n .    

Several continuous LMMs have been derived using interpolation and collocation for 

the solution of equation (1) with constant step size using Legendre polynomials. 
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Khader et al. (2014) developed an integral collocation approach based on Legendre 

polynomials for solving Riccati, Logistic and delay differential equations. The 

properties of the Legendre polynomials helped them to reduce the proposed problems 

to the solution of nonlinear systems of algebraic equations using Newton iteration 

method.  

Legendre polynomials that were first studied by the French mathematician Darien-

Marie Legendre (1752-1833).The Legendre polynomial originated in determining the 

force of attraction exerted by solids of revolution and their orthogonal properties were 

established by A.M. Legendre during 1784-1790. Substantial amount of research 

work has been carried out globally on the application of orthogonal functions to 

various fields of engineering. The Legendre polynomials are derived from the simple 

recursive formula (Poularikas, 1999).  

The recursive formula is: 

1 1
( 1) ( ) ( 2 1) ( ) ( ) 0 ( 4 )

n n n
n p x n x p x n p x

 
      

The Legendre polynomials are orthogonal in [-1, 1] since they satisfied the inner 

product property which is given by: 

1 1
2

1 1

2
( ) ( ) 0 fo r . If , th en [ ( )] , 0 ,1, 2 , ...

2 1nn m
p x p x d x n m m n p x d x n

n 

    
 

and therefore the set 
2 1

( ) ( ), 0 ,1, 2 , ...
2

n n

n
x p x n


   is orthonormal. 

Yakusak et al. (2014) proposed uniform order (all the schemes have the same order) 

Legendre approach for continuous hybrid methods for the solution of first order 

ordinary differential equations. They adopted the method of interpolation of the 

approximation and collocation of its differential equation and with Legendre 

polynomials of the first kind as basis function. Kumleng et al. (2013) proposed a new 

three and five step block linear methods based on the Adams family for the direct 

solution of stiff initial value problems (IVPs). Recently, Abualnaja, (2015), 

constructed a block procedure with linear multistep methods using Legendre 

polynomials for solving ODEs. The researcher derived a block procedure for some k-

step linear multistep methods (k=1, 2 and 3). It is an explicit method and used for 

solving non-stiff initial value problems. The method depends on the perturbed 

collocation approximation with shifted Legendre polynomials as perturbation term 

and with maximum order of four.  
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In this study, we proposed a block procedure with implicit linear multistep methods 

for direct solutions of equation (1). It is the method of interpolation of approximate 

solutions of power series and collocation of its differential equations using shifted 

Legendre polynomials as perturbed term with uniform step size. The shifted Legendre 

polynomials are polynomials which are transformed from intervals [a, b] to the 

interval [-1, 1]. According to Solomon Gebregiorgis and Genanew Gofe, (2016), there 

is no one best method in terms of accuracy, since the performance of a given method 

depends on the characteristics of the ODEs we are considering such as stiffness and 

stability. So the performance of the proposed method will be checked by comparing 

the numerical results with known stable and convergent methods such as fourth order 

Runge-Kutta, 2BBDF and 2BEBDF. 

1.2. Statement of the Problem 

Many researchers in numerical analysis proposed different methods to solve the first 

order initial value problems in ordinary differential equations. Abualnaja, (2015) 

constructed a block procedure with linear multistep method using Legendre 

polynomials. The researcher derived a block procedure for some k-steps linear 

multistep methods (k=1, 2 and 3). It is an explicit method which solves only non-stiff 

initial value problems. The method depends on the perturbed collocation 

approximation with Legendre polynomials as perturbation term and with maximum 

order of four. Suleiman et al. (2015) proposed an implicit 2-point block extended 

backward differentiation formula for integration of stiff initial value problems and 

checked the performance of their methods by considering stiff problems. In this study, 

we are going to formulate the approximate solutions for first order IVPs in ODEs by 

applying the implicit linear multistep method in block form for 1, 2 , 3, 4k  based on 

Legendre polynomials. To this end, the present study attempted to answer the 

following basic questions: 

 How do we describe the block procedure with implicit linear multistep 

methods using shifted Legendre polynomials as a perturbed term? 

 How do we describe the convergence of the proposed methods? 

 How do we validate the scheme using numerical examples? 

 How the proposed method compared with the existing methods? 

 To what extent the proposed method approximate the exact solutions? 
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1.3. Objective of the study 

1.3.1. General objective 

The general objective of this study is to formulate a block procedure with implicit 

sixth order linear multistep method using Legendre polynomials for solutions of stiff 

first order initial value problems in ordinary differential equations. 

1.3.2. Specific objectives 

The specific objective of this study is: 

 To derive a block procedure with implicit LMM by the method of collocation 

and interpolation using shifted Legendre polynomials as a perturbed term. 

  To show the consistence, stability and convergence of the present method. 

  To get a block procedure schemes for solving stiff problems. 

 To approximate the exact solutions with minimal errors. 

1.4 Significance of the study 

The outcome of this research has the following importance: 

 It may provide some background information for other researchers who want 

to work on similar topics. 

 It may have some contribution in solving stiff IVPs for ODEs. 

 Further, this research may be useful for the graduate program of the 

department. 

1.5. Delimitation of the study 

This study delimited to the numerical solution of stiff first order initial value problems 

using implicit sixth order block procedure with LMM by considering the shifted 

Legendre polynomials as a perturbation term. 
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CHAPTER TWO 

2. Review Literature 

The idea of extending the Euler method by allowing the approximate solution at a 

point to depend on the solution values and the derivative values at several previous 

step values was originally proposed by Bashforth and Adams (1883). Not only was 

this special type of method, now known as the Adams–Bashforth method, introduced, 

but a further idea was suggested. This further idea was developed in detail by 

Moulton (1926). Other special types of linear multistep methods were proposed by 

Nystrom (1925) and Milne (1926, 1953). The idea of predictor–corrector methods is 

associated with the name of Milne, especially because of a simple type of error 

estimate available with such methods. The ‘backward difference’ methods were 

introduced by Curtiss and Hirschfelder (1952), and these have a special role in the 

solution of stiff problems (Butcher, 2008).  

The problem of stiffness leads to computational difficulty in many practical problems. 

In general a problem is called stiff if, roughly speaking, we are attempting to compute 

a particular solution that is smooth and slowly varying (relative to the time interval of 

the computation), but in a context where the nearby solution curves are much more 

rapidly varying. In other words if we perturb the solution slightly at any time, the 

resulting solution curve through the perturbed data has rapid variation (Randall, 

2004).  

A substantial amount of research work has been carried out globally on the 

application of LMM to solve numerically the IVPs in ODEs.  The  techniques  for  the  

derivation  of  continuous  linear  multistep methods (LMMs) for direct solution of 

initial value  problems  in  ordinary  differential  equations  have  been discussed  in  

literature  over  the  years  and  these  include, among  others  collocation,  

interpolation, block forms as simultaneous numerical integrators , integral collocation 

formulation. Basis functions such as, power series, Chebyshev polynomials, 

trigonometric functions, the Hermite polynomials; Legendre polynomials with 

collocation approach have been employed. Legendre polynomials are a well-known 

family of orthogonal polynomials on the interval [-1, 1] that have many applications. 

They are widely used because of their properties in the approximation of functions. 

