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COMBINING ABILITIY AND HETEROTIC GROUPING OF ELITE MAIZE  

(Zea mays L.) INBRED LINES 

 

ABSTRACT 

 

The national average maize yield in Ethiopia is low and thus, choice of promising germplasm, 

knowledge of combining ability and heterotic grouping are a prerequisites to develop high 

yielding maize varieties. A line x tester analysis involving 86 test-crosses generated by 

crossing 43 elite maize inbred lines with two testers and two standard checks were studied for 

different yield and agronomic traits during 2010 cropping season at Melkasa, Ziway, Dhera, 

Mieso and Pawe Research Sites. The objectives of the present study were to identify 

promising test cross hybrid combinations, estimate combining ability of elite maize inbred 

lines for grain yield and related agronomic traits and classify the inbred lines into different 

heterotic groups. The genotypes were evaluated in alpha lattice design replicated twice in all 

the locations. Analyses of variances showed significant mean squares due to genotypes and 

crosses for most traits in each and across locations. Among the crosses, L23 x T2, L24 x T2, 

L41 x T1, L23 x T1, L13 x T1 and L17 x T1 showed high grain yield, which could be utilized 

for future evaluation for possible release or used in maize breeding activities.General 

combining ability (GCA) mean squares due to lines were highly significant for most studied 

traits while specific combining ability (SCA) mean squares were significant only for few traits 

at all locations. The relative importance of GCA and SCA variances observed in the current 

study for most studied traits revealed the predominance of additive genetic variance in 

controlling these traits. This suggests that selection would be effective for the improvement of 

traits of interest. Inbred lines L23, L24 and L41 were the best general combiners for grain 

yield, and hence were promising parents for hybrids as well as for inclusion in breeding 

program. Inbred lines L2, L3, L5, L7, L8 and L11 had negative and significant GCA effects 

for days to anthesis and silking, indicating that the lines had gene combinations that can 

enhance early maturity. L1, L5, L7, L8 and L37 showed negative and significant GCA effects 

for plant height in most cases, indicating that these lines had a tendency to decrease plant 

stature. Crosses L4 x T1, L14 x T1, L22 x T2, L23 x T2, L24 x T2 and L33 x T2 exhibited good 

specific combining ability effects for grain yield, indicating that the crosses had desirable 

gene combinations for increased grain yield. Inbred lines L23, L24, L25, L32, L33, and L36 

were grouped in to heterotic  group A. while inbred lines L7,L13, L14, L17, L25, L27, L29, 

L30, L34 L41 and L42 were grouped in to heterotic group B. Further studies should explore 

the possibility of separating the other inbred lines used in this study into distinct heterotic 

groups using other more divergent testers. In general, the information from this study could 

be useful for researchers who need to develop high yielding varieties of maize mainly adapted 

to the rift valley areas of Ethiopia. 

 

 



1. INTRODUCTION 

 

Maize (Zea mays L.), together with wheat and rice, is one of the three cereals that feed the 

world, with a total production of 689 million tons (FAO, 2007). Maize grains have long been 

used for feed, food consumption and  raw material industrial products. Nowadays there is also 

strong demand of maize grains for bio-fuel production especially in the two main maize 

producing countries, United State and China (FAO, 2007). The global maize production is 

predicted to grow continuously as demand and price in the world market increase. 

 

Maize is believed to be originated in Mexico and was introduced to West Africa in the early 

1500s by Portuguese traders and then to Ethiopia during the 1600s and 1700s (Dowswell et 

al., 1996). Today, maize is one of the most important food crops throughout the country. In 

terms of area, it is the second most important commodity next to tef (Eragrostis tef) (CSA, 

2011). In Ethiopia, maize is one of the top priority food crops selected to achieve food 

security. It is the staple food and one of the main sources of calorie, particularly in the major 

maize producing regions. Overall, the area allocated and the productivity level of maize has 

been increasing since 1994. The area allocated in 1994 was about one million ha, which has 

increased to about 1.96 million ha of land in 2010/11 production season. Similarly, the 

average national productivity of maize has increased from about 1.5 t/ha in 1994 to about 2.54 

t/ha in 2010/11 mainly due to the strong public push of improved seed and fertilizer (CSA, 

1994-2011). 

 

Maize grows in different agro-ecological zones of Ethiopia ranging from sea level up to 2800 

m a.s.l (IAR/CIMMYT, 1993). It is grown in areas with light to heavy soils, wide ranges of 

temperatures and rainfall, indicating that maize has good adaptability to different arrays of 

environmental variables. However, in spite of its wide adaptation and efforts made to develop 

improved maize technologies for different maize agro-ecological zones still many biotic and 

abiotic constraints limit maize production and productivity in different maize producing agro-

ecological zones. In mid-altitude and lowland sub-humid areas the major maize production 

constraints include: grey leaf spot (GLS), turcicum leaf blight (TLB), common leaf rust 

(CLR), phaesphorea leaf spot (PLS), maize streak virus (MSV), stalk borer, termite, storage 

pests, low soil fertility and weeds (parasitic and non-parasitic). In low moisture stress areas 

drought, low soil fertility, weeds (parasitic and non-parasitic), CLR, TLB, stalk borers and 

storage pests are the major constraints to maize production while in the highland  sub-humid 
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areas frost, water logging, low soil fertility, weeds, TLB, CLR, PLS and stalk borer are the 

major problems in maize production (EARO/CIMMYT, 2002). 

 

Although the average yield of maize in developed world is high (7.2 t ha
-1

), the national 

average yield in Ethiopia is still as low as 2.54 t ha
-1

 (CSA, 2011) and thus, increasing maize 

productivity is a high national priority. To increase maize yield on the farmers’ field, maize 

research in Ethiopia has been on-going since 1952. Over the years several improved varieties 

have been released or recommended for commercial production in the country 

(IAR/CIMMYT, 1993; EARO/CIMMYT, 2002). With the dissemination and utilization of 

improved maize technologies by the farmers, the national average yield has been increasing 

starting in late 1990s. This level of productivity is still very low as compared to the average 

maize yield of 5 t ha
-1

 attained on-farmers’ field under national extension intervention 

program in potential areas (EARO/ CIMMYT, 2002). In drought stressed areas, however, the 

average yield is lower than 1.5 t ha
-1

 in most of the years. This indicates the need to develop 

high yielding maize varieties that perform well under both stress and non-stress conditions. In 

order to achieve this, potentially suitable parents and superior combinations must be 

identified. 

 

Development of improved maize germplasm that perform better under biotic and abiotic 

maize production constraints should be a continues process. In maize breeding program, 

analysis of general combining ability (GCA), specific combining ability (SCA) and heterosis 

would help to identify best inbred lines for hybrid development and hybrid combinations for 

better specific combining ability. Combining ability is an effective tool which gives useful 

genetic information for the choice of parents in terms of their performance in series of crosses 

(Sprague and Tatum, 1942). Simmonds (1979) emphasized the need of screening parents and 

crosses before their use in breeding programme and suggested that combining ability analysis 

based on progeny test data is a useful method for evaluating parents and crosses for a wide 

range of quantitative characters. The development of populations with high combining 

abilities has a fundamental role in the efficient use of heterosis (Vasal et al., 1992a). 

Determination of combining abilities also provides information on the nature of gene action 

involved in the expression of quantitative traits (Falconer, 1989). Therefore germplasm 

evaluation is a decisive aspect in maize breeding programs.  
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Heterosis can be maximized by crossing genetically diverse inbred lines. The higher the 

genetic diversity between the inbred lines the higher the heterosis expressed by the hybrid 

variety (Mungoma and Pollak, 1988). In maize, therefore, genetic diversity and heterosis can 

be maximized by crossing inbred lines belonging to different heterotic groups. Heterotic 

group A and B designate broad classes in maize with diverse genetic base that are 

complimentary and result in expression of heterosis after crossing. Therefore, knowledge on 

the heterotic groups of inbred lines is paramount important before they can be deployed in 

variety development. 

 

Line x tester (Kempthorne, 1957) is useful in deciding the relative ability of female and male 

lines to produce desirable hybrid combinations. It also provides information on genetic 

components and enables the breeder to choose appropriate breeding methods for hybrid 

variety or cultivar development programmes. Information on combining ability effects helps 

the breeder in choosing the parents with high general combining ability and hybrids with high 

specific combining. In the current study, a Line x Tester mating scheme study involving 43 

elite maize inbred lines introduced from CIMMYT-Zimbabwe and two testers was conducted 

with the objectives to: 

  

1. Estimate combining abilities for grain yield and other agronomic traits in elite maize 

inbred lines using Line x Tester mating design. 

2. Classify the elite inbred lines into different heterotic groups for future use in the 

breeding program. 

3. Identify better performing test-cross hybrid combination for possible release for 

commercial production 
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2. LITERATURE  REVIEW 

 

2.1. Taxonomy and Reproductive Biology of maize 

 

Maize (Zea mays L.) is a diploid (2n 20) and a monocot of the family Poaceae (Gramineae), 

or grass family. The genus has four species: Z. mays (cultivated corn and teosinte), Z. 

diploperennis Iltis et al. (diploperennial teosinte), Z. luxurians, and Z. perennis (perennial 

teosinte) (Doeblay, 1994). 

  

Maize is a monoecious annual and one of the largest of the cereals, capable of reaching 4.5 m 

in height. The male flowers (staminate) occur in the terminal panicle or tassel at the top of the 

stalk, while the female inflorescence (pistillate) is borne in the axils of leaves as clusters, 

called a cob, at a joint of the stalk. Long silks (long styles) hang from the husk of each cob. 

These pollen tubes are the longest known in the plant kingdom. As pollen receptors, each silk 

must be individually pollinated in order to produce a fruit or kernel. A fertilized cob (also 

called an ear) may contain eight or more rows of kernels. Furthermore, a stalk may bear 1–3 

cobs (Khehra, 1997). 

 

Corn has a variety of morphological features. Some early maturing types maturing in 50 days 

may attain a height of 0.6 m and produce 8–9 leaves, while tall late maturing types (330 days) 

may attain a culm or stalk height of 6 m and bear 42–44 leaves (Acquaah, 2007) 

 

Corn pollen is primarily dispersed by wind. Consequently, corn is about 95% cross-

pollinated, most of the effective pollination of an ear originating from sources in the 

immediate vicinity of the ear. Pollen dispersal is favored by warm temperature and low 

humidity. Being predominantly open-pollinated, natural populations of corn are highly 

heterozygous and genetically variable. In theory, each kernel on the ear could be produced 

from the fertilization of an ovule by a different pollen parent (Acquaah, 2007). 

 

2.2.  Development of Parental Inbreds 

 

Maize is a cross-pollinated species that shows high heterosis (i.e., superior performance of 

crosses relative to their parents) for various traits that include grain yield. This high 
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expression of heterosis is exploited in maize hybrids and constitutes the foundation of the 

maize seed industry. Maize hybrids were first developed in the United States in the mid-1930s 

and by the early 1960s practically all the maize area in the US was planted to hybrids (Duvick 

& Cassman, 1999). Improved productivity and selection gain with the use of hybrids has 

stimulated increased investment in hybrid development, resulting in impressive genetic 

progress. Shull (1909) outlined the pure-line method in maize breeding suggesting the use of 

self-fertilization to develop homozygous lines that would be of use in hybrid production. This 

combination of inbreeding and hybridization constitutes the basis of maize improvement. The 

general process to develop maize hybrids starts with the creation of a source segregating 

breeding population that it is used to develop inbred lines through inbreeding and selection 

(Acquaah, 2007). Selected inbreds are then evaluated in hybrid combinations across locations 

to select superior hybrids and to estimate their combining abilities.  

 

An inbred is a nearly homozygous line obtained through continuous inbreeding of cross 

pollinated species with selection accompanying inbreeding (Singh, 2005). Different type of 

segregating populations can be used as the source in line development: open-pollinated 

cultivars (OPC), synthetic cultivars, single crosses, backcrosses, double crosses, and exotic 

germplasm (Acquaah, 2007). Overall, major emphasis goes to the use of breeding populations 

created by hybridization of complementary inbreds and the selection of progenies possessing 

the desirable traits from both parents (Hallauer, 1990). Selection within F2 and backcross 

populations using pedigree breeding is the most important breeding method to develop maize 

inbreds (Hallauer et al., 2010). Breeding programs that emphasize pedigree selection within 

populations developed from elite inbred lines are therefore cyclical creating second-, third-, 

fourth-, etc. generation recycled improved inbreds (Hallauer, 1990). The incorporation and 

introgression of exotic germplasm brings new desirable alleles and genetic diversity to this 

recycling of elite lines (Goodman et al., 2000). A backcross or multiple backcross to the best 

parental inbred is used commonly to increase the probability of maintaining favorable 

combinations of alleles (Troyer, 2001). Maize breeders use multiple traits, multistage, and 

multiple environment selection methods (Betrán et al., 2003). Multiple environment and 

multiyear inbred general combining ability values with validated performance in hybrids are 

considered carefully for choosing parents to start breeding populations.  
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Hybrid development requires the development of parental inbred lines. The inbred parents 

used to produce the hybrids are developed through a process of inbreeding and selection. The 

consequence of inbreeding is the increase in homozygosity that leads to homogeneous 

expression of traits and to inbreeding depression (i.e., loss of vigor and productivity). Self-

pollination is the most common and fastest system of inbreeding (Acquaah, 2007). As 

inbreeding reduces the genetic variation within families and increases the genetic variation 

among families, the efficiency of selection among lines increases while it decreases within 

lines. The level of inbreeding depression depends on the trait. Traits that show high 

inbreeding depression also show high heterosis (e.g., grain yield). Vigor, plant size, grain 

yield components, and grain yield are reduced while time to flowering and incidence of 

barrenness increase with inbreeding (Hallauer and Miranda, 1988). Development of inbred 

parents can follow different breeding methods such as pedigree breeding, backcrossing, 

bulking, single seed descent, double haploids, etc (Hallauer, 1990;  Singh, 2005). 

 

Pedigree breeding is the most widely used breeding system to develop maize inbreds. 

Typically, specific crosses are made between inbred lines, and then self-pollination is applied 

to the F1 and subsequent generations to develop inbred lines that are superior to either parent 

(transgressive segregants) through genetic segregation and recombination (Singh, 2005). 

Selection is applied among progeny rows and among plants within S1 families and it is 

common to have replicated nurseries for the S1 families exposed to different disease, insect, or 

abiotic stresses. (Hallauer et al., 2010). This process of selfing and selection is repeated in 

successive generations (S2, S3, S4, S5, . . .Sn) until homozygous elite inbreds are developed. 

Effective phenotypic selection and greater selection intensity can be applied in initial 

inbreeding stages for traits with high heritability such as pest resistance, maturity, 

morphological traits, etc (Acquaah, 2007). 

 

The backcross breeding method is used widely in maize breeding to transfer one or a few 

traits/genes from the donor parent to the recurrent and most desirable parent. With the advent 

of genetically modified organisms, major emphasis is devoted to accelerate backcrosses to 

transfer the transgenes to elite inbreds (Hallauer et al., 2010; Acquaah, 2007). The use of 

DNA molecular markers has facilitated both the speed and accurate recovery of the recurrent 

parent, and the reduction of linkage drag (Acquaah, 2007). 
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The bulk method, where the seeds for each selfing generation are harvested in bulk, and 

single-seed descent, where one or a few seeds from each genotype are advanced each 

generation until approximate fixation is reached, are also used in inbred line development 

because of their simplicity and low space requirements (Acquaah, 2007; Hallauer et al., 

2010).  

 

2.3. Testers and Test Crossing 

 

In the use of testcross, selection of tester is the most important step that provides the best 

discrimination among genotypes according to the purposes of selection (Hallauer and 

Miranda, 1988). According to Hallauer and Miranda (1988), the use of a common tester to 

evaluate lines for general combining ability was introduced by Davis in 1927 and Jenkins and 

Brunson in 1932. Following the introduction of the top cross procedure by Davis in 1927, 

Johnson and Hayes, in 1936, also reported that inbred lines giving high yields in top crosses 

were more likely to produce better single crosses (Hallauer and Miranda, 1988). 

 

Artificial crossing or mating is a common activity in plant breeding programs for generating 

various levels of relatedness among the progenies that are produced. A mating may be as 

simple as a cross between two parents, to the more complex diallel mating. Diallel mating is a 

commonly used experimental design for crossing inbred lines in which each line is crossed 

with every other line (Falconer, 1989). When a large number of maize inbred lines are 

available from a breeding program, breeders cannot evaluate the combining ability of the lines 

in diallel crosses because the number is prohibitive. When a large number of inbred lines 

generated, line x tester mating design proved to be efficient in testing of inbred lines for 

combining ability because with its use it was possible to identify more promising inbred lines 

by making fewer numbers of crosses than are required for making all possible crosses. The 

line x tester basically an extension of top crosses analysis in the sense that instead of one 

tester as used in top crossing; more than one tester are employed under line x tester design ( 

Kempthorne, 1957).  

 

The use of testers in maize breeding has one of the following objectives: (1) evaluation of 

combining ability of inbred lines in a hybrid breeding programme, or (2) evaluation of 

breeding values of genotypes for population improvement (Hallauer and Miranda, 1988). In 
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each instance, the choice is essentially to find a tester that provides the best discrimination 

among genotypes according to the purpose for selection. Matzinger (1953) defined a desirable 

tester as one that combines the greatest simplicity in use with maximum information on 

performance to be expected from tested lines when used in other combinations or grown in 

other environments. Rawlings and Thompson (1962) defined a good tester as one that 

classifies correctly relative performance of lines and discriminates efficiently among lines 

under test. For improvement of breeding populations, Allison and Curnow (1966) defined the 

best tester as one that maximizes the expected mean yield of the population produced from 

random mating of selected genotypes. Hallauer (1975) pointed out that in general a suitable 

tester should include simplicity in use, provide information that correctly classifies the 

relative merit of lines and maximize genetic gain.  

 

Every hybrid breeding program has to invest considerable effort in choosing an appropriate 

tester for assessing the combining ability of segregating lines. A tester may be an inbred line, 

an OPV, or a single-cross hybrid (Vivek et al., 2008). A desirable tester must facilitate 

discrimination among genotypes for combining ability and desirable traits, simultaneously 

identify useful hybrid products for direct use, and are compatible with a practical maize 

breeding program (Vasal et al., 1997). The choice of testers involves a mix of theoretical and 

practical considerations (Bänziger et al., 2000). 

 

2.4.  Hybrid Development and Performance Evaluation 

 

The only reason maize breeders isolate inbred lines is to develop parental inbred lines for the 

production of hybrids. Hybrid varieties are the first filial generations (F1) from crosses  

between two or more pure lines, inbreds, open-pollinated varieties, clones or other 

populations that are genetically dissimilar (Singh, 2005). Maize hybrid development began in 

the early 1900s (Hallauer et al., 1988). In maize, hybrid breeding remains the method of 

choice for attaining maximum genetic gain from the effect of heterosis. According to Singh 

(2005), most of the commercial hybrid varieties are F1’s from two or more inbreds. The 

success of hybrid maize development depends on the ability of the breeding program to 

rapidly isolate lines that combine well in hybrid combinations and to identify appropriate 

heterotic combinations to maximize the vigour of the hybrid (Kim and Ajala, 1996). The 

general process to develop maize hybrids starts with the creation of a source segregating 

breeding population that is used to develop inbred lines through inbreeding and selection 
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(Betran et al., 2004). Selected inbred lines are then evaluated in hybrid combinations across 

locations to select superior hybrids and to estimate their combining ability. 

 

The commercial applications of hybrid breeding started with a cross of two inbred lines (a 

single cross: A × B) and later shifted to the more economic double cross [(A × B) × (C × D)] 

and then back to a single cross (Acquaah, 2007). Other parent combinations in hybrid 

development have been proposed, including the three way cross [(A × B) × C] and modified 

versions of the single cross, in which closely related crosses showed that the single cross was 

superior in performance to the other two in terms of average yield (Acquaah, 2007). Today, 

commercial hybrids are predominantly single crosses. Breeders continue to develop superior 

inbred lines. The key to using these materials in hybrid breeding is identifying pairs of inbreds 

with outstanding combining ability. Shull (1908) gave the original concept for production and 

growing of single cross hybrids, but the cost of seed production has limited its utility. Jones 

(1918) suggested that double cross hybrids can be produced from two single cross hybrids to 

reduce the cost of seed production subsequently with the improvement in vigour and yield 

potential of inbred lines and development of better cultural practices, single crosses were 

adapted for commercial cultivation in the advanced countries. The recent trends even in the 

developing and under developed countries single cross hybrids are more popular due to their 

higher yield levels under favorable environment and uniformity in expression (Hallauer et.al, 

2010). Hence, there is a greater scope for the exploitation of heterosis through single cross 

hybrids, than double cross hybrids. 

 

Much research in maize has assessed the efficiency of per se versus test cross evaluation of 

new genetic material for use in hybrid production. Predicting the grain yield of single crosses 

in maize based on the per se performance of their parental inbred lines has not been effective 

due to masking non-additive effects (Smith, 1986; Hallauer, 1990). Further, genotype-

environment interactions also lower this correlation (Bernardo, 1991). 

 

The number of potential single crosses to evaluate increases substantially with the number of 

parental inbreds. The possibility of using inbred line information, as indicative of hybrid 

performance, is desirable to reduce the number of hybrid evaluations. The correlation between 

parental inbreds and hybrids depends on the trait. In general, the correlation is relatively high 

for some additively inherited traits (e.g., plant morphology, ear traits, maturity, and quality 

characters) but is relatively low for grain yield (Acquaah, 2007). The correlation for grain 



10 
 

yield has been consistently positive and significant but not high enough to predict hybrid 

performance. The correlations between parental genetic diversity estimated with molecular 

markers, pedigree, or phenotypic traits and hybrid performance also have been too low to 

have predictive value (Melchinger, 1999). Although these recent approaches facilitate hybrid 

selection, hybrid testing is required ultimately to identify the inbreds with the best breeding 

values. Combining ability of inbred lines is the ultimate factor determining future usefulness 

and commercial potential of the lines for hybrids (Hallauer et al., 1988). 

