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Abstract

This research dealt with common fixed points for generalized contraction and Zamfirescu pair of
maps in cone b-metric spaces. In 2010, Babu et al. [1] established the existence of unique
common fixed points for generalized contraction and zamfirescu pair of maps in complete cone
metric spaces. Recently, Haung and Xu [9] have proved some fixed point theorems of
contraction mappings without the assumption of normality condition in complete cone b-metric
space. Motivated by the work of Babu et al. [1], in this work we have extended the main results
of them [1 and 9] to cone b-metric spaces and examples in support of our main findings are also
provided.



Vi



1. Introduction

1.1 Background of the study

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated
Banach’s fixed point theorem, which is stated as follows.

“Let (X, d) be a complete metric space and T : (X,d) — (X,d) be a self- map. If there exists a
constant k € (0, 1) such that

d(Tx,Ty) = kd(x,y)
for every x,¥ € X, then T has a unique fixed point x € X such that Tx=x.”

A mapping T for which the inequality mentioned above holds is called a contraction. Since its
first appearance, the Banach contraction mapping principle has become the main tool to study
contractions as they appear abundantly in a wide array of quantitative sciences. This theorem
provides a technique for solving a variety of applied problems in mathematical sciences and
engineering. Its most well-known application is in ordinary differential equations, particularly, in
the proof of the Picard-Lindel6f theorem which guarantees the existence and uniqueness of
solutions of first-order initial value problems. It is worth emphasizing that remarkable strength of
the Banach contraction principle originates from the constructive processes it provides to identify
the fixed point. This notable strength further attracted the attention of not only many prominent
mathematicians studying in many branches of mathematics related to nonlinear analysis, but also
many researchers who are interested in iterative methods to examine the quantitative problems
involving certain mappings and space structures required in their work in various areas such as

Social sciences, Biology, Economics, and Computer sciences.

There are great numbers of generalizations of the Banach contraction principle. In 2007, Huang
and Zhuang [8] re-introduced the concept of a cone metric space where every pair of elements
are assigned to an element of a Banach space equipped with a cone which induces a natural
partial ordering. They proved some fixed point theorems for contraction maps in such space in
the same work. In [2], Bakhtin introduced b-metric spaces as a generalization of metric spaces.

He proved the contraction mapping principle in b-metric spaces that generalized the famous



Banach contraction principle in metric spaces. Since then, several papers have dealt with fixed
point theory for single-valued and multi-valued operators in b-metric spaces (see [4—6] and the
references therein). In recent investigations, the fixed point in non-convex analysis, especially in
an ordered normed space, occupies a prominent place in many aspects (see [7-10]). In [10],
Hussain and Shah introduced cone b-metric spaces as a generalization of b-metric spaces and
cone metric space. They established some topological properties in such spaces. In 2010, Babu,
Alemayehu and Prasad [1] established the existence of unique common fixed points for
generalized and Zamfirescu pair of maps in complete cone metric spaces. Recently, Haung and
Xu [9] have proved some fixed point theorems of contraction mappings without the assumption
of normality condition in complete cone b-metric space. In this research the work of Babu,

Alemayehu and Prasad [1] has been extended to cone b-metric spaces.

1.2 STATEMENT OF THE PROBLEM

The aim of this research is to prove the existence and uniqueness of common fixed point of
generalized contraction and Zamfirescu pair of maps in cone b-metric spaces.

Motivated by the work of Babu, Alemayehu and Prasad [1], in this research work we extended
the main results of [1] to cone b-metric spaces and applicable examples were provided.

This research answered the following basic questions:

i. What are cones, cone metric space, b-metric and cone b-metric space and how do we relate
them?

ii. What are the topological properties of cone b-metric space?

iii. How do we prove the existence and uniqueness of common fixed point of generalized
contraction pair in cone b-metric space?

iv. How do we prove the existence and uniqueness of common fixed point of Zamfirescu
pair of maps in cone b-metric spaces?

v. Can we provide examples in support of the main results of this research problem?

1.3 Objective of the study
The main objective of this study was to deal with existence of common fixed points of
generalized contraction and Zamfirescu pair of maps in cone b-metric spaces.

The topics of the research problem had the following specific objectives:

i. To discuss about Cones, Cone metric space, b-metric and cone b-metric on real Banach
space and show their relationship.



ii. To discuss about the topological properties of con b-metric space.

iii. To prove existence and uniqueness of common fixed point of generalized contraction pair
in cone b-metric space.

iv. To prove existence and uniqueness of common fixed point of Zamfirescu pair in cone b-
metric space.

v. To provide examples in support of the main results.

1.4 Significance of the study

Fixed point theory is one of the interesting areas of research with a wide range of application in
various fields. There are many works about fixed point of contraction maps [6, 7].We hope that
the results obtained in this research will contribute to research activities in this area. The
researcher also beneficial from this study since it uses to develop scientific research writing skill
and scientific communication in mathematics

1.5 Delimitation of the study

This research is delimited to finding common fixed points of generalized contraction and
Zamfirescu pair of maps in cone b-metric spaces which has been done under Differential
Equation and Functional Analysis Streams.



2. Methodology

2.1 Study site and period

The study uses a generalization of the Banach contraction mapping principles as a base, which
was stated in some of the researchers and then to prove different fixed point results in cone b-
metric space. This study was conducted from November to June 2013/2014 G.C in Jimma
University under Mathematics Department.

2.2 Study Design
In order to achieve the objective of this research numerical and analytical design method has

been used.

2.3 Sources of information

This research mostly depends on document materials so, the available sources of information for
the study are Books, Journals, different study related to the topic and internet services. The
researcher collected different documents that are listed above which supports the research and

discuss about the collected material and other activities with an advisor.

