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Abstract

In this thesis, we introduced generalized weakly contractive mappings, established

a common fixed point result and proved the existence and uniqueness of a common

fixed point for a pair of self-mappings in setting of multiplicative metric spaces. We

employed analytical design and used secondary sources of data such as published

articles and related books. Finally, we provide an example in support of our main

finding.
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Chapter 1

Introduction
1.1 Background of the study

Fixed point theory provides the most important and traditional tools for proving the
existence of solutions of many problems in both pure and applied mathematics. The
study of fixed point theory plays an important role in application areas not only in
different branches of mathematics but also other fields such as Biology, Chemistry,
Physics, and almost all engineering fields.
One of the basic and most widely applied fixed point theorems in mathematical
analysis is Banach Contraction Mapping Principle or ”Banachs Fixed PointTheo-
rem” by (Banach, 1922) .

Let (X ,d) be a metric space, a self-mapping T : X→X is said to be a contraction
map if there exists λ ∈ [0,1) such that

d(T x,Ty)≤ λd(x,y),

for all x,y ∈ X .

The Banach contraction mapping principle is stated as follows. Let (X ,d) be a
complete metric space and T : X → X be a contraction map. Then T has a unique
fixed point.
Following this concept in 1968, Kannan introduced the following mapping for met-
ric space X .
Let (X ,d) be a metric space and T : X → X be a mapping satisfying

d(T x,Ty)≤ λ [d(x,T x)+d(y,Ty)]

for all x,y ∈ X and λ ∈ [0, 1
2). Then T is called Kanna type mapping and if (X ,d)

is complete, then T has a fixed point.
In 1972, a new concept which is different from that of Banach and Kannan for
contraction type mapping was introduced by Chatterjea which gives a new direction
to the study of fixed-point theory as follows:
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Let (X ,d) be a metric space and T : X → X be a mapping satisfying

d(T x,Ty)≤ λ [d(x,Ty)+d(y,T x)]

for all x,y ∈ X and λ ∈ [0, 1
2). Then T is called Chatterjea type mapping and if

(X ,d) is complete, then T has a fixed point.
In 1972, Zamfirescu generalizes Banachs, Kannans and Chatterjeas fixed point the-
orems as follows. Let (X ,d) be a complete metric space and f : X −→ X be a
mapping for which there exists a,k,c ∈ R with a ∈ [0,1) and k,c ∈ [0, 1

2), such that
for all x,y ∈ X , at least one of the following is true:

i. d( f (x), f (y))≤ ad(x,y);
ii. d( f (x), f (y))≤ k[d(x, f (x))+d(y, f (y))];
iii. d( f (x), f (y))≤ c[d(x, f (y))+d(y, f (x))]. Then f is a Picard operator.

Banach contraction principle has been extended and generalized by (Caristiet et al.,
1976), by modifying contractive conditions .
In 1972, Michael Grossman and Robert Katz gave definitions of a new kind of
derivative and integral, moving the roles of subtraction and addition to division and
multiplication, and thus established a new calculus, called multiplicative calculus.
Following this concept in 2008, Bashirov et al. studied the concept of multiplicative
calculus and proved the fundamental theorem of multiplicative . Furthermore, they
gave application of multiplicative calculus, defined multiplicative absolute value,
multiplicative distance between two positive real numbers and finally they intro-
duced the notion of multiplicative metric spaces. In 2012, Florack et al. explored
the advantage of multiplicative calculus in biomedical image analysis. In 2011,
Bashirov et al. discussed the simplicity of solving multiplicative differential equa-
tions than ordinary differential equations in different fields. In 2012, Ozavsar and
Cevikel gave the definition of multiplicative contraction and proved Banach con-
traction principle in the setting of multiplicative metric spaces and also they studied
multiplicative metric toplology.
Let f be a mapping of a multiplicative metric space (X ,d) into itself. Then f is said
to be a multiplicative contraction if there exists a real constant λ ∈ [0,1) such that

d( f x, f y)≤ dλ (x,y)

for all x,y ∈ X .
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The concept of a weakly contractive mapping was introduced in 1997 by Alber and
Guerre-Delabriere as follows:
Let (X ,d) be a metric space. A map f : X −→ X is called a ϕ-weakly contractive if
there exists a continuous and non-decreasing function ϕ(t) defined on R+ such that
ϕ is positive on R+\{0} , ϕ(0) = 0 and limt→+∞ ϕ(t) = +∞,

d( f x; f y)≤ d(x;y)−ϕ(d(x;y)) f or each x,y ∈ X .

Many authors obtained generalizations and extensions of the weak contraction prin-
ciple. For example, in 2011 Choudhury et al. introduced generalized weakly con-
tractive mappings using altering distance function as follows:
Let (X ,d) be a metric space, T a self-mapping of X . We shall call T a generalized
weakly contractive mapping if for all x,y ∈ X ,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max d(x,y),d(y,Ty)),

where m(x,y) = max{d(x,y),d(x,T x),d(y,Ty), 1
2 [d(x,Ty)+d(y,T x)]},

ψ : [0,∞) −→ [0,∞) is an altering distance function which is monotone increasing
with ψ(t) = 0 if and only if t = 0 and φ :[0,∞) −→ [0,∞)is a continuous function
with φ(t) = 0 if and only if t = 0.
In 2015, Abbas et al. obtained several fixed and common fixed point results of
self-maps satisfying certain generalized contractive conditions in the framework of
multiplicative metric space.
Recently in 2018, Cho introduced generalized weakly contractive mappings and
proved the existence and uniqueness of fixed point result in the setting of metric
spaces.
In this research, motivated and inspired by the work of Cho, (2018), the notion of
generalized weakly contractive mappings has been introduced and the existence and
uniqueness of a common fixed point result for a pair of self-mappings in the setting
of multiplicative metric spaces have been proved.

1.2 Statements of the problem

This study focused on establishing and proving a common fixed point theorem for
a pair of generalized weakly contractive mappings.
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1.3 Objectives of the study

1.3.1 General objective

The main objective of this study was to establish a common fixed point theorem for
a pair of generalized weakly contractive mappings in the setting of multiplicative
metric spaces.

