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Abstract  

In this thesis, Chebyschev iteration technique has been presented to solve second order 

singularly perturbed 1D reaction – diffusion equation for a very small perturbation 

parameter,  with both variable and constant coefficient of reaction term. The given 

problem of interest is discretized and the derivative of the given differential equation is 

replaced by finite central difference approximation to obtain system of algebraic 

equation. Chebyschev three – level scheme was developed from the two – level scheme to 

solve the obtained algebraic equation. To investigate the convergence of the proposed 

method, three examples were taken and compared with other methods listed in the 

literature and exact solution. The relationship between number of iteration number and 

the condition number is analyzed and found to be: the larger the condition number the 

slower is the rate of convergence.  Finally, pointwise and maximum absolute error for 

each example was shown both by table and numerical approximation and exact solution 

is demonstrated on the same graph with different iteration number.    
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Chapter One 

Introduction 

1.1Background of the study 

Numerical analysis is a branch of mathematics that deals with the computational methods 

which helps to find approximate solutions for difficult problems such as finding roots of 

non- linear equations, integrations involving complex expressions and solving differential 

equations for which analytic solution does not exist (Terefe et al., 2016). It is both a 

science and an art in that, as a science, numerical analysis is concerned with the process 

by which mathematical problems can be solved by the operations of arithmetic. On the 

other hand, as an art numerical analysis is concerned with choosing that procedure (and 

suitably applying it) which is “best” suited to the solution of particular problem (Anthony 

and Philip, 1978). 

According to James (1990), numerical analysis is the study of the methods and 

procedures used to obtain approximate solutions to mathematical problems. While this 

definition is broad, it does pinpoint some of the key issues in numerical analysis, namely, 

approximate solution (there is usually no reasonable hope of obtaining the exact 

solution); mathematical problems; the study of methods and procedures.  

An equation involving derivatives of one or more dependent variables to one or more 

independent variable is called differential equation. A differential equation involving 

ordinary derivatives of one or more dependent variables with respect to one independent 

variable is called ordinary differential equation while a differential equation involving 

partial derivatives of one or more dependent variables with respect to more than one 

independent variable is called a partial differential equation (Shepley, 1984). 

Any differential equation in which the highest order derivative is multiplied by a small 

positive parameter   0 1 is called a singularly perturbed problem and the 

parameter   is called perturbation parameter (Fasika et al., (2016), Gayatri and Jugal, 

(2012), Phaneendra et al., (2015)). Singularly perturbed second order two – point 

boundary value problem occur very frequently in fluid motion, chemical reactor theory, 
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elasticity, diffusion in polymer, reaction – diffusion equation, stability, control of chaotic 

system and so on and have received a significant amount of attention in past and recent 

year. A boundary layer is a narrow region in which solution of the problem changes 

rapidly. In these problems, there are thin transition layer where the solution varies rapidly 

or jumps abruptly, while away from the layer the solution behaves regularly and varies 

slowly. The solution of singularly perturbed problems exhibits boundary layers. For these 

problems the existing numerical methods give good results when h  , where h is the 

mesh size and   is perturbation parameter. But this is costly and time consuming 

process. If we take h  , the existing numerical methods produce oscillatory solution and 

pollute the solution in the entire interval, because of boundary layer behavior. Thus, 

numerical treatment of such problems is not trivial because of the boundary layer 

behavior of their solutions (Gemechis et al., (2017), Phaneendra et al., (2015)) 

Depending on the solution behavior of the problem in the limiting case when perturbation 

parameter goes to zero, such type of problems are classified into two classes, namely, 

regularly perturbed and singularly perturbed problems. If the solution of the original 

problem tends to the solution of the reduced problem (i.e., the problem which is obtained 

by putting 0   in the original problem) as the perturbation parameter tends to zero, the 

problem is known as regularly perturbed otherwise, it is known as singularly perturbed 

(Phaneendra et al., 2014). As Gulsemay and Mustafa, (2017) stated if the order of the 

higher order is reduced by one the problem becomes convection – diffusion type and if 

the order is reduced by two it is reaction – diffusion type. 

Neumann et al., (2000), have suggested on booster method for solving singularly 

perturbed one – dimensional reaction – diffusion problems that improves numerical 

solution which were obtained by exponentially fitted difference, exponentially fitted 

spline difference and upwind scheme. In particular for a small   , there is a significant 

reduction on the error for a fixed mesh size h . For numerical solutions, various finite 

difference schemes have been proposed to guarantee the stability of the schemes for all 

values of perturbation parameters.  Careful examination of the numerical results from 

such schemes on uniform grid shows that, for fixed (small) value of perturbation 

parameter, the maximum pointwise error usually increases as the mesh is refined, because 
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of the presence of boundary layers or interior layers, until the mesh diameter is 

comparable in size to the parameter. This behavior is clearly unsatisfactory. Therefore, a 

separate treatment is necessary to deal with such problems.    

Phaneendra et al., (2015) have proposed an exponentially fitted arithmetic average finite 

difference method for solving singularly perturbed two – point boundary value problem 

with boundary layers at both (left and right) end points. They introduced a fitting factor in 

three – point arithmetic average finite difference scheme to take care of the rapid changes 

that occur in the boundary layer. Pankaj et al., (2016) have considered orthogonal spline 

collocation for a class of singularly perturbed reaction – diffusion problems in one –

dimension with mixed boundary conditions assuming h   . But, analysis part of the 

proposed scheme was left and different examples were taken not on the specified 

boundary conditions. Ivanka and Lubin, (2016) have proposed two – grid algorithms for 

the finite difference solutions of singularly perturbed problems. In these two – grid 

algorithms, the solution of the fully nonlinear coarse problem is used in a single – step 

linear fine mesh problem.   Gulsemay and Mustafa, (2017) have examined an efficient 

method to yield solutions of higher order singularly perturbed problems numerically. The 

Chebyschev based differential quadrature method was applied to perturbation problems 

to obtain approximated results. They pointed out that both ordinary differential equation 

and partial differential equations can be solved using Chebyschev polynomial. However, 

the accuracy of the method was presented only by table and the graphical comparison of 

the approximate solution with exact solution was left.   