Here, a list of works briefly detailing their scope and magnitude of LMM based on 

Legendre polynomial functions. 
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Olabode and Momoh (2016) proposed the continuous hybrid multistep methods with 

Legendre basis function for direct treatment of second order stiff ODEs.  They 

achieved the method by  constructing  a continuous  representation  of  hybrid  

multistep  schemes  via  interpolation  of  the  approximate  solution  and  collocation  

of derivative function with Legendre polynomial as basis functions. The discrete 

schemes were obtained from the continuous scheme as a by-product and applied in 

block form as simultaneous numerical integrators to solve initial value problems 

(IVPs). The resultant schemes are self-starting; do not need the development of 

separate predictors. They used the Legendre polynomial without perturbation as basis 

functions for the construction of continuous schemes, which simultaneously generate 

solution of the differential equations. They developed two block methods with the 

same order of five. The derived methods were implemented in block mode which 

have the advantages of being self-starting, stable and convergent. 

 

Khader et al. (2014) developed an integral collocation approach based on Legendre 

polynomials for solving Riccati, Logistic and Delay Differential Equations (DDE). 

The properties of the Legendre polynomials helped them to reduce the proposed 

problems and leads to the solution of non-linear system of algebraic equations using 

Newton iteration method. In their article, an integral collocation approach based on 

shifted Legendre polynomials on the intervals [0, 1] (using the change of variable

2 1z x  ) was introduced and they conclude that their approximation is in 

agreement with the exact solution. 

Recently, perturbation methods have been gaining much popularity. Perturbation 

theory comprises mathematical methods for finding approximate solutions to a 

problem, by starting from the exact solution of a related, simpler problem. 

Perturbation theory is applicable if the problem at hand cannot be solved exactly, but 

can be formulated by adding a "small" term to the mathematical description of the 

exactly solvable problem. Perturbation theory leads to an expression for the desired 

solution in terms of a power series in some ‘small’ parameter- known as a 

perturbation series-that quantifies the deviation from the exactly solvable problem. 

The leading term in this power series is the solution of the exactly solvable problem, 

while further terms describe the deviation in the solution, due to the deviation from 

the initial problem (Romero, 2013). Perturbation theory was investigated by the 
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classical scholars, as the result of which the computations could be performed with a 

very high accuracy. 

Abualnaja, (2015) constructed a block procedure with linear multistep methods using 

Legendre polynomials for solving ODEs. The researcher derived a block procedure 

for some k-steps linear multistep methods (k=1, 2 and 3) using the methods of 

collocation and interpolation. The method depends on the perturbed collocation 

approximation by shifting the Legendre polynomials to the intervals [-1, 1] using the 

change of variable (change of range). The researcher exploited the derivative of 

power series approximation along with the perturbed Legendre polynomials. By 

collocating the derivatives of power series at the grid points , 0 ,1, 2 , . . . ,
n j

x j k


   and 

interpolating the power series at 
n

x
 
and generated a system of equations. At last by 

interpolate the approximate power series solution at 
1n

x


and substituting the values of 

the parameters developed the method. The order of the scheme is four, the method is 

explicit and it is for non-stiff IVPs. In our study we tried to develop a block procedure 

with implicit sixth order LMM which is for solving stiff IVPs. 
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CHAPTER THREE 

3. Methodology 

3.1. Study area and period 

The study has been conducted in Jimma University under the supervision of the 

department of mathematics from September 2016 G.C. to October 2017 G.C.  

3.2. Study Design 

This study employed both documentary review and experimental design on the first 

order IVPs in ODEs. So the study design is a mixed type. 

3.3. Source of information 

The relevant sources of information for this study are books, published articles and 

related studies and the experimental results obtained by using MATLAB software for 

the present methods (MATLAB version is 2013). 

3.4. Mathematical Procedures 

Important results and data relevant to the study have been collected by means of 

documentary review. Then it is further analyzed and extended with the aim of 

improving the existing method. In order to verify the effectiveness of the proposed 

method numerical data have been collected & graphs have been sketched by coding 

the schemes and running using MATLAB software. To do so, the study has followed 

the following procedures: 

1. Define the power series solution of first order IVPs in ODEs. 

2. Truncate the approximate solution of power series.  

3. Use the change interval (change of range) in order to convert the Legendre 

polynomials at , 0 ,1, 2, ...,
n j

x j k


  to the interval [-1, 1]. 

4. Apply the derivative of approximate power series solution by introducing a 

perturbed term, which is the product of perturbation parameter  and shifted 

Legendre polynomial, Where  is determined by the values of
n k

f


.      

5. Formulate the system of equations using the methods of collocation and 

interpolation and solve them. 

6. Check the consistency, stability and convergence of the proposed new method. 

7. Write MATLAB code for the block method (MATLAB ver. 2013). 

8. Validate the schemes using stiff numerical examples and compare results with    

Runge-Kutta, 2BBDF and 2BEBDF methods. 
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CHAPTER FOUR 

4. Mathematical formulation, Result and discussion 

4.1. Preliminaries 

In this section we shall be concerned with the construction and the analysis of 

numerical methods of first-order IVPs for ordinary differential equations of the form 

0 0
'( ) ( , ( ) ) , ( ) , ( 4 .1)y x f x y x y x y 

The following terms and concepts have been exploited in the formulation of our 

proposed method: 

A. Legendre polynomials:
 

The Legendre polynomials ( )
n

p x  are derived from the simple recursive formula: 

1 1
( 1) ( ) ( 2 1) ( ) ( ) 0 ( 4 .3 )

n n n
n p x n x p x n p x

 
             

With 
0

( ) 1, 0 ,1, 2 , . . . .p x n   

where the first six Legendre polynomials of the first kind are: 

 

0

1

2

2

3

3

4 2

4

5 3

5

( ) 1

( )

3 1
( )

2 2

5 3
( ) 4 .4

2 2

3 5 3 0 3
( )

8 8 8

6 3 7 0 1 5
( )

8 8 8

p x

p x x

p x x

p x x x

p x x x

p x x x x





 

 

  

  

 

B.  Change of range: If a function ( )f x is defined on [a, b], it is sometimes necessary 

in the applications to expand the function in a series of orthogonal polynomials in this 

interval. Clearly the formula given by: 

 
2

[ ], 4 .5
2

b a
x t a b

b a


  



transforms the interval [a, b] of the t - axis in to the interval [-1, 1] of the x- axis.         

C. Power series: 

Assuming that 
0

x
 
is an ordinary point of the differential equation, the solutions in 

powers of 
0

x x actually do exist (Shepley, 2004); we denote such a solution by 
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2

0 1 0 2 0

0

0

( ) ( ) ...

( )
n

n

n

y c c x x c x x

y c x x





     

 
 

If
0

0x  , we have  

0

( 4 .6 )
n

n

n

y c x





 

Since the series converges on an interval
0 0

abou tx x R x  , it may be 

differentiated term by term on this interval

 
2

1 2 0 3 0
2 ( ) 3 ( ) ...

d y
c c x x c x x

d x
       

If
0

0x  , we have 

1

1

( 4 .7 )
n

n

n

d y
n c x

d x







 
 

D. Existence of unique solution:  

Picard’s Theorem (4.1): Suppose that ( , )f x y  is a continuous function of its 

arguments in a region U of the ( , )x y  plane which contains the rectangle 

 0 0 0
( , ) : , , 0

M M M M
R x y x x X y y Y w h ere X x a n d Y      

 
are constants. 