1.3.2 Specific objectives

This study has the following specific objectives:

• To prove the existence of a common fixed point for a pair of self-mappings.

• To show the uniqueness of common fixed point for a pair of
self-mappings.

• To verify the applicability of the main result obtained using an example.

1.4 Significance of the study

The study may have the following importance:

• The outcome of this study may contribute to research activities in the study
area.

• It may provide basic research skills to the researcher.

• It may help to show existence and uniqueness of solutions of problems in-
volving multiplicative differential and integral equations.

1.5 Delimitation of the Study

The study focused only to prove the existence and uniqueness of common fixed
point for a pair of generalized weakly contractive mapping in the setting of multi-
plicative metric spaces.
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Chapter 2

Review of Related Literatures

In 2008, A. E. Bashirov, E. M. Kurplnara, A. Ozyapici introduced the notion of
Multiplicative metric space and many authors proved fixed point and a common
fixed point results using different contractive method for different types of maps.
Definition 2.1 Let X be a non empty set. A mapping d :XxX −→ R+ is said to be a
multiplicative metric on X if for any x,y,z ∈ X ,the following conditions hold:

i. d(x,y)≥ 1 and d(x,y) = 1 if and only if x = y.

ii. d(x,y) = d(y,x).

iii. d(x,y)≤ d(x,z).d(z,y).

Then the mapping d together with X , that is, (X ,d) is a multiplicative metric space.
In 2012, Özavsar and Cevikel gave the concept of multiplicative contraction map-
pings and they proved the Banach Contraction Principle in the setting of multiplica-
tive metric spaces as follows:
Theorem 2.1 Let f be a multiplicative contraction mapping of a complete multi-
plicative metric space (X ,d) into itself. Then f has a unique fixed point.
Definition 2.2 Let X 6=∅. Then T : X −→ X is said to be self-mapping with
domain of T = D(T ) = X and range of T = R(T ) = T (X)⊆ X .

Definition 2.3 Let f ,g : X −→ X be self-mappings. A point x ∈ X is called
(1) fixed point of f if f x = x;
(2) coincidence point of the pair { f ,g} if f x = gx;
(3) common fixed point of the pair { f ,g} if x = f x = gx.

In 2015, Abbas et al. obtained several fixed and common fixed point results of self-
mappings satisfying certain generalized contractive conditions in the framework of
multiplicative metric space by establishing the following theorem.
Theorem 2.2: Let (X ,d) be a complete multiplicative metric space and f : X −→X .
Suppose that there exist control functions ψ and ϕ such that

ψ(d( f x, f y))≤
ψ(M f ((x,y))
ϕ(M f (x,y))

,
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for all x,y∈X , where M f ((x,y)=max{d(x,y),d( f x,x),d( f y,y),{d( f x,y).d( f y,x)} 1
2},

ψ : [1,∞)−→ [1,∞) is a continuous non-decreasing function with ψ(t) = 1 if and
only if t = 1} and φ : [1,∞) −→ [1,∞) is a lower semi-continuous function with
φ(t) = 1 if and only if t = 1. Then f has a unique fixed point.
In 2015, Gu et al. proved Common fixed point results for four maps satisfying φ -
contractive condition in multiplicative metric spaces for the following theorem.
Theorem 2.3 Let (X ,d) be a complete multiplicative metric space,S,T,A, and B

be four mappings of X into itself. Suppose that there exists λ ∈ (0, 1
2)

such that S(X) ⊂ B(X), T(X) ⊂ A(X),and

d(Sx, Ty)≤ φ(dλ (Ax,By),dλ (Ax,Sx),dλ (By,Ty),dλ (Sx,By),dλ (Ax,Ty))

for all x,y ∈ X .

In 2015, Kang et al. gave the notion of compatible mappings in the setting of mul-
tiplicative metric space and proved common fixed point for compatible mappings
and its variants.
Using these notions, Nagpal et al., (2016) proved several fixed point theorems for
expansive mappings with a pair of maps.
Definition 2.4 (Gu et al., 2003) Suppose that S,T are two self-mappings of a multi-
plicative metric space (X ,d);S,T are called weak commutative mappings if it holds
that for all x ∈ X , d(ST x,T Sx)≤ d(Sx,T x).

In 2014, He et al. proved a common fixed point theorems for four self-mappings
in multiplicative metric space for weak commutative mappings for the following
theorem.
Theorem 2.4 Let S, T , A and B be self-mappings of a complete multiplicative met-
ric space X ; they satisfy the following conditions:

i. SX ⊂ BX , T X ⊂ AX ;
ii. A and S are weak commutative, B and T also are weak commutative;
iii. One of S, T , A and B is continuous;
iv. d(Sx,Ty)≤ {max{d(Ax,By),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ax,Ty)}}λ ,

λ ∈ (0, 1
2), for all x,y ∈ X .Then S,T,A and B have a unique common fixed point.

In 2015, Abbas et al. proved several common fixed point results of self-mappings
on multiplicative closed balls in the framework of multiplicative metric spaces.
Recently, Yong et al., (2017) introduced various types of compatible mappings in
multiplicative metric space and they proved some common fixed point results.
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Chapter 3

Methodology
The chapter contains study period, study design, source of information, description
of the research methodology and mathematical procedures.

3.1 Study period and site

The study was conducted at Jimma University under the department of mathematics
from Sept, 2018 G.C. to June, 2019 G.C.

3.2 Study Design

In this research work, we employed analytical design.

3.3 Source of Information

The relevant sources of information for this study were books and published articles
related to the study area.

3.4 Mathematical Procedure of the Study

In this study we followed the standard procedures used in published work of (Abbas
et al., 2015, Choudhury et al., 2011, Kang et al., 2015) in the setting of multiplica-
tive metric spaces. That is,

• Introducing generalized weakly contractive mappings.

• Establishing a theorem for the mappings introduced.

• Constructing a sequence.

• Showing the sequence is multiplicative Cauchy.
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• Proving the existence of coincidence point of maps considered.

• Proving the existence of a common fixed point.

• Showing uniqueness of the common fixed point.

• Giving an example in support of the main result.