2.4 Procedure of the study
The procedures we followed for analysis were the standard technique used in Alemayehu and
Babu [1] and Huang and Xu [9].

2.5 Instrumentation and Administration
We used secondary data for this study. So, to collect those materials by photo copy, by printing
and taking by RW-CD, flash disk, hard disk and for organizing the literature pen and paper were
used. The materials were collected till completion of the study to find possible extension of

common fixed points in cone b-metric spaces.

2.6. Ethical issues

For this study it needed Books, Journals and other related materials. But there was a problem for
collecting all the above listed materials without any permitted letters. So, the researcher took a
letter of permission from Mathematics Department, Jimma University and then the researcher

explained the aim of collecting those materials.



3. Discussion and results

3.1 Preliminaries

3.1.1. Cone Metric spaces and Cone b-metric spaces
Definition 3.1.2 [9]: Let E be a real Banach space and let P be a subset of E. By & we denote

the zero elements of E and by int P the interior of P. The subset P is called a cone if and only
if

i) P is closed, non-empty, and P = {6},
i)a,beR a,b>0,x,y e P=ax+byeP,and
i) PN(-P)={6}

Examples 3.1.3

1)The set E =R of real numbers with the usual norm is a real Banach space. In this case the

cone P is the set of non-negative real number.

2)The set E=R? of a Euclidian plane with the usual norm is a real Banach space. In this

case the cone P is the first quadrant.

On these bases, we define a partial ordering < with respect to P by x<yif and only

ify—xeP.We write x<y to indicate that x < ybut x= y,while x<<ystands for y—xe

int P.Write ||| as the norm on E. The cone P is called normal if there is a number k > 0such

thatvx,y € E, @ < x <y =|x|<k|y|. The least positive number k satisfying the above is called

the normal constant of P. It is well known that k >1.

There exists a cone which is not normal
Example 3.1.4 [5] Let E =C;[01]with x| =|x|_ +]x]. and
P={xeE:x(t) >0 on [01]}. This cone is not normal.

1-sinnt and . (t) = 1+sinnt
n+2

Consider for example X, (t) =



Then 0<x, <y, +X,

2
= =lyal=1and , +y =2 >0

In the following, we always suppose that E is a real Banach space, P is a cone in E with

int P# ¢ and < is a partial ordering with respect to P .

Definition 3.1.5 [9]: Let X be a non-empty set. Suppose that the mapping d: XxX - E

satisfies:
(dy) 6 < d(x,y)Vx,y EX withx # yandd(x,y) =0 < x = y.
(dy) d(zy) =d(y,x)Vx,y € X
[daj dix,v) < d(x,z) +d(z,v) Vx,y,z€ X
Then d is called a cone metric on X and the pair (X,d)is called cone metric space.
Note that: It is obvious that cone metric space generalizes metric space:
Remark 3.1.6 [1]: Let E be an ordered Banach space with a cone P
(1) cis an interior point of the cone P iff [-c,c]is a neighborhood of 0.
(2) If u<vand v<<w,then u<<w
(3) If u<<vand v<w, then u<<w

(4) If <u<<c foreach ceintPthen u=¢6

(5) If u<<v and v<<w,then u<<w
(6) If u<tawhere acP and 0<A<1then a=¢

(7) If a<b+c for each ceintPthen a<b

(8) If ceintP,0<a, and a, — 0,3n,such that ¥n > n,we have a, << ¢



Properties (2),(4) and (6) of this remark are often used (particularly when dealing with non-

normal cones), so we give their proofs.

Proof: (2): We have to prove that w—u eintPif v—uePand w—veintP

There exists a neighborhood V of @ in Esuch thatw—v+V < P. Then, from v—uePit

follows that
w—u+V=W-V)+V+(v—-u)cP+P cP,

Since pis convex.

(4) Since c—u eint P for eachc e int P, it follows that %c—u e intP foreach neN. Thus,

lim (1 = .
Hc—u =6—uecP=P(Pisclosed)

N — oo
Hence u e (—P)NP ={&}, i.e. u= @4 (by definition of cone)
(6) The condition a < Aameans that la—acP,i.e, —(1—-A)acP.

Since aePand 1-1 >0, we have also(1—)a < P.Thus we have(1—A)ac PN (—P) ={6},

and a=46

Definition 3.1.7 [5]: Let X be a non-empty set and s>1 be given real number. A mapping

d: XxX —> R, is called a b-metric if ¥x,y,z € X the following conditions are satisfied:
(1) d(x,y)=0<x=y and 0<d(x,y)
(2) d(x,y)=d(y,x)
(3) d(x y)<s[d(x,2) +d(z,)].

A pair (X,d)is called a b-metric space with constants.

It is easy to see that any metric space is a b-metric space with s =1.



Thus, the class of b-metric space is larger than the class of metric spaces.
The following examples show that a b-metric space is a real generalization of a metric space.

Example 3.1.8 [5]: The set R of real numbers together with the mapping

d(x,y)=|x- y|2 VX, Yy € R is a b-metric space withs = 2. Butd is not metricon R.
Proof: We need to show that d satisfies Definition 3.1.7.
i) d(x,y):|x—y|2 >0, VX,y € R with x=y
Hence d(x,y) >0
d(x,y)=0<:>|x—y|2 =0 |x—y|=0ox-y=0<x=y.
Hence (1) is satisfied VX, y e R.
i) Vx,yeR,
d(x,y) =[x =y =[~ (y = =[-1[ [y =¥ =[y - x" = d(y,%)
= d(x,y)=d(y,x),vx,yeR.
Hence (2) is satisfied.
iii) Let x,y,zeR, then
dx,y)=x—y =x—z+z-y[
Weset U=X—-2z,v=Z—-Y SO,X—Yy=U+V
= d(x,y)=|u +v|2 SZ((MZ +|v|2) = 2(]x— z|2 +|z - y|2)
= d(x,y) <2[d(x,2) +d(z,y)].