 

Efforts are allocated in preliminary tests to evaluate as many hybrids as possible in a few 

locations with intensive selection, leaving relatively few hybrids to proceed to the more 

advance stages. As the numbers of lines to be tested at various stages of inbreeding increase 

over time, their evaluation in all possible hybrid combinations is not feasible. Therefore, 

testcrossing with appropriate testers has been adopted extensively to evaluate the relative 

combining ability of experimental inbred lines. Usually combining ability is first tested at the 

S1 (F3) or S2 (F4) stage (Vivek et al., 2008). Breeding programs may have hundreds of early 

generation lines being test-crossed and evaluated across locations. The best 5-20% of the lines 

are selected and advanced. By the time combining ability is tested for the second time 

(usually at the S3 [F5] or S4 [F6] stage), the chosen inbred lines are fairly fixed and may be 

test-crossed to more testers in order to identify final products (Vivek et al., 2008).  

 

2.5. Combining Ability and Gene Action 

 

Combining ability has been defined as the performance of a line in hybrid combinations 

(Kambal and Webster, 1965). Since the final evaluation of inbred lines can be best determined 

by hybrid performance, it plays an important role in selecting superior parents for hybrid 

combinations and in studying the nature of genetic variation (Hallauer and Miranda, 1988). 

Sprague and Tatum (1942) introduced the concepts of general combining ability (GCA) and 

specific combining ability (SCA). The authors defined GCA as the average performance of a 

line in hybrid combinations, while SCA as those instances in which certain hybrid 

combinations are either better or poorer than would be expected of the average performance 

of the parent inbred lines included. For random individuals, GCA is associated with additive 

effects of the genes, while SCA is related to dominance and epistatic effects (non-additive 

effects) of the genes. However, Rojas and Sprague (1952) verified that the variance of SCA 

also contains deviations due to the interaction between genotypes and environments, in 
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addition to those that come from dominance and epistasis. GCA and SCA is an indication of 

genes having largely additive and non-additive (dominance and epistatic) effects, 

respectively. Sprague and Tatum (1942) found that GCA was relatively more important than 

SCA for unselected inbred lines, whereas SCA was more important than GCA for previously 

selected lines for influencing yield and stalk lodging. However, studies have indicated that 

inbred yields predicted GCA more accurately than SCA (Duvick, 1999). GCA effects 

quantitatively measure the comparative performance of parents and cross combinations in 

relation to one another. 

 

The term additive gene action denotes those gene effects in heterozygote where every 

dominant gene or allele contributes a unit increment without affecting the other dominant 

allele at another locus and the heterozygote, accordingly perform exactly intermediate 

between the two homozygotes with respect to a particular character. Dominance indicates a 

type of gene action where the heterozygote genotype gives the same response as the 

homozygous dominants, while epitasis refers to a condition where two or more gene loci 

(non-allelic gene) interact to determine the performance of a genotype (Acquaah, 2007). 

 

Combining ability studies enable classification of selected parental materials with respect to 

breeding behavior in addition to provision of information on the nature of gene action. The choice 

of the method to be used for the purpose of genetic improvement of crop plants is dependent on 

the type of gene action each gene that controls quantitative characters, since quantitative 

inheritance involves large number of genes (Falconer, 1996). Knowledge of these variances is 

important to the breeder since it indicates the possibility and extent to which improvement is 

possible through selection (Allard, 1960; Singh, 1993). 

 

In Ethiopia and other countries, combining ability studies have been made by many workers 

to estimate the combining ability effects for yield and other traits of maize. A chain of 

combining ability studies have been also made by many workers from the International Maize 

and Wheat Improvement Center (CIMMYT) to establish heterotic patterns among several 

maize populations and gene pools and to maximize their yield for hybrid development (Beck 

et al., 1990). 

 

Pswarayi and Vivek (2008) studied the combining ability amongst CIMMYT’s early maturing 

germplasm using diallel design and found significant GCA mean squares for grain yield, plant 
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height, days to anthesis, grain texture, husk cover, ear position and anthesis-silking interval. 

Similary, they reported significant SCA mean squares for plant height, ear position, days to 

anthesis and husk cover. The authors reported significant GCA x location interaction effects 

for all studied traits while SCA x location interaction was significant for grain yield, anthesis-

silking interval, root lodging and number of ears per plant. Pswarayi and Vivek (2008) 

reported GCA sums of squares were larger than SCA sums of squares for grain yield (87%), 

days to anthesis (84%), grain texture (72%) and plant height (65%), while SCA sums of 

squares were larger for anthesis-silking interval (52%) and ears per plant (55%). 

 

Kim and Ajala (1996) studied combining ability among tropical and temperate maize inbred 

lines and reported that a major proportion of crosses sum of squares for grain yield was 

explained by GCA. San Vincente et al. (1998) reported greater relative importance of non-

additive than additive genetic effects for grain yield in diallel crosses among improved 

tropical white endosperm populations. In crosses among subtropical and temperate CIMMYT 

germplasm, Beck et al. (1991) observed highly significant GCA effects for grain yield, time 

to silk and plant height. In a diallel cross among Mexican races of maize, Crossa et al. (1990) 

reported highly significant GCA and SCA mean squares for grain yield, days to anthesis and 

ears per plant. They further reported that GCA effect was the most important component of 

variation among the entries for grain yield. In population diallel crosses, Glover et al. (2005) 

observed significant GCA and SCA mean squares for grain yield, stalk lodging, ear height 

and days to silking. 

 

Makumbi et al. (2004) estimated GCA and SCA effects of 15 tropical maize inbred lines for 

anthesis date, silking date, plant height, anthesis-silking interval, ears per plant and grain yield 

under stressed and optimal conditions. The authors reported that both  GCA and SCA effects 

across locations were significant for all traits and GCA x location and SCA x location 

interaction effects were significant for grain yield and ears per plant. They further stated that 

additive genetic effects were more important for grain yield under drought and well-watered 

conditions and non-additive genetic effects were found to be more important under low N 

stress conditions for ears per plant in the set of studied inbred lines. 

 

Cordova et al. (2003) reported the importance of GCA effects for grain yield in a factorial 

crosses between QPM inbred lines from two heterotic groups. Fan et al. (2004) analyzed the 
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combining ability of 10 yellow QPM indreds from CIMMYT and China, and reported 

significant GCA and SCA effects for grain yield. Bhatnagar et al. (2004) studied combining 

ability of white and yellow QPM inbreds for grain yield, days to silk, plant and ear heights, 

lodging and grain moisture and reported presence of significant GCA effects for all traits 

except for grain yield in both diallel sets across locations. Xingming et al. (2004) evaluated 

combining ability and heterotic groups of yellow QPM inbreds and observed significant 

differences among the crosses and GCA of lines for grain yield, plant height, rows per ear, 

kernels per row and thousand seed weight and non-significant difference in SCA mean 

squares for all traits.  

 

Vasal et al. (1992a) evaluated seven tropical white maize populations crossed in a diallel 

mating design for grain yield, plant height, and days to silking at seven locations. They 

reported GCA to account for 67%, 85%, and 78% of the sums of squares among crosses for 

grain yield, days to silk, and plant height, respectively. Vasal et al. (1992a) reported that GCA 

x location interaction for grain yield was not significant while that for days to silk and plant 

height were significant. Positive and significant GCA effects for grain yield for three of the 

populations and negative significant GCA effects for two populations were reported but no 

significant SCA effects were found for grain yield. 

 

Vasal et al. (1993a) observed highly significant GCA for grain yield, ear height, time to silk 

and endosperm hardness and non-significant SCA effects for all the traits they studied in three 

locations in the study of heterosis and combining ability in CIMMYT’s subtropical QPM 

germplasm. In another set of experiment, Vasal et al. (1992b) conducted on combining ability 

of CIMMYT tropical and subtropical maize materials, significant GCA effects were observed 

for grain yield in both tropical and sub-tropical locations but significant SCA effect was 

observed for grain yield only in sub tropical location. Vasal et al. (1993b) reported that GCA 

effects were highly significant for all traits he studied and non-significant SCA effects 

indicating minor importance of non-additive gene action. Singh and Asnani (1979) found 

significant mean squares for GCA and SCA for yield and 100- grain weight, number of kernel 

rows per ear, number of kernels per row, ear length and ear diameter in a 8 x 8 diallel cross of 

maize inbred lines. These authors concluded that both GCA (additive) and SCA (non-

additive) effects play an important role in the inheritance of yield and its components.  
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For a 7 x 7 diallel cross among maize lines in Ethiopia, Shewangizaw et al. (1985) reported 

significant GCA and SCA for most traits, but predominance of non-additive genetic variance 

in the case of yield. On the other hand, Younnes and Andrew (1978) reported more 

importance of additive gene action than non-additive components in previously unselected 

materials. Similarly, Shewangizaw (1983) reported GCA to be more important than SCA for 

days to 50% tasseling, silking, maturity, kernel rows per ear and 1000-kernel weight. 

However, his results indicate SCA to be more important than GCA for grain yield and ear 

height where as Yoseph (1998) reported highly significant GCA and SCA for days to 

tasseling, and silking, plant and ear height, number of kernel rows per ear, 1000 seed weight 

and grain yield. 

 

Leta et al. (1999), observed highly significant mean square due to GCA effects for grain 

yield, ear height, plant height, and time to silking using diallel crosses among seven maize 

populations. They reported high GCA effects than SCA effects and reached at the conclusion 

that additive gene action was important in controlling all traits. 

 

Significant mean square due to GCA effects for days to tasseling, days to silking, days to 

maturity, plant height, ear height, ear length and ear diameter, kernel rows per ear, kernel per 

row, thousand kernel weight, and grain yield at Bako, Hwassa, and Areka as well as from 

combined data over three locations was reported by Jemal (1999). He reported significant 

mean squares due to SCA effects only for some traits at all locations and across locations. 

Shewangizaw (1983), Kebede (1989), Yoseph (1998), and Mandefro (1999) reported the 

importance of both additive and non-additive types of gene actions in the inheritance of 

number of days- to-tasseling-and -silking. 

 

Teshale (2001) evaluated 27 crosses of tropical highland maize genotypes for eleven 

agronomic characters with objective of generating information on combining ability and 

heterotic pattern between inbreed lines and testers, and found significant GCA mean squares 

due to lines for all the traits except for number of kernel rows per ear but significant GCA due 

to testers only for grain yield, ear length and 100 seed weight. He also found significant line x 

tester interaction for all traits considered indicating the presence of differences among the F1 

progenies. His results revealed significant GCA x location both for lines and testers for days 

to maturity, 100 seed weight and yield; and significant SCA x location interaction for most 
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characters except number of kernel rows per ear, ear length and ear diameter. He also reported 

as additive genetic variance is more important in controlling most of the studied traits. 

 

Dagne et al. (2007) reported the importance of both additive and non-additive gene effects in 

controlling days to tasseling, days to silking, days to maturity, plant height and ear height, 

number of ears per plant, ear length, ear diameter, number of kernel rows per ear, number of 

kernels per row, 1000 kernel weight and grain yield. He also found the dominant role of 

additive gene effects in an expression of all characters studied except for grain yield. Dagne et 

al. (2010) evaluated crosses between CIMMYT and Ethiopia lines resulted from North 

Carolina Design II and found significant GCA and SCA effects for most traits. 

 

Hadji (2004) found highly significant differences among entries, parents, crosses, and parents 

versus crosses for most traits in a diallel study 10 QPM inbred lines. He reported significant 

differences for GCA and SCA effects for all traits evaluated except endosperm hardness. The 

author further reported the dominance of additive gene effects in the expression of all traits 

studied, except for ear length, number of kernels per row and grain yield.  

 

Gudeta (2007) evaluated eighty crosses, 24 parents (20 female parents and four testers) at four 

high land locations (Ambo, Holeta, Kulumsa and Haramaya) found highly significant mean 

squares due to female GCA across location for ear rot, number of kernel rows per ear and ear 

diameter. He also found highly significant mean squares due to SCA for grain yield, ear rot, 

number of kernel rows per ear and ear diameter. Gudeta (2007) also reported highly 

significant mean squares due to SCA and male GCA for grain yield at the four locations 

including across locations while mean squares due to female GCA were highly significant at 

Holeta and  Kulumsa. Genotype x location and SCA x location were significant for grain 

yield.  He also found significant SCA effects for 11 of the crosses. 

 

Legesse et al. (2009) studied GCA and SCA of highland transition maize inbred lines using 

line x tester analysis. They reported GCA mean squares due to lines and testers were highly 

significant for all the traits. Similarly SCA mean squares for most traits except for days to 

physiological maturity and for northern leaf blight (NLB, caused by Exserohilum turcicum) 

were found highly significant. Legesse et al. (2009) reported estimates of GCA effects and 

they indicated that three inbred lines showed good combiners for grain yield and for days to 
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silking. They also indicated significantly different SCA effects were revealed for crosses 

involving most traits. 

 

A number of combining ability studies have been conducted on maize for grain yield where 

the magnitude of GCA was reported to be greater than that of SCA (Rameeh et al., 2000; Pal 

and Prodhan, 1994). In contrary, some researchers reported that dominance deviation is more 

important in controlling grain yield (Kumar et al., 1999; Kalla et al., 2001; Kara, 2001). Other 

scientists, on the other hand, concluded that grain yield in maize is controlled by both additive 

and non-additve type of gene action (Dubey et al., 2001; Sujiprihati et al., 2001). 

 

Flowering in maize is controlled by additive type of gene action and is more important than 

dominant gene action (Konak et al., 1999). Additive gene action was also observed to be 

more important than dominant gene action for days to silking (Satyanarayana et al., 1994). 

Similarly, in the evaluation of maize inbred lines derived from seven late white CIMMYT 

populations using line x tester design, additive gene effects were found more important for 

days to silking (Lemos et al., 1999). Nirala and Jha (2001) in a study on combining ability in 

maize using seventy crosses reported that the magnitude of GCA were more pronounced than 

SCA for days to anthesis and silking. In contrary to these findings, other investigators 

reported the importance of dominant gene effects for days to anthesis and silking (Reddy and 

Agarwal, 1992; Santyanara, 1995; Singh and Singh, 1998).  

 

Reddy and Agarwal (1992), reported the importance of additive genetic variances in maize for 

plant and ear height while Kumar and Gangashetti (1998) and Paul and Debanth (1999) have 

reported that both additive and dominant gene actions to be involved in the inheritance of 

plant height. The results from line x tester analysis on maize showed that plant height is 

controlled by additive type of gene action and ear height by dominant gene action (Konak et 

al., 1999; Lemos et al., 1999). In combining ability study in maize it was reported that plant 

height is controlled by additive gene action (Revilla et al., 1999;  Konak et al. 2001). Desai 

and Singh (2001), Kalla et al. (2001) and Vicente et al. (2001) in separate studies reported 

that plant and ear height controlled by additive type of gene action. Using line x tester mating 

design, Dodiya and Joshi (2002) reported the importance of non-additive gene effects in 

controlling plant height in maize. In some other studies in maize, combining ability results 
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showed the importance of non-additive gene effects for plant and ear height (Vacro et al., 

2002; Venugopal et al., 2002). 

 

Singh and Singh (1998) through line x tester analysis reported that ear length is mainly 

attributed to line GCA. While Konak et al. (1999), Kalla et al. (2001) and Venugopal et al. 

(2002) have reported that non-additive gene action was predominant for ear length. Singh and 

Singh (1998) and Venugopal et al. (2002) have reported that ear diameter in maize is under 

the control of non-additive gene action. Rosa et al. (2000) in their study on maize have 

reported that ear diameter is controlled by additive gene action. 

 

Number of kernel rows per ear is controlled by non-additive gene action (Kumar et al., 1999; 

Rameeh et al., 2000). Kalla et al. (2001) in a combining ability study conducted on maize 

inferred that both additive and non-additive gene actions were involved  in the control of 

number of kernel rows per ear.Vankatesh et al. (2001) carried out line x tester analysis and 

reported that  non-additive gene action involved in the control of  number of kernel rows per 

ear. Similarly Venugopal et al. (2002) carried out diallel analysis for number of kernels rows 

per ear and reported non-additve gene action was involved for the character. Pal and Prodhan 

(1994) reported estimates of SCA were higher than those of GCA for number of kernels per 

row. Rameeh et al.( 2000), Vankatesh et al. (2001) and Venugopal et al. (2002) in combining 

ability studies in maize have reported that both additive and non-additive gene in controlling 

the number of kernels per row.  

 

The study conducted by Rameeh et al. (2001) revealed that there was preponderance of 

additive gene action for 100-grain weight. Whereas in a study conducted by Dudey et al. 

(2001) on 45 hybrids derived from, 15 maize lines crossed with 3 testers, they reported that 

both GCA and SCA are important for 100-grain weight. In another study conducted on maize 

inbred lines, Kalla et al. (2001) and Kara (2001) observed that both additive and non additive 

gene actions were involved in the inheritance of 100-grain weight. 

 

2.6. Heterotic Pattern  

 

Appropriate knowledge about the performance of maize genotypes in crosses is required to 

organize germplasm in applied breeding programs. In species that exhibit heterosis, 
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information about combining ability with genetically divergent testers is useful when 

classifying the germplasm into heterotic groups. 

 

The recognition of heterotic groups simplified decisions relative to choices of testers and 

crosses to test between newer inbred lines. The concept of heterotic groups is different from 

the one for heterotic patterns. A heterotic group may be defined as a group of related or 

unrelated genotypes from the same or different populations, which display a similar 

combining ability when crossed with genotypes from other germplasm groups (Acquaah, 

2007). Heterotic pattern refers to a specific pair of two heterotic groups, which express high 

heterosis and high performance in hybrid combination and it is collection of germplasm, 

which when crossed to a germplasm external to its group tend to exhibit more heterosis (on 

average) than when crossed to a member of its own group (Allard, 1960). Knowledge of the 

heterotic groups and patterns is helpful in plant breeding. It helps breeders to utilize their 

germplasm in a more efficient and consistent manner through exploitation of complementary 

lines for maximizing the outcomes of a hybrid breeding program (Hallauer, 1990). To 

increase efficiency and to facilitate hybrid development, it is imperative that source 

populations should be heterotic to each other exhibiting high level of cross performance.  

 

Heterotic group classification methods used by researchers have great influence on how a 

maize line is assigned to a maize heterotic group. Two major heterotic group-classification 

methods are currently used widely across the world. The traditional method uses SCA with 

some line-pedigree information and/or field hybrid-yield information (SCA_PY) to assign a 

maize line to a heterotic group (Wu et al., 2007). Another method employs various molecular 

markers to compute genetic similarity (GS) or genetic distance (GD) to assign maize lines to 

different heterotic groups (Menkir et al., 2004). 

 

Heterotic groups in maize are more clearly determined in temperate germplasm (European 

flint × US dent lines used in Europe and Reid Yellow Dent × Lancaster used in the US) than 

in tropical germplasm. General information about the heterotic patterns being used in the 

tropics indicates that crosses of ETO or Suwan I with Tuxpeño are most common (Hallauer et 

al., 1988). The extensive use and investigations of a well-established heterotic pattern, Reid × 

Lancaster, have been made and has culminated in the development and use of many good 

maize hybrids in China (Fan et al., 2002; Yuan et al., 2002; Wu et al., 2007) and many parts 
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of the world (Vasal et al., 1992a, 1992b; Menkir et al., 2004; Barata and Carena, 2006). 

Heterotic patterns are very critical for maximizing the expression of hetorosis in hybrids. 

However, they have not been well established and improved in a systematic manner by the 

majority of maize improvement programmes in the tropics (Paliwal, 2000).  

 

In studies to determine the combining ability and heterotic patterns of tropical maize (Zea 

mays L.) developed at CIMMYT, using four line testers Vasal et al. (1992a) identified and 

formed two divergent tropical heterotic groups (THGA and THGB). Lines showing negative 

SCA with Tester 1 “Pop 21” (Tuxpeno-1) and positive SCA with Tester 3 “Pop 25” (Blanco 

Cristalino) were classified under Tropical Heterotic Group “A”. Those showing positive SCA 

with Tester 1 and negative with Tester 3 were classified under Tropical Heterotic Group “B”.  

 

In a similar study in the same year using subtropical CIMMYT maize lines, Vasal et al. 

(1992b), identified and formed two divergent subtropical heterotic groups (STHGA and 

STHGB). Lines that had negative SCA with Tester 2 (Pop 44) and positive SCA with Tester 4 

(Pop 34) were classified under Subtropical Heterotic Group “A” and those showing positive 

SCA with Tester 2 and negative with Tester 4 were classified under Subtropical Heterotic 

Group “B”. The hypothesis was that positive SCA effects between inbred lines generally 

indicate that lines are in opposite heterotic groups and lines in the same heterotic group 

tended to exhibit negative SCA effects when crossed. 

 

Fan et al. (2001) used a diallel design to study combining abilities among 10 maize lines (five 

lines from the International Maize and Wheat Improvement Center [CIMMYT] and five 

major commercial lines from China). According to SCA_PY method, they classified 

CML171, CML161, CML166 into one heterotic group; Chang 631/o2, Zhongxi 096/o2 into 

another heterotic group; and Qi 205 into a third heterotic group. Xingming et al. (2004) 

studied combining ability of 10 quality protein maize inbred lines and the 10 lines were 

divided into 4 groups: CML171, CML166, CML161 and CML164 were in group A; CML194 

was in group B; Chang631/O2, CA339 and Zhongxi096/O2 were in group C; Xin9101/O2 

and Qi205 were in group D. While Wu et al. (2007) used North Carolina design II (NC II 

design) to classify 27 maize inbred lines into four known maize heterotic groups widely 

accepted in China. 
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Menkir et al. (2004) used two testers representing the flint and dent heterotic patterns to test 

38 tropical maize inbred lines. The two testers successfully classified 23 of the 38 tested 

inbred lines into two heterotic groups based on the SCA_PY method. Barata and Carena 

(2006) conducted a similar study as that of Menkir et al. (2004) to classify 13 elite North 

Dakota maize inbred lines into current U.S. Corn Belt heterotic groups. Menkir et al. (2003) 

evaluated 30 tropical lowland inbred lines at six environments and classified some of the 

inbred lines into two heterotic groups based on SCA effects and testcross mean grain yields. 