Fasika et al., (2017) have developed a fourth-, sixth-, and a tenth order compact finite 

difference method for solving a singularly perturbed one – dimension reaction – diffusion 

two point boundary value problem. To demonstrate the efficiency of the method, they 

implemented numerical examples by taking different values for perturbation parameter  

  , and the mesh size h . i.e., of the type h  . (Feyisa and Gemechis, 2017) have 

presented a higher order finite difference method, eighth order compact difference 

method for solving singularly perturbed one – dimension reaction – diffusion equation.  

Yet, the methods are appropriate when the coefficient of the reaction term is constant and 

the size of the perturbation parameter   is comparable with the mesh size h . 



4 

 

(Rajashekhar, 2016) has presented numerical solution to linear singular perturbation two 

– point boundary value problems using B – Spline collocation method. In the paper, the B 

– Spline basis functions was defined recursively and the B – Spline collocation method 

was described and formulated. The efficiency of the method is demonstrated using 

second order singular differential equation with Neumann’s boundary conditions. The 

proposed method was tested for two numerical examples taking a very small perturbation 

parameter . 

Terefe et al., (2016) have presented fourth order stable central difference for solving self 

–adjoint singularly perturbed two – point boundary value problem. Their numerical 

solutions are in a very good agreement with the exact solution for a small value of   (i.e.

h  ) for which most classical numerical methods do not give good result.  

Prasad and Reddy, (2014) have presented a fitted second order finite difference method 

for solving singularly perturbed problems exhibiting dual layers at both (left and right) 

end points. By introducing a fitting factor, they obtained its value from a singular 

perturbation theory. The efficiency of the method was shown by taking different 

numerical examples with constant and variable coefficient of the reaction term. They 

presented the result for h   and comparison of graphical representation of the 

approximate solution with exact solution was not shown.  

Thus, in this study we are interested to present Chebyschev iteration techniques for both 

constant and variable coefficient of reaction term of singularly perturbed 1D reaction -  

diffusion  equation for a very small perturbation parameter in which most methods listed 

in the literature do not give good result. Further, we try to present a more accurate 

numerical method for solving singularly perturbed 1D reaction – diffusion two – point 

boundary value problems using Chebyschev iteration technique.  

1.2. Objectives of the Study 

1.2.1. General objective of the study 

To apply the Chebyschev iteration technique for solving second order singularly 

perturbed one – dimension reaction – diffusion equation. 
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1.2.2. Specific objectives 

The specific objectives of study are; 

1. Describe Chebyschev iteration technique for singularly perturbed 1D reaction 

– diffusion equation.  

2. To establish the convergence of the proposed method. 

1.3. Significance of the Study 

The importance of this study is to show how to apply Chebyschev iteration technique in 

solving second order singularly perturbed 1D reaction – diffusion boundary value 

problems and to obtain a more accurate solution with a fast rate of convergence. It also 

helps other scholars who want to work on this area. 

1.4. Delimitation of the Study 

Numerical treatment of singularly perturbed problems has received significant attention 

in recent year. Thus, this study is delimited to Chebyschev iteration technique for solving 

second order singularly perturbed 1D reaction – diffusion equation of the form:

''( ) ( ) ( ) ( ),y x a x y x f x a x b      with the boundary conditions ( )y a   and 

( )y b   where   is a small positive parameter (diffusion coefficient) such that 

 0 1 and  ,   are given constants and ( )a x , ( )f x are assumed to be sufficiently 

continuously differentiable  function in the given domain. 
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Chapter Two 

Review of Related Literature 

2.1. Singularly Perturbed Problems 

Numerical treatment of singularly perturbed problems has received significant attention 

in recent year. These problems arise frequently in fluid dynamics, elasticity, quantum 

mechanics, chemical reactor theory, reaction – diffusion equation and other applied areas. 

A few notable examples are boundary layer problems. The presence of a small parameter 

in these problems prevents us from obtaining satisfactory numerical and asymptotic 

solutions by direct or classical methods. For numerical solutions, various finite – 

difference schemes have been proposed in the numerical literature to guarantee the 

stability of the scheme for all values of the perturbation parameter (Neumann et al., 

2000). Since the mid-1960s, singular perturbation problem have flourished, the subject is 

now commonly a part of graduate students training in applied mathematics and in many 

fields of engineering (Gayatri and Jugal, 2012) 

The study of many theoretical and applied problems in science and technology leads to 

boundary value problems for singularly perturbed differential equations that have a multi-

scale character. However, most of the problems cannot be completely solved by analytic 

techniques. Consequently, numerical simulations are of fundamental importance in 

gaining some useful insights on the solutions of the singularly perturbed differential 

equations. (Gemechis et al., 2017) have presented numerical method for solving 

singularly perturbed delay reaction – diffusion equation with layer or oscillatory behavior 

via fourth order finite difference method. To demonstrate the efficiency of the method, 

four examples without their exact solutions have been considered.  

According to Miller et al., (2012) boundary layer is a region of independent variable over 

which the dependent variable changes rapidly. The dimension of the boundary layer, in 

particular its width, have to be defined with some care. This suggests that it is most 

appropriate to say that the boundary layer in xe  is of width   and in 
x

e 


is of width

 . 
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Moving to two – point boundary value problem for second order singularly perturbed 

reaction – diffusion equation, the exact solution is a linear combination of the exponential 

function 

(1 )

,

x x

e e 

    
 
  

. Because the exponential 

x

e 



in the solution has the argument

x


, the solution changes rapidly in  0,   but not in  ,1 . From this we have at 

most two boundary layers, each of width  . Here the boundary layers are much thicker 

than before when (0 1) so numerical difficulties arise only if   is much smaller 

than 1. 