Suppose also, that there exists a positive constant L such that 

 ( , ) ( , ) 4 .8f x y f x z L y z  

holds whenever ( , )x y  and ( , )x z  lie in the rectangle R. Finally, letting

 m ax ( , ) : ( , )M f x y x y R , suppose that
0

( )
M M

M X x Y  . Then there exists a 

unique continuously differentiable function ( )x y x , defined on the closed interval

0
[ , ]

M
x X , which satisfies equation (1). The condition (4.8) is called a Lipschitz 

condition, and L is called the Lipschitz constant for f (Suli and Mayers, 2003 ). 

E. The k-step method 

The general k -Step method for (4.1) is written in the form 

0 0

( 4 .9 )

k k

j n j j n j

j j

y h f 
 

 

 

where ,
j j

   are coefficients of the method to be uniquely determined and 

2 2
0

j j
   , h  is a constant step size and k  is the step number.  
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F. Local truncation error (LTE) 

For LMMs it is easy to derive the general formula for the local truncation error      

(Suli and Mayers, 2003we have 

 
0 0

0

1
( ) ( ( ) '( ) ) , ( ( ) ) '( ) 4 .1 0

k k

n k j n j j n j n j n jk

j j

j

j

T x y x h y x f y x y x

h

 



    

 



   



 

where, ( )y x is the exact solution. Assuming ( )y x is smooth and expanding (4.9) in 

Taylor series gives, 

2

2

2

0 0 0

0

1

0

1
( ) ( ) '( ) ( ) ''( ) . . .

2 !

1
'( ) '( ) ''( ) ( ) '''( ) . . .

2 !

a n d s o

1 1
( ) ( ) ( ) ( ( ) ) '( ) ( ( ) ) ''( )

2

1 1
... ( (

! (

n j n n n

n j n n n

k k k

n k j n j j n j j nk

j j j

j

j

k

q q

j

j

y x y x jh y x jh y x

y x y x jh y x jh y x

T x y x j y x h j j y x

h

h j
q

    











  







   

   

    

  

  



  
1

) ) ( ) . . . 4 .1 1
1) !

q q

j n
j y x

q







 

 

 

From equation (4.11), we have 

2

0 1 2

1
[ ( ) '( ) ''( ) ... ] ( 4 .1 2 )

(1)
n n n n

T c y x c h y x c h y x
h

     

where,  
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0

0

1

1 0

2

2

1 1

1

1 1

, ( 4 .1 3 )
2 !

. .

. .

. .

! ( 1) !

k

j

j

k k

j j

j j

k k

j j

j j

q qk k

q j j

j j

c

c j

j
c j

j j
c

q q



 

 

 



 

 



 



 

 

 




 

 

   

The method is consistent if 0 0T a s h  , which requires that at least the first two 

terms in this expansion vanish, that is  
0 0 0

0 an d

k k k

j j j

j j j

j  

  

     

G. Characteristic polynomials 

Given the linear k-step method (4.9) we consider its first and second characteristic 

polynomials, respectively 

0 0

( ) a n d ( ) ( 4 .1 5 )

k k

j j

j j

j j

z z z z   

 

  
 

Where, as before, we assume that 
2 2

0 0
0, 0

k
     (Suli and Mayers, 2003) 

Definition 4.1:The numerical method (4.9) is said to have order of accuracy p , if p  

is the largest positive integer such that, for any sufficiently smooth solution curve in 

the domain D of the initial value problem (4.1), there exists constants K and 
0

h  such 

that n p
T kh   for 

0
0 h h   for any k+1 points 

,( ( )), ..., ( , ( ))n n n k n k
x y x x y x

 
 

on the solution curve. 

Thus, we deduce from (4.12) that the method is of order of accuracy p  , if and only 

if, 
0 1 1

... 0 an d 0
p p

c c c c


     . In this case, the number
1

(1)

p
c




 is called 

the error constant of the method (Suli and Mayers, 2003). Where (1)  is the value of 

the second characteristic polynomial at 1z  . 
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Theorem 4.2: (Root Condition): A linear multistep method is zero stable for any 

initial value problem of the form (4.1), where f  satisfies the hypothesis of Picard’s 

theorem, if, and only if, all roots of the first characteristic polynomial of the method 

are inside the closed unit disc in the complex plane, with any which lie on the unit 

circle being simple (Suli and Mayers, 2003). 

H. Convergence of linear multistep methods:- 

 Definition 4.2: A linear multistep method defined by (4.9) is said to be convergent in 

a interval 
0

[ , ]
M

x X  if 
0

0

lim ( ) ( ), [ , ],
Mh

h

y x y x x x X


 Provided only that 

0
0

lim ( ) , 0
h

h

y x jh y j k


    here ( )
h

y x  is the numerical solution computed using a 

step size of an d ( )h y x  is the theoretical solution (Yohanna, 2017 ). 

An important result connecting the concepts of zero-stability, consistency and 

convergence of a linear multistep method was proved by the Swedish mathematician 

Germund Dahlquist. Here we stated the theorem without proof. 

Theorem 4.3: (Dahlquist’s Equivalence Theorem) For a linear k-step method that is 

consistent with the ordinary differential equation (4.1) where f is assumed to satisfy a 

Lipschitz coerndition, and with consistent starting values, zero-stability is necessary 

and sufficient for convergence. Moreover if the solution y has continuous derivative 

of order p + 1 and truncation error O(h
p
), then the global error of the method,                 

en = y(xn-yn ), is also O(h
p
) (Suli and Mayers, 2003). Therefore, a multistep method is 

convergent if and only if it is consistent and stable. By virtue of Dahlquist’s theorem, 

if a linear multistep method is not zero-stable its global error cannot be made 

arbitrarily small by taking the mesh size h  sufficiently small for any sufficiently 

accurate initial data.  
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4.2. The derivation of the proposed method: 

In this section we drive discrete methods to solve equation (4.1) at a sequence of 

nodal points 
0n

x x n h   where 0h  is the step length defined by 

1
, 0 ,1, 2 , .. . ,

n j n j
h x x j k

  
    and ( )y x  denotes the exact solution to equation 

(4.1) while the approximate solution is denoted by  1
, , ...,( )

n Nn
y y yy x


  ,for 

some positive number N .The proposed method depends on the perturbed collocation 

approximation with the Legendre polynomials (4.4) as the perturbation term . In the 

first consider the approximate solution of the perturbed form of equation (4.1) in the 

following power series (Abualnaga , 2015). 

Let the power series solutions of the equation (4.1) be,
0

( )
j

j

j

y x c x





  , then the 

approximate solution will be: 

0

0

( ) ( ) , , ( ) ( )

( ) ( ) ( 4 .2 0 )

k

k j j n n k k

j

k

j j

j

y x c x x x x a n d y x y x

y x c x











   







 

Where,  

( ) , 0 ,1, 2 , ..., ( 4 .2 1)
j

j
x x j k  

 

Substituting from equation (4.20) in equation (4.1) we have, 

 
'

0

( ) ( , ) 4 .2 1

k

j j

j

c x f x y a




 

Using perturbation term ( ) , 0,1, 2, ...,
n jk

L x j k


 , where   is a perturbed 

parameter and it is determined by the values of
n k

f


, and ( )
n jk

L x


 is the th
k  shifted 

Legendre polynomial which is a Legendre polynomial converted from [ , ]
n n k

x x


 to   

[-1, 1] by collocating the grid points 
n j

x


 using the change of range (4.5). 