• Giving conclusion and recommendation .
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Chapter 4

Preliminaries and Main Results

4.1 Preliminaries

Definition 4.1.1 ( Bashirov et al., 2008) Let X be a non-empty set. A mapping

d : XxX −→ R+ is said to be a multiplicative metric on X if for any x,y,z ∈ X ,the

following conditions hold:

i. d(x,y)≥ 1 and d(x,y) = 1 if and only if x = y.

ii. d(x,y) = d(y,x).

iii. d(x,y)≤ d(x,z).d(z,y).

Then the mapping d together with X, that is, (X ,d) is a multiplicative metric space.

Example 4.1 (Özavsar et al., 2012) Let Rn
+ be the collections of n− tuples of pos-

itive real numbers. Let d∗ : Rn
+×Rn

+ −→ R be defined as follows:

d∗(x,y) =
∣∣∣∣x1

y1

∣∣∣∣∗ . ∣∣∣∣x2

y2

∣∣∣∣∗ ...... ∣∣∣∣xn

yn

∣∣∣∣∗ ,
where x = (x1,x2, ......,xn) and y = (y1,y2, ......,yn) ∈ Rn

+ and |.|∗ : R+ −→ R+ is
defined by

|a|∗ =

a if a≥ 1
1
a if a < 1.

Then it is clear that all conditions of definition of 4.1.1 are satisfied. Therefore
(Rn

+,d
∗) is a multiplicative metric space.

Example 4.2 (Sarwar et al., 2014) Let d : R×R −→ [1,∞) be defined as d(x,y) =

a|x−y|, where x,y ∈ R and a > 1. Then d is a multiplicative metric and (R,d) is a
multiplicative metric space. It is taken as usual multiplicative metric spaces for all
real numbers.
Example 4.3 (Sarwar et al., 2014) Let (X ,d) be a metric space. Define a mapping
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da on X by

da(x,y) = ad(x,y) =

1 if x = y

a if x 6= y,

where x,y ∈ X and a > 1. Then da is a multiplicative metric and (X ,da) is known
as the discrete multiplicative metric space.
Remark 4.1 (Sarwar et al., 2014) We note that multiplicative metric spaces and
metric spaces are independent. Indeed, the mapping d∗ defined in Example 4.1 is
multiplicative metric but not metric as it does not satisfy the triangular inequality.
Consider

d∗
(

1
3
,
1
2

)
+d∗

(
1
2
,3
)
=

3
2
+6 = 7.5 < 9 = d∗

(
1
3
,3
)
.

On the other hand the usual metric on R is not multiplicative metric as it doesnt
satisfy multiplicative triangular inequality, since

d(2,3).d(3,6) = 3 < 4 = d(2,6).

Definition 4.1.2 (Özavsar et al., 2012) Let (X ,d) be a multiplicative metric space,

x ∈ X and ε > 1. We now define a set Bε(x) = {y ∈ X | d(x,y)< ε}, which is

called multiplicative open ball of radius ε with center x. Similarly, one can describe

multiplicative closed ball as B̄ε(x) = {y ∈ X | d(x,y)≤ ε}.

Definition 4.1.3 (Özavsar et al., 2012) Let (X ,d) be a multiplicative metric space.

Then a sequence {xn} in X said to be

(1) a multiplicative convergent to x∈ X if for every multiplicative open ball Bε(x) =

{y | d(x,y) < ε},ε > 1, there exists a natural number N such that n ≥ N, then

xn ∈ Bε(x), that is, d(xn,x)−→ 1 as n−→ ∞.

(2) a multiplicative Cauchy sequence if for all ε > 1, there exists N ∈ N0 such that

d(xn,xm)< ε for all m,n≥ N, that is, d(xn,xm)−→ 1 as n,m−→ ∞.

Definition 4.1.4 (Özavsar et al., 2012) We call a multiplicative metric space is

complete if every multiplicative Cauchy sequence in it is multiplicative convergent

to x ∈ X.

Theorem 4.1.1 (Özavsar et al., 2012) Let (xn) be a multiplicative Cauchy sequence

10



in a multiplicative metric space (X ,d). If the sequence (xn) has a subsequence (xnk)

such that xnk −→ ∗x ∈ X as nk −→ ∞, then xn −→ ∗x ∈ X as n−→ ∞.

Remark 4.2 (Kang et al., 2015) The set of positive real numbers R+ = (0,∞) is not
complete according to the usual metric. Let X = R+ and the sequence {xn}= {1

n}.
It is obvious {xn} is a Cauchy sequence in X with respect to usual metric and X is
not a complete metric space, since 0 /∈ R+. In the case of a multiplicative metric
space, we take a sequence {xn}= {a

1
n}, where a > 1. Then {xn} is a multiplicative

Cauchy sequence since for n≥ m,

d(xn,ym) =

∣∣∣∣ xn

ym

∣∣∣∣=
∣∣∣∣∣ a

1
n

a
1
m

∣∣∣∣∣= ∣∣∣a 1
n−

1
m

∣∣∣
≤ a

1
n−

1
m < a

1
m < ε i f m >

loga
logε

,

|a|=

a if a≥ 1
1
a if a < 1

.

Also, {xn} −→ 1 as n−→ ∞ and 1 ∈ R+ Hence (X ,d) is a complete multiplicative
metric space.

Definition 4.1.5 Let f ,g : X −→ X be self-mappings. A point x ∈ X is called

(1) fixed point of f if f x = x;

(2) coincidence point of the pair { f ,g} if f x = gx;

(3) common fixed point of the pair { f ,g} if x = f x = gx.

Definition 4.1.6 (Jungck, 1996) Two self-maps S and T on a nonempty set X are

called weakly compatible if they commute at their coincidence point.

Definition 4.1.7 A function f : X −→ [0,∞), where X is a metric space, is called

lower semi-continuous if, for all x ∈ X and xn ∈ X with limn→∞ xn = x,

we have

f (x)≤ lim
n→∞

in f f (xn).