Hence (3) is satisfied.



Hence (RR,d)is a b-metric space withs =2. Since, s>1 it is not a metric space.

Example 3.1.9 [5]: Let X ={0,12} and a mapping d:XxX —R, be defined by
d(0,00=d(L) =d(2,2,)=0, d(0,)=d(L0)=d(L2) =d(2,)) =1andd(2,0) =d(0,2) = m where

mis a given real number such that m> 2.
Proof: It is enough to show that it satisfies Definition 3.1.7 (3).

Let x,y,ze X then

d(x,y) S%[d(x, 2)+d(x,y)]vx,y,ze X .

Therefore, (X,d) is a b-metric space with constants:%.However, if m>2,the ordinary

triangle inequality does not hold and thus (X,d)is not metric space, for if we take 01,2 X,

then we get
d(2,0)=m>d(21)+d(L0)
=>m=2.
Hence it does not satisfy ordinary triangle inequality.

Definition 3.1.10 [9]: Let X be a non-empty set and let s>1 be given real number. A

mapping d : X XX — E is said to be cone b-metric if and only if Vvx,y,ze X the following

conditions are satisfied.

i) d<d(x,y) with x=yand d(x,y) =0iff x=y;
i) d(x,y) =d(y, x);
i) d(x,y)<s[d(x,2) +d(z,y)].

The pair (X,d)is called a cone b-metric space.



Remark 3.1.11 [9]: Observe that if s=1 then the ordinary triangle inequality in cone metric
space is satisfied, however it does not hold true when s >1. Thus the class of cone b-metric
space is larger than the class of cone metric spaces since any cone metric space must be a cone

b-metric spaces with s =1.

The following examples show that cone b-metric spaces are more general than cone metric

spaces.
Example 3.1.12 [9]: Let E=R?, p={(x,y) €E,:x,y>0}c E, X =Rand
d : X xX — E such that
d(x,y) :(]x —y[",alx-y| p), Where « >0and p >1 are two constants.
Then, (X,d) is a cone b-metric space, but not a cone metric space.
Proof: Let X =R and d: X xX —E. We need to show that d satisfies definition 3.1.10.

i) Since @ >0and [x—y|" 20,vx,yeR

=d (X, y)=([x—y|p,a|x—y|p)20.
Hence, d(x,y) >0Vx,y e X
d(x.y) =(0.0) = (x—y".alx~ )= (00)
e |x—yP=0anda|x—y? =0
< [x—y|=0 (Sincea = 0)
< x-y=0
SX=Y.

Hence (i) is satisfied.

10



i d(xy) = [x—y.ac-y") = (-9 .al-(y-9)’)
= (4" ly-x", a7y -x)
= (y-x"aly-x")
= d(y,X).
=d(x y)=d(y.X).

Hence (ii) is satisfied .

i) vx,y,ze X
a0cy) =[xy alx-yi’)
= Qx—z+z—y|p,a|x—2+2—y|p)
< (x— 2 +]z—y)Pax— 2 +|z— p])?
<2° ([x—ZIp +lz-y|",alx-2|" +|Z‘y|p)
=27 Qx—z|p,a|x—z|p)+(12—y|p,a|2—Y|p)]
= 2° d(x,2) +d(z,Y)

=d(x,y) <2°[d(x,2) +d(z,y)].

Next,welet U=x-2zV=z2-y so x—-y=U+V.

From the inequality

(a +b)? < (Zmax{a, b})? < 2P(a” + b?) Va,b =0

We have

11



x=y|" =|u+v]® < (|u|+‘v)p‘ <2°(u” +M")=2°(x— 2" +|z-y|").
This implies that
d(x,y)<s[d(x,2)+d(z,y)]
with s=2° >1. But,
x=y[P<|x=2" +]z—y|"
is impossible for all x >z > y. Indeed, taking account of the inequality
(a+b)f>=a"+ b VYa,b=0
We arrive at
X=y[" =u+v|" =(U+v)" >uP +vP =(x-2)" +(z-y)"
=[x—z" +|z-y|"vx>z>y.
Hence,(iii) in Definition 3.1.5 is not satisfied, i.e., (X,d) is not a cone metric space.
Example 3.1.13 [9]: LetX =R,E=R?,and p={(x,y) eE: x>0,y >0}. We define
d:Xx X=E by
d(x,y) = (x= ", [x=y[").

Then as it is shown below, (X,d) is a cone b-metric space with coefficients =2. But it is not a

cone metric space since the triangle inequality is not satisfied.

Proof: Let X =R andd: X x X = E. We need to show d satisfies definition 3.1.10.
i) Since|x - y|2 >0 Vx,yeR.
2 2
= (x=y[ [x=y) >0

12



Hence,
d(x,y):|x—y|2,|x—y|2)249Vx,ye X .
d(xy) =(00) = (x—y[".[x~¥") =(0.0)
<:>|x—y|2 =0
& xX-y=0
SXxX=Y.

Hence, (i) is satisfied.

i) (e, y) =[xy Jx = y2)= (= (y =l -y )

= (~Uly - [-1ly-x)
= (y=x.ly-x)
= d(y, %)

=d(x,y)=d(y,x).
Hence, (ii) is satisfied.

i) Let x,y,ze X
d(x,y) =[x~y jx - vf’)
q 2 2
=(x-z+z-y|" |x—z+z-Y]| )
< k=2 +lz—y| (x—2+[z—y)?
2 2 2 2
SZQx—z| +z—y|" [x=7|" +|z-y| )

13



= 2[(|x - z|2,|x— z|2) +(z- y|2,|z - y|2)]
=2[d(x,z)+d(z,y)]
d(x,y) <2[d(x,z) +d(z,y)].
Hence, (iii) is satisfied .
Thus, (X,d)is a cone b-metric space with s=2.
Since s>1, it cannot be cone metric space.