Now, by adding the perturbed term in (4.21a), we obtained: 

'

0

( ) ( , ) ( ) ( 4 .2 2 )

k

j j n jk

j

c x f x y L x 




 

From equation (4.5), we have:
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2
[ ], .

2

b a
x t a b

b a


  


 This implies that

2 ( )t b a
x

b a

 



, or equivalently it is the 

same as: 

2 [ ]
, 1, 2 , 3, ... ( 4 .2 3)

nn k

nn k

t x x
x k

x x





 
 


 

To derive the proposed method for each , 1, 2 , 3, .....k k  we should follow the 

following steps. 

First, we take the Legendre polynomials (4.4) and use (4.5) to convert in to the range 

[-1, 1]. Using equation (4.23) collocate each ( )
k

p x at , 0,1, 2, ...,
n j

x j k


  to obtain

( )
n jk

L x


, where ( )
n jk

L x
  

is the shifted Legendre polynomial at 
n j

x
  

such that

1 ( ) 1
n jk

L x


  
 . 

From equation (4.22) we deduce that  

1 2 3 1

1 2 3 4

0 0 0

[ ] ' ( ) ' 0 2 3 4 ... ( , ) ( )

k k k

j j k

j j j j k k

j j j

c c x jc x c c x c x c x k c x f x y L x 
 

  

              

Now equation (4.22) is the same as: 

2 1

1 2 3
2 3 ... ( , ) ( ) (4 .2 4 )

k

n jk k
c xc x c kx c f x y L x




       

We now interpolate (4.20) at 
n

x x and collocate equation (4.24) at 

, 0,1, 2, ...,
n j

x j k


 , we get a square matrix with the parameters 
0 1 2

, , , , . . . ,
k

c c c c .  

And the system of equations is: 

2 3

0 1 2 3

2 1

1 2 3

2 1

1 2 1 3 1 1 1 1

2 1

1 2 3

. . .

2 3 ... ( )

2 3 ... ( ) ( 4 .2 5 )

. . . . . .

. . . . . .

. . . . . .

2 3 ... ( )

k

n n n n nk

k

n n n n nk k

k

n n n n nk k

k

n k n k n k n k k n k n k

c c x c x c x c x y

c c x c x k c x L x f

c c x c x k c x L x f

c c x c x k c x L x f











    



     

     

     

     

     

 

Equation (4.25) is a square matrix in the form: 

( 4 .2 6 )A X b
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where  

2 3

2 1

2 1

1 ... 0

0 1 2 3 ... ( )

. . . . .

. . . . .

. . . . .

0 1 2 3 ... ( )

k

n n n n

k

n n n nk

k

n k n k n k k n k

x x x x

x x k x L x

A

x x k x L x





   

 

 

 

 

 

 

 

 

 
 









 

0 1 2 1
[ ... ] , [ ... ]

T T

n n nk n k
X c c c c b y f f f

 
   

Therefore, by using any suitable methods to solve equation (4.26), we will have the 

values of all the parameters in terms of the step length h ,
n

y  and
n j

f


. Again, from 

equation (4.20), we have 

2

0 1 2
( ) ... ( 4 .2 7 )

k

k
y x c c x c x c x A      

Now, the required numerical scheme of the proposed method will be obtained if we 

collocates equation (4.27) at 
n k

x


and substitute the values of the parameters in: 

2

0 1 2
... (4 .28)

k

n k n k n k k n k
y c c x c x c x

   
      

Now in this study, we will drive the proposed block implicit LMM only for

1, 2 , 3, 4k  . 

i. For 1k   

We have the Legendre polynomials 
1
( )P x x and using (4.23) collocates at

1
,

n n
x x


, 

we obtain         

  1

1

1

2 ( )
1

n nn

n

nn

x x x
L x

x x





 
  


, 1 1

1 1

1

2 ( )
( ) 1

nn n

n

nn

x x x
L x

x x

 





 
 


 

In addition, from equation (4.24), we have 

1 1

1 1

( , ) ( )

( ) ( , ) ( 4 .2 9 )

n j

n j

c f x y L x

c L x f x y









 

 

 

We now interpolate (4.20) at n
x x and collocate equation (4.29) at , 0,1

n j
x j


 , 

we get a system of equations with parameters 
0 1

, a n dc c  . This implies 



 
 

19 
 

0 1

1

1 1

( 4 .3 0 )

n n

n

n

c c x y

c f

c f






 

 

 

 

By solving equation (4.30), we have 

1

1 1

0 1

1
( )

2

1
( ) ( 4 .3 1)

2

1
( ) ( )

2

n n

n n n

n n n n n n n

f f

c f f f

c y x f y x f f













 

   

     

 

From (4.27) for 1k  , we have 

0 1
( ) (4 .3 2 )y x c c x 

 

Now interpolate equation (4.32) at 
1n

x x


  and substitute for
0 1

a n dc c , we have 

1 0 1 1

1 1 1 1

1 1 1

1 1

1 1
( ) ( )

2 2

1
( )( )

2

( ) ( 4 .3 3 )
2

n n

n n n n n n n n

n n n n n n

n n n n

y c c x

y y f f x f f x

y y x x f f

h
y y f f

 

   

  

 

 

    

   

  

 Therefore, equation (4.33) is the numerical scheme when 1k  , which is the well-

known trapezoidal rule. 

ii) For 2k   

From equation (4.4) the Legendre polynomial for 2k   is 
2

2

1
( ) (3 1)

2
P x x  and 

using equation (4.23) and collocating at , 0 ,1, 2
n j

x j


 , we obtain 

2 2 1 2 2

1
( ) 1; ( ) ; ( ) 1

2
n n n

L x L x L x
 

     

From equation (4.24), we have 

1 2 2
2 ( , ) ( ) (4 .34 )

n j
c c x f x y L x


    

Now interpolate (4.27) at 
n

x x and collocate equation (4.34) at , 0 ,1, 2
n j

x j


 , we 

get the system of equations with
0 1 2

, , &c c c  . 
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2

0 1 2

1 2

1 2 1 1

1 2 2 2

2

1
2

2

2 ( 4 .3 5 )

n n n

n n

n n

n n

c c x c x y

c c x f

c c x f

c c x f







 

 

  

  

  

  

 

Using suitable method, the solution of the system of equations (4.35) is: 

1 2

2 2

1 1 2

2

0 1 2 2

1
( 2 )

3

1
( )

4

1 1
( 2 2 ) ( )

3 2

1 1
( 2 2 ) ( ) ( 4 .3 6 )

3 4

n n n

n n

n n n n n

n n n n n n n n

f f f

c f f
h

c f f x f f
h

c y x f f f x f f
h


 



 

  

   

  

   

      

 

Now interpolate equation (4.27) for 2k  at 
2n

x x


 and substitute for 
0 1 2

, , &c c c  , 

we have 

2

0 1 2

2

2 0 1 2 2 2

2

2 1 2 2

2

1 2 2 2 2 2

2

2 2 1 2 2 2

( )