Definition 4.1.8 (Abbas et al., 2015) The control functions ψ and φ are defined as

follows:

i. Ψ = {ψ : [1,∞)−→ [1,∞) | ψ is a continuous non-decreasing function with

11



ψ(t) = 1 if and only if t = 1} .

ii. Φ = {φ : [1,∞)−→ [1,∞) | φ is is a lower semi-continuous function with

φ(t) = 1 if and only if t = 1}.

In 2018, Cho proved the following fixed point theorem for generalized weakly con-
tractive mappings in metric spaces as follows:

Theorem 4.1.2 Let X be complete metric spaces and T satisfies the following con-

ditions:

ψ(d(T x,Ty)+ϕ(T x)+ϕ(Ty)) ≤ ψ(m(x,y,d,T,ϕ))− φ(l(x,y,d,T,ϕ)) , for all

x,y ∈ X, where Ψ = {ψ : [0,∞)−→ [0,∞) | ψ is a continuous and ψ(t) = 0 if and

only if t = 0, Φ = {φ : [0,∞) −→ [0,∞) | φ is is a lower semi-continuous function

and φ(t) = 0 if and only if t = 0,

m(x,y,d,T,ϕ) = max{(d(x,y)+ϕ(x)+ϕ(y),d(x,T x)+ϕ(x)+ϕ(T x),

d(y,Ty)+ϕ(y)+ϕ(Ty),

{d(x,Ty)+ϕ(x)+ϕ(Ty)+d(y,T x)+ϕ(y)+ϕ(T x)}
1
2}.

and

l(x,y,d,T,ϕ) = max((d(x,y)+ϕ(x)+ϕ(y),d(y,Ty)+ϕ(y)+ϕ(Ty)).

Then there exists z ∈ X such that z = T z and ϕ(z) = 0.

4.2 Main Results

In this section, we introduce generalized weakly contractive mappings, establish a
common fixed point theorem for the mappings introduced and prove the existence
and uniqueness a common fixed point result in the setting of multiplicative metric
spaces.

Definition 4.2.1 Let (X ,d) be a multiplicative metric space with metric d, let S,T :
X −→ X, and let ϕ : X→ [1,∞) be a lower semi-continuous function. Then S and T

are called a generalized weakly contractive mapping if they satisfies the following

condition:
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ψ(d(T x,Ty).ϕ(T x).ϕ(Ty))≤ ψ(m(Sx,Sy,d,T,ϕ))
φ(l(Sx,Sy,d,T,ϕ))

, f or allx,y ∈ X , (4.1)

where ψ ∈Ψ,φ ∈Φ and

m(Sx,Sy,d,T,ϕ) = max{d(Sx,Sy).ϕ(Sx).ϕ(Sy),d(Sx,T x).ϕ(Sx).ϕ(T x),

d(Sy,Ty).ϕ(Sy).ϕ(Ty),

{d(Sx,Ty).ϕ(Sx).ϕ(Ty).d(Sy,T x).ϕ(Sy).ϕ(T x)}
1
2}

and

l(Sx,Sy,d,T,ϕ) = max(d(Sx,Sy).ϕ(Sx).ϕ(Sy),d(Sy,Ty).ϕ(Sy).ϕ(Ty)). (4.2)

Theorem 4.2.1 Let (X ,d) be a multiplicative metric space and S and T are gener-

alized weakly contractive mappings. Assume that

i. T (X)⊆ S(X);

ii. S and T are weakly compatible mappings. If one of the subspaces T (X) or

S(X) is complete, then S and T have a unique common fixed point z ∈ X such that

z = T z = Sz and ϕ(z) = 1.

Proof : Let x0 ∈ X be fixed. Since T (X)⊆ S(X), choose x1 ∈ X such that Sx1 = T x0.
In general, choose xn+1 ∈ X and define a sequence {xn} by yn+1 = Sxn+1 = T xn for
all n = 0,1,2, ...
If yn = yn+1 for some n, we have Sxn = Sxn+1 = T xn and xn is a coincidence point of
S and T . Since S and T are weakly compatible, we have

T Sxn = ST xn = SSxn (∗)

Here, Sxn is a coincidence point of S and T . Now by setting x = xn+1 and y = Sxn

in (4.2), we have

m(Sx,Sy,d,T,ϕ) = max{d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn),d(Sxn+1,T xn+1).ϕ(Sxn+1).ϕ(T xn+1),

d(SSxn,T Sxn).ϕ(SSxn).ϕ(T Sxn),

{d(Sxn+1,T Sxn).ϕ(Sxn+1).ϕ(T Sxn).d(SSxn,T xn+1).ϕ(SSxn).ϕ(T xn+1)}
1
2}

13



and

l(Sx,Sy,d,T,ϕ) = max(d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn),d(SSxn,T Sxn).ϕ(SSxn).ϕ(T Sxn)).

Which implies that

m(Sx,Sy,d,T,ϕ) = d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn)

and

l(Sx,Sy,d,T,ϕ) = d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn).

Hence, (4.1) becomes ψ(d(T xn+1,T Sxn).ϕ(T xn+1).ϕ(T Sxn))≤ ψ(d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn))
φ(d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn))

.
Using (∗), we have
φ(d(Sxn+1,SSxn).ϕ(Sxn+1).ϕ(SSxn)) = 1. From this, d(Sxn+1,SSxn) = 1 and Sxn

is a fixed point of S. Again using (∗), d(Sxn+1,T Sxn) = 1 and Sxn is a fixed point
of T . Therefore, Sxn is a common fixed point of S and T .
Suppose yn 6= yn+1 . Plunging x = xn and y = xn+1 in (4.2) we have,

m(Sxn,Sxn+1,d,T,ϕ) = max{d(Sxn,Sxn+1).ϕ(Sxn).ϕ(Sxn+1),d(Sxn,T xn).ϕ(Sxn).ϕ(T xn),

d(Sxn+1,T xn+1).ϕ(Sxn+1).ϕ(T xn+1),

{d(Sxn,T xn+1).ϕ(Sxn).ϕ(T xn+1).d(Sxn+1,T xn).ϕ(Sxn+1).ϕ(T xn)}
1
2}

= max{(d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn,yn+1).ϕ(yn).ϕ(yn+1),

d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2),

{d(yn,yn+2).ϕ(yn).ϕ(yn+2).d(yn+1,yn+1).ϕ(yn+1).ϕ(yn+1)}
1
2}.