Definition 3.1.14 [9]: Let (X,d) be a cone b-metric space, x € X and {x,}be a sequence in X.
Then,

1) {x,}Converges to xwhenever, for every c € Ewith @ << c,there is a natural number N

such that d(x,,Xx)<<cfor alln>N. We denote this by limx, =x or x, —xas

N—o<

n— oo,

if){x,}is a Cauchy sequence whenever, for every ceEwith 6 <<c,there is a natural

number N such that d(x,,X,) <<cforall nnm>N
i) (X,d) is a complete cone b-metric space if every Cauchy sequence is convergent.

3.2 Main results
In this section we state and prove common fixed points of generalized contraction and Zamfrescu

pair of maps in cone b-metric spaces.
Definition 3.2.1: Let (X,d)be a cone b-metric space with s>1 and P be a cone with non-

empty interior. Let f, g: X — X be self-maps. Suppose that there exists a constant k e(o,a and

there exists

p(x,y)e d(x,y),d(x, x),d(y,gy), d(X, gy) Z d (y, fX) }’

14



such that

difx,gv) =kplx,v) ¥x,yvinX (3.2.1.1)
Then the pair of maps (f,g)is called a generalized contraction pair on X .

Example 3.2.2: Let X =[0,1],E=C;[0,1] and p={6<cE:5>0}.

Define d:XxX > E by d(x,y)=|x—y['§ where 5:[0,]] >R such thats(t)=e'. Then

(X,d) is a cone b-metric space with the coefficient s=2 but it is not a cone metric space.

1 .
Zx, if 0<x<?2
% and

}/,if%3x31

Consider the mappings f,g: X — X are defined by f(x) =

0, if O§x<%
g(x)=

Ex, if 9/ <x<1

3 6

Then the pair (f,Q)is a generalized contraction pair with k = %

Solution: Let s>1 .Then we need to show 3k e (0, %) such that

dlfx, gv) = kplx,v)¥x,yEX

where

o(x, ) e4d (%, y),d(x, ), d(y, gy), 2& gy);d(y, N

We consider the following cases
Case I: When X,y €][0, %)

2

1x—O

d(fx, gy) =d(%x,0) = 3

s=1s.
9

15



If we take p(x,y)=d(x, fx) we get

2

1 5=

X—=X
3

2
—X

2
5= 2xs.
3 9

1
p(x,y)=d(x,§x)=
1, 2 54, 20, 2
Thus, d(fx,gy)_§|x| 5£g.§|x| 5_a|x| )
= LxPo < 2025,
9 54
This case is true.
Case I1: When x,ye[%,l]

11 1 1. 1 2
d(fx.gy)=d(=.Zy) ===yl s§==[-y*5.
(fx, gy) (3 3y) ‘3 3 9| y|

if we take p(x,y)=d(y,gy) we get

1 1| 3y—y2 4, 2
, =d = =lv—-= o=|——Z §= — 0.
P(x,Y)=d(y.3Y) ‘y 3y‘ ‘ 2 ‘ 9|y|

1 514 20
Thus, d(fx, gy) = §|1— y|25 < E.§|y|25 = a|)’|25

1 2. 20 2
—[1- <— .
= gh-ye< e
This is true .
Case I11: When x e[O,%)and y e[%,l]

1 1 1 1
d(fx,gy)zd(gx,gy)z‘—x——y

2 1 2
3 3 5:§|X—y| 0.

If we take p(x,y) =d(X,y), we get

16



p(x,y)=[x—y|*5.

Thus,
1 5
d(fx, gy) :§|x— y|2 5§E|x— y|2 5.

Which is true.

If p(x,y) =d(y, gy), we have
p(y) =d(y.2 )= Sli%e.
Then, d(fx.gy) = %|x— y|25 < g.g|y|25 = §|y|25.
%|x—y|25£$|y|25.
This is true .
Case IV: When XE[% J1]and ye[O,%)

1 R |
d(fx,gy)=d(=,0)=|=-0 s==5.
(fx, gy) (3 ) ‘3 o

If p(x,y)=d(x, fX), then we have

1
X — =

? 1 2
3 o= §|3X—1| 0.

I N
MKW—MK?—

Then, d(fxgy) = %5 s%.%|3x—1425=%|3x—1425.

Sls<2px-17s.
9 54

This is also true.

17



Then from cases I, 11, 11l and IV we conclude that the pair (f,g)is generalized contraction.

Theorem 3.2.3: Let (X,d) be a complete cone b-metric space withs >1. Suppose that (f,g)is
a generalized contraction pair of self-maps onX . Then f and ghave a

unique common fixed pointin X .

Proof: Let x, € X . Since f(X)c X, 3x, € X such thatx, = f(x,).