According to Chandru and Shanti, (2014), classical numerical methods fail to produce 

good approximations for singularly perturbed problems. Hence, one has to go for non – 

classical methods. A number of articles have been appearing in the past three decades on 

non – classical methods which covers mostly second order equations. Singular 

perturbation problems are classified on the basis how the order of the original differential 

equation is affected. We say that singular perturbation problem is of convection – 

diffusion type if the order of the differential equation is reduced by one, where as it is 

called reaction – diffusion type if the order is reduced by two. Kadalbajoo  and Patidra, 

(2001) have described a numerical method for self – adjoint singularly perturbed 

problems using cubic spline with exponentially fitting factor. They considered where the 

coefficient of the reaction term ( )a x  is different from constant and analyzed the 

convergence of the method by four numerical examples.  

2.2 Reaction – Diffusion Boundary Value Problems 

According to Miller et al., (2012) the simplest example of a singular perturbation 

problem is the initial value problem on the unit interval  0,1 of the form 

'( ) ( ) 0u x u x   , 0(0)u u . This singular perturbation initial value problem can arise in 

the model of chemical reactions, if there is a fast reaction rate. Christina, (2011), a 

reaction –diffusion equation comprises of a reaction term and a diffusion term, i.e. the 

typical form is as ''( ) ( ) ( ) ( )y x a x y x f x   with the boundary conditions (0)y   and 

(1)y   where   is a small positive parameter (diffusion coefficient) such that  
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 0 1 . So, the first term on the left hand side ( ''( ))y x  describes the “Diffusion” 

term and the second term ( )y x  describes a ”Reaction” term. 

In general, the reaction – diffusion equations allow for much more complex behaviors 

than a scalar reaction – diffusion equation does. Especially interacting reaction terms are 

of interest and leads to interesting behavior. So, e.g. oscillating phenomena can evolve as 

these oscillations can spread in a space via diffusion and instability may develop spatial 

phenomena like pattern formation can be observed. 

Typical examples 

 Population dynamics: this reaction – diffusion is used to describe the spread of 

population in a space. So, we need some basics about population dynamics 

possibly stationary and their stabilities are of interest in 1D and 2D ordinary 

differential equations.  

 Prey- Predator, Competition, Symbiosis, Chemical reactions… 

Valanarasu and Ramanujam, (2007) have developed an asymptotic numerical method for 

singularly perturbed reaction – diffusion type of third order ordinary differential equation 

with discontinuous source term subject to a particular type of boundary conditions. 

Mark, (2001), many problems in engineering and science can be formulated in terms of 

differential equations. A differential equation is an equation involving a relation between 

an unknown function and one or more of its derivatives. Equations involving derivatives 

of only one independent variable are called Ordinary Differential Equation and may be 

classified as either Initial – Value Problem or Boundary – Value Problem. The distinction 

between the two classifications lies in the location where extra conditions are specified. 

For an Initial – Value Problem, the condition are given at the same value of x, whereas in 

the case of  Boundary – Value Problem, they are prescribed at two different values of x. 

There are different types of boundary conditions; Neumann boundary conditions, Robin 

boundary conditions, mixed boundary conditions and Dirichlet boundary conditions of 

which Dirichlet boundary condition is our interest.  
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2.3 Iteration Methods 

There are two types of methods that can be used to find the roots of the equation: 

1) Direct method: these methods give the exact value of the roots (in the absence of 

round off errors) in a finite number of steps. These methods determine all the 

roots at the same time (Gauss elimination, Gauss – Jordan, Triangularization, 

Cholesky,…) methods. 

2) Iterative methods: these methods are based on the idea of successive 

approximations. Starting with one or more initial approximations to the root, we 

obtain a sequence of iterative  kx which in the limit converges to the root (Jain et 

al., 2007). 

To solve complex and non – linear difference problems, iterative methods are the most 

commonly used. The essence of the iterative methods consists in constructing a sequence 

of approximations converging to the solution, starting with some initial guess. After a 

finite number of steps, the approximate solution is taken to be the solution of the 

problem. Iterative methods are more universal in that they allow us to solve not one 

concrete problem, but a class of problems possessing definite properties. Since in the 

majority of iterative methods the concrete structure of the equation is not used, the theory 

of iterative methods can be constructed from a single point of view, taking as our goal the 

investigation of first kind equation; Au f  where A is operator, f is given, u is the 

desired of some space H. 

In any iterative method the solution of the above equation is found from some initial 

approximation 0y H  and a sequence of approximate solutions, 1 2 1, ,..., , ,...k ky y y y   is 

defined where k is iterative number. The approximation 1ky   is expressed in theory of the 

already known preceding approximations using a recurrence formula.   

Iterative methods are characterized by the structure of the iterative scheme, by the space 

H in which the convergence of the method is studied, by the termination condition for the 

iterative process.  
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Thus, a few of them are; Jacobi iteration method, Gauss-Seidel iteration method, 

Successive over Relaxation method and Chebyschev iteration technique. 

The two – level method is only valid after the completion of all the iterations. However, 

for the three – level methods, the estimation is also valid at any intermediate iteration. 

Unlike the two – level method, in the three – level method the norm of the error decreases 

monotonically at intermediate iterations, and this guarantees the computational stability 

of the three – level method (Aleksandr and Evengii, 1989). 
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Chapter Three 

Methodology 

3.1. Study Area and Period 

This study will be conducted at Jimma University under mathematics department from 

August 2017 to November 2018.  