Since

{d(yn,yn+2).ϕ(yn).ϕ(yn+2).ϕ(yn+1).ϕ(yn+1)}
1
2} ≤ {d(yn,yn+1).d(yn+1,yn+2).

ϕ(yn).ϕ(yn+2).ϕ(yn+1).ϕ(yn+1)}
1
2}

≤ max{d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn+1,yn+2).

ϕ(yn+1).ϕ(yn+2)},
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m(Sx,Sy,d,T,ϕ)=max{d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)}
(4.3)

and

l(Sx,Sy,d,T,ϕ)=max{d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)}.
(4.4)

Then by using (4.3) and (4.4), (4,1) becomes

ψ(d(T x,Ty).ϕ(T x).ϕ(Ty))≤ ψ(max{d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)}
φ(max{d(yn,yn+1).ϕ(yn).ϕ(yn+1),d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)}

.

(4.5)
Now suppose d(yn,yn+1).ϕ(yn).ϕ(yn+1)< d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2), for some
positive integer n.
Then (4.5) becomes

ψ(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)) ≤
ψ(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2))

φ(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2))

< ψ(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)),

which is a contradiction. Thus

d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)≤ d(yn,yn+1).ϕ(yn).ϕ(yn+1), (4.6)

and (4.5) becomes

ψ(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2))≤
ψ(d(yn,yn+1).ϕ(yn).ϕ(yn+1))

φ(d(yn,yn+1).ϕ(yn).ϕ(yn+1))
. (4.7)

Hence, the sequence {d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2)} is monotone decreasing. Thus,
there exists r ≥ 1 such that

lim
n→∞

(d(yn+1,yn+2).ϕ(yn+1).ϕ(yn+2))→ r. (4.8)

Now we show r = 1. Assume r > 1. Letting n→ ∞ in (4.7), by the continuity of ψ

and the lower semi-continuity of φ it follows that

ψ(r)≤ ψ(r)
limn→∞ in f φ(d(yn,yn+1).ϕ(yn).ϕ(yn+1))

≤ ψ(r)
φ(r) .
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This implies that φ(r)≤ ψ(r)
ψ(r) = 1, which is a contradiction since r > 1, from prop-

erty of φ . Hence, r = 1 and (4.8) becomes

lim
n→∞

(d(yn+1,yn+2))−→ 1, lim
n→∞

ϕ(yn+1)→ 1,and lim
n→∞

ϕ(yn+2))→ 1. (4.9)

Now we prove that the sequence {yn} is a multiplicative Cauchy sequence. By
using (4.9), it is sufficient to prove that {y2n} is a multiplicative Cauchy sequence.
To prove this, suppose {y2n} is not a multiplicative Cauchy sequence, that is there
exist ε > 1 for which we can find two sequences of positive integers 2m(k) and
2n(k) such that for all positive integer k,
2n(k)> 2m(k)> k,

d(y2m(k),y2n(k))≥ ε and d(y2m(k),y2n(k−2))< ε. (4.10)

Now using the triangle inequality,
ε ≤ d(y2m(k),y2n(k))≤ d(y2m(k),y2n(k)−2).d(y2n(k)−2,y2n(k)−1).d(y2n(k)−1,y2n(k)).

This implies that ε ≤ d(y2m(k),y2n(k))< ε.d(y2n(k)−2,y2n(k)−1).d(y2n(k)−1,y2n(k)).

Letting k→ ∞ in the above inequalities and using (4.9), we have

lim
k→∞

(d(y2m(k),y2n(k)))≤ ε. (4.11)

Now letting k→ ∞ in (4.10) and using (4.11), we have

lim
k→∞

(d(y2m(k),y2n(k))) = ε. (4.12)

Again,
d(y2m(k),y2n(k))≤ d(y2m(k),y2m(k)+1).d(y2m(k)+1,y2n(k)+1).d(y2n(k)+1,y2n(k))

and
d(y2m(k)+1,y2n(k)+1)≤ d(y2m(k)+1,y2m(k)).d(y2m(k),y2n(k)).d(y2n(k),y2n(k)+1).

Letting k→ ∞, using (4.9) and (4.12), we have

lim
k→∞

(d(y2m(k)+1,y2n(k)+1)) = ε. (4.13)

Again,
d(y2n(k)+2,y2m(k)+1)≤ d(y2n(k)+2,y2n(k)+1).d(y2n(k)+1,y2m(k)+1)
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and
d(y2n(k)+1,y2m(k)+1)≤ d(y2n(k)+1,y2n(k)+2).d(y2n(k)+2,y2m(k)+1).

Similarly,
d(y2m(k),y2n(k)+1)≤ d(y2m(k),y2n(k)).d(y2n(k),y2n(k)+1)

and
d(y2m(k),y2n(k))≤ d(y2m(k),y2n(k)+1).d(y2n(k)+1,y2n(k)).

Letting k→ ∞ in the above inequalities, using (4.9), (4.12) and (4.13), we have

lim
k→∞

(d(y2n(k)+2,y2m(k)+1)) = ε, (4.14)

lim
k→∞

(d(y2m(k),y2n(k)+2)) = ε, (4.15)

lim
k→∞

(d(y2m(k),y2n(k)+1)) = ε. (4.16)

By setting x = x2m(k) and y = x2n(k)+1 in (4.2), we have

m(Sx2m(k),Sx2n(k)+1,d,T,ϕ) = max{d(Sx2m(k),Sx2n(k)+1).ϕ(Sx2m(k)).ϕ(Sx2n(k)+1),

d(Sx2m(k),T x2m(k)).ϕ(Sx2m(k)).ϕ(T x2m(k)),

d(Sx2n(k)+1,T x2n(k)+1).ϕ(Sx2n(k)+1).ϕ(T x2n(k)+1),

{d(Sx2m(k),T x2n(k)+1).ϕ(y2m(k)).ϕ(Ty2n(k)+1).