Sinceg(X) < X, 3, € X such thatx, =g(x). By continuing this process having defined

X, € X, we define X, , € X such that

fx,,if n=0,2,4,...
Xn+l = H
gx,,if n=135,...
We first show that:
d(X,.» X,) <kd(x,,X, ), for n=123, ... (3.2.3.1)

We consider two cases:
Case (i): n iseven. Then,
d (Xn+1’ Xn) = d ( an ’ an—l) S k p(xn 1 Xn—l)

where

PO %€ {000,000, 54000, )0 O S0 D)

= {d(xn’Xn—l)’d(xn’Xn+1)ad(xn_1,Xn),d (xn,xn)+<i(xn_1,xn+1)}

={dumnmxdumxmx§dunpmﬂﬁ

Now if p(x,, X, ;) =d(X,, X, ), then

18



d(Xo.p: X)) <KP(X,, X, ) = kd (X, %, )
Clearly 3.2.3.1 holds true.
If p(x,,X,)=0d(X,.,X,)
=d(X,,q,X,) <kp(x,,X,,)=kd(X,,X,)

=d(x.,,,x )=0 [byRemark 3.1.6 (6)].

n+l? *n

1
If p(xn ' Xn—l) = Ed (Xn—l’ Xn+1) ’
= d(xn+l’ n) p(xn ! xn 1) - d(xn+1’xn—1)

Xn) + d(Xn ' Xn—l)]

n+l?

sk
< 22[d
2[(x

=%d(xn+l X,)+ d(x X,.2)

sk
:>d(xn+l’ n)S?d(XnJrl’ n) d(xn’xn 1)

( jd( n+ls n)—%d(xn'xnl)

2 —sk sk
3( 2 Jd(xml! n) —?d(xn’xnfl)

sk
d(X..,,X. )< d(x,, X,
= (n+1 n) —Sk (n 1)
sk
= hd(x.,Xx .),whereh= )
(X0 %01) =
:d(xn+l7 n)<hd(xn’xn l)

19



Hence, 3.2.3.1 holds true.
Case (ii) nisodd. Then,

d(Xo,0, X,) =d(9X,, X, ;) =d (X, , 9x,) <kp(X,, X, ), where

( n-17 n) {d(xn -1 n) d(Xn 11 an 1) d(Xn’QX ) ( n_l’gxn);d(xn’ an—l)}

= {d(xn'xnl)’d(xn -1 n) d(Xn+11 n) d(xnl’xn+1)2+d(xn' n)}

= {d (Xn ! n—l) d (Xn+1’ n) d (Xn+1’ Xn—l)}

Now if p(x,,,X,)=d(X,,X, ) then
:>d(Xn+1’ n)<kp(xn -1 n) kd(xn’xn l)

=d (X, X,) <kd(X,, X, 1)

n+l? *n

Clearly 3.2.3.1 holds true.
If p(X,4,X,)=0d(X,,1,X,)
:>d(xn+l’ n)<kp(xn+l' n) kd(xn+l' n)

=d(x.,,% ) =0 [by Remark 3.1.6 (6)]

n+1l? *n

If p(X -1 n)_ d(xn+1’ n—1) then

k k
:>d(xn+1' n) 2 (anxn 1) 2 (Xn+1’xn—1)

< %[d (Xoizr Xy) + A (X, Xy 1))

20



sk
:>d(xn+l’ n)<?d(xn+l’ n) d(Xn’xn 1)

3(1—%](1(&”1, n) <_d(xn’xn 1)

2—sk sk
3( 2 )d( n+l1 n)—?d(xn’xn—l)

sk
d <——d(x,, X,
= (X0 %0) < =A%, %)

n+l?

sk

= hd(x
2—sk

X,4), Where h=

n?!“*n

= d (X1, %) <hd (X, X, 4) .

n+l? *n

Hence, 3.2.3.1 holds true.
Hence, in both cases the inequality 3.2.3.1 holds.

By repeated application of (3.2.3.1), we get

d(X,,q,X,) <Kk"d(x,%X,),n=12,.

n+1?! n

We now need to show that {x, }is a Cauchy sequence in X .

For m>n=>1 we have

d(xn' m)<s[d(xnlxn+l)+d(xn+l’ m)]
= Sd (Xn ! Xn+1) + Sd (Xn+1’ Xm)

S Sd (Xn ’ Xn+1) + 52[d (Xn+1’ Xn+2) + d (Xn+2’ Xm )]

A%, %) < Sy, X, 1) + 87 (X1 %00) 8™ A X1, %)

21
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Since sk <1, from the inequality (3.2.3.1), we get
d(X,, %, ) < SA(X,, X, 1) +57d (X, 140 %y 10) F e+ A (X 40 %)
<sK" (%), %) + 7K™ (%), %) A" K™ (%), X,)
=[sk" + s’k™* ...+ 5" k™ ]d (X5, %)

= sk (L+ 5K -+ (SK)? +... & (k)™ " 1) d(x,, %,)

n
<

Tk d(X,,%)—>6 as n—ow (3.2.3.4)

LetO<<c.From (3.2.3.4) and Remark 3.1.6 (8), there exists an integer N such
thatsk"(L—sk)d(x,,X,) << ¢ Vn>N. By Remark 3.1.6 (2),d(x,,X,) <<C.

Hence by definition 3.1.14 (ii) {x,}is a Cauchy sequence in X .By the completeness of X, there

exists z in X such that x, > zas n—ow

We claim that fz=z.
Let 0<<c. If nisodd, Then

d(fz,z) <s[(fz,9x,) +d(9x,,2)]

<s[kp(z,x,)+d(X,.;,2)] (3.2.3.5)

When p(z,x,) €{ d(z,x,),d(z, fz)’d(xn,an),d(Z’gX");d(X“’ fz) |
(2,%,.,) +d(x,, f2)

- d(z,x,),d(z, f,),d(X,, X, 1) 2

One of the following cases holds true for infinitely manyn.

If p(z,x,)=d(z,x,),then from (3.2.3.5) we have
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d(f2,2) < s[kd(2.5) + 0%, 1 D] << sk o=

If p(z,x,)=d(z, fz), then from (3.2.3.5) we get
d(fz,z) <skd(z, fz) +sd(x, ,,2)
= (1-sk)d(fz,z) <sd(x,,,,2)

—d(f,2) < ——d(x ,,7) << — C __¢.