1 1
[ ( 2 2 ) ( ) ]

3 4

1 1 1
[ ( 2 2 ) ( ) ( ) ] [ ( ) ]

3 2 4

1 1
( )( 2 2 ) ( 2

3 4

n n n

n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

y x c c x c x

y c c x c x

y y x f f f x f f
h

f f f x x f f x f f
h h

y y x x f f f x x x
h

  

   

     

     

  

  

     

      

       
2

2

2 1 2 2

2 1 2

) ( )

2
( 2 2 ) ( )

3

( 4 ) ( 4 .3 7 )
3

n n n

n n n n n n n

n n n n n

x f f

y y h f f f h f f

h
y y f f f



   

  



     

   

 

Therefore, equation (4.37) is the implicit scheme for 2k  . 

iii) For 3k   
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The Legendre polynomial for 3k   is 
3

3

1
( ) (5 3 )

2
P x x x  and use (4.23), collocate 

3
( )P x at , 0 ,1, 2 , 3

n j
x x j


  , we obtain 

3 3 1 3 2 3 3

1 1 1 1
( ) 1, ( ) ; ( ) ; ( ) 1

2 7 2 7
n n n n

L x L x L x L x
  

       

From equation (4.24) for 3k  , we have 

2

1 2 3 3
2 3 ( , ) ( ) ( 4 .3 8 )

n j
c c x c x f x y L x


   

 

We now interpolate (4.27) at 
n

x x
 

and collocate equation (4.38) at 

, 0 ,1, 2 , 3
n j

x x j


  , we get a system of equations: 

2 3

0 1 2 3

2

1 2 3

2

1 1 2 1 3 1

2

1 2 2 2 3 2

2

1 3 2 3 3 3

2 3

1 1
2 3 ( 4 .3 9 )

2 7

1 1
2 3

2 7

2 3

n n n n

n n n

n n n

n n n

n n n

c x c x c x c y

c x c x c f

c x c x c f

c x c x c f

c x c x c f









  

  

  

   

   

   

   

   

 

By any suitable method we will have the solution of equation (4.39), such that 

3

1 2 3

3 1 2 32

2 1 2 3 1 2 32

1 1 2 3 1 2

2

2

1
(9 2 7 2 7 9 )

4 0

1
( )

1 2

1 1
( 2 8 9 3 6 1 7 ) ( ) ( 4 .4 0 )

6 0 4

1 1
(3 1 2 7 2 7 9 ) ( 2 8 9 3 6 1 7 )

4 0 3 0

1
(

4

n

n n n n

n n n n

n n n n n n n n n

n n n n n n n n

n n

f f f f

c f f f f
h

c f f f f x f f f f
h h

c f f f f x f f f f
h

x f
h





  

  

     

    

   

   

        

        


1 2 3

2

0 1 2 3 1 2 3

3

1 2 32

)

1 1
(3 1 2 7 2 7 9 ) ( 2 8 9 3 6 1 7 )

4 0 6 0

1
( )

1 2

n n n

n n n n n n n n n n n

n n n n n

f f f

c y x f f f f x f f f f
h

x f f f f
h

  

     

  

  

         

     
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Now interpolate equation (4.27) for 3k  at 
3n

x x


 and substitute for 

0 1 2 3
, , , &c c c c  , we have

 
2 3

0 1 2 3

2 3

3 0 1 3 2 3 3 3

( )

n n n n

y x c c x c x c x

y c c x c x c x
   

   

   

 

2

1 2 3 1 2 3

3

1 2 3 3 1 2 32

2

1 2 3 1 2 32

1 1
[ (3 1 2 7 2 7 9 ) ( 2 8 9 3 6 1 7 )

4 0 6 0

1 1
( ) ( ) [ (3 1 2 7 2 7 9 )

1 2 4 0

1 1
( 2 8 9 3 6 1 7 ) ( )]

3 0 4

(

n n n n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n

y x f f f f x f f f f
h

x f f f f x f f f f
h

x f f f f x f f f f
h h

     

      

     

         

       

        


2

3 1 2 3 1 2 32

3

3 1 2 32

1 1
)[ ( 2 8 9 3 6 1 7 ) ( )]

6 0 4

1
( )[ ( ) ]

1 2

n n n n n n n n n n

n n n n n

x f f f f x f f f f
h h

x f f f f
h

      

   

       

   

3 1 2 3

2 2

3 3 1 2 3

3 2 2 3

3 3 3 1 2 32

1
( )(3 1 2 7 2 7 9 )

4 0

1
( 2 )( 2 8 9 3 6 1 7 )

6 0

1
( 3 3 )( )

1 2

n n nn n n n

n n nn n n n n

n n n nn n n n n n

y x x f f f f

x x x x f f f f
h

x x x x x x f f f f
h

   

    

     

     

      

      

 

1 2 3 1 2 3

1 2 3

3 3
(3 1 2 7 2 7 9 ) ( 2 8 9 3 6 1 7 )

4 0 2 0

9
( )

4

n nn n n n n n

n n n n

h h
f f f f f f f f

h
f f f f

     

  

        

   

 

1

2 3

[ (9 3 1 6 8 9 0 ) (8 1 5 4 9 0 )
4 0

( 8 1 2 1 6 9 0 ) ( 2 7 1 0 2 9 0 ) ]

n n n

n n

h
y f f

f f



 

      

      

 

1 2 3

3 1 2 3

(1 5 4 5 4 5 1 5 )
4 0

3
( 3 3 ) ( 4 .4 1)

8

n n n n n

n nn n n n

h
y f f f f

h
y y f f f f

  

   

    

    

 

Therefore, equation (4.41) is the implicit scheme when 3k  . 
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iv. For 4k   

The Legendre polynomial for 4k  is
4 2

4

1
( ) (3 5 3 0 3)

8
P x x x   , using equation 

(4.23), then collocate 
4

( )P x  at , 0 ,1, 2 , 3, 4
n j

x j


 , and we have 

4 4 1 4 2 4 3 4 4

3 7 3 3 7
( ) 1; ( ) ; ( ) ; ( ) ; ( ) 1

1 2 8 8 1 2 8
n n n n n

L x L x L x L x L x
   

      

From equation (4.24) for 4k  , we have 

2 3

1 2 3 4 4
2 3 4 ( , ) ( ) (4 .4 2 )

n j
c c x c x c x f x y L x


    

We now interpolate (4.27) at 
n

x x and collocate equation (4.42) at 

, 0,1, 2, 3
n j

x x j


  , 4,we get a system of equations:
 

2 3 4

0 1 2 3 4

2 3

1 2 3 4

2 3

1 1 2 1 3 1 1

2 3

1 2 2 2 3 2 2

2 3

1 3 2 3 3 3 3

2 3

1 4 2 4 3 4 4

2 3 4

3 7
2 3 4

1 2 8

3
2 3 4 ( 4 .4 3)

8

3 7
2 3 4

1 2 8

2 3 4

n n n n n

n n n n

n n n n

n n n n

n n n n

n n n

c x c x c x c x c y

c x c x c x c f

c x c x c x f

c x c x c x f

c x c x c x f

c x c x c x c









   

   

   

  

    

    

    

    

    