d(Sx2n(k)+1,T x2m(k)).ϕ(Sx2n(k)+1).ϕ(T x2m(k))}
1
2}

= max{(d(y2m(k),y2n(k)+1).ϕ(y2m(k)).ϕ(y2n(k)+1),

d(y2m(k),y2m(k)+1).ϕ(y2m(k)).ϕ(y2m(k)+1),

d(y2n(k)+1,y2m(k)+2).ϕ(y2n(k)+1).ϕ(y2m(k)+2),

{d(y2m(k),y2m(k)+2).ϕ(y2m(k)).ϕ(y2m(k)+2).

d(y2n(k)+1,y2m(k)+1).ϕ(y2n(k)+1).ϕ(y2m(k)+1)}
1
2}

and

l(Sx2m(k),Sx2n(k)+1,d,T,ϕ) = max(d(Sx2m(k),Sx2n(k)+1).ϕ(Sx2m(k).ϕ(Sx2n(k)+1),

d(Sx2n(k)+1,T x2n(k)+1).ϕ(Sx2n(k)+1).ϕ(T x2n(k)+1)

= max(d(y2m(k),y2n(k)+1).ϕ(y2m(k).ϕ(y2n(k)+1),

d(y2n(k)+1,y2n(k)+2).ϕ(y2n(k)+1).ϕ(y2n(k)+2).
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Letting k→ ∞ in the above inequalities, using (4.9), and (4.12) - (4.16), we have

lim
k→∞

(m(Sx2m(k),Sx2n(k)+1,d,T,ϕ)) = ε and lim
k→∞

(l(Sx2m(k),Sx2n(k)+1,d,T,ϕ)) = ε.

(4.17)
Thus from (4.1), we have
ψ(d(T x2m(k),T x2n(k)+1).ϕ(T x2m(k)).ϕ(T x2n(k)+1))≤

ψ(m(Sx2m(k),Sx2n(k)+1,d,T,ϕ))
φ(l(Sx2m(k),Sx2n(k)+1,d,T,ϕ))

.

Or
ψ(d(y2m(k)+1,y2n(k)+2).ϕ(y2m(k)+1).ϕ(y2n(k)+2))≤

ψ(m(Sx2m(k),Sx2n(k)+1,d,T,ϕ))
φ(l(Sx2m(k),Sx2n(k)+1,d,T,ϕ))

.

Letting k→ ∞, using (4.9), (4.14) and (4,17), applying continuity of ψ and lower
semi-continuity of φ , we have
ψ(ε)≤ ψ(ε)

limk→∞ in f φ(l(Sx2m(k),Sx2n(k)+1,d,T,ϕ))
≤ ψ(ε)

φ(ε) . This implies that,

ψ(ε)≤ ψ(ε)
φ(ε) < ψ(ε), which is a contradiction from property of φ .

Therefore {y2n} is a multiplicative Cauchy sequence. Hence by (4.9), {yn} is a
multiplicative Cauchy sequence. Now since S(X) is a complete subspace of X , it
has multiplicative convergent subsequence of {yn}. That is, there exists p ∈ X such
that

Sp = z. (4.18)

As {yn} is a multiplicative Cauchy sequence containing a convergent multiplicative
subsequence, therefore the sequence {yn} also converges to z ∈ X such that

lim
n→∞

Sxn = lim
n→∞

T xn = z. (4.19)

Since ϕ is lower semi- continuous, ϕ(z) ≤ limn→∞ in f ϕ(yn) = 1. But ϕ(z) ≥ 1,
which implies that ϕ(z) = 1.
Now we show T p = z.

By setting x = xn and y = p in (4.2), we have

m(Sxn,Sp,d,T,ϕ) = max{d(Sxn,Sp).ϕ(Sxn).ϕ(Sp),d(Sxn,T xn).ϕ(Sxn).ϕ(T xn),

d(Sp,T p).ϕ(Sp).ϕ(T p),

{d(Sxn,T p).ϕ(Sxn).ϕ(T p).d(Sp,T xn).ϕ(Sp).ϕ(T xn)}
1
2}

and

l(Sxn,Sp,d,T,ϕ) = max(d(Sxn,Sp).ϕ(Sxn).ϕ(Sp),d(Sp,T p).ϕ(Sp).ϕ(T p).
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Letting n→ ∞, using (4.19) and applying lower semi-continuty of ϕ , we have

lim
n→∞

m(Sxn,Sp,d,T,ϕ) = max{d(z,Sp).ϕ(z).ϕ(Sp),d(z,z).ϕ(z).ϕ(z),

d(Sp,T p).ϕ(Sp).ϕ(T p),

{d(z,T p).ϕ(z).ϕ(T p).d(Sp,z).ϕ(Sp).ϕ(z)}
1
2}

= d(z,T p).ϕ(T p)

and

l(Sxn,Sp,d,T,ϕ) = d(z,T p).ϕ(T p). (4.20)

Then using (4.1), we have
ψ(d(T xn,T p).ϕ(T xn).ϕ(T p))≤ ψ(m(Sxn,Sp,d,T,ϕ))

φ(l(Sxn,Sp,d,T,ϕ)) .

Letting n→ ∞, using (4.20) and by applying the continuity of ψ , the lower semi-
continuity of φ , we have
ψ(d(z,T p).ϕ(T p))≤ ψ(d(z,T p).ϕ(T p)

φ(d(z,T p).ϕ(T p) .

Which implies that φ(d(z,T p).ϕ(T p)) = 1. Then from property of φ , we have

d(z,T p).ϕ(T p) = 1.

Hence,d(z,T p) = 1 implies that z = T p and ϕ(T p) = 1. (4.21)

Therefore, from (4.18) and (4.21), we have Sp = T p = z.
Since S and T are weakly compatible, we have

ST p = T Sp = Sz = T z. (4.22)

Now we show T z = z.
Again by setting x = z and y = xn in (4.2), we have

m(Sz,Sxn,d,T,ϕ) = max{d(Sz,Sxn).ϕ(Sz).ϕ(Sxn),d(Sz,T z).ϕ(Sz).ϕ(T z),

d(Sxn,T xn).ϕ(Sxn).ϕ(T xn),

{d(Sz,T xn).ϕ(Sz).ϕ(T xn).d(Sxn,T z).ϕ(Sxn).ϕ(T z)}
1
2}.
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and

l(Sz,Sxn,d,T,ϕ) = max(d(Sz,Sxn).ϕ(Sz).ϕ(Sxn),d(Sxn,T xn).ϕ(Sxn).ϕ(T xn).