 

CIMMYT-Zimbabwe works with two major heterotic groups A (N3, Tuxpeno, Kitali and 

Reid) type and B (SC, ETO Blanco, Ecuador and Lancaster) type (Mickelson et al., 2001). 

Based on results from CIMMYT-Zimbabwe’s regional trials conducted over several years, 

single cross testers CML312/CML442 (group A) and CML395/CML444 (group B) have 

proved useful in hybrid formation for subtropical and mid altitude environments and are 

currently in wide use. These single crosses are intermediate and late maturing respectively 

(Pswarayi and Vivek, 2008). Mawere (2007) studied combining ability of maize inbred lines 

and assigned them into groups using yield SCA averages across sites with CML312/CML442 

(Group A) and CML395/CML444) (Group B). Five lines were assigned into heterotic group 

A, five lines were assigned into group B and three lines were classified as AB. 

 

Among well-known heterotic groups in the world, Kitale Syn.II and Ecuador 573 are widely 

used in Eastern Africa including Ethiopia (Darrah, 1986). Legesse et al. (2009) examined 

combining ability of 26 highland transition maize inbred lines for grain yield and other 

desirable traits with two testers Pool9A-MHM and 142-1-e for assigning  the inbred lines in 

to heterotic groups, each group involving 13 and 10  inbred lines, respectively. 
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3. MATERIALS AND METHODS 

 

3.1. Experimental Locations  

 

The field experiments were conducted at five maize testing locations in Ethiopia; namely, 

Melkasa, Mieso, Ziway, Dhera and Pawe. Melkasa, Ziway, Dhera and Mieso are located 

Oromia National Regional State while Pawe is located in Benishangul Gumuz National 

Regional State, in the north western part of Ethiopia. Description of the locations is given in 

Table 1. 

 

Table 1. Description of the testing locations 

 

Location 

Annual rainfall 

(mm) 

Altitude  

(m.a.s.l) Latitude Longitude Soil type 

Melkasa 710 1550 8
0
24’ N 39

0
21’ E sandy-clay-loam 

Ziway 640 1637 7
0
56’ N  38

0
35’ E  silt 

Dhera 520 1680 8
0
20’ N 39

0
23’ E sandy-clay 

Mieso 560 1470 9
0
12’ N 40

0
52’ E clay-loam 

Pawe 1579 1120 11
0
09’ N 36

0
03’ E clay 

Source: Seboksa et al. (2001) 

 

3.2. Experimental Materials 

 

The experiment comprised 88 maize genotypes (including 86 test crosses formed by crossing 

43 elite inbred lines to two testers in line x tester mating design) and two standard checks 

(BH-543 and Melkasa-2). The inbred lines were introduced from CIMMYT-Zimbabwe and 

were bred for resistance to various biotic and abiotic stresses of Africa.  The most important 

stresses against which the inbred lines were selected include diseases (maize streak virus, grey 

leaf spot, leaf rust and turcicum leaf blight), low nitrogen, high density and drought. The two 

testers used are single crosses of commercial CIMMYT inbred lines of known heterotic 

groups; viz. CML312/CML442 (tester A) and CML202/CML395 (tester B), which are 

commonly used by CIMMYT and many other national maize research programs in Africa. 

The lines x tester crosses were made at Melkassa Agricultural Research Center during the 
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main season of 2009. From the checks, BH543 is a three way-cross commercial hybrid 

released by Bako National Maize Research Project in 2005. It is a medium maturing hybrid 

that matures in about 145 days at Bako and similar environments. The hybrid is a high 

yielding, tolerant/resistance to major maize diseases known in the country and  well adapted 

to mid-altitude to transitional highland environments (1000-2000 m.a.s.l) receiving high 

rainfall. Melkasa-2 is relatively early maturing and drought tolerant variety released by 

Melkasa Agricultural Research Center in 2004 for drought stressed areas of the rift valley.  

 

3.3. Experimental Design and Field Management 

 

The experiment was conducted in 2010 at all the locations. The experimental design for the 

field evaluation of the materials was 8 x 11 alpha-lattice design (Patterson and Williams, 

1976) with eight plots per an incomplete block and 11 incomplete blocks in each replication. 

The experiment was planted in two replications. Design and randomization of the trials were 

generated using CIMMYT’s computer software known as Fieldbook (Banziger and Vivek, 

2007). Each plot consisted of one row of 5 m length with 75 cm and 25 cm spacings between 

rows and plants, respectively. Two seeds were planted per hill to ensure uniform and 

sufficient plant stand and then thinned to one plant per hill. As recommended by MARC, 100 

kg/ha DAP  was applied at planting and 50 kg/ha urea was side dressed at 35 days after 

planting for the experiments conducted at Melkasa, Dhera, Meiso and Ziway. At Pawe 100 

kg/ha DAP and 50 kg/ha urea was applied at planting while 50 kg/ha urea was side dressed at 

knee height following the research recommendation given for the area. Urea and diamonium 

phosphate (DAP) were used as sources of N and P2O5, respectively. Other crop management 

practices such as land preparation, weeding, disease and insect control were applied following 

research recommendations for each locality. 
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Table 2. Code and pedigree of inbred lines, testers and checks used in the study 

Line 

code 
Pedigree 

1 [[Ent320:92SEW2-77/[DMRESR-W]EarlySel-#I-2-4-B/CML386]-B-11-3-B-2-#-B*4] 

2 [INTA-F2-192-2-1-1-1-B*7-6-B] 

3 [ZEWBc1F2-216-2-2-B-1-B] 

4 [[SC/CML204//FR812]-X-30-2-3-2-1-BBB] 

5 [ZEWAc1F2-219-4-3-B-1-B*5] 

6 [[CML141/[CML141/CML395]F2-1sx]-4-2-1-B*6] 

7 
[[[Ent52:92SEW1-2/[DMRESR-W]EarlySel-#L-2-1-B/CML386]-B-22-1-B-4-#/[TIWD-

EarlySelSynS1#-2-XX-2-B/[SW1SR/COMPE1-W]-126-2-1-B]-B-11-4-B-2-#]-B-2-B-1-B*5] 

8 [Syn01E2-64-2-B-2-B] 

9 [[INTA-2-1-3/INTA-60-1-2]-X-11-6-3-BBB] 

10 
[[[P501c2/[EV7992#/EV8449-SR]C1F2-334-1(OSU8i)-1-1-X-X-BB]-4-1-1-4-2-1-

B/[[[K64R/G16SR]-39-1/[K64R/G16SR]-20-2]-5-1-2-B*4/CML390]-B-38-1-B-3-#]-B-7-B-1-B*6] 

11 [PL15QPMc7-SR(BC0FS#)-balbreedbulk-31-1-4-4-2-B-3-B] 

12 [DTPWC9-F104-5-6-1-1-B*4] 

13 [(CLQRCWQ50/CLQRCWQ26)-B-47-BB] 

14 
[[NC348-BB/[Ent67:92SEW1-17/[DMRESR-W]EarlySel-#I-3-3-B/CML391]-B-31-B-3-#-2-

B//[[NAW5867/P30-SR//NAW5867]-84-1/[NAW/P30//NAW]-3-1]-6-2-2-1-3-B-3-B]-2-1-1-BBB] 

15 [[INBRED-A/INBRED-B]-BBB-1-BBB] 

16 
[[(CML395/CML444)-B-4-1-3-1-B/CML444//[[TUXPSEQ]C1F2/P49-SR]F2-45-7-1-2-BBB]-2-1-2-

2-B*5] 

17 [[CML198/90323(B)-1-X-5-SN]-B-31-2-1-B*6] 

18 [[CML199/[EV7992#/EV8449-SR]C1F2-334-1(OSU8i)-6-3-Sn]-B-23-2-2-B*8] 

19 [[CML312/[TUXPSEQ]C1F2/P49-SR]F2-45-3-2-1-BB//INTA-F2-192-2-1-1-1-B*4]-1-5-1-1-1-B*7] 

20 [[CML312/[TUXPSEQ]C1F2/P49-SR]F2-45-3-2-1-BB//INTA-F2-192-2-1-1-1-B*4]-1-5-1-1-2-B*6] 

21 [[CML312/CML445//[TUXPSEQ]C1F2/P49-SR]F2-45-3-2-1-BBB]-1-2-1-1-2-B*5] 

22 [[CML312/CML445//[TUXPSEQ]C1F2/P49-SR]F2-45-3-2-1-BBB]-1-2-1-1-3-B*5] 

23 [[CML442/CML197//[TUXPSEQ]C1F2/P49-SR]F2-45-7-3-2-BBB]-2-1-1-1-1-B*4] 

24 [[CML442/CML197//[TUXPSEQ]C1F2/P49-SR]F2-45-7-3-2-BBB]-2-1-1-2-1-B*4] 

25 [[CML442/CML197//[TUXPSEQ]C1F2/P49-SR]F2-45-7-3-2-BBB]-2-1-1-2-3-B*5] 

26 [[CML444/CML395//DTPWC8F31-1-1-2-2-BB]-4-2-2-2-1-B*4] 

27 [[CML444/CML395//SC/ZM605#b-19-2-X]-1-2-X-1-1-B*6]-2-2-2-1-B*5] 

28 [[LZ955355/LZ956441]-B-2-3-3-B-3-B*7] 
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Table 2 (Continued) 

29 [[SYN-USAB2/SYN-ELIB2]-12-1-1-1-B*4] 

30 [[SYN-USB2/SYN-ELIB2]-81-1-1-1-B*6] 

31 
[[TS6C1F238-1-3-3-1-2-#-BB/[EV7992#/EV8449-SR]C1F2-334-1(OSU8i)-10-7(I)-X-X-X-2-BB-1]-

1-1-2-1-1-B*6] 

32 [CML312-B] 

33 [CML442-B] 

34 [CML443-B] 

35 [CML489-B] 

36 [MAS[206/312]-23-2-1-1-B*5] 

37 [MAS[MSR/312]-117-2-2-1-B*4] 

38 [P501SRc0-F2-4-2-1-1-BBB] 

39 [P501SRc0-F2-47-3-1-1-BBB] 

40 [Z97SYNGLS(B)-F2-188-2-1-2-B*6] 

41 [ZM523A-16-2-1-1-B*4] 

42 [ZM523B-29-2-1-1-B*4] 

43 [ZM621A-10-1-1-1-2-B*6] 

    Testers 

1 CML 312 / CML 442 (tester A) 

2 CML 202 / CML 395 (tester B) 

      Standard checks 

1 BH- 543 

2 Melkasa-2 
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3.4. Data Collected 

  

1. Anthesis date (AD): Measured as number of days after planting to when 50% of the plants 

shed pollen.. 

2. Silking date (SD): It is the number of days from planting to when 50% of the plants in the 

plot showed up silks of 2-3 cm length. 

3. Plant height (PH): Measured as the height from the soil surface to the base of tassel 

branching; the record was taken two weeks after pollen shed has ceased. 

4. Ear height (EH): Measured as height from the soil surface to the node bearing the upper 

most ear of the same plant used to measure plant height two weeks after pollen shed has 

ceased.. 

5.  Stand count at harvest (SCH): The total number of plants per plot at harvest was 

recorded. 

6. Number of ears harvested:  The total number of ears harvested per plot at harvest was 

recorded.  

7. Ears per plant (EPP): The number of harvested ears in each plot was divided by the stand 

count at harvest.  

8. Grain moisture (MOI): Percent water content of grain was measured at harvest. 

9. Thousand kernel weight (TKWT): The weight in grams of 1000 random kernels were 

weighed from each plot using sensitive balance and was adjusted to 12.5 % moisture level. 

10. Number of rows per ear (RPE): The total number of kernel rows of the ear were 

counted from five randomly taken ears and the average value were used as number of rows 

per ear. 

11. Number of kernels per row (KPR): Number of kernels per row was recorded by 

counting kernels in each row from five randomly taken ears and the average value was 

recorded. 

12. Ear length (EL): The lengths of five random taken ears were measured from the base to 

the tip in cm and the average value was used. 

13. Ear diameter (ED): The diameters of 5 random taken ears were measured at mid-length 

in cm and the average value was used. The same ears used for measuring ear length were used 

to measure ear diameter. 

14. Grain yield (GY): The total grain yield from all the ears of each experimental unit were 

used to estimate grain yield (in ton per hectare) after moisture level was adjusted to 

12.5%. 
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3.5. Statistical Analysis 

 
3.5.1. Analysis of variance 

 

Analyses of variances (ANOVA) were conducted for grain yield and other agronomic traits 

for each location. Genotypes were considered fixed effects while replications and incomplete 

blocks within replications were regarded as random effects. Prior to combined data analysis 

across locations, Bartlett’s test for grain yield and related traits were conducted to test 

homogeneity of error variances (Gomez and Gomez, 1984). Means adjusted for incomplete 

block effects were used to conduct combined analysis of variance using PROC GLM in SAS 

(SAS, 2003).  The pooled error mean squares were obtained by dividing the sum of the error 

sums of square from all location ANOVA with the corresponding sum of the error degrees of 

freedom. In the combined analysis, environments and replications within environments were 

considered random and genotypes as fixed effects. 

 

Genotypic component of variation was partitioned into variation due to hybrids, checks and 

checks versus hybrids whereas the hybrid component of variation was partitioned into 

variation due to line (female), tester (male) and line (female) x tester (male) interaction.  

 

3.5.2. Combining ability analysis 

 

Line x tester analysis was done for traits that showed statistically significant differences 

among crosses in each environment and across environment using the adjusted means based 

on the method described by Kempthorne (1957). General combining ability (GCA) and 

specific combining ability (SCA) effects for grain yield and other agronomic traits were 

calculated using line x tester model. 

 

The F-test of mean square due to lines and crosses were computed against mean square due to 

error for individual location analysis (Singh and chaudary, 1999). For across locations 

ANOVA, the F-test for the main effects such as crosses, lines and lines x testers interaction 

mean square was tested against their respective interaction with the locations. The mean 

squares attributable to all the interactions with the locations were tested against pooled error 

mean square. Significances of GCA and SCA effects of the lines and hybrids were determined 

by t-test using standard errors of GCA and SCA effects. The main effects due to females and 
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males were considered as GCA effects while, male x female interaction effects were 

represented as the SCA. Skeletons of ANOVA for individual and across locations are 

indicated in Tables 3 and 4, respectively. 

 

Table 3.  Skeleton of ANOVA for combining ability for individual location 

  Mean squares                     

Source of variation Df Ms   

     Block/Rep Rep(Bloc-1)   

     Genotype(G) G-1 MSg  

            Cross(Cr) Cr-1 MScr  

Line(L) L-1       MSl  

   Tester(T) T-1       MSt  

                       Line x Tester (L x T) (L-1)(T-1)     MS(lxt)  

             Cheks (Ck) Ck-1 MSck  

             Ck vs Cr 1 MS ck vs cr  

         Error (R-1) (G-1) MS error   

 

 

The mathematical model used for the combining ability analysis for one location is given as:  

Yijk= µ+ li + tj + (l x t)ij + eijk;  

Where, Yijk is the k
th

 observation on i x j
th
 progeny,  

µ is the general mean,   

li is the effects of the i
th
 line,  

 (l x t)ij is the interaction effect of the cross between the i
th

 line and j
th
 tester and  

 eijk is the error term associated with each observation. 
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Table 4. Skeleton of ANOVA for combining ability combined over locations 

               Mean squares                     

Source of variation df Ms   

       Location (Loc) Loc-1 

          Rep/loc Loc(r-1) 

       Genotype(G) G-1 MSG 

             Crosses(Cr) Cr-1 MSCr 

                   Line(L) L-1 MSL 

                   Tester(T) T-1 MST 

                   Line x Tester (L x T) (L-1)(T-1) MS(LxT) 

              Cheks (Ck) Ck-1 MSCk 

              Ck vs Cr 1 MS Ck vs Cr 

             Loc*G (G-1)(Loc-1) MS(LocxG) 

 Cr*Loc (Cr-1)(Loc-1) MS(LocxCr) 

                        L*Loc (L-1)(Loc-1) MS(LocxL) 

 T*Loc (T-1)(Loc-1) MS(LocxT) 

         L x T(Loc) (L-1)( T-1)(Loc-1) MS(LxT) x Loc 

     Ck*Loc (Ck-1)(Loc-1) MS(CkxT) 

                Cr vs Ck (Loc) Loc-1 MS(Ck vs Cr x Loc) 

           pooled error Loc (G-r(block-1)) MS pooled error   

Ck= checks, Cr = crosses, G= genotypes, L= lines or females,  Loc = location,   MScr = mean sum of 

squares due to crosses,  MSG = mean sum of squares due to genotypes , MSck = mean sum of squares 

due to checks, MSl =mean sum of squares due to females (lines), MS l x t = mean sum of squares due 

to females x male, MScross x Loc= mean sum of squares due to cross x loc, MS lxloc = mean sum of 

squares due to l x loc, MStxloc = mean sum of squares due to t x loc, MS (lxt)xloc = mean sum of 

squares due to (t x l) x loc, MS pooled error= mean sum of squares due to pooled error, r = replication, 

T = testers or males 

 

The mathematical model used for the combining ability analysis for across location is given   

as: Yijkl = μ + al + vij + (av)ijl + eijkl  

Where Yijkl = observed value from each experimental unit, 

μ = the general mean,  

al = location effect,  

vij = F1 hybrid  

(av)ijl = interaction effect between i
th
 F1 hybrid and l

th
 location, 
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eijkl = residual effect. 

 

3.5.2.1. General and specific combining ability effects 

 

The GCA effects due to lines and testers were calculated as a deviation of line or tester mean 

from the overall hybrid mean, as follows:  

Lines: 
ltr

X

tr

X
g i

i

.....
  

Where, gi = GCA effect for i
th

 line; gj = GCA effect for jth tester; X.j. = sum of the j
th

 tester; 

Xi.. = Sum of the ith line; X… = grand sum; l = number of lines; t = number of testers and r = 

number of replications. 

 

The specific combining ability effects of LxT cross combinations were calculated as:  

 

 

 

Where,    Sij = SCA effect of the ij
th

 cross; Xij. = i x j cross sum; Xi.. = ith line sum; X.j.= j
th
 

tester sum; l = number of lines, t = number of testers and r = number of replications. 

 

For GCA and SCA effects of lines and tester, and cross combinations, the restriction 

0 ji gg
  

and 0 ijS  was imposed.  

 

3.5.2.2. Standard errors for combining ability effects  

 

Standard errors for the combining ability effects were calculated to test the significance of 

GCA and SCA effects or that of the difference between any two GCA and SCA effects; that is 

SE and SED were calculated as follows: 

1. Standard error (SE) for general combining ability effects (GCA) 

a) Line: SE (GCA for line) = (Mse/rt) 
1/2

 

b) Tester: SE (GCA of tester) = (Mse/rl) 
1/2

 

2. Standard error (SE) for specific combining ability effects 

SE (SCA effects) = (Mse/r) 
1/2

 

3. Standard error of the differences (SED) between general combining ability effects 

ltr

X

lr

X

tr

X

r

X
S

jiij

ij

........
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SE (gi-gj) line = (2Mse/rt) 
1/2 

SE (gi-gj) tester = (2Mse/rl) 
1/2

 

4. Standard error of the differences (SED) between specific combining ability effects 

     SE (Sji-Skl) = (2Mse/r) 
½ 

 

3.5.3. Classification of the inbred lines into heterotic groups  

 

Grain yield SCA estimates were used to determine the heterotic grouping of the lines used for 

the current study. Lines that showed positive and significant grain yield SCA effects with 

CML312/CML442 (heterotic group A), and negative and significant SCA effect with 

CML202/CML395 (heterotic group B) were classified as heterotic group B, and vice versa. In 

addition, inbred lines with positive and significant GCA effects were classified into heterotic 

groups based on positive or negative SCA effects they exhibited when crossed with the two 

testers. Inbred lines that showed low GCA effects and non-significant SCA effects when crossed 

with the testers were not classified into heterotic groups. 
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4. RESULTS AND DISCUSSION 

 

4.1.  Analysis of Variance 

 

Analyses of variances were conducted for grain yield (GY), anthesis date (AD), silking date 

(SD), plant height (PH), ear height (EH), number of ears per plant (EPP), 1000-kernel weight 

(TKWT), number of rows per ear (RPE), number of kernels per row (KPR), ear length (EL) 

and ear diameter (ED) for five locations; namely, Melkasa, Ziway, Dhera, Mieso and Pawe 

(Appendices 1-5). Combined analyses were performed for the traits that showed significant 

genotypic mean squares for individual location analysis and homogenous error variance 

analyzed using Barttlet’s test (Gomez and Gomez, 1984). Accordingly, the combined analyses 

of variances were performed for EPP, ED and RPE across all locations, for GY and EL across 

four locations (excluding Dhera), for PH and EH across four locations (excluding Melkasa) 

for TKWT across four locations (excluding Ziway), for KPR across four locations (excluding 

Pawe) and for AD and SD across three locations (Melkasa, Ziway and Pawe) (Tables 5). 

 

Highly significant differences (P<0.01) were observed among the genotypes for AD and SD 

at all locations. The mean squares due to genotypes were significant at all locations for GY, 

RPE, EL, ED, KPR and PH. Genotypic effects were significant for EPP for all locations 

except for Dhera and Pawe. Mean square due to genotypes for TKWT was significant at most 

locations except at Ziway and mean square for genotype was significant for EH at most 

locations except at Melkasa (Appendices 1-5). On the other hand, mean squares due to checks 

and checks versus crosses were not significant for most of the traits at all locations.  

 

Across locations analysis of variance showed highly significant (p<0.01) differences among 

environments for all studied traits. Mean squares due to entries were significant for all traits 

except for EPP and TKWT. Mean squares due to checks and checks versus crosses were not 

significant for most of the traits. Entry (genotype) by environment interactions were highly 

significant (p<0.01) for all traits except EPP (Table 5).  