  
4n

f


 
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By any suitable method we will have the solution of equation (4.43), such that

1 2 3 4

4 1 2 3 43

3 1 2 3 42

1 3 43

2 1 2 3 4

1
( 1 6 6 4 9 6 6 4 1 6 )

1 0 5

1
( 2 0 * 2 )

4 8

1
(1 0 1 1 5 2 6 6 1 8 4 6 7 )

5 0 4

1
( 2 2 )

1 2

1
( 1 1 1 8 0 1 3 2 1 4 4 4 3 )

1 6 8

n n n n n

n n n n n

n n n n n

n n n n n

n n n n n

f f f f f

c f f f f f
h

c f f f f f
h

x f f f f
h

c f f f f f
h


   

   

   

  

   

     

     

    

    

     

1 2 3 42

2

1 3 43

1 1 2 3 4

2

1 2 3 42

3

13

1
(1 0 1 1 5 2 6 6 1 8 4 6 7 )

1 6 8

1
( 2 2 ) ( 4 .4 4 )

8

1
( 1 1 1 8 0 1 3 2 1 4 4 4 3 )

8 4

1
(1 0 1 1 5 2 6 6 1 8 4 6 7 )

1 6 8

1
( 2 2

1 2

n n n n n n

n n n n n

n n n n n n

n n n n n n

n n n n

x f f f f f
h

x f f f f
h

c x f f f f f
h

x f f f f f
h

x f f f
h

   

  

   

   



    

    

      

    

   
3 4

1 2 3 4

0 1 2 3 4

2

1 2 3 4

3

1 2 3 42

4

3

)

1
(8 9 6 4 9 6 6 4 1 6 )

1 0 5

1
(8 9 6 4 9 6 6 4 1 6 )

1 0 5

1
( 1 1 1 8 0 1 3 2 1 4 4 4 3 )

1 6 8

1
(1 0 1 1 5 2 6 6 1 8 4 6 7 )

5 0 4

1
(

4 8

n

n n n n n

n n n n n n n

n n n n n n

n n n n n n

n n

f

f f f f f

c y x f f f f f

x f f f f f
h

x f f f f f
h

x f
h

 

   

   

   

   



    

     

     

    

 
1 3 4

2 2 )
n n n

f f f
  

  
 

Now interpolate equation (4.27) for 4k   at 
4n

x x



 

and substitute for 

0 1 2 3 4
, , , , &c c c c c  , we have 

 
2 3 4

4 0 1 4 2 4 3 4 4 4
4 .4 5

n n n n n
y c c x c x c x c x

    
      
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Let 

1 2 3 4

1 2 3 4

1 2 3 4

1 3 4

8 9 6 4 9 6 6 4 1 6

1 1 1 8 0 1 3 2 1 4 4 4 3

1 0 1 1 5 2 6 6 1 8 4 6 7

2 2

n n n n n

n n n n n

n n n n n

n n n n

r f f f f f

s f f f f f

t f f f f f

u f f f f

   

   

   

  

    

     

    

    

 

Then,  

 

Therefore, equation (4.46) is the implicit scheme when k=4.  

4.3 The basic properties of the proposed method: 

Order, Error Constant and Consistency 

According to definition 4.1, we have: 

0 1 2 3
F o r 1, 0 a n d 0k c c c c     , so the order of (4.33) is 2p  , and its error 

constant is 3
1

(1) 1 2

c




 . 

For
50 1 2 3 4

2 , 0 , 0k c c c c c a n d c       , so the order of (4.37) is four, 

and its error constant is 

1 5

(1) (1)

p
c c

 


 

1

1 8 0


 

2 3 4

4 0 1 4 2 4 3 4 4 4

2 2

4 4 4 4

3 2 2 3

4 4 42

4 3 2 2 3 4

4 4 4 43

2

4

1 1
( )( ) ( 2 )( )

1 0 5 1 6 8

1
( 3 3 )( )

5 0 4

1
( 4 6 4 )( )

4 8

4 1 6
( )

1 0 5 1

n n n n n

n n n nn n n n

n n nn n n

n n n nn n n n

nn

y c c x c x c x c x

y y x x r x x x x s
h

x x x x x x t
h

x x x x x x x x u
h

h h
y y r

    

   

  

   



    

     

    

    

  

3 4

2 3

4

4

4 1 2 3 4

6 4 2 5 6
( ) ( ) ( )

6 8 5 0 4 4 8

4 2 8 1 6
( )
1 0 5 2 1 6 3 3

(1 2 3 0 4 0 1 6 8 0 )
3 1 5

(9 8 4 4 8 1 6 8 4 4 8 9 8 ) ( 4 .4 6 )
3 1 5

nn

nn

n nn n n n n

h h
s t u

h h h

r s t u
y y h

h
y y r s t u

h
y y f f f f f





    

 

    

    

     
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50 1 2 3 4
F o r 3, 0 , a n d 0k c c c c c c       , so the order of (4.41) is four, and 

its error constant is 

5
6 7 2

(1) 6 9 1 2 0

c




  

For
5 70 1 2 3 4 6

4 , 0 , a n d 0k c c c c c c c c         , so the order of (4.46) is 

six, and its error constant is 

7
9 6 7 6 8

(1) 4 5 7 2 2 8 8 0

c




  

Therefore, the order of the schemes (4.33), (4.37), (4.41) and (4.46) are 2,4,4,6 

respectively. And their error constants are respectively

1 1 6 7 2 9 6 7 6 8
, , an d

1 2 1 8 0 6 9 1 2 0 4 5 7 2 2 8 8 0

   
. 

 Definition 4.3: A linear multistep method of the form (4.9) is said to be consistent if 

the LMM is of order 1p   (Suli and Mayers, 2003) 

As we have already determined the order of each scheme and by definition 4.3 above 

our proposed method is consistent. 

 Zero-Stability and Convergence: 

It is known from the literature that the stability of a LMM determines the manner in 

which the error is propagated as the numerical computation proceeds. Hence, the 

investigation of zero-stability property is necessary. 

Definition 4.4:  According to Lambert (1973), the LMM is said to be zero-stable if no 

root of the first characteristic polynomial ( )z has modulus greater than one, and if 

every root with modulus one is simple. The investigation carried out on the four 

schemes (4.33), (4.37), (4.41) and (4.46) revealed that all the roots of the derived 

schemes are less than or equal to one; hence the proposed method is zero-stable by 

definition 4.4 above. This is clarified for each scheme as follows: 

For equation (4.33), we have 

( ) 1 0z z    , implies 1, an d 1z z  is satisfied. 
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For equation (4.37), we have 

2
( ) 1 0z z    , which implies that 1 and 1 and hence in bo th cases 1z z z    . 

For equation (4.41), we have 

3 2
( ) 1 0, ( 1)( 1) 0z z z z z        , which implies that 

1 1 4 1 3 1 3

2 2 2

i
z

       
   , 

1 2 3

1 3 1 3
1, a n d , h e re , 1, 1, 2 , 3

2 2
n

i i
z z z z n

   
     . 

For equation (4.46),we have 

 
4 2 2

2

1 2 3 / 4

( ) 1 0 , 1 ( 1) 0

( 1)( 1)( 1) 0

4 2
1, 1, , 1, 1, 2 , 3, 4

2 2
n

z z z z

z z z

i
z z z i z n

      

   

 
         

 

Therefore, our method is zero-stable. 