Letting n→ ∞, using (4.22) and applying lower semi-continuity of ϕ , we have

m(T z,z,d,T,ϕ) = max{d(T z,z).ϕ(T z).ϕ(z),d(T z,T z).ϕ(T z).ϕ(T z),

d(z,z).ϕ(z).ϕ(z),

{d(T z,z).ϕ(T z).ϕ(z).d(z,T z).ϕ(z).ϕ(T z)}
1
2}

= d(T z,z).ϕ(T z).

and

l(T z,z,d,T,ϕ) = d(T z,z).ϕ(T z). (4.23)

Then using (1.1), we have
ψ(d(T z,T xn).ϕ(T z).ϕ(T xn)) ≤ ψ(m(Sz,Sxn,d,T,ϕ))

φ(l(Sz,Sxn,d,T,ϕ))
. Letting n → ∞, using (4.22),

(4.23) and applying lower semi-continuity of ϕ , we have

ψ(d(T z,z).ϕ(T z))≤ ψ(d(T z,z).ϕ(T z))
φ(d(T z,z).ϕ(T z))

.

Which implies that φ(d(T z,z).ϕ(T z)) = 1. Then from property of φ , we have
d(T z,z) = 1 and hence, T z = z. Therefore z is a fixed point of T . Using (4.22),
T z = z = Sz.
Hence z is a common fixed point of T and S.

Uniqueness.
Suppose there is another common fixed point of T and S say u with Tu = u and
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Su = u. Setting x = z and y = u in (4.2) and applying semi-continuity of ϕ , we have

m(Sz,Su,d,T,ϕ) = max{d(Sz,Su).ϕ(Sz).ϕ(Su),d(Sz,T z).ϕ(Sz).ϕ(T z),

d(Su,Tu).ϕ(Su).ϕ(Tu),

{d(Sz,Tu).ϕ(Sz).ϕ(Tu).d(Su,T z).ϕ(Su).ϕ(T z)}
1
2}

= max{(d(z,u).ϕ(z).ϕ(u),d(z,z).ϕ(z).ϕ(z),

d(u,u).ϕ(u).ϕ(u),

{d(z,u).ϕ(z).ϕ(u).d(u,z).ϕ(u).ϕ(z)}
1
2}

= d(z,u).

and

l(Sz,Su,d,T,ϕ) = max(d(Sz,Su).ϕ(Sz).ϕ(Su),d(Su,Tu).ϕ(Su).ϕ(Tu)

= max(d(z,u).ϕ(z).ϕ(u),d(u,u).ϕ(u).ϕ(u)

= d(z,u).

Using (4.1), we have
ψ(d(T z,Tu).ϕ(T z).ϕ(Tu))≤ ψ(d(z,u).ϕ(z).ϕ(u))≤ ψ(m(Sz,Su,d,T,ϕ))

φ(l(Sz,Su,d,T,ϕ)) ≤
ψ(d(z,u))
φ(d(z,u)) .

By applying lower semi-continuity of ϕ to the left side, we have

ψ(d(z,u))≤ ψ(d(z,u))
φ(d(z,u))

.

Which implies that φ(d(z,u)) = 1. Then from property of φ , we have
d(z,u) = 1 and hence, z = u.
Therefore, T and S have a unique common fixed point z.
The following is an example in support of our main result.
Example Let X = [1,∞) with the usual multiplicative metric d. Define S and T :
X −→ X by

S(x) =

x if 1≤ x≤ 5;

12 if x > 5;

and

T (x) =


√

x if 1≤ x≤ 5;

5 if x > 5;
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for all x ∈ X . Let φ ,ψ : [1,∞)−→ [1,∞) defined by ψ(t) = t2 for t ∈ [1,∞),

ϕ(t) =

2t if t > 5;

t if t ≤ 5;

and

φ(t) =

t
1
2 if t > 5;

1 if t ≤ 5.

Now we show condition (4.1) as follows.
Case 1: Let x,y ∈ (5,∞) . Then

i.ψ(d(T x,Ty).ϕ(T x).ϕ(Ty)) = ψ(d(5,5).ϕ(5).ϕ(5))

= ψ

((∣∣∣∣55
∣∣∣∣∗) .10.10

)
= ψ(100)

= 10000.

ii. d(Sx,Sy).ϕ(Sx).ϕ(Sy) = d(12,12).ϕ(12).ϕ(12)

=

∣∣∣∣12
12

∣∣∣∣∗ .24.24

= 576.

iii. d(Sx,T x).ϕ(Sx).ϕ(T x) = d(12,5).ϕ(12).ϕ(5)

=

∣∣∣∣12
5

∣∣∣∣∗ .24.10

= 576.

Similarly,

iv. d(Sy,Ty).ϕ(Sy).ϕ(Ty) = 576.

v. (d(Sx,Ty).ϕ(Sx).ϕ(Ty).d(Sy,T x).ϕ(Sy).ϕ(T x)))
1
2 = 576.
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Thus, using (ii),(iii),(iv) and (v), (4.2) becomes

m(Sx,Sy,d,T,ϕ) = max{576,576,576,576}

= 576

and

l(Sx,Sy,d,T,ϕ) = 576 (4.24)

Hence, using (i) and (4.24), (4.1) becomes
10,000≤ ψ(576)

φ(576) ≤ 13,824.
Case 2. Let x,y ∈ [1,5] with x≥ y. Then

i.ψ(d(T x,Ty).ϕ(T x).ϕ(Ty)) = ψ

(
d
(

x
1
2 ,y

1
2

)
.ϕ
(

x
1
2

)
.ϕ
(

y
1
2

))
= ψ

(∣∣∣∣∣x
1
2

y
1
2

∣∣∣∣∣
∗

.x
1
2 .y

1
2

)
= x2.

ii. d(Sx,Sy).ϕ(Sx).ϕ(Sy) = d(x,y).ϕ(x).ϕ(y)

=

∣∣∣∣xy
∣∣∣∣∗ .x.y

= x2.

iii. d(Sx,T x).ϕ(Sx).ϕ(T x) = d(x,
√

x).ϕ(x).ϕ(
√

x)

=

∣∣∣∣ x√
x

∣∣∣∣∗ .x.√x

= x2.