 

The combined analyses of variances revealed highly significant (P<0.01) differences among 

the 88 genotypes for most of the traits studied, indicating the presence of inherent variation 

among the materials, which makes selection possible. Desirable genes from this germplasm  
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can effectively be utilized to develop high performing hybrids. Similarly, several previous 

studies reported significant differences among genotypes for GY and GY related traits in different 

sets of maize genotypes (Dagne et al., 2007; Teshale, 2001; Jemal, 1999; Amiruzzaman et al., 

2010; Hadji, 2004; Gudeta, 2007). 

 

The interaction between genotypes and locations (G x loc) were highly significant for most of 

the traits, indicating that genotypes performed differently across locations, that is, the relat ive 

performances of the genotypes were influenced by the varying environmental conditions. In 

consistent with the present findings, Jumbo and Carena (2008) reported significant G x loc 

interaction for GY, AD, SD, EH, EL and ED. Similarly, Pswarayi and Vivex (2008) reported 

significant G x loc interaction for GY, AD, SD, PH and EH and Gudeta (2007) reported 

significant G x loc interaction for GY, RPE and ED whereas he reported non-significant G x 

loc interaction for EPP. 
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Table 5. Combined analysis of variance for GY, PH, EH, EL, KPR and TKWT (across four locations), AD and SD (across three locations) and 

EPP, RPE and ED (across five locations) of line by tester crosses involving 43 lines and two testers. 

 

 Source DF GY t/ha  PH cm EH cm EL cm KPR # TKWT gm DF AD days SDdays DF EPP # RPE # ED cm 

Location(Loc) 3 420.10* 112963.0** 15834.0* 367.60* 909.9** 521867.60* 2 2386.6** 2004.1* 4 0.97** 5.79** 9.80** 

Entry(E) 87 2.15** 256.08** 235.43* 3.66** 16.74** 2139.70 87 12.55** 12.62** 87 0.02 1.66** 0.12** 

   Cross(Cr) 85 2.08** 254.84** 238.49** 3.53** 16.93** 2158.59 85 12.31** 12.41** 85 0.02 1.67** 0.13** 

GCA line(L)  42 2.51** 396.17** 379.30** 5.10** 19.05** 3212.06 42 21.60** 21.16** 42 0.03* 2.82** 0.19** 

GCAtester(T) 1 1.57 14.61 325.85 3.94 22.41 22.16 1 18.99* 23.95* 1 0.001 0.19 0.42 

SCA(L x T) 42 1.67** 119.23 95.59* 1.96** 14.68* 1155.98 42 2.86** 3.39** 42 0.01 0.56** 0.06** 

Check(Ck) 1 5.28 76.26 208.08 13.01 12.01 397.62 1 44.83 42.67 1 0.02 0.58* 0.001 

   Ck vs Cr 1 5.15** 18.95 3.02 4.84 5.22 2276.56 1 0.38 0.45 1 0.01 1.43** 0.05 

Loc*E 261 0.92** 96.38** 69.38 1.26** 6.64* 2172.40** 174 1.49** 1.51** 348 0.02** 0.31 0.04** 

   Cr*Loc 255 0.92** 94.92** 68.12 1.22** 6.65* 2176.74** 170 1.45** 1.49** 340 0.02** 0.31 0.04** 

          L*Loc 126 1.22** 95.72** 74.31 1.33** 6.88* 2404.72** 84 1.45** 1.73** 168 0.02** 0.32 0.04** 

          T*Loc 3 0.91 351.40** 45.41 1.40 4.17 4425.90* 2 0.91 0.08 4 0.03** 0.41 0.06* 

    L x T x Loc 126 0.61* 88.02* 62.48 1.10 6.47 1895.20** 84 1.47** 1.27** 168 0.02** 0.31 0.03** 

     Ck*Loc 3 1.30 279.28** 465.73 5.12 7.31 2196.97 2 1.02 2.22 4 0.01 0.03 0.09* 

Cr vs Ck(Loc)   4 0.53 40.57 90.90* 1.36 4.99 1182.39 3 2.64 1.48 5 0.02 0.01 0.14** 

Pooled Error 268 0.45 63.08 62.47 0.90 5.30 1151.41 201 0.59 0.70 335 0.01 0.28 0.02 

% contr. GCA 

 

60 77 80 83 57 76 

 

89 86 

 

78 83 77 

% contr. SCA   40 23 20 27 43 24   11 14   22 17 23 
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4.2.  Mean Performance of Genotypes  

 

The results observed in individual locations suggested that, higher mean GY were obtained 

from Pawe (7.26 t/ha) and Melkasa (8.18 t/ha) while lower mean GY were obtained from 

Dhera (2.6 t/ha), Mieso (3.68 t/ha) and Ziway (4.3 t/ha) (Appendices 6-10). The low yield 

could be attributed to moisture stress in these areas. Even though Melkasa is a low moisture 

stress area, the genotypes had high grain yield as compared to the other locations, which 

could be attributed to the favorable rainfall amount and distribution received in the evaluation 

year. In line with the current finding, Zerihun (2011) reported high grain yield performances 

of maize varieties evaluated at Pawe and Melkasa at during the same season. 

 

On average, the genotypes evaluated were late in anthesis and silking at Dhera, Melkasa and 

Ziway as compared to Pawe and Mieso. This is because these locations have relatively, lower 

temperature as the locations are situated at higher altitudes as compared to Pawe and Miesso 

(Appendices 6-10). Similar to the present results, Zerihun (2011) reported later anthesis and 

silking of maize varieties at Ziway and Melkasa, as compared to Pawe. Most of the crosses 

produced higher GY across locations also had taller PH and EH relative to the mean value of 

checks. These results agree with the findings of Zerihun (2011), who reported higher grain 

yields in late maturing and taller varieties.  

 

In combined analysis across locations, mean GY of the genotypes were 4.85 t/ha ranging from 

7.5 t/ha to 4.02 t/ha. Cross L23 x T2 (7.5 t/ha) followed by the crosses L24 x T2 (7.38 t/ha) 

and L41 x T2 (7.27 t/ha) had higher GY while crosses L14 x T2 (4.02 t/ha) and Melkasa-2 

(4.25 t/ha) showed lower GY. AD ranged from 74.83 (L23 x T1) to 66 (L5 x T1) with overall 

mean of 71.18. Mean SD was 72.94 with a range of 76.8 (L14 x T2) to 67.3 (L5 x T1). PH 

ranged from 201.18 cm (L23 x T1) to165.1 cm (L5 x T1) with a mean of 187.18 cm while EH 

ranged from 117.45 cm (L30 x T2) to 74.7 cm (L9 x T2) with a mean of 96.72 cm (Table 13). 

Mean EPP of genotypes were 1.1 ranged from 0.8 (L32 x T1) to 1.4 (L15 x T2). TKWT 

ranged from 230.2 (L15 x T1) to 335.6 (L14 x T2) gm with overall mean of 283.47 gm. Mean 

RPE was 13.80 ranged from 12.5 (L5 x T1) to 15.5 (L3 x T2). Mean KPR was 33.8 with the 

lowest 28.63 (L21 x T2) and the highest 39.08 (L34 x T1) (Table 6).   

 

A number of crosses showed better performances for more than one trait as compared to the 

best hybrid check used in the study. Therefore, crosses that had high grain yield could be used 
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in the breeding program to improve the grain yield and other traits of interest. Similarly, 

hybrids that were earlier in anthesis and silking, shorter in ear and plant heights could be used 

as sources of genes for development of early maturing and shorter statured varieties. In 

agreement with the present results, a several investigators in their studies identified 

experimental varieties performing better than the best check for most yield and related traits 

(Dagne et al., 2010; Gudeta, 2007; Zerihun, 2011). 
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Table 6. Across location estimates of mean values for grain yield and related trait 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crosses GY (t/ha) AD(days) SD(days) PH (cm) EH (cm) EL (cm) KPR (#) EPP (#) RPE (#) ED (cm) TKWT(gm) 

L1 x T2 5.36 69.40 70.60 170.93 85.18 14.33 34.90 1.00 14.72 4.52 250.1 

L2 x T2 5.84 67.53 69.43 190.80 88.45 15.10 35.45 1.18 13.96 4.52 296.4 

L3 x T2 5.00 68.07 69.20 186.10 96.40 14.63 32.93 1.02 15.48 4.40 231.9 

L4 x T2 5.31 71.67 73.97 195.63 99.05 15.43 34.98 0.96 13.80 4.44 278.1 

L5 x T2 4.58 67.77 69.53 173.60 88.80 13.53 33.18 1.06 13.04 4.18 263.5 

L6 x T2 5.21 72.90 74.63 196.03 103.53 15.43 35.30 1.00 13.52 4.36 261.5 

L7 x T2 5.37 69.37 71.40 192.08 89.03 16.30 34.48 0.90 14.10 4.52 319.3 

L8 x T2 5.70 68.83 70.87 179.53 83.70 15.15 31.98 1.04 13.40 4.18 295.2 

L9 x T2 4.99 69.53 71.90 184.83 92.03 14.78 32.85 1.02 13.40 4.36 296.2 

L10 x T2 5.99 72.60 74.43 184.8 99.25 15.75 34.40 1.08 14.28 4.34 247.1 

L11 x T2 6.26 68.80 70.93 185.18 103.55 15.55 32.58 1.06 14.48 4.42 295.2 

L12 x T2 5.41 71.77 73.47 181.15 90.98 13.75 33.53 1.26 13.14 4.16 251.1 

L13 x T2 6.25 71.13 72.87 195.83 99.83 15.43 33.45 1.12 14.44 4.48 268.2 

L14 x T2 4.02 74.63 76.80 181.60 103.08 15.13 32.63 0.94 13.44 4.42 335.6 

L15 x T2 5.51 72.13 73.80 187.25 105.33 14.60 35.93 1.14 13.20 4.20 250.6 

L16 x T2 5.54 71.63 73.43 184.75 95.20 14.85 31.68 1.10 14.34 4.40 293.6 

L17 x T2 4.88 73.67 74.90 183.10 103.75 14.20 33.40 1.04 13.50 4.74 322.7 

L18 x T2 4.87 70.87 73.27 181.13 92.90 15.05 34.55 1.06 13.64 4.32 278.1 

L19 x T2 6.21 70.13 71.40 197.65 107.38 14.85 32.75 1.14 13.28 4.50 312.4 

L20 x T2 5.52 70.50 73.27 193.93 101.63 14.73 31.40 0.98 14.24 4.64 294.5 
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 Table 6 (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L21 x T2 6.33 69.83 72.40 191.28 105.30 13.20 28.63 1.06 13.90 4.62 294.0 

L22 x T2 6.40 68.23 69.53 181.83 99.23 14.85 33.65 1.08 13.88 4.64 300.4 

L23 x T2 7.50 73.37 74.90 187.20 100.48 15.85 36.28 1.16 13.28 4.56 289.6 

L24 x T2 7.38 74.43 75.73 195.98 98.03 15.55 34.23 1.14 13.38 4.40 269.2 

L25 x T2 6.90 73.07 74.40 191.53 98.48 15.48 36.80 1.18 13.04 4.44 245.9 

L26 x T2 5.67 72.03 73.93 178.05 93.58 14.98 32.40 1.02 14.64 4.58 256.9 

L27 x T2 6.38 71.93 74.13 198.55 96.08 15.30 35.35 1.00 13.08 4.50 286.8 

L28 x T2 6.14 70.60 72.37 193.53 98.10 15.05 31.70 1.12 13.52 4.42 305.0 

L29 x T2 6.25 72.60 74.03 193.05 105.33 16.08 34.10 1.20 14.04 4.36 276.6 

L30 x T2 6.49 74.07 76.20 192.95 117.45 16.18 35.50 1.02 13.32 4.44 268.5 

L31 x T2 5.84 70.83 72.73 186.68 94.45 15.53 35.23 1.00 13.76 4.38 289.1 

L32 x T2 6.12 70.43 72.30 191.00 97.65 16.13 34.03 1.04 14.40 4.56 269.2 

L33 x T2 6.78 71.40 73.47 190.08 98.10 17.83 37.40 1.02 13.80 4.48 273.2 

L34 x T2 4.82 74.23 76.37 176.38 93.18 16.78 33.63 1.02 12.96 3.94 273.8 

L35 x T2 4.78 74.27 76.23 182.23 94.43 17.50 35.95 1.00 13.40 4.06 305.3 

L36 x T2 6.48 72.33 74.40 194.83 96.38 17.18 35.35 1.02 15.08 4.74 269.9 

L37 x T2 6.29 70.30 71.77 175.03 92.55 16.50 37.25 1.06 13.80 4.38 309.6 

L38 x T2 5.36 73.63 75.30 183.60 97.55 14.43 30.43 1.08 14.12 4.26 292.4 

L39 x T2 5.89 73.27 75.07 185.20 97.03 17.00 34.9 1.08 13.86 4.32 301.7 

L40 x T2 5.28 73.07 74.83 184.45 108.05 16.03 35.15 1.00 14.08 4.38 275.8 

L41 x T2 6.49 73.00 73.93 188.38 88.98 16.78 35.73 1.04 12.98 4.48 327.1 
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 Table 6 (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L42 x T2 6.00 72.53 73.70 186.83 103.08 15.95 35.83 1.04 13.84 4.20 278.7 

L43 x T2 6.44 70.43 71.90 187.15 97.68 15.50 35.05 1.04 13.72 4.48 262.4 

L1 x T1 5.91 68.13 69.70 175.45 93.73 13.83 31.85 1.18 14.34 4.48 253.2 

L2 x T1 6.21 67.23 69.17 191.05 85.18 14.95 32.55 1.06 14.28 4.58 302.7 

L3 x T1 5.70 68.43 70.20 178.53 96.23 15.75 35.88 1.00 15.12 4.4 258.1 

L4 x T1 6.25 69.43 71.50 194.00 90.18 15.78 35.35 0.94 13.18 4.42 290.2 

L5 x T1 5.42 66.00 67.30 165.10 79.25 14.20 32.98 1.02 12.48 4.32 282.8 

L6 x T1 5.59 73.27 74.80 196.85 107.95 14.88 33.30 1.02 14.84 4.52 248.1 

L7 x T1 6.75 67.10 69.37 177.78 88.03 16.48 36.93 0.94 13.60 4.58 322.7 

L8 x T1 5.19 67.30 68.60 165.43 74.70 15.73 33.55 1.04 13.36 4.18 272.9 

L9 x T1 5.48 70.00 73.13 186.15 98.03 14.58 32.10 1.04 13.80 4.46 269.0 

L10 x T1 6.20 72.13 74.13 192.88 105.83 15.00 35.03 1.06 14.38 4.46 256.7 

L11 x T1 5.78 68.07 69.57 190.40 101.05 15.70 34.65 1.10 14.04 4.34 300.6 

L12 x T1 5.19 73.43 74.77 183.00 90.15 13.38 30.90 1.18 13.40 4.28 281.2 

L13 x T1 7.02 69.97 72.03 200.83 97.73 15.98 35.08 1.12 15.24 4.64 267.6 

L14 x T1 5.88 72.80 73.77 195.18 99.33 15.10 31.00 0.96 14.14 4.64 280.2 

L15 x T1 5.52 70.43 72.83 184.83 99.00 15.25 37.20 1.16 13.32 4.36 230.2 

L16 x T1 4.81 70.77 72.97 190.30 95.78 14.83 34.30 1.04 14.28 4.54 268.5 

L17 x T1 6.75 71.73 73.23 194.08 102.90 14.80 33.68 1.06 13.62 4.76 301.1 

L18 x T1 5.96 69.50 71.40 177.28 84.40 14.85 35.75 1.04 13.76 4.54 295.1 

L19 x T1 5.24 71.30 72.70 194.40 95.60 14.03 28.85 1.06 13.36 4.56 276.4 
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 Table 6 (Continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L20 x T1 5.46 71.67 73.27 186.68 96.70 14.08 29.30 1.02 13.92 4.46 284.7 

L21 x T1 6.73 70.27 71.80 191.13 104.95 14.73 32.25 1.06 13.80 4.72 322.3 

L22 x T1 5.36 69.30 70.80 186.23 105.83 15.43 31.10 1.08 13.68 4.52 276.8 

L23 x T1 7.04 74.83 76.30 201.18 102.88 15.68 34.20 1.10 13.52 4.56 291.0 

L24 x T1 6.46 72.97 74.33 199.33 96.33 15.60 34.60 1.14 13.22 4.52 315.7 

L25 x T1 6.32 74.30 76.10 199.65 108.03 14.85 32.43 1.12 12.82 4.26 274.0 

L26 x T1 6.44 70.67 72.30 182.53 92.38 15.30 35.55 1.00 14.32 4.80 312.1 

L27 x T1 6.67 71.70 73.70 189.70 95.63 16.08 35.95 1.04 13.24 4.62 277.1 

L28 x T1 6.00 69.87 71.60 187.13 98.98 15.33 33.75 1.04 13.64 4.48 291.7 

L29 x T1 6.48 72.47 74.23 200.00 108.65 15.63 34.30 1.10 15.04 4.64 272.0 

L30 x T1 7.11 72.77 74.47 194.93 106.15 16.30 34.88 1.04 13.60 4.56 293.5 

L31 x T1 6.10 69.43 71.07 182.00 84.48 15.25 34.43 1.02 13.76 4.48 291.7 

L32 x T1 4.38 73.43 75.17 178.50 85.75 14.10 29.20 0.96 14.28 4.30 242.8 

L33 x T1 4.42 73.27 75.67 183.35 82.63 14.18 31.18 1.02 13.88 4.24 243.2 

L34 x T1 6.28 70.97 72.40 189.85 95.45 17.15 39.08 1.16 13.86 4.34 288.5 

L35 x T1 5.44 72.40 74.43 184.90 93.53 16.35 36.03 1.10 14.20 4.28 267.0 

L36 x T1 5.04 71.83 73.90 183.20 90.88 14.63 32.00 1.04 14.24 4.46 256.3 

L37 x T1 5.81 69.60 71.57 167.85 80.13 15.83 32.85 1.06 13.70 4.34 292.2 

L38 x T1 5.84 72.60 73.67 190.30 101.70 15.53 34.13 1.04 14.16 4.56 307.5 

L39 x T1 5.54 72.70 74.47 193.13 111.93 17.15 34.83 1.12 13.32 4.34 314.2 

L40 x T1 6.03 72.10 73.20 192.20 100.90 14.35 32.68 1.02 14.16 4.60 288.2 
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 Table 6 (Continued)  

 

 

 

 

 

 

 

 

 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH = plant  height, RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight 

 

 

 

 

L41 x T1 7.27 71.17 73.17 197.28 99.40 15.48 32.00 1.14 13.6 4.52 326.8 

L42 x T1 6.88 70.13 71.33 177.70 96.53 16.53 36.50 1.04 13.46 4.32 298.8 

L43 x T1 5.65 72.03 73.43 187.13 91.65 14.40 30.80 1.06 13.12 4.44 298.8 

BH-543 5.88 73.67 75.33 188.75 102.43 17.40 35.90 0.98 14.44 4.36 293.1 

Melkasa- 4.25 68.20 70.00 182.58 92.23 14.85 33.45 1.06 13.96 4.38 307.2 

Cr mean 5.88 71.19 72.94 187.22 96.70 15.34 33.85 1.10 13.80 4.40 283.08 

Ck mean 5.07 70.93 72.67 185.66 97.32 16.12 34.67 1.00 14.2 4.40 300.2 

Mean 4.85 71.18 72.94 187.18 96.72 15.36 33.88 1.10 13.8 4.40 283.5 

LSD (5% 1.87 2.14 2.33 22.11 22.00 2.64 6.41 0.30 1.50 0.40 89.3 

CV 19.6 1.50 1.60 6.00 11.50 8.70 9.60 12.90 5.40 4.50 16.9 

Min 4.25 66.00 67.30 165.10 54.70 13.20 28.63 0.90 12.50 3.90 227.2 

Max 7.50 74.83 76.80 201.18 117.45 17.83 39.08 1.30 15.50 4.80 323.1 



41 
 

4.3.  Combining Ability Analysis  

 

Significant differences were observed among test crosses for grain yield at all individual 

locations and combined across four locations. The partitioning of significant crosses mean 

squares into general combining ability (GCA) and specific combining ability (SCA) showed 

that SCA mean squares to be significantly different  for grain yield at most individual 

locations except at Mieso (Appendices 6-10). In combined analysis, significant GCA and 

SCA mean squares were observed for grain yield (Table 5). Line GCA means squares were 

significantly different for grain yield at Melkasa, Dhera, Mieso and Pawe (Appendices 1-5) 

and combined across locations (Table 5) while tester GCA mean squares were significant 

only at Dhera and Pawe. Significant GCA and SCA mean squares implied the importance of 

both additive and non-additive gene actions in governing grain yield. In agreement with the 

present study Hadji (2004) found highly significant mean squares due to GCA and SCA for 

grain yield in diallel study of quality protein maize inbred lines. Mandefro (1999), Mandefero 

and Habtamu (2001), Dagne et al. (2007, 2010) and Demissew et al. (2011) have also 

reported the importance of both additive and non-additive gene actions in governing grain 

yield in maize. On the other hand, Bayisa (2004) found non-significant GCA effects for grain 

yield in line x tester study of transition highland inbred lines at Kulumsa. Gudeta (2007) 

carried out line x tester analysis of QPM versions of early generation highland maize inbred 

lines and reported significant GCA mean squares due to lines at Holeta and Kulumsa but non-

significant at Ambo and Haramaya. He also found highly significant GCA mean squares for 

grain yield due to testers and line x tester interactions at all locations. Similarly Legesse et al. 

(2009) reported significant GCA mean squares due to lines and testers and significant SCA 

mean squares for grain yield. Pswarayi and Vivek (2008) carried out diallel analysis among 

CIMMYT’s early maturing maize grmplsam and reported significant GCA mean squares and 

non-significant SCA mean squares for grain yield indicating that the importance of both 

additive and non-additive gene action for this trait. 