1-sk Xnw —sk( S j
1-sk

If p(z,x,)=d(x,,X,,,) then from (3.2.3.5) we get

d(fz,z) <skd(x,,X,.;) +sd(X,.;,2)
< 5%k [d(x,,2) +d(z,X,,1)]+50 (X1, 2)

= s’k d(x,,z)+s(sk +Dd(x,,,,2)

C —
25(sk +1)

If p(z,x,) , then from (3.2.3.5) we get

_ d(Z, Xn+l) + d(xn' fZ)
- 2

A(£,,2) < SE3 (@2 %) + 3 (6, T+ 5(x,.,2)

2

< (%+ S)d(X,.4,2) +% [d(x,,z)+d(z, fz)]

2 2

(32 02+ 21 dx,, 0+ d @, )

sk +2s

= -0 <* 00,0+ SKatx,.2

23



sk + 2s sk

2—52k d(xn+1lz)+—d(xnlz)

d(fz,2) <
= d(f2,2) 2-s%k

s(k+2) (2-s%k) s’k (2-s%k)
< C+ c=c
22—s’k s(k+2) 2-s’k  2s%k

In all cases, we obtain d(fz,z) << cfor each ceintP using remark 3.1.6 (4) it follows that

d(fz,z)=0or fz=z.
Next we prove that gz=z.

Now consider

d(z,92) = d(fz,9z) <kp(z,2) , (3.2.3.6)

where p(z,2) <{d(z,2),d(z, f2),d(z, g2), 3 fz)2+(z, 92),

={o,d(z,gz),@}.

If p(z,z) =0from (3.2.3.6), we getgz=z.

If either p(z,z)= d(zégz) or p(z,z)=d(z,9z),then from (3.2.3.6) and remark 3.1.6 (6) we
have, d(z,9z) =0

Thus, z=9z.

Hence fz=gz=z.

The uniqueness of z follows from the inequality (3.2.1.1). Hence the Theorem follows.

Corollary 3.2.4 [1]: Let (X,d)be a complete cone metric space. Suppose that (f,g)is a
generalized contraction pair of self-maps on X . Then f and ghave a unique common fixed

pointin X .
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Proof: Since every cone metric space is a cone b-metric space, the proof follows from Theorem
3.2.3.

Example 3.2.5: Let X,E,P,d,d, f and g be as in example 3.2.2.The pair (f,g)is a generalized
contraction pair withk = % ; and the maps f and g satisfy all the conditions of theorem 3.2.3 and

0 is the unique common fixed point of f and g.

Definition 3.2.6: Let (X,d)be a cone b-metric space with s>1 and P be a cone with non-
empty interior. Let f,g: X — X be self-maps. Suppose that there exists a constant k (0,%)

and there exists

d(x, fx)+d(y,gy) d(xgy)+d(y, fx ) !
2 ’ 2

p(x,y) e { d(x,y),
such that
d(fx, gy)<kp(x,y) forall x,yin X. (3.2.6.1)

Then the pair of maps (f,g)is called a Zamfirescu pair of maps on X.

Example 3.2.7: Let X =[0,1],E=C[0,1] and P={5€E:5>0}..

Define d:XxX —»E by d(x,y)=|x—y|'Swhere :[0,1]—>RSuch thats(t)=e'. Then
(X,d)is a cone b-metric space with the coefficient s=2 but it is not a cone metric space.

Consider the mappings f,g: X — X are defined by

lx,if X#1 Ex’if x=1
f(x)=:4 and g(x)=
%,ifx:l = ifx=1
4

Then the pair (f,g)is a Zamfirescu pair withk = %

Now we need to show
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d(fx, gy) <kp(x,y),Vvx,ye X,3k €(0,1) where

p(x,y) e{d(x, y), d(x, x)+d(y,gy)

d(x,gy) +d(y, &),
2

2
Case I: When x,y #1

2

d(fx,qy) = dC—X-—y) ‘— ———y Ix y[ &

400

If we take p(x,y)=d(X,y) we get
p(x y)=|x—y['s
Thus, d(fx, gy)_—|x y| 5_—|x y| 5.

which is true.

Case Il: when x,y=1

d(fx,gy) = (%

d(x, fx) +d(y, gy)
2

If we take p(x,y)=

1 1
dlx ) +d(y. )
2

x—1 o+ o

, L
5

4

165x -1’5+ 254y -1’5 _ 16°5+(25x9)5
800 800 '
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481
= p(x,y) :%5.

Then

d(fogy) = L s<d 48ty 481
400~ 5'800 1,000

Y P
400" ~ 1,000

This case is also true.

Case I11: When x=1and y#1

d(fx.gy)=d(§éy)

2

11 1 2.1 2
=22yl o= =p—y[5= =p-y5.
‘5 57 it 0= gk

If we take p(x,y)=d(x,Y)

:|x—y|25:|1—y|25.
1 2 4 2
fx,gy) = ——[L-y[s<-[L-y°s
= d(fx,gy) = fl-yf o< [i-y

1 2 4 2
—A-ylo<-[l-y|l 0.
= oel-y o<~y

This case is true.

Case IV: when x=land y=1

2
1 2
=—|x=-1"7.
) 16x 1

1.1 (1.1
d(fx,gy) =d(=x,=)=|=X—=
(P gy)=d(Zx.7) ‘4 2

If we take p(x,y) =d(x,y), we get
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p(x,y)= |x—y|2§ = |x—]42§.
Then d(fx, gy)=i|x—]f§sﬂ|x—]f§.
16 5
which is true.

From case I, Il, 11, and IV the pair (f,g)is a zamfirescu pair of maps on X .