Similarly,

iv. d(Sy,Ty).ϕ(Sy).ϕ(Ty) = y2

v. (d(Sx,Ty).ϕ(Sx).ϕ(Ty).d(Sy,T x).ϕ(Sy).ϕ(T x)))
1
2 = xy.

Hence, (4.1) becomes

1≤ x2, f or x≥ y, where equality holds f or x = 1
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and
1≤ y2, f or x < y.

Case 3. Let x ∈ (5,∞) and y ∈ [1,5].

i.ψ(d(T x,Ty).ϕ(T x).ϕ(Ty)) = ψ(d(5,y
1
2 ).ϕ(5).ϕ(y

1
2 ))

= ψ

(∣∣∣∣∣ 5

y
1
2

∣∣∣∣∣
∗

.5.y
1
2

)
= 625.

ii. d(Sx,Sy).ϕ(Sx).ϕ(Sy) = d(12,y).ϕ(12).ϕ(y)

=

∣∣∣∣12
y

∣∣∣∣∗ .24.y

= 288.

iii. d(Sx,T x).ϕ(Sx).ϕ(T x) = d(12,5).ϕ(12).ϕ(5)

=

∣∣∣∣12
5

∣∣∣∣∗ .24.5

= 288.

iv. d(Sy,Ty).ϕ(Sy).ϕ(Ty) = d(y,
√

y).ϕ(y).ϕ(
√

y)

=

∣∣∣∣ y
√

y

∣∣∣∣∗ .y.√y

= y2.

Similarly,

v. (d(Sx,Ty).ϕ(Sx).ϕ(Ty).d(Sy,T x).ϕ(Sy).ϕ(T x)))
1
2 = 60

√
2

Here,

m(Sx,Sy,d,T,ϕ) = max{288,y2,288,60
√

2}

= 288

and

l(Sx,Sy,d,T,ϕ) = max{288,288}= 288. (4.25)

24



Hence, using (i) and (4.25), (4.1) becomes

625≤ 4887.68.

Case 4. Let y ∈ (5,∞) and x ∈ [1,5].

i.ψ(d(T x,Ty).ϕ(T x).ϕ(Ty)) = ψ(d(
√

x,5).ϕ(
√

x).ϕ(5))

= ψ(

∣∣∣∣√x
5

∣∣∣∣∗ .√x.5)

= 625.

ii. d(Sx,Sy).ϕ(Sx).ϕ(Sy) = d(x,12).ϕ(x).ϕ(12)

=
∣∣∣ x
12

∣∣∣∗ .x.24

= 288.

iii. d(Sx,T x).ϕ(Sx).ϕ(T x) = d(x,
√

x).ϕ(x).ϕ(
√

x)

=

∣∣∣∣ x√
x

∣∣∣∣∗ .x.√x

= x2.

iv. d(Sy,Ty).ϕ(Sy).ϕ(Ty) = d(12,5).ϕ(12).ϕ(5)

=

∣∣∣∣12
5

∣∣∣∣∗ .24.5

= 288.

Similarly,

v. (d(Sx,Ty).ϕ(Sx).ϕ(Ty).d(Sy,T x).ϕ(Sy).ϕ(T x)))
1
2 = 60

√
2

Here,

m(Sx,Sy,d,T,ϕ) = max{288,x2,288,60
√

2}

= 288

and

l(Sx,Sy,d,T,ϕ) = max{288,288}= 288. (4.26)
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Hence, using (i) and (4.26), (4.1) becomes

625≤ 4887.68.

Therefore, condition (4.1) is satisfied.
Next Sx = T x at x = 1 and ST x = T Sx = 1. This shows that S and T are weakly
compatible. Again T (X)⊆ S(X).
Thus all conditions of the Theorem 4.2.1 are satisfied and x= 1 is a unique common
fixed point of S and T .
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Chapter 5

Conclusion and Future Scope
5.1 Conclusion

In this thesis, we have discussed the historical back ground of multiplicative cal-
culus with its applications in different fields and simplicity of its operation. Next,
we have explored the properties of multiplicative metric spaces with its some of
topological spaces, development of contraction and weak contraction in multiplica-
tive metric spaces and also the independence of metric spaces and multiplicative
metric spaces has been discussed. We introduced generalized weakly contractive
mappings, establish a common fixed point theorem for the mappings introduced
and prove the existence and uniqueness a common fixed point result in the setting
of multiplicative metric spaces.
We have supported the result of this work by an example.

5.2 Future Scope

One of the basic and most widely applied fixed point theorems in mathematical
analysis is Banach Contraction Mapping Principle or ”Banachs Fixed Point The-
orem” by (Banach, 1922). This principle has been disclosed 97 years ago and
become a century in 2022, but it is an active area of research work in mathemat-
ics and other sciences. There are several published results related to existence of
fixed points of self-mappings defined in multiplicative metric spaces. There are
also few results related to the existence of common fixed points for a pair or more
self-mappings in different types of contractive conditions with application in this
spaces. The researcher believes the search for the existence of coincidence and
common fixed points of self-mappings satisfying different contractive type condi-
tions in multiplicative metric spaces is an active area of study. So, any interested
researchers can use this opportunity and conduct their research work in this area.
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Özavsar, M., Cevikel, A. C. (2012). ”Fixed points of multiplicative contraction
mappings on multiplicative metric spaces.” arXiv:1205.5131v1 [math.GM].

Sarwar, M. and Badshah-e, R. (2014). Some unique fixed point theorems in
multiplicative metric space, arXiv:1410.3384v2 [math.GM].

Zamfirescu, T. (1972). Fixed Point Theorems in Metric Spaces.
Arch. Math. (Basel), 23, 292-298.

29