 

GCA sums of squares were larger than SCA sums of squares for GY at Melkasa (55%), Dhera 

(57%), Mieso (59%) and Pawe (77%) and when combined across the four locations (60 %) 

while SCA sums of squares were larger for GY (52%) at Ziway (Tables 5-10). The 

predominance of GCA sums of squares to SCA sums of squares for GY at most locations 

indicated the relative importance of additive gene action to non-additive gene action for this 

trait (Beck et al. 1990). In line with this study Pswarayi and Vivek (2008), and Legesse et al. 
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(2009) reported the preponderance of additive gene action in the inheritance of grain yield 

while in contrast to these findings, Bhatnagr et al. (2003) and Dagne et al. (2007)  previously 

reported dominant role of SCA gene action in the grain yield of maize.  

 

Mean squares due to crosses for anthesis and silking date were highly significant (P < 0.001). 

Line GCA and SCA mean squares were significant for anthesis and silking date at all 

locations and across three locations (Tables 5-10). Results of this study are in accordance with 

the findings of Ahmad and Saleem (2003) who reported significant mean squares due to GCA 

and SCA for days to anthesis and silking. Tester GCA mean squares were significant at 

Melkasa, Ziway, Pawe and across three locations while it was not significant at Dhera and 

Mieso (Tables 5-10). In line with this study Gudeta (2007) reported significant GCA effects 

due to testers at Ambo and Holeta but non-significant GCA effect due to tester at Kulumsa 

and Haramaya.  

 

GCA sums of squares were larger than SCA sums of squares for anthesis and silking dates at 

all locations (Appendices 1-5) and across three locations (Table 5). The predominance of 

GCA sums of squares to SCA sums of squares for these traits indicate the relative importance 

of additive gene action to non-additive gene action for the inheritance of these traits. In line 

with this study Ahmad and Saleem (2003) reported the preponderance of additive gene action 

in the inheritance of days to anthesis and days to silking. Legesse et al. (2009) reported the 

predominance of additive gene action in inheritance of days to silking.  

 

Mean squares due to crosses were significant for ear and plant heights across four locations 

and at all individual locations (Appendices 1-5) except for ear height, which showed non-

significant mean square at Melkasa. Combining ability analysis revealed highly significant 

GCA effects of lines for plant and ear height except at Mieso for plant height. On the other 

hand, tester GCA and SCA mean squares were significant at all locations except at Melkasa,  

Ziway (Appendices 1-5) and in combined analysis across four locations (Tables 5). Tester 

GCA and SCA mean squares were significant for ear height at Dhera (Appendix 3) and Pawe 

(Appendix 5) and also in combined analysis across four locations (Table 5). In line with these 

findings, Gudeta (2007) reported significant GCA and non-significant SCA mean squares for 

plant height. However, Hadji (2004), Dagne et al. (2010) and Demissew et al. (2011) found 

significant GCA and SCA mean squares for plant and ear height.  
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GCA sums of squares were larger than SCA sums of squares for plant height and ear height 

across four locations (Table 5) and at all locations except for ear height at Mieso (Appendices 

1-5). Similar to the present findings Glover et al. (2005)and Dagne et al. (2007) reported the 

preponderance of additive gene action in the inheritance of plant height.  

   

Mean squares due to crosses for number of ears per plant were significant only at Melkasa 

(Appendix 1) and Ziway (Appendix 2) while mean square due to SCA for the same trait was 

non-significant in all locatons (Appendices 1-5). Similar to the finding of the current study, 

Mandefro (1999), and Pswarayi and Vivek (2008) reported that non-additive gene action is 

not important in controlling number of ears per plant. Mean squares due to line GCA and 

tester GCA for number of ears per plant were significant only at Melkasa (Appendix 1). 

Similar to the current findings, Gudeta (2007) reported significant and non-significant mean 

squares due to tester GCA.  

 

GCA sums of squares were larger than SCA sums of squares for number of ears per plant at 

all locations except Pawe (Appendices 1-5). In contrast to present findings Pswarayi and 

Vivex (2008) reported the preponderance of non additive gene action in the inheritance of 

number of ears per plant.  

 

Significant differences were observed among crosses for thousand-kernel weight at all 

locations except at Ziway (Appendices 1-5) and across the five test locations (Table 5). Tester 

GCA and SCA mean squares were significant for thousand-kernel weight at Dhera and Mieso 

while line GCA mean squares were significant at Melkasa, Dhera, Mieso, Pawe (Appendices 

1-5) and combined across the five locations (Table 5). In agreement with the present results, 

Amiruzzaman et al. (2010), and Malik et al. (2004) and Dagne et al. (2007) reported 

significant mean squares due to GCA and SCA for thousand-kernel weight while Gudeta 

(2007) reported non-significant SCA mean squares. 

 

Mean squares due to crosses for number of kernels per row were significant at all locations 

(Appendices 1-5) and across four locations (Table 5). For number of kernels per row, mean 

squares due to line GCA were non-significant at Mieso but significant at the remaining four 

locations and across four locations while the mean square due to tester GCA was highly 

significant at Ziway but non-significant at the remaining four locations and across four 

locations where as mean squares due to SCA were significant at Melkasa and Mieso 
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(Appendices 1-5) and across four locations (Table 5) implying different genetic expressions at 

different locations. The current result is similar to the works of Dagne et al. (2007) and Hadji 

(2004) who reported the importance of both GCA and SCA at some locations. Even though, 

mean squares due to line GCA, tester GCA and SCA were variable at different locations both 

additive and non-additive gene actions would have involved in the inheritance of kernel rows 

per ear, which is in agreement with the work of Yoseph (1998). Based on across site result, 

both mean squares due to line GCA and SCA were highly significant for number of kernels 

per row (Table 10) and hence both additive and non-additive gene actions might have 

involved in the inheritance of this trait. 

 

Analysis of variance further indicated that mean squares due to crosses and line GCA were 

significant for ear length at all locations (Appendices 1-5) and combined across four locations 

(Table 5). This result is in line with the findings of Dagne et al. (2007), who reported 

significant mean squares due to GCA for ear length.  Mean square due to tester GCA was 

highly significant  at Ziway but not at other locations and also non-significant across locations 

where as mean squares due to SCA were significant at Mieso and across locations but not at 

the other locations (Appendices 1-5). Similar results were previously reported by Gudeta 

(2007), who reported significant tester GCA mean squares at one location among the four test 

locations but non-significant tester mean squares at the other three locations. On the other 

hand, Mandefro (1999) reported that non-additive gene action is not important for ear length. 

On the other hand, Dagne et al. (2007) confirmed the importance of additive gene action in 

controlling ear length. 

 

For number of rows per ear, mean squares due to line GCA was highly significant at all 

locations and across locations but tester GCA was not significant at all locations and across 

locations except at Mieso. Mean square due to SCA for the same trait was significant at 

Dhera, Pawe and across locations but not at Melkasa, Ziway and Mieso (Table 5) and 

(Appendices 1-5), which confirm the findings of Khotyleva and Tarutina (1973) who 

concluded that expression of genetic variances depends on the location in which  the material 

has been evaluated. In the current study, even though inconsistencies of mean squares were 

observed at different locations, the importance of both additive and non-additive genetic 

components was clearly observed. The present results are in line with the findings of Kalla et 

al. (2001) and Gudeta (2007), who found additive and non-additive gene actions in the 

inheritance of number of rows per ear. 
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For ear diameter, mean square due to line GCA was highly significant at Melkasa, Ziway, 

Dhera and Pawe and across locations (Table 5) and (Appendices 1-5). Mean square due to 

tester GCA was significant at Pawe, Melkasa and across locations but not significant at Ziway 

and Dhera (Table 5) and (Appendices 1-5).  Mean square due to SCA was significant at 

Melkasa, Dhera, Pawe and across locations but not at Ziway (Tables 5) and (Appendices 1-5). 

In line with the current findings, Khotyleva and Tarutina (1973) reported that variability of 

genetic variances in different locations. Even though inconsistence of mean squares were 

observed at different locations in current study, the importance of both additive and non-

additive genetic components were observed to responsible for ear diameter. The present result 

is in line with the findings of Jemal (1999), Hadji (2004), Dagne et al. (2007) and Gudeta 

(2007). 

 

Knowledge of the genetic control of characters is essential to the breeder when deciding on 

the selection method and breeding procedure to follow (Acquaah, 2007). In the present study, 

significance of mean squares due to GCAs of lines and testers, and SCA of crosses for the 

traits, indicate the role of additive and non-additive gene action in the inheritance of these 

characters. This has breeding implications, since hybridization methods such as multiple 

crossing and/or reciprocal recurrent selection, which utilizes both additive and non-additive 

gene effects simultaneously, could be useful in genetic improvement of the characters under 

consideration. However, GCA sum of squares components were greater than SCA sum of 

squares for most of the studied traits, suggesting that variations among crosses were mainly 

attributed to additive rather than non-additive gene effects. Several studies involving the 

inheritance of various quantitative traits in maize have revealed the importance of additive 

gene action (Vacaro et al., 2002; Vasal et al., 1992a; Betran et al., 2003; Shewangizaw, 

1985). Hence these parents can be crossed to develop high-yielding composites and synthetics 

that can be used directly or for further breeding work.  

  

Combined analysis of variance and combining ability effects across locations further 

indicated that entry and cross by environment interactions were highly significant (P < 0.01) 

for all traits except for number of rows per ear and ear height (Table 5). Partitioning of the 

cross by environment interactions (Cr x Loc) sum of squares into GCA by environment (GCA 

x loc) and SCA by environment (SCA x loc) showed that line GCA x loc effects were 

significant for all traits except for number of kernels row per ear and ear height, tester GCA x 
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loc were non-significant for grain yield, ear length, number of kernels per row, days to 

anthesis and silking and SCA x loc were  significant for grain yield, plant height, number of 

ears per plant, ear diameter, thousand kernel weight, days to anthesis and silking (Table 10). 

Significant line GCA x loc interactions indicates the variation of inbred line for their GCA 

effects under different environments and the need for selecting different parental inbred lines 

for specific location, whereas non-significant tester GCA x loc interactions for five traits 

above is an indication of similarity in general combining ability of testers under different 

environments. Significant SCA x loc interactions for the above seven traits suggesting that 

different hybrids are required for different locations. In line with the current study, Pixley and 

Bjarnason (1993) observed significant interaction of GCA and SCA with environments in 

diallel study of QPM inbred lines. Teshale (2001) reported significant mean squares due to 

female GCA x location for grain yield, thousand kernel weight and plant height and 

significant mean squares due to tester GCA x location for grain yield, ear diameter, thousand 

kernel weight, and plant height. He also found significant SCA x location mean squares for 

grain yield and some yield related traits. Similarly, Jemal (1999) reported significant mean 

squares due to interaction of GCA x location and SCA x location for grain yield and most of 

yield related quantitative traits. Similarly Dagne et al. 2010 found significant mean squares 

due to GCA x location for grain yield, days to anthesis and silking and plant height but found 

non-significant mean squared due to SCA x location for all traits. In line with the present 

results, Pswayari and Vivek (2008) reported significant GCA x location and SCA x location 

for grain yield, plant height, days to anthesis and number of ears per plant.  In contrary to 

present findings, Bayisa (2004) reported non-significant mean squares due to both interaction 

of female GCA x location and male GCA x location for grain yield, ear height and ear length. 

In the present study, significant interaction of genotype and cross with the location suggests 

that the crosses (genotypes) reacted differently to different environments. 
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4.3.1. General combining ability estimates 

 

General combining ability effects of grain yield and related agronomic traits are presented  

for individual locations (Appendices 11-15) and combined across locations (Table 7). 

 

Grain yield 

 

At Melkasa, line GCA effects for grain yield ranged between -1.65 t/ ha (L14) to 1.96 t/ ha 

(L23) (Appendix 11). Even though a total of 18 lines showed positive GCA effects for 

grain yield, only five inbred lines (L21, L23, L24, L37 and L41) were found to be the best 

general combiners for grain yield as these lines had positive and significant GCA effects. 

These inbred lines are desirable parents for hybrid development as well as for inclusion in the 

breeding program, as the lines may contribute favorable alleles in the synthesis of new 

varieties. Inbred lines with negative and significant GCA effects were L6, L9, L14 and 

L16, indicating that these lines were poor general combiners for grain yield (Appendix 11). 

 

Inbred parents L2 and L37 had higher GCA effects for grain yield (1.22 and 0.92 t/ha, 

respectively) at Dhera (Appendix 13). Although, 22 inbred lines showed positive GCA 

effects while only two inbred lines had significant GCA effects, indicating that these lines 

were good general combiners for high grain yield at this specific location. Four inbred 

lines such as L32 (-1.18), L33 (-0.63), L38 (-0.73) and L42 (-0.68) exhibited significant 

and negative GCA values suggesting that the lines were poor general combiners for grain 

yield. 

 

At Mieso, L13 and L41 had higher GCA effects for grain yield (1.63 and 1.53 t/ha, 

respectively) and L38 and L11 had lower GCA effects for the same trait (-0.81 and -0.78 

t/ha, respectively) (Appendix 14). Even though, 17 inbred lines had positive GCA effects 

for grain yield, only four, L2 (0.80 t/ha), L13 (1.63 t/ha), L21 (0.80 t/ha) and L41 (1.53 

t/ha), showed significant GCA effects. 

 

At Pawe, L30 (3.41 t/ha) and L23 (2.85 t/ha) had higher GCA effects whereas L12 (-2.69 

t/ha) and L33 (-1.72 t/ha) had  lower GCA effects for grain yield. A total of 17 lines 

expressed positive GCA estimates among which 10 lines (L13, L23, L24, L25, L27, L28, 

L30, L31, L38 and L42) showed significant GCA effects. On the other hand nine inbred 
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lines (L39, L35, L32, L18, L12, L8, L5, L2 and L33) exhibited significantly-negative GCA 

effects for grain yield (Appendix 15). 

 

In combined analysis across four locations, 18 inbred lines showed positive GCA effects 

for grain yield. Ten inbred lines (L13, L23, L24, L25, L27, L29, L30, L41 and L42) 

showed positive and significant GCA effects indicating the potential advantage of the 

inbred lines for the development of high-yielding hybrids. L23 (1.4 t/ha) followed by L24 

(1.04) had higher GCA effects. Ten inbred lines (L3, L5, L6, L9, L12, L14, L16, L18, L32 

and L35) were poor general combiners for grain yield as they showed negative and 

significant GCA effects for grain yield (Table 7). Results of the current study are in 

accordance with the findings of Amiruzzaman et al. (2010), Legesse et al. (2009), Gudeta 

(2007), Hadji (2004) and Dagne et al. (2007) who reported significant positive and 

negative GCA effects for grain yield in maize germplasm. Lines with positive GCA effects 

for grain yield can be extensively used in hybridization program as they contribute 

favorable alleles in the development of high yielding varieties. 

 

Days to anthesis and Silking 

 

At Melkasa, line GCA effects for days to anthesis ranged between -4.63 days (L2) to 2.37 

days (L14, L35). Among 17 inbred lines with negative GCA effects, twelve inbred lines 

had significant GCA effects (Appendix 11), indicating that the inbred lines had gene 

combinations that enhance early maturity. Fifteen inbred lines exhibited positive and 

significant GCA effects for days to anthesis, indicating that the inbed lines had the 

tendency to increase late maturity.). L14 had higher GCA effect for number of days to 

silking (3.39 days) and L2 had lower GCA effect (-4.81 days) for the same trait. A toal of 

27 inbred lines showed positive GCA effects, among which 13 inbred lines had significant 

GCA effects for days to silking and 11 inbred lines exhibited significant and negative GCA 

effects for the same trait; hence, the inbred lines had the tendency to increase early 

maturity. Inbred lines L1, L2, L3, L5, L7, L8, L11 and L22 were the best general combiner 

for early maturity as they showed the tendency to increase early flowering and silking. 

 

At Ziway, line GCA effects for days to anthesis ranged between -4.18 days (L7) to 4.12 

days (L23). Among 23 inbred lines which showed negative GCA effects, 12 inbred lines 
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had significantly negative GCA effects for days to anthesis, indicating that the lines were 

good general combiners for early maturity. Sixteen inbred lines exhibited significantly 

positive GCA effects for days to anthesis. L25 had higher GCA effect (3.61 days) and L5 

had lower GCA effect (-4.24 days) for days to silking. Twenty-two inbred lines showed 

positive GCA effects among which 11 inbred lines had significant GCA effects for days to 

silking. Eight inbred lines exhibited significant and negative GCA values for days to 

silking. L1, L2, L3, L5, L7, L8, L11 and L22 were the best general combiners for early 

maturity (Appendix 12). 

 

At Dhera, line GCA effects for days to anthesis ranged between -5.99 days (L8) to 3.51 

days (L14). A total of 18 inbred lines showed negative GCA effects among which nine 

inbred lines (L1, L2, L3, L5, L7, L8, L9, L11 and L22) had significant GCA effects for 

days to anthesis. Ten inbred lines exhibited significantly positive GCA effects for the same 

trait (Table 16). L25 and L23 had higher GCA effects (3.61 and 3.01 days), respectively 

and L2 had lower GCA effect for days to silking (-5.29 days). Among 25 inbred lines that 

showed positive GCA effects, nine inbred lines had significant GCA effects. Eight inbred 

lines (L1, L2, L3, L5, L7, L8, L11 and L9) exhibited significantly negative GCA effects 

for days to silking (Appendix 13). 

 

At Mieso, L20 had higher positive GCA effects (3.82 days) and L2 had higher negative 

GCA effects (-4.98 days) for days to anthesis. Even though 23 inbred lines showed 

negative GCA effects for days to anthesis, only six inbred lines (L1, L2, L3, L5, L13 and 

L22) had significant GCA effects. On other hand, only seven inbred lines (L20, L24, L25, 

L34, L35, L38 and L39) exhibited significantly positive GCA effects for days to anthesis 

(Table 17). L34 had higher GCA effect for number of days to silking (5.62 days) whereas 

L2 had lower GCA effect (-5.63 days). Among 19 inbred lines showed positive GCA 

effects for days to silking among which 10 inbred lines (L34, L35, L20, L38, L32, L39, 

L25, L33, L24 and L30) had significant GCA effects. Six inbred lines such as L1, L2, L3, 

L5, L13 and L21 exhibited significantly negative GCA values for days to silking 

(Appendix 14). 

 

At Pawe, L24 and L23 had higher positive GCA effects (3.39 and 2.89 days, respectively) 

and L5 and L2 had lower GCA effects for days to anthesis (-5.06 and -3.36 days, 

respectively). Twenty inbred lines showed negative GCA effects among which 15 inbred 
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lines had significant and negative GCA effects whereas 16 inbred lines exhibited 

significantly positive GCA effects for days to anthesis. Inbred lines, L24 and L23 had 

higher GCA effects of 3.07 and 2.92 days, respectively while L5, L3,L9 and L11 had lower 

GCA effects for days to silking (-4.88, -3.18 and -3.13 days, respectively). Among 22 inbred 

lines which showed positive GCA effects, 21 inbred lines had significant GCA effects 

while 17 inbred lines exhibited significantly negative GCA effects for days to silking.  

 

Line GCA effects for days to anthesis ranged between -4.31 days (L5) to 2.91 days (L23) 

in combined analysis across three locations. Eighteen inbred lines showed negative GCA 

effects among which 16 inbred lines had significant GCA effects for days to anthesis, 

indicating that these lines were good general combiners for early maturity while 20 inbred 

lines exhibited significant and positive GCA effects for days to anthesis, indicating that 

these lines were undesirable as they show the tendency to increase late maturity. In 

combined analysis across three locations, L23 had higher GCA effect for days to silking 

(2.66 days) whereas L5 had lower GCA effect (-4.53 days). Among 25 inbred lines which 

showed positive GCA effects, 19 inbred lines had significant GCA effects for days to 

silking while 13 inbred lines exhibited significant and negative GCA effects for days to 

silking. L1, L2, L3, L5, L7, L8, L11, L22, L28, L31 and L37 were the best general 

combiners for early maturity (Table 7). 

 

These results are in agreement with Gudeta (2007) and demissew et al. (2011) who 

reported significant positive and negative line and tester GCA effects for days to anthesis 

and silking. Similar findings were also reported by Dagne et al. (2010) and Teshale (2001). 

 

Plant and ear height 

 

At Melkasa, line GCA effects of plant height ranged between -29.05 (L1) to 20.1 (L23). 

Even though a total of 25 inbred lines showed  positive GCA effects, only five inbred lines  

(L4, L19, L23, L27, and L30) showed significant GCA effects while six inbred lines (L1, 

L3, L5, L7, L12 and L16) showed significant and negative GCA effects for plant height, 

indicating the inbred lines were good general combiners for shorter plant stature (Appendix 

11). 
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At Ziway, line GCA effects for plant height ranged between -29.64 cm (L5) to 16.36 cm 

(L19). Even though a total of 25 inbred lines showed positive GCA effects, only two 

inbred lines (L19, L13) showed significant GCA effects for tallness while four inbred lines 

(L1, L5, L8, and L37) showed significant GCA effects for shortness of plant height (Table 

15). Line GCA effects for ear height ranged between -22.41 cm (L8) to 16.24 cm (L17). 

Among a total of  22 inbred lines that showed positive GCA effects for ear height, only 

five inbred lines (L6, L17, L19, L22 and L39) showed significant GCA effects. On other 

hand, only four inbred lines (L2, L5, L8, and L31) showed significantly negative GCA 

effects for ear height (Appendix 12) hence desirable GCA effects for ear height as short 

plants are less prone to lodging.   

 

At Dhera, line GCA effects for plant height ranged between -20.94 cm (L37) to 13.46 cm 

(L20). A total of 22 inbred lines showed positive GCA effects but only three inbred lines 

(L6, L20, and L39) showed significant GCA effects for tallness. Four inbred lines (L5, L8, 

L36, and L37) showed significant and negative GCA effects for shortness of plant height. 

Line GCA effects for ear height ranged between -20.98 cm (L8) to 17.47 cm (L30). 

Among 22 inbred lines which showed positive GCA effects for ear height, only four inbred 

lines (L3, L10, L20, and L30) showed significant GCA effects for ear height (least 

desirable). On other hand, only five inbred lines (L4, L8, L26, L33 and L36) showed 

significantly negative GCA effects for ear height (Appendix 13).  