3.2. Mathematical Design of the Study 

Document review and numerical experimentation design will be employed.  

3.3. Source of Information 

Relevant information will be obtained from books, published journals and internets.  

3.4. Mathematical Procedure 

To achieve the stated objective, the study will follow the following procedures. 

1) Defining problem. 

2) Discretizing the solution domain 

3) Replacing the differential equation by finite central difference which gives a 

system of algebraic equation 

4) Applying the Chebyschev iteration method to solve the algebraic equation 

5) Investigate the convergence of the method 

6) Writing MATLAB code for the method to solve the obtained algebraic equation 

7) Validating the method by numerical examples and displaying the numerical 

results in tabulate form as well as graphically. 
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Chapter Four 

Description of the Method, Results and Discussion 

4.1 Description of the Method 

Consider the singularly perturbed boundary value problem of the form: 

''( ) ( ) ( ) ( ),y x a x y x f x a x b      (4.1) 

with boundary conditions  

( ) and ( )y a y b              (4.2) 

where   is a small positive parameter ( diffusion coefficient) such that 0 1  and  

,   are given constants and ( ), ( )a x f x are assumed to be sufficiently continuously 

differentiable functions for every [ , ]x a b . 

To describe the method, we divide the interval [ , ]a b  into N equal subintervals of mesh 

size h . 

Let 0 1, ,..., Na x x x b   be the nodal points. Then, we have , 0,1,..., .ix a ih i N    

For convenience, let  ( )( ) , ( ) , ( ) , '( ) ,..., ( )
nn

i i i i i i i i i ia x a f x f y x y y x y y x y      

Assume that ( )y x has continuous higher order derivatives on [ , ]a b . 

Thus, using Taylor series expansion we have,  

      
 

2 3 4
4 5

1 ( )
2! 3! 4!

i i i i i i

h h h
y y hy y y y O h

         (4.3) 

      
 

2 3 4
4 5

1 ( )
2! 3! 4!

i i i i i i

h h h
y y hy y y y O h

                                                   (4.4) 

Adding Eq. (3) and Eq. (4) we obtain the second order finite difference approximation for 

the second order derivative of iy  as: 

1 1
22

2i i i
i

y y y
y TE

h

                  (4.5) 
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where   
2

4

2
12

i

h
TE y  

Writing Eq. (1) at discretized nodal points, we get: 

i i i iy a y f      (4.6) 

Substituting the values of 
iy   from Eq. (5) into Eq. (6) we obtain: 

1 1

2

2i i i
i i i

y y y
a y f

h
    

    
 

 

  2 2

1 12i i i i i iy y y h a y h f        

Thus, 
 

 2 2

1 12 , 1,2,..., 1i i i i iy h a y y h f i N           (4.7) 

From Eq. (7) we obtain the equivalent three – term recurrence relation given by: 

1 1 ,i i i i i i iE y F y G y H        for 1,2,..., 1i N   (4.8) 

where,    
i iE G   ,          22i iF h a   ,        

    
 2

i iH h f  

Now, Eq. (8) can be written in matrix form as: 

AY B   (4.9) 

where     

1

2

2

1

0 0

0

0 0

0 0

N

N

F G

E F G

A E

F G

E F





 
 
 
 
 
 
  

 

1

2

2

1

N

N

y

y

Y

y

y





 
 
 
 
 
 
  

   and 

1 0

1

2

1

N

N N

H y

H

B

H

H y









 
 
 
 
 
 
    

A matrix M is said to be tri-diagonal if 0 for 1ija i j  
 
and diagonally dominant if 

1

, 1(1)
n

ii ij

j
i j

a a i n



  . If det( ) 0M  then, the matrix is non-singular. Otherwise, it is 

singular (Jain et al., 2007) 
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4.2 Chebyschev Iteration Technique 

To find an approximate solution of Eq. (9), with a non – singular matrix A , it is important 

to apply the three – level iterative schemes. 

The three – level iterative scheme for Eq. (9), is linked with three iterative 

approximations ( 1) ( ) ( 1), ,p p pY Y Y 

 so that ( 1)pY 
 is defined in terms of ( ) ( 1)andp pY Y 

where p is the iteration number. 

In order to realize the three – level scheme, it is necessary to give two initial 

approximations (0) (1)andY Y . Usually (0)Y is arbitrary and (1)Y is found from the two – 

level scheme. 

Now, according to (Aleksandr and Evengii, 1989), in order to find a new approximation

( 1)pY  , from the two – level scheme, Eq. (9) can be written as: 

( 1) ( )
( ) , 0,1,2,...

p p
pY Y

I AY B p


 
    (4.10) 

where  is positive parameter to be determined and I is the identity matrix with the same 

size to the matrix A . 

From Eq. (10) we have:   

 ( 1) ( ) pp pIY IY AY B      

   ( 1) ppIY A I Y B      

   ( 1) , 0,1,2,...
ppY I A Y B p             (4.11) 

   0(1) ,at 0Y I A Y B p      ,  0
Y  is an initial guess  

From Eq. (11), denote  F I A   

Where F is called iteration matrix  

The above Eq. (11) is called the two – level iterative scheme. 
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To develop the three –level scheme, subtract  1p
Y


from both sides of Eq. (11) to get: 

     1 1( 1) p p ppY Y FY B Y
                         (4.12) 

Multiplying the right hand side of Eq. (12) by 1p   , where 1p   is a parameter to be 

determined from the condition that the resolving matrix A has minimal norm and is used 

to control errors produced in the computation, it gives: 

      1 1( 1)

1

p p pp

pY Y FY B Y 
 

     

     1 1( 1)

1 1 1

p p pp

p p pY FY B Y Y   
 

       

     1( 1)

1 1 11

1,2,...

p pp

p p pY FY Y B

p

   


     


                                 (4.13) 

Eq. (13) above is called Chebyschev three – level iterative scheme.  