The main aim of a numerical method is to produce solution that behaves similar to the 

theoretical solution at all times. The convergence of the proposed method is 

considered in the light of the basic properties of Dahlquist theorem. Since the 

consistency and zero-stable of the schemes have been established, then the proposed 

block procedure with implicit LMM is convergent. 

The proposed block procedure with implicit linear multistep method is of the form 

0 0 1 1 2 2 3 3 4 4
( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ] ( 4 .4 7 )

n n n n n n
y x x y h x f x f x f x f x f     

   
     

  

And it is given by: 

1 1

2 1 2

3 1 2 3

4 1 2 3 4

( )
2

( 4 )
3

(3 9 9 3 ) ( 4 .4 8 )
8

(9 8 4 4 8 1 6 8 4 4 8 9 8 )
3 1 5

n nn n

n nn n n

n nn n n n

n nn n n n n

h
y y f f

h
y y f f f

h
y y f f f f

h
y y f f f f f

 

  

   

    

  

   

    

     

Now consider equation (4.9), writing this in block form we have 

( ) ( ) ( 4 .4 9 )
M n n M

A Y E y h d f y h b F Y  
 

The discrete block method (4.48) can be written in the form (4.49) where,  
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4

1 2 3 4 3 2 1

1 2 3 3 2 1

[ ] , [ ]

( ) [ ] , ( ) [ ] (4 .5 0 )

T T

n nM n n n n n n n

T T

n n n nn n n n n n

Y y y y y y y y y y

F y f f f f f y f f f f


      

     

 

 

Such that: 

 

1 1
0 0 0 0 0 0

2 2

1 0 0 0 0 0 0 1 1 4 1
0 0 0 0 0

0 1 0 0 0 0 0 1 3 3 3
, , , 4 .5 1

3 9 9 30 0 1 0 0 0 0 1
0 0 0 0

8 8 8 80 0 0 1 0 0 0 1

9 8 4 4 8 1 6 8 4 4 8 9 8
0 0 0

3 1 5 3 1 5 3 1 5 3 1 5 3 1 5

A E d b

   

   

   
   

   
   
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   
   

   
   

   
   

   

   

   

     

It is important to note that the block method (4.48) has four function evaluations per 

step.  

Let the linear operator [ ( ) ; ]L y x h  associated with the block (4.9) be defined as, 

[ ( ); ] ( ) ( ) (4 .52)
M n n M

L y x h A Y E y h d f y h bF Y
 

   

where, ( )y x  is an arbitrary test function that is continuously differentiable in the 

interval [ , ]
n n k

x x


and   is the order of the differential equation. Expanding (4.52) or 

expanding ( ) a n d '( )
n n

y x jh y x jh   about n
x  using Taylor series and collecting 

like terms in h  and y  gives: 

2 1 1

0 1 2 1

1
[ ( ) '( ) ''( ) ... ( ) ( ) ... ] ( 4 .5 3)

(1)

p p p p

n p p
T c y x c h y x c h y x c h y x c h y x

h

 


        

Thus, we deduce from (4.53) that the method is of order of accuracy p if, and only if, 

0 1 1
... 0 , an d 0p p

c c c c


     . In this case 

1 1 11
( ) ( )

(1)

p p p

n n
T h y x o h

h

  
  is the truncation error, and the number 

1

(1)

p
c




is 

called the error constant of the method.  
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According to Yohanna, (2017), applying (4.52) on (4.48), we obtained:  

[ ( ) ; ] ( ) ( )
n nM M

L y x h A Y E y h d f y h b F Y
 

   

1 3

2 2

3 1

4

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1
[ ( ) ; ]

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

1 1
0 0 0

2 2

1 4 1
0 0

3 3 3

3 9 9 3
0

8 8 8 8

9 8 4 4 8 1 6 8 4 4 8 9 8

3 1 5 3 1 5 3 1 5 3 1 5 3 1 5
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n n
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y y

y y
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y y
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
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n

n
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
 


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Expanding (4.54) in Taylor series gives:  
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' 1
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Therefore, from equation (4.55) above, we can determine the order, error constant and 

consistency of the proposed block method as before.

 

Definition 4.5: A block method is said to be zero-stable if as 0h  , the roots 

 , 1 1
r

z r k  of the first characteristic polynomial ( )z  is given by 

0

( ) d e t 0 ,

k

j k j

j

z A z




 
  

 
 satisfies 1

r
z  , the multiplicity of 1

r
z   not exceeding 

the order of the differential equation (Yohanna, 2017) 

Therefore, the block method is said to be zero stable if the roots r
z  of the first 

characteristic polynomial ( )z  of (4.54), defined by ( ) d e tz zA E  
 

   satisfies 

1
r

z   and every root with 1
r

z   has the multiplicity not exceeding one. 
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From equation (4.54), we have 

 
3

( ) d e t 0

1 0 0 0 0 0 0 1 0 0 1

0 1 0 0 0 0 0 1 0 0 1
( ) d e t d e t 1 0

0 0 1 0 0 0 0 1 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

z z A E

z

z
z z z z

z

z





 
 

      
      
      
      
      
            

  




     





 

This implies, 
1 2 3 4

0 , a n d 1z z z z    . Hence by definition (4.1), (4.3) and (4.5), 

our block method is consistent and zero-stable. Following theorem4.3, we conclude 

that our proposed block method is convergent since it is consistent and zero-stable. 

4.4. Numerical examples 

The mode of implementation of our method is by combining the schemes (4.48) as a 

block. It is a simultaneous integrator for the IVPs of first order differential equation 

without requiring the starting values. In order to assess the performance of our block 

method, we consider four first order initial value problems in ODEs and the problems 

consist both linear and non-linear. We considered also some high stiff IVPs. All 

calculations are carried out with the aid of MATLAB software.  

Problem4.1:  Consider a stiff initial value problem: 

3 2
'( ) 10 ( ) 3 (0 ) 1 0 .1 [0 ,1]y x y x x y w ith h on       

Whose exact solution is 
3 10

( )
x

y x x e


 
   

[see: (Bolaji and Duromola, 2017)] 

The results are as shown in table 1 below 
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              Table 4.1: Exact and approximate values for problem 1. 

    x              Exact                                    RK                              PM_____                  

    0             1                                    1                                   1  

   0.1           3.68879e-001              3.76031e-001     3.34667e-001 

   0.2           1.43335e-001               1.48730e-001     1.19556e-001 

  0.3            7.67871e-002               7.99302e-002     6.45185e-002 

   0.4           8.23156e-002                8.40676e-002     7.68395e-002 

   0.5           1.31738e-001                1.32807e-001     1.29613e-001 

   0.6           2.18479e-001                   2.19271e-001     2.17871e-001 

   0.7           3.43912e-001      3.446334e-001     3.43957e-001 

   0.8           5.12335e-001                  5.13081e-001     5.11979e-001 

  0.9           7.29123e-001       7.29937e-001             7.29085e-001 

  1.0          1.00005e+000      1.00094e+000     9.99861e-001__ 

 

To give a more visual impact, the graph of table 1 was plotted below in figure 1. 