 

At Mieso, line GCA effects for ear height ranged between -14.45 cm (L12) to 12.75 cm 

(L30). Even though 21 inbred lines expressed positive GCA effects for ear height, only 

four inbred lines (L14, L21, L23, and L30) showed significant GCA effects. On other 

hand, four inbred lines (L1, L7, L12, and L37) showed significantly negative GCA effects 

for ear height.  

 

At Pawe, line GCA effects for plant height ranged between -25.32 cm (L1) and 18.73 cm 

(L24). A total of 23 inbred lines showed positive GCA effects among which 16 inbred 

lines showed significant GCA effects for plant height, indicating that these lines had a 

tendency to increase tallness. On other hand, 16 inbred lines showed significant and 

negative GCA effects for plant height, indicating a tendency to increase shortness in plant 

height. Line GCA effects for ear height ranged between -17.93 cm (L8) to 18.77 cm (L30). 

Among the 21 inbred lines that showed positive GCA effects, 12 inbred lines had 
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significant GCA effects for ear height (least desirable). On other hand, 17 inbred lines 

showed significant and negative GCA effects for ear height (Appendix 15).  

 

Even though 20 inbred lines showed negative GCA effects for plant height in combined 

analysis across locations (Table 19), only six inbred lines (L1, L5, L8, L18, L26 and L37) 

showed significant GCA effects, implying the tendency of these lines to reduce plant 

height. Among all, 11 inbred lines (L4, L6, L13, L30, L19, L23, L24, L25, L27, L29 and   

L41) were the poor general combiners for plant height as they showed positive and 

significant GCA effects. For ear height, 22 inbred lines showed negative GCA effects 

among which nine inbred lines (L1, L2, L5, L7, L8, L18, L31, L33 and L37) showed 

significant GCA effects for ear height (Table 7) suggesting that these inbred lines were 

good general combiners for shorter plant stature. 

 

In line with the present study Dagne et.al (2010), Demissew et al. (2011) and Hajji (2004) 

found significant positive and negative GCA effects for plant and ear height. 

 

Number of ears per plant 

 

For this trait, 16 inbred lines showed positive GCA effects among which seven inbred lines 

(L12, L21, L23, L24, L25, L29 and L34) had significant GCA effects. L12 had higher 

positive and significant GCA effect for number of ears per plant (0.39) hence it was the 

best general combiner for prolificacy. On the other hand, five inbred lines (L3, L5, L7, L9, 

L14 and L16) showed significantly negative GCA effects for the same trait. L7 had the 

smallest GCA effect of -0.21 for ears per plant. Similar to the present findings, Dagne et al. 

(2007) reported significant positive and negative GCA effects for number of ears per plant. 

 

Number of rows per ear 

 

At Melkasa, line GCA effects for number of rows per ear ranged between -0.92 (L19, L41) 

and 1.98 (L3). Even though a total of 18 inbred lines showed positive GCA effects, only 

four inbred lines (L1, L3, L29 and L36) had significant GCA effects hence they were good 

general combiners for high number of rows per year. Three inbred lines (L12, L19 and 

L41) exhibited significant and negative GCA effects for number of rows per ear (Appendix 

11). 
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At Ziway, L3 had higher GCA effect for number of rows per year (2.03). L4 had lower 

GCA effect for number of rows per year (-1.77). Even though a total of 20 inbred lines 

showed positive GCA effects, only five inbred lines (L3, L10, L13, L26 and L32) had 

significant GCA effects for number of rows per year. Two inbred lines (L4 and L5) 

exhibited significantly negative GCA effects for number of rows per year (Appendix 12). 

 

At Dhera, L3 and L29 showed higher GCA effects for number of rows per ear (1.49). L5 

had lower GCA effect for the same trait (-1.81). Among 17 inbred lines that showed 

positive GCA effects, eight inbred lines (L1, L3, L6, L13, L29, L32, L36 and L38) had 

significant GCA effects. Five inbred lines (L5, L8, L22, L25, and L42) showed negative 

and significant GCA effects for number of rows per ear (Appendix 12). 

 

At Mieso, L13 had higher GCA effects for number of rows per ear (1.15). L25 had lower 

GCA effects for the same trait (-1.4). Even though a total of 23 inbred lines showed 

positive GCA effects, only one inbred line (L13) had significant GCA effect. Three inbred 

lines (L23, L18 and L25) exhibited significantly negative GCA effects for number of rows 

per ear.  

 

At Pawe, L3 had higher GCA effects for number of rows per ear (1.25). L27 had lower 

GCA effect for the same trait (-1.65). A total of 24 inbred lines expressed positive GCA 

effects among which nine inbred lines (L3, L10, L11, L13, L16, L26, L29, L36 and L40) 

had significant GCA effects. Six inbred lines (L5, L17, L19, L24 L27 and L34) exhibited 

significantly negative GCA values for number of rows per ear. 

 

In combined analysis across locations, 18 inbred lines showed positive GCA effects among 

which 11 inbred lines had significant GCA effects. Inbred lines, L1, L3, L10, L13, L16, 

L26, L29, L32 and L36 were the best general combiners for number of rows per ear as they 

showed significant and positive GCA effects (Table 19) (Table 7). These results were in 

agreement with the investigations of Dagne et al. (2007), Hadji (2004) and Mandefro 

(1999). 
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Number of kernels per row 

 

At Melkasa, line GCA effects for number of kernels per row ranged between -4.68 (L20) 

to 5.02 (L4). Even though a total of 23 inbred lines showed positive GCA effects for 

number of kernels per row, only four inbred lines (L4, L25, L27 and L42) had significant 

GCA effects. Four inbred lines (L14, L19, L20 and 41) exhibited significantly negative 

GCA effects for number of kernels per row. 

 

At Ziway, line GCA effects for number of kernels per row ranged between -3.02 (L16, 

L22) and 3.93 (L34). Even though 22 inbred lines showed positive GCA effects for 

number of kernels per row, only one inbred line (L34) had significant GCA effect. None of 

the inbred lines exhibited significant and negative GCA effects for number of kernels per 

row.  

 

At Dhera, line GCA effects for number of kernels per row ranged between -6.16 (L21) to 

5.44 (L15). Even though 24 inbred lines showed positive GCA effects for number of 

kernels per row, only two inbred lines (L15 and L41) had significant GCA effects. Four 

inbred lines (L14, L21, L22 and L32) exhibited significantly negative GCA effects for 

number of kernels per row. 

 

At Pawe, line GCA effects for number of kernels per row ranged between -4.33 (L2) to 

6.17 (L4). Among 22 inbred lines with positive GCA effects, only eight (L4, L15, L16, 

L24, L25, L27, L28 and L30) showed significant GCA effects. Nine inbred lines (L1, L2 

L7, L8, L14, L15, L19, L20 and L21) exhibited significantly negative GCA effects for 

number of kernels per row. 

 

In combined analysis across locations, GCA effects for number of kernels per row ranged 

between -3.51 (L20) and 2.49 (L34). Six inbred lines (L7, L15, L27, L34, L35 and L42) 

showed positive and significant GCA effects for number of kernels per row suggesting that 

these lines were good combiner for increasing number of kernels per row. Six  inbred lines 

(L12, L14, L19, L20, L21 and L32) showed  positive and significant GCA effects for 

number of kernels per row (Table 7). 
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These results were in agreement with the findings of Amiruzzaman et al. (2010), Dagne et 

al. (2007) and Gudeta (2007) who reported significant and positive GCA effects for some 

lines, and significant and positive GCA effects for others in number of kernels per ear. 

 

Ear length 

 

At Melkasa, 17 inbred lines recorded showed significant GCA effects among which eight 

inbred lines (L4, L7, L30, L33, L34, L35, L39 and L42) showed significant GCA effects. 

L7 and L34 had higher positive and significant GCA effects for ear length (2.1 cm) hence 

they were the best general combiners for longer ears. On the other hand, three inbred lines 

(L3, L12 and L19) had negative and significant GCA effects. L12 had the smallest GCA 

effect (-1.6 cm), implying the tendency of these line to reduce ear length. 

 

At Ziway, even though 21 inbred lines showed positive GCA effects for ear length, only 

four inbred lines (L7, L34, L35 and L39) showed significant GCA effects. L34 had 

positive and significant GCA effects for ear length (2.52 cm) whereas three inbred lines 

(L1, L12 and L17) had negative and significant GCA effects. L1 had small (-2.03 cm) 

while T2 showed large but non-significant GCA effects for ear length. 

 

At Dhera, even though a total of 21 inbred lines showed positive GCA effects for ear 

length, only two inbred lines (L41 and L34) showed significant GCA effects. L41 had 

higher positive and significant GCA effect for ear length (2.63 cm) whereas only four 

inbred lines (L5, L21, L22 and L26) had negative and significant GCA effects. L21 had 

negative and significant GCA effect (-2.72 cm). 

 

At Mieso, even though a total of 23 inbred lines showed positive GCA effects, only two 

inbred lines (L35 and L39) had significant GCA effects. L35 had positive and significant 

GCA effect for ear length (1.82 cm) while inbred lines (L4 and L21) had negative and 

significant negative GCA effects. L4 had negative and significant GCA effects for ear 

length (-2.18 cm). 

 

At Pawe, 21 inbred lines showed positive GCA effects for ear length among which nine 

inbred lines (L4, L23, L27, L28, L30, L34, L35, L39 and L41) showed significant GCA 

effects. Inbred lines L39 and L30 had positive and significant GCA effects for ear length 
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(2.05 and 1.95 cm, respectively). On the other hand, eight inbred lines (L1, L2, L5, L8, 

L12, L18, L20 and L22) had negative and significant GCA effects. L5 showed the smallest 

GCA effect (-2.18 cm) for the trait. 

 

Across locations, GCA effects for ear length ranged from -1.78 cm (L12) to 1.74 cm (L39) 

and nine inbred lines (L7, L30, L33, L34, L35, L37, L39, L41 and L42) showed positive 

and significant GCA effects for ear length, suggesting that these inbred lines had a 

tendency to increase ear length. On the other hand, eight inbred lines (L1, L5, L9, L12, 

L17, L19, L20, and L21) found to be poor general combiners for ear length as they showed 

negative and significant GCA effects (Table 7). 

 

Similar to the present findings, Amiruzzaman et al. (2010), Jumbo and Carena (2008) and 

Dagne et al. (2007) reported significant positive and negative GCA effects for this trait. 

Positive GCA effects for ear length are desirable as it indicates the tendency to increase ear 

length which directly contributes to increased grain yield in maize. 

  

Ear diameter 

 

At Melkasa, 17 inbred lines showed positive GCA effects among which seven inbred lines 

(L7, L17, L20, L21, L22, L27 and L40) showed significant GCA effects. L21 had the 

highest positive and significant GCA effect of 0.39 cm for ear diameter, indicating that the 

line has the tendency to increase ear diameter. In contrary, nine inbred lines (L10, L12, 

L24, L25, L34, L35, L39 and L42) showed negative and significant GCA effects for the 

trait. L12 had the lowest GCA effect of -0.41.  

 

At Ziway, line GCA effects for ear diameter ranged between -0.3 cm (L12) to 0.5 cm 

(L26). Even though a total of 19 inbred lines showed positive GCA effects for ear 

diameter, only five inbred lines (L17, L20, L21, L22 and L26) had significantly positive 

GCA effects. Nine inbred lines (L4, L5, L8, L12, L15, L25, L34, L35 and L38) had 

negative and significant GCA effects for ear diameter. 

 

At Dhera, line GCA effects for ear diameter ranged between -0.43 cm (L42) and 0.67 cm 

(L17). Even though a total of 22 inbred lines showed positive GCA effects for ear 

diameter, only three inbred lines (L2, L17 and L23) had significant and positive GCA 
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effects. Four inbred lines (L25, L34, L35 and L42) had negative and significant GCA 

effects for ear diameter. 

 

At Pawe, line GCA effects for ear diameter ranged between -0.43 cm (L12) to 0.37 cm 

(L21). Even though a total of 24 inbred lines showed positive GCA effects for ear 

diameter, only seven inbred lines (L13, L17, L20, L21, L22, L24 and L26) had 

significantly positive GCA effects. Five inbred lines (L5, L8, L12, L18 and L34) had 

negative and significant GCA effects for the trait.  

 

In combined analysis across locations, 22 inbred lines showed positive GCA effects for ear 

diameter among which 12 inbred lines had significant GCA effects. L13, L17, L20, L21, 

L22, L23, L26 and L36 were the best general combiners for ear diameter as they had 

highly significant and positive GCA effect (Table 7). On the other hand, 11 inbred lines 

had significantly negative GCA effects. L34 was the worst general combiner for this trait 

(Table 19). The present study is in agreement with Amiruzzaman et al. (2010), Jumbo and 

Carena (2008), Dagne et al. (2007), and Gudeta (2007), who reported significant positive 

and negative GCA effects for ear diameter. 

 

Thousand-kernel weight 

 

At Melkasa, line GCA effects for thousand-kernel weight ranged from -104.62 (L6) to 

134.34 gm (L37). Even though a total of 21 inbred lines showed positive GCA effects for 

thousand-kernel weight, only four inbred lines (L7, L19, L21 and L37) showed significant 

GCA effects in desired direction, indicating that the inbred lines were the best general 

combiners for thousand-kernel weight. These inbred lines might have favorable genes for 

larger kernels. On the other hand, L3, L6 and L25 showed negative and significant GCA 

effects, which are undesirable. 

 

At Dhera, Line GCA effects for thousand-kernel weight ranged between -54.82 (L3) and 

66.33 gm (L17). Even though a total of 21 inbred lines showed positive GCA effects for 

thousand-kernel weight, only two inbred lines (L3 and L15) showed significant GCA 

effects. On the other hand, L25, L3 and L6 showed negative and significant GCA effects 

for the same trait.  
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At Mieso, line GCA effects for thousand-kernel weight ranged from -70.41 (L4) to 73.19 

gm (L14). Even though a total of 21 inbred lines showed positive GCA effects for 

thousand kernel weight, only three inbred lines (L2, L14 and L39) showed significant 

GCA effects in desired direction. On the other hand L4 and L15 showed negative and 

significant GCA effects in undesired direction.  

 

At Pawe, three inbred lines (L24, L27 and L30) had positive GCA effects for thousand-

kernel weight (75.55, 75.05 and 60.0 gm, respectively) and L36 and L12 had higher 

negative GCA effects (-59.80 and -57.45 gm, respectively). Even though a total of 22 

inbred lines showed negative GCA effects for thousand-kernel weight, only four inbred 

lines (L36, L12, L15 and L37) had significant GCA effects.  

 

The present results are in agreement with the findings of several researchers who reported 

significant positive and negative GCA effects for thousand-kernel weight (Demissew et al., 

2011; Amiruzzaman et al., 2010; Dagne et al., 2007; Teshale, 2001;  Hadji, 2004). 
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Table 7. Across locations estimates of general combining ability effects (GCA) of 43 inbred lines and two testers for grain yield, 2010 

Line GY (t/ha) AD (days) SD(days) PH(cm) EH(cm) EL (cm) ED(cm) KPR(#) RPE(#) 

L1 -0.24 -2.42** -2.79** -14.03** -7.25** -1.26** 0.06 -0.48 0.71** 

L2 0.15 -3.81** -3.64** 3.71 -9.89** -0.31 0.11* 0.14 0.30 

L3 -0.53* -2.94** -3.24** -4.91 -0.39 -0.15 -0.04 0.54 1.48** 

L4 -0.09 -0.64* -0.21 7.59** -2.09 0.26 -0.01 1.31 -0.33 

L5 -0.87** -4.31** -4.53** -17.87** -12.68** -1.48** -0.19** -0.78 -1.06** 

L6 -0.48* 1.89** 1.77** 9.22** 9.03** -0.19 0.00 0.44 0.36* 

L7 0.19 -2.96** -2.56** -2.29 -8.18** 1.05** 0.11* 1.84* 0.03 

L8 -0.43 -3.12** -3.21** -14.74** -17.50** 0.1 -0.26** -1.09 -0.44* 

L9 -0.64* -1.42** -0.43 -1.73 -1.68 -0.66* -0.03 -1.38 -0.22 

L10 0.22 1.18** 1.34** 1.62 5.83* 0.04 -0.04 0.86 0.51** 

L11 0.14 -2.76** -2.69** 0.57 5.60* 0.29 -0.06 -0.24 0.44* 

L12 -0.58* 1.41** 1.17** -5.14 -6.14* -1.78** -0.22** -1.64 -0.55** 

L13 0.76** -0.64* -0.49 11.11** 2.07 0.36 0.12* 0.41 1.02** 

L14 -0.92** 2.53** 2.34** 1.17 4.5 -0.23 0.09 -2.04* -0.03 

L15 -0.36 0.09 0.37 -1.18 5.46* -0.41 -0.16** 2.71** -0.56** 

L16 -0.70** 0.01 0.26 0.31 -1.22 -0.5 0.03 -0.87 0.49** 

L17 -0.06 1.51** 1.12** 1.37 6.62* -0.84* 0.31** -0.32 -0.26 

L18 -0.46* -1.01** -0.61 -8.02** -8.05** -0.39 -0.01 1.29 -0.12 

L19 -0.15 -0.47 -0.89* 8.81** 4.78 -0.90** 0.09 -3.06** -0.50** 

L20 -0.39 -0.11 0.32 3.08 2.46 -0.94** 0.11* -3.51** 0.26 
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  Table 7 (Continued) 

 

L21 0.65** -1.14** -0.84* 3.98 8.42** -1.38** 0.23** -3.42** 0.03 

L22 0 -2.42** -2.78** -3.19 5.82* -0.2 0.14* -1.48 -0.04 

L23 1.40** 2.91** 2.66** 6.97* 4.97 0.42 0.12* 1.38 -0.42* 

L24 1.04** 2.51** 2.09** 10.43** 0.47 0.24 0.02 0.56 -0.52** 

L25 0.73** 2.49** 2.31** 8.37** 6.55 -0.18 -0.09 0.76 -0.89** 

L26 0.18 0.16 0.17 -6.93* -3.73 -0.2 0.25** 0.12 0.66** 

L27 0.65** 0.63* 0.97** 6.91* -0.85 0.35 0.12* 1.79* -0.66** 

L28 0.19 -0.96** -0.96** 3.11 1.83 -0.15 0.01 -1.13 -0.24 

L29 0.49* 1.34** 1.19** 9.31** 10.28** 0.51 0.06 0.34 0.72** 

L30 0.93** 2.23** 2.39** 6.72* 15.10** 0.90** 0.06 1.33 -0.36* 

L31 0.09 -1.06** -1.04** -2.88 -7.24** 0.05 -0.01 0.97 -0.06 

L32 -0.63** 0.74** 0.79* -2.47 -5.00 -0.23 -0.01 -2.24** 0.52** 

L33 -0.28 1.14** 1.62** -0.51 -6.34* 0.66* -0.08 0.43 0.02 

L34 -0.33 1.41** 1.44** -4.11 -2.39 1.62** -0.30** 2.49** -0.41* 

L35 -0.77** 2.14** 2.39** -3.66 -2.73 1.59** -0.27** 2.13** -0.02 

L36 -0.11 0.89** 1.21** 1.79 -3.08 0.56 0.16** -0.18 0.84** 

L37 0.17 -1.24** -1.28** -15.78** -10.37** 0.82* -0.08 1.19 -0.07 

L38 -0.28 1.93** 1.54** -0.27 2.92 -0.36 -0.03 -1.58* 0.32 

L39 -0.16 1.79** 1.82** 1.94 7.77** 1.74** -0.11* 1.01 -0.23 

L40 -0.22 1.39** 1.07** 1.11 7.77** -0.15 0.05 0.06 0.30 

L41 1.00** 0.89** 0.61 5.61* -2.52 0.79* 0.06 0.01 -0.53** 

L42 0.56* 0.14 -0.43 -4.96 3.10 0.90** -0.18** 2.31** -0.17 
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   Table 7 (Continued) 

L43 0.17 0.04 -0.28 -0.08 -2.04 -0.39 0.02 -0.93 -0.40* 

SE 0.24 0.32 0.34 2.81 2.73 0.33 0.06 0.81 0.18 

SED 0.33 0.45 0.49 3.98 3.86 0.47 0.09 1.15 0.25 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, ED = ear diameter, EH = ear 

height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = Number of rows per 

ear, SD = number of days to silking, SE= standard error, TKWT = thousand kernels weight  

 

 

 



4.3.2. Specific combining ability estimates 

 

The specific combining ability effects at individual and across locations were computed for 

traits that showed significant SCA mean squares in combining ability analysis. Specific 

combining ability effects for grain yield and related agronomic traits for each test locations 

(Appendices 16-20) and combined across locations were presented in Table 8. 

 

Grain yield 

 

At Melkasa, 50% of the crosses showed positive SCA effects for grain yield out of which 

three crosses, namely; L33 x T2 , L24 x T2  and L23 x T2 (Appendix 16) showed positive and 

significant SCA effects for grain yield with SCA values of 2.27, 1.97 and 1.32 t/ha, 

respectively, indicating that these crosses were good specific combinations for grain yield. 

Crosses with the higher value of SCA effect also showed higher values of mean grain yield 

performance, indicating good correspondence between SCA effects and mean grain yield. 

Hence such cross combinations could effectively be exploited in hybrid breeding program in 

maize research. On the other hand, three cross combinations L33 x T1, L24 x T1 and L23 x 

T1 expressed negative and significant SCA effects for grain yield which are undesirable as 

these crosses showed a tendency to reduce grain yield performance.  

 

At Ziway, two crosses L4 x T1 (1.41 t/ha) and L33 x T2 (1.29 t/ha) (Appendix 17) showed 

significantly positive SCA effects, indicating that these crosses were good specific combiners 

for grain yield at this specific location. None of the crosses showed positive and significant 

SCA effects for grain yield at Dhera (Appendix 18). However, cross L34 x T1 had the highest 

positive SCA effect for grain yield, but yet not significant. At Pawe, three crosses namely L14 

x T1 (2.30 t/ha), L22 x T2 (1.43) and L33 x T2 (1.36 t/ha) (Appendix 20) showed significant 

SCA effects for grain yield. In combined analysis across locations, seven crosses (L33 x T2, 

L32 x T2, L17 x T1, L14 x T1, L36 x T2, L34 x T1 and L7 x T1) showed positive and 

significant SCA effects. L33 x T2 (1.25 t/ha) was the best specific combiner for grain yield 

followed by L32 x T2 (0.94 t/ha) (Table 8). Thus, these crosses could be selected for their 

specific combining ability to improve grain yield. The finding of the current study are in 

agreement with that of Mandefro (1999) who reported significant positive and negative SCA 

effects for grain yield in 8 x 8 diallel study of drought tolerant maize populations at Melkasa. 
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Amiruzzaman et al. (2010), Dagne et al. (2007) and Bayisa (2004) also reported similar 

results for grain yield while Pswarayi and Vivek (2008) and Jumbo and Carena (2008) 

reported non-significant positive and negative SCA effects for grain yield. 