Consider Eq. (9), where Y, B  L and L is an n – dimensional Euclidean space            

(e.g. L n ) Suppose that , 1,2,...,j j n   are the eigenvalues of the matrix A arranged 

in the ascending order: min 1 2 max0 ... n           . 

Now we analyze the behavior of quantities 1 min max1 and 1nv v     as function 

of  . From the following figure, (Victor and Semyon, 2007), we determine that for the 

smaller value of  the quantity 1v dominates whereas for larger value of  the quantity 

nv dominates. The value of     min maxmax 1 , 1         is shown by a bold 

polygonal line. It coincides with min1   before the intersection point and after this 

point it coincides with  max1   . 
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Consequently, the minimum value of     is achieved precisely at the intersection 

point. This condition reads: 

min max min max1 1 2          

Therefore, 

 min max

2
opt 

 
 


         (4.14) 

Consequently, 

  min min

min max

2
1 1opt opt opt     

 

 
     

 
 

After rearrangement, we get; 

min

max min max

minmax min

max

1

1
opt



  


 






  




                                                                                

Therefore, 

 
0

1
,

1










            (4.15) 

where

 

min

max





  and  0, 1 
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According to Victor and Semyon , (2007), the condition number,  A , of a matrix A 

acted on a normed space L is defined as: 

 
  1det( ).det( )A A A  .   (4.16) 

 where,    1 1

max

min

1
det( ) and det( )A A A A  



       

            

   1andA A    are the spectral radius of A and A
-1

 respectively. 

The quantity of Eq. (16) can be referred to as the condition number of a linear system of 

Eq. (9).

 

Therefore, we can write condition number in terms of eigenvalues as: 

             1 max

min

1
det( ).det( )A A A




 

  

 

Therefore,

 
 

1
A


   (4.17)

  

James (1990), Condition number is related to how sensitive the solution of a problem is 

to change in its data. In any norm,   1A   , and for “large” value of  A the matrix A 

is said to be ill conditioned. Here “large” must be interpreted in somewhat subjective 

term. If   1A  , then A is said to be perfectly conditioned 

 

4.3 An estimate for the norm of the error 

Let  
ε

p
be the error and  p

Y be the numerical solution at p iterate and Y be the exact 

solution of Eq. (9).  Multiplying both sides of Eq. (9) by  and adding Y on both sides, it 

gives: 

Y FY B           (4.18a) 

Then, from Eq. (18a) a family of iterative scheme can be generated as: 

   1
, 0, 1, 2, ...

p p
Y FY B p


         (4.18b) 
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Subtracting Eq. (18a) from Eq. (18b), 

   1p p
Y FY B

Y FY B





  
 

 
 

    1p p
Y Y F Y Y


  

         
(4.19)

 

Then, Eq. (19) can be rearranged as:
 

    
ε

p p
Y Y   and 

   1 1
ε

p p
Y Y

 
          (4.20) 

Substituting Eq. (20) into Eq. (11), it gives the equation of the error for the two – level 

scheme  1
ε

p
as: 

 ( 1) , 0,1,2,...
ppY FY B p     

    1
ε ε

p p
Y F Y B


   

 

After rearrangement, 

   

       

1

1 0 0 0

ε ε , 0,1,2,...

ε ε , where ε

p p
F p

F Y Y


 

  
                   (4.21) 

Also substituting Eq. (20) into Eq. (13) the following equation of the error for the three – 

level scheme  1
ε

p

 can be expressed as: 

     1( 1)

1 1 11

1,2,...

p pp

p p pY FY Y B

p

   


     


 

     1 1

1 1ε (ε ) (1 )(ε )
p p p

p pY F Y Y 
 

      
     

  

     1 1

1 1ε ε (1 )ε , 1,2,...
p p p

p pF p 
 

    

           

(4.22) 
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Theorem: Let L be an n – dimensional normed vector spaces  say orn n and assume 

that the induced operator norm of the iteration matrix F of Eq. (13) satisfies 1F q 

where q is the spectral radius of F,  F . Then, the system of Eq. (13) has a unique 

solution Y L . 

Moreover, the iteration sequence of Eq. (13) converges to the solution Y for an arbitrary 

initial guess 
 0

Y . The error at p iteration is defined by Eq. (13) satisfies the estimate: 

       0 0
ε ε

p p p pY Y q Y Y q       

Proof: For 0p   we have 
   0 0

ε Y Y  and
       1 1 0

ε ε ε ε
p p

F F

    

     1 0 0
ε ε εF q    

For 1p   we have 
   1 1

ε Y Y  and
       1 2 1

ε ε ε ε
p p

F F

  

 
     2 1 02ε ε εF q  

 

For 2p   we have 
   2 2

ε Y Y  and  
       1 3 2

ε ε ε ε
p p

F F

  

 

     3 2 03ε ε εF q    

Inductively, for 3p  ,    
ε

p p
Y Y  and 

           1 0 0
ε ε ε ε ε

p p p p pF F q


     

   0
ε ε

p pq                (4.23) 

Now, let us transform the interval min max,    into the interval 1, 1 . To do this we 

make a linear change of variables, mapping the intervals min 1 n max        on 

the interval 1 1z   and point 1 to the point 1. 
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It can be shown on z plane as: 

 

 

Slope 
1

2

n
m

 
      and       

1

1 2
2 0

n

n
m

z z

 
  


 

  
 

      (4.24) 

1

1 1 12
2 2 2

n

n n n
z

z

 
     




   

     
 

 

1 11
1

2 2

n n
z z
   

  


    
        

   
 

1 1

1 1

2
1 1

2

n n

n n

z z
   


   

  
     

  
 

1

1

1
1 1

1

n

n

z z
  


  

 
    

 
    

where  1

n





  

01 z   
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0

1
where

1










 

0

0

1 1
and

z
z

 


 

 
            (4.25) 

Using this transformation, the point 0  corresponds to: 

 0

0

1 1
0 1

z
z



 


              (4.26) 

The desired polynomial transformation and the solution of this problem was obtained by 

the Russian mathematician V.A. Markov in 1982, has the form:  

     

 

0

0

1
,

1
, 0,1,2,...