Theorem 3.2.8: Let (X,d)be a complete cone b-metric space withs >1. Suppose that (f,Qg)

is a Zamfirescu pair on X . Then f and g have a unique common fixed point in X .
Proof: Let x, € X since f(X)c X there exists x, € X such thatx, = fx,.

Since g(X) < X, there exists x, € X such thatx, = gx,. By continuing this process, having

defined x, € X, we can define x,,, € X such that

| X,,ifn=024,..
" gx,,if n=135,...
We first show that
d(X,,4,%,) <kd(x,,x,,),for n=123,... (3.2.8.1)

We consider two cases:
Case (i) niseven. Then,

d (Xn+l1 Xn) = d ( an ! an—l) < kp(xn ! Xn—l)! Where

p(xn ’ anl) c { d (Xn ’ Xn—l)’ d (Xn1 an) + d (Xn—l’ an—l) , d (Xn ’ an—l) + d(xn—11 an) }
2 2
(Xn+1’ Xn) + d (Xn ’ Xn—l) 1

d
= d(Xn’anl)’ 2 ' E

d (X0 %0 1)

Now if p(X,,X,;)=d(X,,X,)
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= d(X,.q,X,) <kd(X,, X, ;)

n+l? *n

Hence (3.2.8.1) holds

d (Xn+l’ Xn) + d (Xn ' Xn—l)

5 , then we have

I p(Xys %) =

[d(xn+l’ n)+d(xnixn 1) ] d(xn+l’ n)+ d(xn’xn l)

le

= d (X1, %)<
:d(xnﬂ' n)< d(xn+l1 n)+ d(xn’ n—1)

= 2400 %,) S5 A0 %)

=d(X,,,X,) <kd(x,,X, ;)

n+l? *n

Hence (3.2.8.1) holds.
1
If p(x,,X,,)= Ed(xm, X,,), then we have
d( n+l? X )< d(xn+1 )
sk
S?[d(xnﬂl n)+d(xn’xn 1)]
sk

:?d(xml’ n) d(xn’ ”—1)

:>d(xn-¢—l1 n)< d(xn+l1 n)+ d(xn! n—1)

= (1—%Jd (Xn+1’ n) < _d(xn’ n—l)

29



:3(2;“fp(nﬂ,n)<——d(m,nﬁ)

sk
= d(xn+1’ n) < ﬂd(xn’xn—l)

sk

= hd(x,,X. ), where h= .
(% %,.1) o

= d(X,.,X,) <hd(X,, X, ).

n+l? n

Hence (3.2.8.1) holds.

Case (ii) n isodd. Then
d(Xp10 %) = A (9%, X)) =d (X, 9%,) <kp(X,4, X;)

d(Xos fX00) +d (X, 9%) d(Xq,9%,) +d(X,, X, )

p(Xn -1 n) {d(xn -1 n) ~ 72 - ! ~ . 2 = - }

_ (n+1’ n)+d(xn1 n—l) l
= { d(x,,%,,), . 58000 %)

Now if p(x )=d(X,,X,,), then

nl’n

d( n+1? n)<kp(xn -1 n) kd(xn’xn l)

=d(X,,4,X,) <kd (X,,X, ;)

n+11 *n

Hence 3.2.8.1holds

(n+l1 n)+d(xn' n—1)
2

, then we have

If p(xn—l' Xn)

(n+17 n) k[ d(xn+l' n)+d(xnixn 1) ]=Ed

: (nﬂx)+kdu %)

N

<

NII—‘

( n+11 n)+ d(Xn!Xn 1)
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:»gd(xw n)< d (%, %,.1)

=d(X, ., X,) <kd(x,,X, ).

n+1? *n

Hence 3.2.8.1 holds.

If p(xn—l’ Xn) = %d(xnﬂ’ Xn—l) ’ we have
d(xn+1’ n)< d(xn+1’ n- l)
k
SEs[d(xnﬂ’ n)+d(xnlxn 1)]
ks
d(xn+1’ n) Ed(xn’ n—1)

:>d(xn+l’ n)S%d(Xml’ n) d(Xn’xn 1)

= (l—%jd (Xn+1’ n) = _d(Xn' n—1)

2—sk ks
= (255 a0 = Sa0,x,)

= (2-ks)d (X1, X,) < ksd (X, X, ;)

n+l? n
ks
:>d(xm—11 n)—_—d(xn’ n—1)

sk
2—-sk

= hd(x,,X,,), where h=

=d(X,,X,)<hd(X,, X, ).

n+1? *n

Hence 3.2.8.1 holds true.
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Hence, in both cases the inequality 3.2.8.1 holds.

By repeated application of (3.2.8.1), we get
d(X,,,X,) <k"d(x,%X,),n=12,... (3.2.8.2)
Next, we need to show that {x,}is a Cauchy sequence in X .
For m>n=>1. itfollows that
d(X,, Xy) <s[d(X,,X,,1) +d (X, 1, X,)]
<sd(X,, X,14) + SIS[A (X, 10 %1 5) +A(Xy 00 X )]
=50 (X, X,,1) + S7A (X110 Xy10) + 57 (X, 50 X, )

<SA(Xy, X1) 57 (X0, %2) +5°0 (X, X 5) +5°0 (X5, %)
<A (X, Xy11) + 570 (K110 X 0) + e+ 8™ (X 40 %) -

Now 3.2.8.1 and sk <limply that

d(X,, X,) <SA(X,, X, 1) +57d (X, 110 %y 15) oo 5™ A (Xpy 10 X0)
<sk"d (%, %) 4 82K"d (%5, %) + .. + 8™ "k *d (%, X,)
—=(sk" + 7K™ .. 8™ K™ ™)d (%o, X,)
=sk" (L4 SK" +...+(sh)™ " )d (X;, %,)
=sK" (14 5K + (5K)? +... 4 (sk)™ " 1)d (%,, X,)