 

Days to anthesis and Silking 

 

At Melkasa, two crosses (L34 x T1 and L33 x T2) showed significantly negative SCA effects 

for days to anthesis and silking. L34 x T1 showed the highest negative SCA effect for days to 

anthesis (-1.63 days) and days to silking (-1.98 days) which were desirable for earliness 

(Appendix 16). Negative and significant SCA effects were found in crosses L4 x T1, L12 x 

T2, L19 x T2, L20 x T2, L23 x T2, L32 x T2 and L43 x T2 (Appendix 17) and the cross L12 

x T2  showed the highest  negative SCA effect (-3.12 days) for days to anthesis at Ziway. 

Only three crosses, L12 x T2 (-2.47 days), L23 x T2 (-2.47 days) and L43 x T2 (-2.42 days) 

showed negative and significant SCA effects for days to silking at Ziway (Appendix 17). 

Although 50% of the crosses showed negative SCA effects for number of days to anthesis and 

silking, only one cross combination had (L9 x T2) significant SCA effect at Dhera (Appendix 

18), indicating that this cross was best specific combination for number of days to anthesis 

and silking. At Mieso, only four combinations (L21 x T1, L9 x T2, L17 x T1 and L12 x T1) 

(Table 23) had negative and significant SCA effects for days to anthesis and six crosses (L8 x 

T2, L9 x T2, L11 x T2, L12 x T1, L17 x T1 and L42 x T2) showed significantly negative 

SCA effects for days to silking. The cross combinations L17 x T1 and L9 x T2 (Appendix 19) 

had the highest SCA effects for days to anthesis and silking at Mieso. At Pawe four crosses 

(L9 x T2, L17 x T1, L32 x T2 and L34 x T1) showed significantly negative SCA effects for 

days to anthesis and five crosses (L8 x T1, L9 x T2, L17 x T1, L32 x T2 and L34 x T1) 

showed significantly negative SCA effects for days to silking. The cross combination L9 x T2 

(Appendix 20 ) had the highest negative SCA effect for days to anthesis and silking at Pawe. 

In combined analysis across locations, 12 crosses showed negative and significant SCA 

effects and  Cross L32 x T2  had the highest negative SCA effects for days to anthesis (-1.77 

days)  while 11 crosses showed negative and significant SCA effects for days to silking and 

Cross L32 x T2  had the highest negative SCA effect for days to silking (-1.74 days) (Table 

8).  Crosses with low estimate of SCA effects for days to anthesis and silking are desirable as 

they had earlier anthesis and silking than what have been expected based on GCA of their 

parents. These findings are in agreement with the findings of several researchers who reported 
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significant positive-and-negative SCA effects for days to anthesis and silking (Dagne et al., 

2010;  Hadji, 2004; Gudeta, 2007) 

 

Plant and ear height 

 

For plant height, only two crosses (L37 x T1 and L32 x T1) at Dhera (Appendix 18)  and two 

crosses (L7 x T2 and L28 x T2) at Pawe (Appendix 20) showed negative and significant SCA 

effects for the trait, indicating that these crosses had good specific combination for shorter 

plant stature. In line with the present results at these locations, Dagne et al. (2010), Legesse et 

al. (2009) and Mandefro (1999) reported significantly negative SCA effects for plant height. 

None of the crosses showed significantly negative and positive SCA effects for plant height at 

Mieso (Appendix 19) and for ear height at Pawe (Appendix 20) and across locations (Table 

8). In contrary to these findings Demissew et al. (2011) and Gudeta (2007) found significantly 

positive and negative SCA effects for plant and ear height while Jumbo and Carena (2008) 

reported that estimated SCA effects for ear height were not significantly different from zero. 

 

Ear length 

 

For ear length, only one cross (L14 x T2) at Mieso (Appendix 19)  and three crosses (L32 x 

T2, L33 x T2 and L36 x T2) across locations (Table 8) were good specific combination as 

they showed positive and significant SCA effect for this trait. Similarly, Bayisa (2004) and 

Dagne et al. (2007) reported positive and significant SCA effects for ear length. 

 

Number of kernels per row 

 

For number of kernels per row, two crosses (L3 x T1 and L16 x T1) at Melkasa (Appendix 

16), one cross (L14 x T2) at Mieso (Appendix 19) and two crosses (L33 x T2 and L34 x T1) 

across locations (Table 8) showed significantly positive SCA effects for number of kernels 

per row, indicating that these crosses were good specific combinations for this trait. In line 

with the present findings, Gudeta (2007) and Dagne et al. (2007) reported positive and 

significant SCA effects for this trait. 
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Thousand-kernel weight 

 

For thousand-kernel weight, only three crosses (L34 x T1, L41 x T2 and L39 x T2) at Dhera 

(Appendix 18), one cross (L14 x T2) at Mieso (Appendix 19) were the best combinations for 

thousand kernel weight as they showed positive and significant SCA effects for this trait. In 

line with the present findings, Amiruzzaman et al. (2010), Bayisa (2004) and Dagne et al. 

(2007) reported positive and significant SCA effects for this trait. 

 

Ear diameter 

 

For ear diameter, only two crosses (L34 x T1 and L23 x T2) at Melkasa (Appendix 16), two 

crosses (L29 x T1 and L34 x T1) at Dhera (Appendix 18), five crosses (L2 x T1, L9 x T1, 

L14 x T1, L33 x T2 and L36 x T2) at Pawe (Appendix 20)  and seven crosses (L20 x T2, L25 

x T2, L32 x T2, L33 x T2, L34 x L1, L36 x T2 and L38 x T1) across locations (Table 8) had 

significantly positive SCA effects for ear diameter, indicating that these crosses were good 

specific combinations for this trait. These findings are in agreement with several researchers 

who reported significantly positive SCA effects for ear diameter (Amiruzzaman et al., 2010; 

Bayisa, 2004; Dagne et al., 2007; Jemal, 1999; Gudeta, 2007). 

 

Number of rows per ear 

 

For number of rows per ear, only two crosses (L13 x T1 and L29 x T1) at Dhera (Appendix 

18), two crosses (L34 x T1 and L2 x T1) at Pawe (Appendix 20) and two crosses (L6 x T1 and 

L29 x T1) across locations (Table 8)  had significantly positive SCA effects for number of 

rows per ear, indicating that these crosses were good specific combinations for this trait. In 

line with the present findings, Amiruzzaman et al. (2010), Hadji (2004) and Gudeta (2007) 

reported positive and significant SCA effects for number of rows per ear. 
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Table 8. Estimates of specific combining ability effects (SCA) for line by tester crosses of          

maize inbred lines evaluated across  locations, 2010 

Crosses GY(t/ha) AD(days) SD(days) EH(cm) EL(cm) KPR(#) KRE(#) ED(cm) 

L1 x T1 0.21 -0.36 -0.15 5.25 -0.14 -1.27 -0.21 -0.05 

L1 x T2 -0.21 0.36 0.15 -5.25 0.14 1.27 0.21 0.05 

L2 x T1 0.12 0.12 0.17 -0.66 0.03 -1.19 0.14 0.00 

L2 x T2 -0.12 -0.12 -0.17 0.66 -0.03 1.19 -0.14 0.00 

L3 x T1 0.29 0.45 0.80 0.89 0.67 1.73 -0.20 -0.03 

L3 x T2 -0.29 -0.45 -0.80 -0.89 -0.67 -1.73 0.20 0.03 

L4 x T1 0.40 -0.85* -0.93* -3.46 0.28 0.44 -0.33 -0.04 

L4 x T2 -0.40 0.85* 0.93* 3.46 -0.28 -0.44 0.33 0.04 

L5 x T1 0.35 -0.61 -0.81 -3.80 0.44 0.16 -0.30 0.04 

L5 x T2 -0.35 0.61 0.81 3.80 -0.44 -0.16 0.30 -0.04 

L6 x T1 0.12 0.45 0.39 3.19 -0.17 -0.74 0.64** 0.05 

L6 x T2 -0.12 -0.45 -0.39 -3.19 0.17 0.74 -0.64** -0.05 

L7 x T1 0.62* -0.86* -0.71 0.47 0.19 1.48 -0.27 0.00 

L7 x T2 -0.62* 0.86* 0.71 -0.47 -0.19 -1.48 0.27 0.00 

L8 x T1 -0.32 -0.50 -0.83 -3.53 0.39 1.04 -0.04 -0.03 

L8 x T2 0.32 0.50 0.83 3.53 -0.39 -1.04 0.04 0.03 

L9 x T1 0.18 0.50 0.92* 3.97 0.01 -0.12 0.18 0.02 

L9 x T2 -0.18 -0.50 -0.92* -3.97 -0.01 0.12 -0.18 -0.02 

L10 x T1 0.04 0.04 0.15 4.26 -0.27 0.57 0.03 0.03 

L10 x T2 -0.04 -0.04 -0.15 -4.26 0.27 -0.57 -0.03 -0.03 

L11 x T1 -0.31 -0.10 -0.38 -0.28 0.18 1.29 -0.24 -0.07 

L11 x T2 0.31 0.10 0.38 0.28 -0.18 -1.29 0.24 0.07 

L12 x T1 -0.17 1.10* 0.95* 0.56 -0.08 -1.06 0.11 0.03 

L12 x T2 0.17 -1.10* -0.95* -0.56 0.08 1.06 -0.11 -0.03 

L13 x T1 0.31 -0.31 -0.11 -0.08 0.38 1.07 0.38 0.05 

L13 x T2 -0.31 0.31 0.11 0.08 -0.38 -1.07 -0.38 -0.05 

L14 x T1 0.86** -0.65 -1.21 -0.90 0.09 -0.56 0.33 0.08 

L14 x T2 -0.86** 0.65 1.21 0.90 -0.09 0.56 -0.33 -0.08 

L15 x T1 -0.06 -0.58 -0.18 -2.19 0.43 0.89 0.04 0.05 

L15 x T2 0.06 0.58 0.18 2.19 -0.43 -0.89 -0.04 -0.05 

L16 x T1 -0.43 -0.16 0.07 1.26 0.09 1.57 -0.05 0.04 

L16 x T2 0.43 0.16 -0.07 -1.26 -0.09 -1.57 0.05 -0.04 

L17 x T1 0.87** -0.70 -0.53 0.55 0.41 0.39 0.04 -0.02 
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     Table 8 (Continued) 

L17 x T2 -0.87** 0.70 0.53 -0.55 -0.41 -0.39 -0.04 0.02 

L18 x T1 0.48 -0.41 -0.63 -3.28 0.01 0.86 0.04 0.08 

L18 x T2 -0.48 0.41 0.63 3.28 -0.01 -0.86 -0.04 -0.08 

L19 x T1 -0.55 0.85* 0.95* -4.91 -0.31 -1.69 0.02 0.00 

L19 x T2 0.55 -0.85* -0.95* 4.91 0.31 1.69 -0.02 0.00 

L20 x T1 -0.10 0.85* 0.30 -1.49 -0.22 -0.79 -0.18 -0.12* 

L20 x T2 0.10 -0.85* -0.30 1.49 0.22 0.79 0.18 0.12* 

L21 x T1 0.13 0.49 0.00 0.80 0.87 2.07 -0.07 0.02 

L21 x T2 -0.13 -0.49 0.00 -0.80 -0.87 -2.07 0.07 -0.02 

L22 x T1 -0.59 0.80 0.94* 4.27 0.39 -1.02 -0.12 -0.09 

L22 x T2 0.59 -0.80 -0.94* -4.27 -0.39 1.02 0.12 0.09 

L23 x T1 -0.3 1.00* 1.00* 2.17 0.02 -0.78 0.10 -0.03 

L23 x T2 0.3 -1.00* -1.00* -2.17 -0.02 0.78 -0.10 0.03 

L24 x T1 -0.53 -0.46 -0.40 0.12 0.13 0.44 -0.10 0.03 

L24 x T2 0.53 0.46 0.40 -0.12 -0.13 -0.44 0.10 -0.03 

L25 x T1 -0.36 0.89* 1.15* 5.75 -0.21 -1.93 -0.13 -0.12* 

L25 x T2 0.36 -0.89* -1.15* -5.75 0.21 1.93 0.13 0.12 

L26 x T1 0.32 -0.41 -0.51 0.37 0.27 1.83 -0.18 0.08 

L26 x T2 -0.32 0.41 0.51 -0.37 -0.27 -1.83 0.18 -0.08 

L27 x T1 0.08 0.15 0.09 0.75 0.49 0.56 0.06 0.03 

L27 x T2 -0.08 -0.15 -0.09 -0.75 -0.49 -0.56 -0.06 -0.03 

L28 x T1 -0.14 -0.10 -0.08 1.41 0.24 1.28 0.04 0.00 

L28 x T2 0.14 0.10 0.08 -1.41 -0.24 -1.28 -0.04 0.00 

L29 x T1 0.05 0.20 0.40 2.64 -0.12 0.36 0.48* 0.11 

L29 x T2 -0.05 -0.20 -0.40 -2.64 0.12 -0.36 -0.48* -0.11 

L30 x T1 0.24 -0.38 -0.56 -4.68 0.17 -0.06 0.12 0.03 

L30 x T2 -0.24 0.38 0.56 4.68 -0.17 0.06 -0.12 -0.03 

L31 x T1 0.07 -0.43 -0.53 -4.01 -0.03 -0.14 -0.02 0.02 

L31 x T2 -0.07 0.43 0.53 4.01 0.03 0.14 0.02 -0.02 

L32 x T1 -0.94** 1.77** 1.74** -4.98 -0.91* -2.16 -0.08 -0.16* 

L32 x T2 0.94** -1.77** -1.74** 4.98 0.91* 2.16 0.08 0.16* 

L33 x T1 -1.25** 1.20** 1.40** -6.76 -1.72** -2.86* 0.02 -0.15* 

L33 x T2 1.25** -1.20** -1.40** 6.76 1.72** 2.86* -0.02 0.15* 

L34 x T1 0.66* -1.36** -1.68** 2.11 0.29 2.98* 0.43 0.17* 

L34 x T2 -0.66* 1.36** 1.68** -2.11 -0.29 -2.98* -0.43 -0.17* 
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    Table 8(Continued) 

L35 x T1 0.27 -0.66 -0.60 0.52 -0.47 0.29 0.38 0.08 

L35 x T2 -0.27 0.66 0.60 -0.52 0.47 -0.29 -0.38 -0.08 

L36 x T1 -0.79* 0.02 0.05 -1.78 -1.17* -1.42 -0.44 -0.17* 

L36 x T2 0.79* -0.02 -0.05 1.78 1.17* 1.42 0.44 0.17* 

L37 x T1 -0.31 -0.08 0.20 -5.24 -0.23 -1.94 -0.07 -0.05 

L37 x T2 0.31 0.08 -0.20 5.24 0.23 1.94 0.07 0.05 

L38 x T1 0.18 -0.25 -0.51 3.05 0.66 2.11 0.00 0.12* 

L38 x T2 -0.18 0.25 0.51 -3.05 -0.66 -2.11 0.00 -0.12* 

L39 x T1 -0.24 -0.01 0.00 8.42* 0.18 0.22 -0.29 -0.02 

L39 x T2 0.24 0.01 0.00 -8.42* -0.18 -0.22 0.29 0.02 

L40 x T1 0.31 -0.21 -0.51 -2.60 -0.73 -0.98 0.02 0.08 

L40 x T2 -0.31 0.21 0.51 2.60 0.73 0.98 -0.02 -0.08 

L41 x T1 0.32 -0.65 -0.08 6.19 -0.54 -1.61 0.29 -0.01 

L41 x T2 -0.32 0.65 0.08 -6.19 0.54 1.61 -0.29 0.01 

L42 x T1 0.37 -0.93* -0.88 -2.30 0.39 0.59 -0.21 0.03 

L42 x T2 -0.37 0.93* 0.88 2.30 -0.39 -0.59 0.21 -0.03 

L43 x T1 -0.46 1.07* 1.07* -2.04 -0.44 -1.87 -0.32 -0.05 

L43 x T2 0.46 -1.07* -1.07* 2.04 0.44 1.87 0.32 0.05 

SE 0.33 0.45 0.49 3.86 0.47 1.15 0.25 0.08 

SED 0.47 0.64 0.69 5.46 0.67 1.63 0.35 0.11 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels 

weight 
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4.4. Heterotic Grouping 

 

On the basis of pooled ANOVA from four testing locations (Melkasa, Ziway, Mieso and Pawe), 

SCA effects for grain yield of the testcrosses were used to classify the inbred lines into heterotic 

groups as presented in Table 26. In addition, inbred lines with positive and significant GCA 

effects in combined analyses were classified into heterotic groups based on positive or negative 

SCA effects they exhibited when crossed with the two testers, as such line have good breeding 

value. Inbred lines that showed low GCA effects and non-significant SCA effects when crossed 

with the testers were not classified into heterotic groups as such lines do not have exploitable 

breeding value and appropriate power to be discriminated by the testers used. They rather belong to 

other heterotic groups not used in the study. 

 

Table 26 shows heterotic grouping of the 43 inbred lines. Even though most inbred lines 

showed either positive or negative SCA and GCA effects when crossed with the testers, the 

SCA and GCA effects were not significant in most cases, indicating that the estimates did not 

have appropriate power to distinctively discriminate the inbred lines into different heterotic groups. 

However few inbred lines showed significant SCA effects when crossed with the testers. Such 

lines can confidently be assigned into heterotic groups and be instantly used in hybrid 

development program. These lines were L32, L33 and L36 (Heterotic group A) and L7, L14, 

L17 and L34 (heterotic group B). On the other hand, seven inbred lines (L13, L21, L27, L29, 

L30, L41 and L42) which showed positive and significant GCA effects and had negative SCA 

effects with tester B (CML202/CML395) were classified in to heterotic group B while three 

inbred lines (L23, L24 and L25) which showed positive and significant GCA effects and had 

negative SCA effects with tester A (CML312/CML442) were assigned to hetrotic group A.  

Most inbred lines evaluated in the current study neither revealed significant SCA in their 

cross combinations with the testers nor significantly higher GCA effects for grain yield, 

indicating that neither of the two testers used for the study are genetically divergent to provide 

the best discrimination among the inbred lines nor the inbred lines were good general 

combiners for grain yield. Similar to the present findings, Mosisa et al. (1996) found 

significant SCA effects only for few crosses combinations. Bayisa (2004) reported high and 

positive specific combining ability estimates for five transitional highland inbred lines and 

clearly grouped the inbred lines under Ecuador and Kitale heterotic groups. Similarly, in line 

by tester study of highland inbered lines, Gudeta (2007) classified six inbred lines under 

Kitale and seven inbred lines under Ecuador heterotic group. 
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Based on the SCA and GCA effects for grain yield, 17 elite maize inbred lines were classified 

into A and B heterotic groups. Inbred lines within the same group are genetically similar 

while those in different groups are dissimilar. Crossing two lines belonging to different 

heterotic groups will result to the development of high yielding hybrids. 

 

In the future, maize breeding programs should exploit the groups identified in the current 

study in order to maximize genetic gain from heterotic effects. In hybrid variety development 

process using the inbred lines identified in this study, parents from heterotic group A should 

be crossed with those belonging to heterotic group B. In the case of the development of 

synthetic varieties, inbred lines belonging to the same heterotic group should be recombined. 

These should be the future research strategy to further exploit the genetic potential of the 

inbred lines.   

 

Table 9. Combined mean grain yield, GCA,  SCA effects and heterotic group of inbred lines 

 

GY (t/ha) SCA  

 

 

T1 T2 T1 T2 

GCA Heterotic 

group 

L1 5.91 5.36 0.21 -0.21 -0.24 - 

L2 6.21 5.84 0.12 -0.12 0.15 - 

L3 5.70 5.00 0.29 -0.29 -0.53* - 

L4 6.25 5.31 0.4 -0.4 -0.09 - 

L5 5.42 4.58 0.35 -0.35 -0.87** - 

L6 5.59 5.21 0.12 -0.12 -0.48* - 

L7 6.75 5.37 0.62* -0.62* 0.19 B 

L8 5.19 5.7 -0.32 0.32 -0.43 - 

L9 5.48 4.99 0.18 -0.18 -0.64* - 

L10 6.2 5.99 0.04 -0.04 0.22 - 

L11 5.78 6.26 -0.31 0.31 0.14 - 

L12 5.19 5.41 -0.17 0.17 -0.58* - 

L13 7.02 6.25 0.31 -0.31 0.76** B 

L14 5.88 4.02 0.86* -0.86* -0.92** B 

L15 5.52 5.51 -0.06 0.06 -0.36 - 
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Table 9 (Continued) 

L16 4.81 5.54 -0.43 0.43 -0.70** - 

L17 6.75 4.88 0.87* -0.87* -0.06 B 

L18 5.96 4.87 0.48 -0.48 -0.46* - 

L19 5.24 6.21 -0.55 0.55 -0.15 - 

L20 5.46 5.52 -0.1 0.10 -0.39 - 

L21 6.73 6.33 0.13 -0.13 0.65** B 

L22 5.36 6.40 -0.59 0.59 0.00 - 

L23 7.04 7.50 -0.3 0.30 1.40** A 

L24 6.46 7.38 -0.53 0.53 1.04** A 

L25 6.32 6.90 -0.36 0.36 0.73** A 

L26 6.44 5.67 0.32 -0.32 0.18 - 

L27 6.67 6.38 0.08 -0.08 0.65** B 

L28 6.00 6.14 -0.14 0.14 0.19 - 

L29 6.48 6.25 0.05 -0.05 0.49* B 

L30 7.11 6.49 0.24 -0.24 0.93** B 

L31 6.1 5.84 0.07 -0.07 0.09 - 

L32 4.38 6.12 -0.94** 0.94** -0.63** A 

L33 4.42 6.78 -1.25** 1.25** -0.28 A 

L34 6.28 4.82 0.66* -0.66* -0.33 B 

L35 5.44 4.78 0.27 -0.27 -0.77** - 

L36 5.04 6.48 -0.79* 0.79* -0.11 A 

L37 5.81 6.29 -0.31 0.31 0.17 - 

L38 5.84 5.36 0.18 -0.18 -0.28 - 

L39 5.54 5.89 -0.24 0.24 -0.16 - 

L40 6.03 5.28 0.31 -0.31 -0.22 - 

L41 7.27 6.49 0.32 -0.32 1.00** B 

L42 6.88 6.00 0.37 -0.37 0.56* B 

L43 5.65 6.44 -0.46 0.46 0.17  - 

SE 

  

0.33 0.33 0.24 

 SED     0.47 0.47 0.33   
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5. SUMMARY AND CONCLUSIONS 

 

This study was conducted at five locations ( Melkasa, Ziway, Dhera, Mieso and Pawe) during The 

study was conducted with the objective of  identifying better performing test-cross hybrid 

combination for possible release for commercial production, estimating combining abilities 

for grain yield and other agronomic traits in elite maize inbred lines and classifying the elite 

inbred lines into different heterotic groups for future use in the breeding program using Line x 

Tester mating design. A total of 88 maize genotypes including 86 test crosses developed by 

crossing 43 elite maize inbred lines with two testers and two standard checks were planted 

across five locations (Melkasa , Ziway, Dhera, Mieso and Pawe) during the 2010 cropping 

season in 8 x 11 alpha lattice design replicated twice. Data were recorded on for grain yield, 

anthesis date, silking date, plant height, ear height, number of ears per plant, 1000-kernel 

weight, number of rows per ear, number of kernels per row, ear length and ear diameter. 