1

p pp

p

p

Q z q T

q p

T







 
  

 

 
 
 
 

                         
(4.27) 

   p
T z is the Chebyschev polynomial of first kind with degree 0,1,2,...p  such that

    1cos( cos ), 1
p

T z p z z           (4.28)
 
 

       2 21 1
1 1

2 2

p p
p

T z z z z z       

 

2 2

0 0 0 0 0

1 1 1 1 1 1 1
1 1

2 2

p p

p
T

    

   
                          

   

 

When rearranged, 

 
  2 2

0 0

0 0 0 0 0

1 1 1 1 1 1 1
1 1

2 2

p p

p
T  

    

       
           

       
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     2 2

0 0

0 0

1 1
1 1 1 1

2

p p
p

p
T  

 

   
       

    

 

From Eq. (27), it can be observed that: 

   
0

2 2

0 0

2

1 1 1 1

p
p

p p
q



 



    

 

Substituting Eq. (15) into the above: 

2 2

1
2

1

1 1
1 1 1 1

1 1

p

p

p p
q





 

 

 
 
 

   
              

       
   

 

2 2

1
2

1

1 1
1 1 1 1

1 1

p

p

p p
q





 

 

 
 
 

   
              

       
   

 

 

     
 

     
2 1 2 1

1 4 1 4 1 2 1 2

p p

p

p p p p
q

 

       

 
 

         
 

After rearrangement, 

 
 

 
1

2 2

1

1
2

1 2

11
1

1

p

p

p

p p
q



 





 
    

 
    

              (4.29) 

1

1
where

1










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According to, Victor and Semyon, (2007), for any : 1z z   the Chebyschev polynomial 

of the first kind 
   p

T z satisfy the following recurrence relations:  

     

   

1 1

1 0

( ) 2 ( ) ( ), 1,2,...

( ) , ( ) 1

p p p
T z zT z T z p

T z z T z

 
  

 
       (4.30) 

Using Eq. (27) and Eq. (30), we obtain: 

     1 1

1 1

0

( ) 1 ( ) ( )
2

p p p

p p p

Q z Q z Q z

q q q





 

 

 
  

 
 (4.31) 

   1 0

1 0

0

( ) 1 ( )
, 1

Q z Q z

q q





 
  
 

 

The last equations of Eq. (31) are obtained from Eq. (30) and Eq. (27). 

From Eq. (27), we have the following values as: 

     

2

0 1 2 2

0 0

2 32 2

2 0 3 0

2 3

0 0

1 1
( ) 1, ( ) , ( ) 2 1 2 1

2 1 4 1 3 1
( ) , ( )

T z T z z T z z

T z T z

 

 

    

 

    
         

   

    
  

 

2 3
0 1 2 30 0

0 2 2

0 0

1, , ,
2 4 3

q q q q
 


 

   
 

 

Using Eq. (31), we have: 

   
2 22 2

(0) (1) (2) (3) 00

2 2

0 0

4 1 3 12(1 )
( ) 1, ( ) 1 , ( ) , ( )

2 4 3
Q z Q z Q z Q z

   


 

   
    

 

 

Then, from the above equations when  approaches zero, we get:   

1 1

0

1 2 1
, 1,2,...

p p p
p

q q q 
           (4.32) 

Multiplying both sides of Eq. (32) by 1pq   we get: 

1 1

1

0

2
1, 1,2,...

p p

p p

q q
p

q q

 


            (4.33) 
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Substituting Eq. (33) into Eq. (31), we obtain a recurrence formula for the polynomial

 1
( )

p
Q z


 : 

       
1 1

1 1

0 0

2 2
( ) 1 ( ) 1 ( )

1,2,...

p p
p p p

p p

q q
Q z Q z Q z

q q

p


 

 
  

    
 



 (4.34) 

From Eq. (34), we obtain recurrence relations for  1p
Y


as:

       
1 1

1 1

0 0

2 2
1 1

1,2,...

p p
p p p

p p

q q
Y Y Y

q q

p


 

 
  
    

 

                                

(4.35)  

Comparing Eq. (35) with Eq. (13), we get: 

            

1

1

0

2
, 0,1,2,...

p

p p

q
p

q






     (4.36) 

Using Eq. (36) we can write 
1p 
 in terms of 

p .  

i. Put 0p  into Eq. (36) to get 1 2   

ii. Put 1p  into Eq. (36) to get 
2 2

0

2

2






, multiplying the numerator and 

denominator of 2  by 1  , the result will be 
2 2

0 1

4

4


 



 

iii. Put 2p  into Eq. (36) to get
 

   

3 3 2 2

0 0 0
3 22 3 2

00 0 0

2 2 (2 ) 4 2

4 34 3

q

q

  


  

 
  


 

3 2

2 0 2

0 2

0

3 2

0 2

4 4

42
4

2

4

4


 





 

 
  

  
 

 


 

Hence, by induction for 1p  ,   

1 2

0

4

4
p

p


 

 


              (4.37) 

where,  1 1, 2 , 0, 1, 2,...p p     
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Hence, from Eq. (23) and Eq. (29), we have; 
     0 01

2

1

2
ε ε ε

1

p
p p

p
q





 
   

 
 

But we have,   

1 1

2 2

1 1 1

1

1

p p

p p p

 