Slsksk d(x,, %) —> 6 as N — . (3.2.8.3)

Let 0 << cfrom (3.2.8.3) and Remark 3.1.6 (8), there exists an integer N such that
sk”
1-sk

d(Xy, %) << ¢ ¥n>N. ByRemark (3.1.6) (2), d(x,,X,) <<C.
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Hence by Definition 3.1.14 (ii), {x,}is a Cauchy sequence in X. By the completeness of X,

there exists z in x suchthat x, ->zas n—oo .
We claim that fz =z

Let O<<c.If nisodd. Then,

d(fz,2) <s[d(fz, gx,) +d(gx,, 2)]
<s k p(z,x,)+d(gx,.2)
=sk p(z,x,)+sd(gx,, ). (3.2.8.4)

Where p(z x,) <  8(2.), 2 P+ 000:06) | 9206 +001, 1) |

d(z’ fZ) +d(xnixn+1) d(zixn+l)+d(xn' fZ) }

={d(@zx,), 5 : 5

One of the following cases holds true for infinitely many n

If p(z,x.) =d(z,x,), then from (3.2.8.4) we have

C sc

d(fz,z) <skd(z, sd ,2) <<Sk—+—=c.
( JA Z) —= (Z Xn)_'_ (Xn+1 Z) ZSk + 25

d(z, fz) +d(X,, X,,1)

5 , then from (3.2.8.4) we get

If p(z,x,) =

d(z, f2) +d(X,, %.1)

d(fz,z) <sk
(f2.2)< >

+sd(X,.,,2)

g% d(z, fz)+d(x,,X,.,) +sd(X,.4,2)

2 2

g %d(z; fZ) +%d(xnl Z) +%d(zlxn+l) +Sd(xn+l’ Z)

_ 2
:(2 ZSkjd(fz,z) < %d(xn,z)+§(sk+2)d(z,xn+1)
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SZ
:>d(fz,z)§2

kk d(x,,z)+s(sk+2)d(z,x,.,)
S

2
s°k c(2—25k) +5(sk +2)
2—-sk 2s°%k 25(sk+2

d(z,X,.,) +d(x,, f2)
2

If p(z,x,) = , then from (3.2.8.4) we get

d(fz,2) <= [d(z,xn+1)+d(xn,fz)]+sd(xn+l, 2)

2 2

[2k+s]d(2,xn+1)+ I(d(xn,z)+—kd(z f2)

2

:>[1—527k]d(fz,z)§[5k:25] (Z,%,.,)+ kd(xn,z)

2 2
2= kd(fz,z)sSk+23d(z,xn+l)+%d(xn,z)

2

sk +2s sk
d(z, n+1)+ d(Xn,Z)

=d(fz,2) <
(fz.2) < 2 — s’k

s(k +2) (2_82k)0+ sk (2—szk)C_
22-s%k) s(k+2)  2(2-s%k) sk

In all cases, we obtain d(fz,z) << ¢ for eachc eint p .Using Remark 3.1.6 (4), it follows that
d(fz,z)=0or fz=1z.

Next we prove that gz =z. To do so consider

d(z,9z) =d(fz,g2) <kp (z,2) , (3.2.8.5)

where p(z,2) e{d(z,z),d(z,gz)+d(z, fz)’ d(z, fz)+d(z,gz)}

2 2
_ {O,da,gz)}
2

Now if p(z,z) =0, from (3.2.8.5) trivially we get gz =z

34



If p(z,2) = @ then from (3.2.8.5) and remark 3.1.6 (6), we have d(z,gz) =0

le. z=0z.
Hence, fz=9gz=z.

The uniqueness of z follows from inequality the (3.2.6.1). Hence the theorem follows.

Corollary 3.2.9 [1]: Let (X,d)be a complete cone metric space. Suppose that (f,g)is a

Zamfirescu pair on X . Then f and g have a unique common fixed pointin X .

Proof: Since every cone metric space is a cone b-metric space, the proof follows from Theorem
3.2.8.

Example 3.2.10: Let X,E,P,d,o,fand gbe as in Example 3.2.7. The pair (f,g)is a
Zamfirescu pair withk :g; and the maps f and g satisfy all the conditions of Theorem 3.2.8

and 0 is the unique common fixed point of f andg.

35



4. Conclusions and Future scopes

4.1 Conclusions
In 2010 Babu, Alemayehu and Prasad [1] established the existence of common fixed points for

generalized contraction and Zamfirescu pair of maps in complete cone metric spaces. Recently
Haung and Xu [9] have proved some fixed point theorems of contraction maps in complete cone
b-metric spaces. In this research the work of Babu, Alemayehu and Prasad [1] is extended to
cone b-metric spaces by proving
% The existence of common fixed point for generalized contraction pair in cone b-metric
spaces.
¢+ The existence of common fixed point of Zamfirescu pair of maps in cone b-metric
spaces.
And we have also provided examples to substantiate the aforementioned main results.
» Since Corollary 3.3, Corollary 3.4 and Corollary 3.5 in Babu, Alemayehu and Prasad [1] are
corollaries to Corollary 3.2.9; Theorem 2.3, Theorem 2.4 and Theorem 2.5 of Razapour and

Hamlbarani [12] are generalized by Theorem 3.2.8. As a result some of the main results in

Huang and Zhang [8] are also generalized by Theorem 3.2.8.

4.2 Future scopes
Common fixed points of two or more operators defined on cone b-metric space is new area of

study. Recently there are a number of published research papers related to this area of study. So
the student researcher recommend the upcoming Post graduate students of the department to

have interest to do their research work in this area of study.
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