 

 

Figure 4.1: Graphs of Exact, RK and PM for problem 1 when h=0.1. 
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                  Table4.2: Comparison of Absolute Errors for problem1. 

       x        RK                                           PM__________ 

     0                 0                           0 

    0.1    7.151808828557704e-003     3.421277450477572e-002 

    0.2    5.395185513387274e-003    2.377972768105720e-002 

    0.3    3.143107413386068e-003     1.226854984934542e-002 

    0.4     1.751927029234573e-003     5.476132715894672e-003 

    0.5     1.068640220152822e-003     2.124778274805617e-003 

    0.6     7.924680305480825e-004    6.076959352396827e-004 

    0.7    7.210756121509565e-004     4.513678158774015e-005 

    0.8    7.456464637368709e-004     3.569532543316045e-004 

    0.9    8.132561052782705e-004       3.836179311267340e-005 

    1.0               8.995997862495386e-004        1.839381331677492e-00 

The results from the table 4.2 above of the absolute errors show that for almost half 

values of [0 ,1]x , the proposed method is better than RK for 0 .1h  . As  0h  , 

both RK and PM methods converges to the exact solutions as shown in figure4.1 

above. 

Note: the solutions table and graph of problem 1 for 0 .2h   is indicated below: 

Table4.3: Exact, RK and PM values for problem 1 when 0 .2h   

     x           Exact                        RK                            PM________ 

    0      1                                 1                                  1  

    0.2    1.43335e-001            3.42667e-001              1.00000e-003 

    0.4    8.23156e-002     1.80889e-001              6.60000e-002 

    0.6    2.18479e-001     2.64296e-001              2.13200e-001 

    0.8    5.12335e-001    5.41432e-001      5.13314e-001 

    1.0    1.00005e+000           1.02714e+000     9.96495e-001____ 
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Table4.4: Comparisons of absolute errors of RK and PM for problem 1 when h=0.2. 

     x ___RK______________________________PM____________ 

     0                  0                            0 

    0.2     1.993313834300540e-001      1.333352832366128e-001 

    0.4    9.857325000015474e-002      1.631563888873418e-002 

    0.6    4.581754411963004e-002      5.278752176666318e-003 

    0.8    2.909663613752955e-002     9.788230863831959e-004 

    1.0    2.709863299204840e-002      3.549900908236037e-003 

 

 

 

          Figure4.2: Graphs of Exact, RK and PM for problem 1 when h=0.2 

 

From table4.4 above we deduce that for large h our method is effective for stiff 

problems when we compare with Runge-Kutta of order four method, but both RK and 

PM converges to the exact solution as 0h   
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Problem4.2:
(1 ) 5

'( ) (0 ) [0 ,1]
2 1 6

y y
y x y

y


 


 

Exact solution is: 

1 1 1
( )

2 4 3 6

x
y x e


    

[see: Suleiman, (2015)] 

 

Table4.5: Maximum Absolute errors of 2BBDF, 2BEBDF and PM for problem 2.  

h 
Method 

2BBDF 2BEBDF PM 

10
-2 

1.47080e-003 6.64937e-004
 

1.17710e-006
 

10
-3 

1.52651e-004
 

7.05780e-005
 

1.17799e-008
 

10
-4 

1.53220e-005
 

7.10123e-006
 

1.17705e-010
 

10
-5 

1.53277e-006
 

7.10560e-007 3.35798e-012
 

10
-6 

1.53305e-007
 

7.10611e-008
 

1.42827e-014
 

 

 

        Figure 4.3:Graphs of Exact, RK and PM for Problem 2 for h=0.1. 
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Problem4.3:
5 0

'( ) 5 0 (0 ) 2 0 1y x y y x
y

      

The exact solution is:  
1

1 0 0 2( ) (1 )
x

y x e


   

[See, Suleiman, (2015) ] 

 

Table4.6: Maximum Absolute Errors of 2BBDF, 2BEBDF and PM for problem 3. 

H 
Method 

2BBDF 2BEBDF PM 

10
-2 

1.44729e-001
 

9.24961e-003
 

7.50583e-003 

10
-3 

2.15168e-002
 

7.96762e-003
 

7.53930e-006
 

10
-4 

2.55682e-003
 

1.07245e-003
 

7.53555e-007
 

10
-5 

2.59680e-004
 

1.10428e-004
 

7.53551e-009
 

10
-6 

2.60086e-005
 

1.10751e-005
 

7.52905e-011
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4.4: Graph of Exact, RK, PM solution curves for problem 3 when h=0.01. 

 

The results from the tables4.5 and 4.6 above show that for all the two problems 

solved, the derived proposed method is better in terms of accuracy than the two 

methods 2BBDF and 2BEBEDF. And also from the graphs in figures 3 and 4 we 

deduced that both methods RK and PM agree with the exact solution graph. 
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Problem4.4: '( ) 2 1 0 0 ( c o s ( )) s in ( ) , (0 ) 1, 0 1y x y x x y x       .  

The exact solution is:     ( ) c o s ( )y x x  

[See, (Randall, 2004)] 

 

 

         Table4.7: Comparison of maximum absolute errors for RK and PM 

H Method 

RK PM 

10
-1 

1.22516e+024
 

1.12538e-005
 

10
-2 

2.41053e+304
 

9.67880e-008
 

10
-3 

1.53563e-007
 

6.46041e-013
 

10
-4 

5.09304e-012
 

3.33844e-013 

10
-5 

1.22125e-015
 

4.10783e-015
 

 

            Figure4.5: Graph of Exact, RK and PM for problem 4 when h=0.001. 

 

In table 4.7 above the maximum absolute errors show that the method RK diverges 

for step sizes 0 .1 a n d 0 .0 1h h  , which means the maximum absolute errors 

are out of ranges, but the proposed method PM approximates with maximum errors of 

1.13X10
-5

 and 9.68X10
-8 

respectively. Therefore, for high stiff problems our method 

is preferable when the step size relatively large. Note that the exponential growth of 

errors does not contradict zero-stability or convergence of the method in any way. 

Thus as 0h  both RK and PM converges to the exact solutions even if RK diverges 

when 0 .0 1h  .   
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CHAPTER FIVE 

Conclusion and Future scope 

5.1. Conclusion 

This study presented a block procedure with implicit linear multistep method based on 

Legendre polynomials for solving first order IVPs in ODEs. A perturbed collocation 

approach along with interpolation at some grid points which produces a family of 

maximal order six multi-derivative schemes has been proposed for the numerical 

solution of stiff problems in ODEs. The properties of the Legendre polynomials are 

used to introduce the proposed problems to system of equations which are solved by a 

suitable method. The desirable property of a numerical solution is to behave like the 

theoretical solution of the problem which can be seen in the above experimental 

results. The method is tested and found to be consistent, zero stable and convergent. 

We implement the method on four numerical examples and the numerical evidences 

shows that the method is accurate and effective for stiff problems and therefore 

effective for wide range of stiff IVPs in ODEs. 

5.2 Future scope 

In this study, a collocation approach which produces a block procedure with implicit 

linear multistep method based on Legendre polynomials for solving stiff first order 

initial value problems in ODEs with non-uniform orders has been proposed. The 

method has been applied to find the numerical solutions of stiff IVPs. Hence further 

research should be performed to enhance the accuracy of the method by extending the 

step number k  and taking into consideration the off grid points to produce a method 

of uniform orders. 
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