  
 


          (4.38) 

     1
1 12

1 1

1
ln ln ln 1 ln ln

1

p
p

p p
p


 

 

   
       

   
 

Therefore, 

 

 1
12

1

ln ln
1

p

p
p






 
 

 
                     (4.39) 

Let,   1 1 1

2 2 2

1 1 1

2
ln ln

1 1 2 1 2

p p p

p p p

    


  

   
       

     
 

 1
12

1

ln ln ln
1 2

p

p
p

 




   
      

   
 

 1ln ln
2

p



 

    
 

 

 1

ln
2

ln
p





 
 
               (4.40) 

Putting 1

1

1










 into Eq. (40) and using Taylor series for the function    1 1lnf  

at the point 1 1  , we get; 

     
 

 
 

 
 

 
   

 
4

2 3 4

1 1 1 1 1 1

1 1 1 1
ln 1 ...

1! 2! 3! 4!

f f f f
f f     

  
        

=      
2 3 4

1 1 1 1

1 1 1
0 ...

2 3 4
         

       
2 3

1 1 1 1 1

1 1 1
ln 1 ...

2 3 4
    

 
     

 
      (4.41) 
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By absolutely alternating series test,  

 
 

  1
1 1 1 1

0 1 1

1 1
ln

1 1 1

k

k

k k


   

 





    
            
  

Therefore, 

 

 1

1
ln

2







               (4.42) 

Substituting Eq. (42) into Eq. (40), we find; 

 1

ln
1 1 12

ln 1 ln
ln 2 2 22

p



  

  

 
                       

 

1 1 1 1
1 ln ln

2 2 2 2
p

 

 

     
               

So it is sufficient to choose the number of iteration that: 

 
1

ln
2 2

p A



 

  
    

         (4.43) 

The number of iteration p is proportional to the square root of the condition number,

 A . Therefore, the larger the condition number, the more substantial is the relative 

economy offered by the method and it is also important to mention that the scheme is 

computationally stable.  
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4.4 Numerical Examples and Results 

Example 1:  Consider the singularly perturbed boundary value problem given by: 

           ,   

            with the boundary conditions:   

The exact solution for this problem is given by:    

Table 1: Pointwise and maximum absolute errors for Example 1 at 8N   and different 

small values of perturbation parameters such that  h  , with different number of 

iteration p . 

ix  
310   

3p   

410   
2p   

510   
2p   

710   
1p   

910   
1p   

0.125 3.7113e-02 6.2282e-03 6.3216e-04 6.3296e-06 6.3297e-08 

0.25 2.8967e-03 3.9942e-05 4.0856e-07 4.0959e-11 4.6629e-15 

0.375 8.9291e-04 7.0285e-05 7.0266e-06 7.0289e-08 7.0290e-10 

0.5 1.0113e-03 9.9041e-05 9.9367e-06 9.9445e-08 9.9405e-10 

0.625 8.9291e-04 7.0285e-05 7.0266e-06 7.0289e-08 7.0290e-10 

0.75 2.8967e-03 3.9942e-05 4.0856e-07 4.0959e-11 4.6629e-15 

0.875 3.7113e-02 6.2462e-03 6.3216e-04 6.3296e-06 6.3297e-08 

Max. 3.7113e-02 6.2462e-03 6.3216e-04 6.3296e-06 6.3297e-08 

Phaneendra 

et. al., 2015 
1.23e-02 2.35e-02 2.52e-02 --- --- 

 

 

 

 

 
2 2( ) ( ) cos( ) 2 cos(2 ), 0 1y x y x x x x         

(0) 0 (1)y y 

 

1
( )

2

1
( ) cos( )

1

x x

e e
y x x

e


 

 





  


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Figure 1: Numerical and Exact solutions of Example 1 at 332 and 10N    with 

6p   and condition number ( ) 5.0365A   

  

Figure 2: Numerical and Exact solutions of Example 1 at 532 and 10N    with 

3p   and condition number ( ) 1.0408A   
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Example 2: Consider the singularly perturbed boundary value problem given by 

(Phaneendra et. al., 2015): 

 2( ) (2 ) ( ) 1, 1 1y x x y x x         

with the boundary conditions: ( 1) 0 (1)y y    

The exact solution is 

(1 ) (1 )

2

1
( )

2

x x

y x e e
x

 

   

  
  

Table 2: Pointwise and maximum absolute errors for Example 2 at 16N   and different 

small values of perturbation parameters such that h  , with number of iteration 6p   

ix    

 

Exact Sol. Pointwise Absolute errors  

510   
310   

410   
510   

-1.0 0 3.4104e-28 1.3839e-87 2.1284e-275 

-0.75 6.9565e-01 2.6094e-04 1.5603e-04 1.7607e-05 

-0.5 5.7143e-01 6.0129e-04 5.9841e-05 5.8282e-06 

-0.25 5.1613e-01 3.1540e-04 9.1770e-06 6.9714e-06 

0 5.0000e-01 2.5301e-04 3.6423e-05 1.7836e-05 

0.25 5.1613e-01 3.1540e-04 9.1770e-06 6.9714e-06 

0.5 5.7143e-01 6.0129e-04 5.9841e-05 5.8282e-06 

0.75 6.9565e-01 2.6094e-04 1.5603e-04 1.7607e-05 

1.0 0 3.4104e-28 1.3839e-87 2.1284e-275 

Max. Absolute error  2.4279e-02 4.7656e-03 5.0435e-04 

Phaneendra et. al., 2015  2.46e-02 2.16e-02 2.16e-02 

Table 3: Pointwise and maximum absolute errors for Example 2 at 10N   and different 

small values of perturbation parameters such that h  , with number of iteration 3p   

ix 
 

Exact Sol. Pointwise absolute errors 

410   
410   

610   
810   

1010   

-1.0 0 1.3839e-87 0 0 0 

- 0.8 7.3529e-01 2.3032e-03 7.4612e-04 1.3928e-04 1.3912e-04 

- 0.6 6.0976e-01 8.4182e-05 3.8385e-06 8.0236e-08 7.1416e-08 

- 0.4 5.4348e-01 5.0642e-05 9.2496e-07 3.5316e-08 3.9664e-08 

- 0.2 5.1020e-01 2.1310e-04 2.6584e-04 4.4399e-05 4.4397e-05 

0 5.0000e-01 4.3497e-04 4.9602e-04 9.4601e-05 9.4600e-05 

0.2 5.1020e-01 2.1310e-04 2.6584e-04 4.4399e-05 4.4397e-05 

0.4 5.4348e-01 5.0642e-05 9.2496e-07 3.5316e-08 3.9664e-08 

0.6 6.0976e-01 8.4182e-05 3.8385e-06 8.0236e-08 7.1416e-08 

0.8 7.3529e-01 2.3032e-03 7.4612e-04 1.3928e-04 1.3912e-04 

1.0 0 1.3839e-87 0 0 0 

Max. Absolute error 1.5765e-03 2.0870e-05 1.6489e-07 8.2263e-09 
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Figure 3: Numerical and Exact solutions of Example 2 at 332 and 10N    with 6p   

and condition number ( ) 2.2258A   

 

Figure 4: Numerical and Exact solutions of Example 2 at 532 and 10N    with 6p   

and condition number ( ) 1.7825A   
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Example 3:  Consider the singularly perturbed boundary value problem given by; 

2( ) (1 ) ( ) ( ), 0 1y x x x y x f x x        

with boundary conditions:  (0) 0 (1)y y   

where       
(1 )

2
2 2 3( ) 1 2 2 1

x x

f x x x x x e x x e

    
   

                

The exact solution is given by:   
(1 )

( ) 1 1

x x

y x x e xe

    
   

         

Table 4: Pointwise and maximum absolute errors for Example 3, 10N   and different 

small values of perturbation parameters such that h  , with different condition 

numbers at iteration number 9p   

 Exact Solution Pointwise absolute errors 

ix  

310  

 

610  

 

310  

( ) 1.3568A   

610  
 

( ) 1.1468A   

0.1 9.6190e-01 1 4.0462e-02 9.1726e-05 

0.2 9.9857e-01 1 4.4595e-03 7.9061e-09 

0.3 9.9995e-01 1 3.7148e-04 6.5192e-13 

0.4 1.0000e+00 1 2.8025e-05 3.8136e-13 

0.5 1.0000e+00 1 4.0086e-06 1.6481e-12 

0.6 1.0000e+00 1 2.8025e-05 3.8136e-13 

0.7 9.9995e-01 1 3.7148e-04 6.5192e-13 

0.8 9.9857e-01 1 4.4595e-03 7.9061e-09 

0.9 9.6190e-01 1 4.0462e-02 9.1726e-05 

Max. Absolute error 4.0462e-02 9.1726e-05 
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Figure 5: Numerical and Exact solutions of Example 3 at 432 and 10N   with 

6p   and condition number ( ) 1.4993A   
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4.5 Discussion   

In this thesis, Chebyschev iteration technique has been presented to solve second order 

singularly perturbed 1D reaction – diffusion equation for a very small perturbation 

parameter,  and both variable and constant coefficient of reaction term. The given 

problem of interest is discretized and the derivative of the given differential equation is 

replaced by finite central difference to obtain system of algebraic equation. Chebyschev 

three – level scheme was developed from a two – level scheme to solve the obtained 

algebraic equation. To investigate the convergence and stability of the proposed method, 

three examples were taken and compared with exact solution for a very small value of 

perturbation parameter,   and larger step size than step sizes in the literature. Constant 

and variable coefficient of the reaction term was treated to ensure that the present method 

approximates the exact solution very well when compared with schemes listed in the 

literature. Finally, a pointwise and maximum absolute error for each example was shown 

both by table and graph with different iteration number.    

Table 1 indicates that as   decreases maximum absolute error also decreases. From 

figure 1 and figure 2 we can observe that when   is decreasing,  A approaches one 

and the rate of convergence is fast. Table 2 and Table 3 also depicts that maximum 

absolute error decreases when   is decreasing and iteration number is increasing.  Figure 

3 and figure 4 read as; at the same number of iteration and when   is decreasing, the rate 

of convergence is faster when  A
 
approaches one. 

Lastly, to apply the Chebyschev iteration method there are different parameters to be 

determined like eigenvalues, condition number and so on needed to speed up the rate of 

convergence and we can observe that the  A
 
of a matrix determine how sensitive the 

solution of the corresponding linear system be to the perturbation of the input data. In 

addition, the  A also determines the rate of convergence of the iteration method. 

Indeed, it is clear that the closer the  A to one, the faster is the decay of the error. 
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Chapter Five 

Conclusion and Scope of Future Work 

5.1 Conclusion 

Chebyschev iteration technique has been presented to solve second order singularly 

perturbed 1D reaction – diffusion equation. Using different parameters obtained in 

computation, MATLAB code have been carried out on three numerical examples taking 

both constant and variable coefficient of the reaction term with h . The result was 

shown by table and graph and found to approximate the exact solution very well than 

methods presented in the literature. The convergence of the method were established 

well.     

5.2 Scope of Future Work 

In this thesis, Chebyschev iteration technique has been presented to solve second order 

singularly perturbed 1D reaction – diffusion equation. Therefore, the scheme proposed in 

this thesis can also be treated by other iteration techniques and can be extended to higher 

order of singularly perturbed 1D reaction – diffusion equation.  
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