 

Analysis of variance indicated significant mean squares due to genotypes for grain yield, 

anthesis date, silking date, plant height, ear height, number of rows per ear, number of kernels 

per row, ear length and ear diameter at most locations and across locations. Furthermore, 

significant differences were not found among the checks and checks vs crosses for most traits. 

 

Among the crosses, Crosses L24 x T2 (11.67 t/ha), L23 x T2 (11.42 t/ha)  and L33 x T2 

(11.19 t/ha) from Melkasa, L39 x T2 (6.4 t/ha), L42 x T1 (6.0 t/ha), L4 x T1 and L41 x T1 

(5.9 t/ha) from Ziway L2 x T2 (4.0 t/ha),  L37 x T2 (3.9 t/ha) and L17 x T1 (3.8 t/ha) from 

Dhera, L13 x T1 (5.64 t/ha), L41 x T1 (5.51 t/ha) and L17 x T1 (5.32 t/ha)  from Mieso, L23 

x T1 (10.9 t/ha),  L30 x T2 (10.8 t/ha) and L30 x T1 (10.6 t/ha) from Pawe and L23 x T2 (7.5 

t/ha), L24 x T2 (7.38 t/ha) and L41 x T1 (7.27 t/ha)  from across locations showed higher 

grain yield. These hybrids could be included in further investigation for grain yield and 

related traits and could be possible candidates of future release. Higher 1000-kernel weight 

was recorded for L14 x T2. Cross combination L5 x T1 was the earliest cross for anthesis and 

silking date with corresponding values of 66 and 67.3 days, respectively. Shorter plant and ear 

heights were recorded for crosses L5 x T1, L8 x T1, and L37 x T1. Higher number of ears per 

plant, kernels per row and rows per ears were recorded for crosses L12 x T2, L34 x T1 and L3 

x T2, respectively. 

 



73 
 

Results of L x T analysis showed that line GCA mean squares were significant for all studied 

traits at most of the study locations, except for number of ears per plant which showed 

significant line GCA only at Melkasa. Across locations, line GCA means squares were 

significant for all traits except for number of ears per plant and 1000-kernel weight. Testers 

GCA mean squares were significant for few traits at certain locations. Across locations, tester 

GCA mean squares were significant only for days to anthesis and silking. 

 

SCA mean squares were significant mainly for grain yield, days to anthesis and silking, and 

plant height at most locations. In across location analysis, SCA means squares were 

significant for most traits except plant height, number of ears per plant and thousand kernel 

weight. 

 

Significant GCA and SCA mean squares for most traits measured indicated that both additive 

and non-additive gene actions are important in determining the inheritance of these traits. In 

most cases, GCA sum of squares component was greater than SCA sum of squares for most 

of the studied traits, suggesting that variations among crosses were mainly due to additive 

rather than non-additive gene effects; and hence, selection would be effective in improving 

grain yield and other agronomic traits. 

 

Based on individual and across locations combining ability analysis, L23, L24, and L41 at 

Melkasa, L2 and L23 at Dhera, L13 and L41 at Mieso, L25, L23 and L30 at Pawe, and L13, 

L21, L23, L25, L27, L30 and 41 in comined analysis across locations were found the best 

general combiners for grain yield. These inbred lines with a high GCA effects for grain yield 

were desirable parents for hybrids as well as for inclusion in the breeding program, since they 

may contribute favorable alleles in the synthesis of new varieties. 

 

For days to anthesis and silking, L2, L3, L5, L8 and L11 were the best combiners at most 

locations and across locations, indicating that these lines had favorable alleles for early 

maturity. 

 

Inbred lines L1, L5, L8 and L37 were good general combiners for shorter plant height, which 

are desirable for lodging resistance.  
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For grain yield, test crosses L4 x T1, L14 x T1, L22 x T2, L23 x T2, L24 x T2   and L33 x T2 

has better specific combining ability for grain yield in different locations. These hybrids could 

be included for further studies for the improvement of grain yield or for direct release for 

commercial production. 

 

Based on the SCA and GCA effects for grain yield, only 17 elite maize inbred lines were 

established into A and B heterotic groups. These heterotic groups could serve as sources for 

developing inbred line and hybrids. However, the testers used in the current study could not 

clearly discriminate most of the inbred lines into distinict heterotic groups. Therefore further 

studies should explore the possibility of separating these and other inbred lines into distinct 

heterotic groups using the currently used and other more divergent testers. 

 

From the study it can be concluded that better performing testcrosses, inbred lines with 

desirable GCA and cross combinations with desirable SCA effects for grain yield and other 

grain yield related traits were successfully identified. These germplasm constitute a source of 

valuable genetic material that could be successively used for future breeding work. In general, 

the results of  this study could be useful for researchers who need to develop high yielding 

varieties of maize particularly adapted to the rift valley areas of Ethiopia.  
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Appendix Table 1. Analysis of variance for grain yield and other agronomic traits of line by tester crosses involving 43 lines and two testers 

evaluated at  Melkasa in 2010 

 

          Mean squares           

Source df GY(t/ha) AD(days) SD(days) EPP (#) PH (cm) EH (cm) RPE (#) KPR (#) EL( cm) ED (cm) TKWT (gm) 

Rep 1 22.01** 28.64** 31.11** 0.0005 829.11 1145.46* 0.36 13.09 6.88** 0.57** 47160.01** 

Block(Rep) 20 2.10** 3.26** 2.88* 0.02 446.33** 225.10 0.28 6.25 1.73 0.06** 3966.80 

Entry 87 1.34* 4.13** 4.54** 0.03* 228.65* 171.57 0.44* 7.34** 1.58** 0.05** 3397.06** 

     Crosses(Cr) 85 1.32* 3.95** 4.34** 0.03* 229.68* 174.24 0.45* 7.47** 1.59** 0.05** 3471.54** 

            GCA line 42 1.46** 6.99** 7.52** 0.04* 300.29** 216.27 0.69* 9.10** 2.17** 0.06** 4935.42** 

            GCA tester 1 0.47 2.41** 6.26** 0.05** 11.39 515.24 0.01 1.62 0.23 0.15** 0.01 

            SCA 42 1.19** 0.94** 1.12* 0.01 164.28 124.10 0.22 5.98* 1.03 0.03* 2091.05 

    Ck 1 0.50 22.45** 25.21 0.00 41.11 112.50 0.08 2.88 0.32 0.18 36.13 

     Ck vs Cr 1 4.31** 1.05 0.98 0.03 327.91 3.23 0.16 0.91 2.36 0.05** 396.43 

Error 67 0.53 0.59 0.70 0.01 114.04 145.06 0.21 3.47 0.85 0.01 1943.19 

% contribution.GCA 55 88 87 81 65 65 76 60 68 67 70 

% contribution.SCA 45 12 13 19 35 35 24 40 32 33 30 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, Df = degrees of freedom,  ED 

= ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, 

Rep= replication,  RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight  
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Appendix Table 2. Analysis of variance for grain yield and other agronomic traits of line by tester crosses involving 43 lines and two testers 

evaluated at Ziway in 2010 

                                 Mean squares         

Source df GY (t/ha) AD(days) SD(days) EPP (#) PH (cm) EH (cm) RPE (#) KPR (#) EL (cm) ED (cm) TKWT (gm) 

Rep 1 41.74** 5.46* 0.69 0.05 0.28 164.20 0.27 248.43** 60.98** 2.12** 69713.68** 

Block(rep) 20 2.20** 1.35 4.38* 0.03 244.56 165.76 0.80 11.66 2.40 0.08* 2535.64* 

Entry 87 0.76* 5.98** 5.73** 0.02* 143.78* 129.71* 0.63* 7.62* 1.76** 0.04** 794.98 

     Crosses (Cr) 85 0.74* 5.97** 5.78** 0.02* 146.70* 132.41* 0.64* 7.52* 1.78** 0.04** 787.46 

            GCA line 42 0.64 9.03** 8.86** 0.02 205.98** 182.18** 0.97** 7.42* 2.06** 0.06** 1032.75 

            GCA tester 1 0.14 11.99** 8.54* 0.01 54.40 76.48 0.22 28.95* 6.04* 0.05 235.13 

            SCA 42 0.87* 2.77** 2.63** 0.02 89.62 83.96 0.33 7.12 1.41 0.03 555.33 

      Ck 1 0.98 7.61 4.50 0.01** 28.13 2.42 0.08** 23.12 1.28 0.02 2217.78 

      Ck vs Cr 1 1.68 4.82** 2.40 0.01** 11.14 27.32 0.37 0.34 0.36 0.12* 11.52 

Error 67 0.47 0.57 1.26 0.01 88.45 77.32 0.41 4.91 0.90 0.02 583.75 

% contribution.GCA 42 77 78 55 70 69 75 53 61 69 65 

% contribution.SCA 58 23 22 45 30 31 25 47 39 31 35 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, Df = degrees of freedom,  ED 

= ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, 

Rep= replication, RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight  
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Appendix Table 3. Analysis of variance for grain yield and other agronomic traits of line by tester crosses involving 43 lines and two testers 

evaluated at  Dhera in 2010 

 

        Mean squares         

Source df GY (t/ha) AD (days) SD(days) EPP(#) PH (cm) EH (cm) RPE (#) KPR(#) EL  (cm) ED (cm) TKWT(gm) 

Rep 1 10.59** 0.01 0.62 0.02 1250.82** 90.67 1.98** 38.18** 55.88** 1.12** 127.97 

Block(rep) 20 0.47 9.77** 8.71 0.02 317.59** 291.97** 0.57* 12.26 2.23 0.11 2268.31 

Entry 87 0.38** 6.79** 6.56** 0.01 122.27** 129.13* 0.74** 12.41* 2.24* 0.09** 1420.67** 

     Crosses(Cr) 85 0.37** 6.53** 6.37** 0.01 124.80** 130.14** 0.75** 12.58* 2.28* 0.09** 1453.54** 

            GCA line 42 0.41** 10.67** 9.93** 0.01 130.31** 162.15** 1.01** 14.65* 2.49* 0.11** 1437.76** 

            GCA tester 1 1.31* 0.49 3.24 0.0001 372.57* 298.79* 0.03 0.92 0.52 0.02 2800.98* 

            SCA 42 0.32* 2.54* 2.87* 0.01 113.39** 94.11 0.5* 10.78 2.12 0.08* 1437.24** 

      Ck 1 0.13 34.45 28.88 0.05 27.38 2.42 0.18 3.13 0.72 0.02 0.13 

      Ck vs Cr 1 0.91 0.56 0.94 0.02 1.79 170.02 0.30 7.38 0.28 0.11 47.48 

Error 67 0.18 1.47 1.59 0.009 58.28 85.68 0.29 7.78 1.45 0.04 711.46 

% contribution.GCA 58 81 78 60 55 64 67 58 54 56 51 

% contribution.SCA 42 19 22 40 45 36 33 42 46 44 49 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, Df = degrees of freedom,  ED 

= ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, 

Rep= replication, RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight  
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Appendix Table 4. Analysis of variance for grain yield and other agronomic traits of line by tester crosses involving 43 lines and two testers 

evaluated at  Mieso in 2010 

 

        Mean Squares         

Source df GY(t/ha) AD (days) SD (days) EPP(#) PH (cm) EH (cm) RPE (#) KPR (#) EL (cm) ED(cm) TKWT(gm) 

Rep 1 39.69** 190.28** 166.14** 0.24** 136.51* 6.96 0.31 87.83** 25.54** 0.63** 15582.44* 

Block(rep) 20 2.14** 11.95** 13.80** 0.02 184.75* 150.64** 0.41 18.22 6.41** 0.18** 4234.75* 

Entry 87 0.52* 7.90** 9.66** 0.011* 104.76* 85.68* 0.48* 9.28* 2.18* 0.05* 2273.60** 

     Crosses(Cr) 85 0.53** 7.58** 9.31** 0.01 105.98* 87.48* 0.49* 9.30* 2.18* 0.04 2189.48** 

            GCA line 42 0.64** 10.73** 12.33** 0.01 81.28 119.91** 0.56* 8.53 2.10* 0.06 1873.20* 

            GCA tester 1 0.18 0.001 0.10 0.02 497.28** 0.62 1.16* 3.44 1.79 0.003 8249.64** 

            SCA 42 0.44 4.61** 6.50** 0.01 121.35* 57.11 0.41 10.22* 2.27* 0.03 2361.47** 

      Ck 1 0.02 2.88 1.81 0.00 1.62 10.13 0.02 4.81 0.13 0.05 5010.01 

      Ck vs Cr 1 0.004 40.09** 47.54** 0.00 104.83 8.62 0.25 11.55 4.23 0.31** 6687.34* 

error 67 0.31 1.69 1.76 0.01 67.89 58.60 0.29 5.35 1.31 0.03 1071.04 

% contribution.GCA 59 70 66 51 43 68 59 46 49 63 47 

% contribution.SCA 41 30 34 49 57 32 41 54 51 37 53 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, Df = degrees of freedom,  ED 

= ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, rep 

= replication, RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight
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Appendix Table 5. Analysis of variance for grain yield and other agronomic traits of line by tester crosses involving 43 lines and two testers 

evaluated at   Pawe in 2010 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, Df = degrees of freedom,  ED 

= ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, 

Rep= replication,  RPE = Number of rows per ear, SD = number of days to silking,  TKWT = thousand kernels weight  

 

 

 

        Mean squares         

Source df GY (t/ha) AD(days) SD (days) EPP(#) PH (cm) EH (cm) RPE( #) KPR( #) EL (cm) ED (cm) TKWT (gm) 

Rep 1 24.56** 5.46** 3.55 0.01 1452.45** 846.57** 1.58 15.66** 13.33** 0.38** 37115.53** 

Block(rep) 20 2.57** 1.59 1.55 0.01 444.00** 311.20** 0.34 7.13** 2.89** 0.05** 2746.43** 

Entry 87 2.29** 5.42** 5.38** 0.01 168.40** 99.07** 0.59** 6.54** 1.93** 0.05** 1565.47** 

     Crosses(Cr) 85 2.24** 5.29** 5.27** 0.01 162.14** 92.83** 0.59** 6.13** 1.63** 0.05** 1573.87** 

            GCA line 42 3.43** 8.47** 8.24** 0.01 265.77** 137.98** 0.86** 10.08** 2.76** 0.05** 2179.84** 

            GCA tester 1 3.49** 6.42** 9.31** 0.05 144.56* 86.20 0.39 0.003 0.09 0.45** 2249.12 

            SCA 42 1.01** 2.08** 2.19** 0.01 58.92* 47.84* 0.33* 2.33 0.55 0.03** 951.82 

      Ck 1 7.68 16.82 17.41** 0.02 856.98* 658.85* 0.32 27.38 26.64 0.08 1842.25 

      Ck vs Cr 1 1.39 5.06** 2.98* 0.01 12.48 369.76** 0.40 20.35** 1.98 0.03 574.87 

error 67 0.49 0.55 0.64 0.01 36.45 29.68 0.21 2.10 0.60 0.01 817.78 

% contribution.GCA 78 81 79 36 82 75 72 81 83 70 70 

% contribution.SCA 22 19 21 64 18 25 28 19 17 30 30 
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Appendix Table 6. Estimates of mean values for grain yield and related traits at Melkasa 

 

Genotypes GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 x T2 7.04 74.2 75.5 1.1 195.2 107.5 15.8 39 15.4 5 339.3 

L2 x T2 8.57 70.9 72.1 1.2 226.6 107.5 14.6 39.2 15.8 4.7 337.7 

L3 x T2 6.89 72.5 73.6 1.1 195.9 125 16.2 32.5 13.7 4.6 292.8 

L4 x T2 7.72 75.7 77.5 1 239.8 125 13.6 42.9 17.8 4.9 407 

L5 x T2 6.35 72.4 73.7 1 207.9 102.5 14 38.6 15.2 4.6 378.2 

L6 x T2 6.64 76.7 77.8 1.1 229 132.5 13.6 40.2 16.3 4.7 287.4 

L7 x T2 8.39 73.8 74.3 1 203.3 97.5 14.6 39.6 18.9 5 513.2 

L8 x T2 7.87 73.1 74.2 1.1 223 105 13.6 35 16.9 4.6 409.5 

L9 x T2 7.38 75.9 77.3 1 252.1 147.5 13.4 38.6 16 4.9 423.6 

L10 x T2 8.13 76.9 78.1 1.2 230.5 122.5 14.2 39.3 17.5 4.6 282.4 

L11 x T2 8.53 72.8 74 1.1 236.4 137.5 15 35 17.5 4.9 402.5 

L12 x T2 8.2 76.8 77.8 1.5 201.6 110 13.8 36.4 14.8 4.3 367.9 

L13 x T2 6.74 77.2 78.6 1.1 229.8 125 14.8 36.9 15.2 4.5 297.1 

L14 x T2 5.53 78.8 81.3 1 218.6 125 14.4 34.4 15 4.7 430.8 

L15 x T2 7.78 76 77.4 1.4 217.5 125 13.6 39.1 16.3 4.7 390.4 

L16 x T2 7.37 76.7 78.1 1 191.9 115 14.4 34.7 14.8 4.5 334.1 

L17 x T2 7.17 78 78.5 1.2 237.2 132.5 13.8 34.7 14.2 5 432.4 

L18 x T2 6.62 74.6 76.9 1.1 220.9 117.5 14 38.4 15.1 4.5 402 

L19 x T2 8.83 75.4 75.9 1.2 247.5 135 13.2 35 15 4.8 473.3 

L20 x T2 7.97 74.5 77.1 1.1 213.6 112.5 14.2 35 16 5 413.9 

L21 x T2 8.7 73.7 76.3 1.3 237.6 132.5 14.2 35.6 14.9 4.9 381.2 

L22 x T2 8.46 72.8 73.7 1.2 217.4 115 14.4 39.4 15.7 4.9 368.5 

L23 x T2 11.42 77.1 78.1 1.6 237.7 120 14 40.9 16 4.9 291.6 

L24 x T2 11.67 77.8 78.5 1.6 240 120 13.8 37.2 16.4 4.7 309.1 

L25 x T2 9.7 77.4 78.5 1.6 224.6 125 13 41.2 16.3 4.6 296.6 

L26 x T2 7.61 76.2 77.9 1.1 206.7 125 14.8 38 15.6 4.7 301.9 
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 Appendix Table 6 (Continued) 

L27 x T2 8.09 76.6 78 1.1 236.5 137.5 13.8 41.5 17.1 5 327.5 

L28 x T2 8.05 75 76.9 1.4 225.3 112.5 14 38.6 15.5 4.6 368.4 

L29 x T2 8.98 75.3 77 1.2 230.5 142.5 15 40.2 17.3 4.9 410.8 

L30 x T2 8.59 78.6 80.6 1 222.3 135 13.6 39 17.2 4.8 328.8 

L31 x T2 8.56 74.5 76.6 1.1 227.9 135 13.6 37.6 16 4.5 361.8 

L32 x T2 8.67 77.3 78.5 1.2 241.5 130 14.8 39.2 17.5 5 323.4 

L33 x T2 11.19 75.2 76.7 1.2 212.1 130 13.8 42.5 20.4 4.8 353.9 

L34 x T2 6.96 78.6 80 1.3 220 112.5 13.2 37.8 17.7 4.2 349.3 

L35 x T2 6.54 79.3 80.8 1.2 206.8 107.5 13.2 38.8 18.1 4.4 477.4 

L36 x T2 8.48 76.9 77.9 1.3 231 127.5 15.2 38.4 18.3 4.9 345.8 

L37 x T2 9.9 73.5 74.6 1.1 222.3 135 14.2 37.1 17.6 4.9 480.2 

L38 x T2 6.62 78 80 1.1 225.8 140 14.6 33.4 15.1 4.6 352.6 

L39 x T2 7.94 77.3 78.4 1.2 218.8 135 14 37.3 16.9 4.4 398.1 

L40 x T2 7.78 76.2 78.1 1.2 206 110 14.2 39.3 16.5 4.8 433.5 

L41 x T2 9.44 77.5 78 1.2 235.5 127.5 13 31.8 16.3 4.6 365.8 

L42 x T2 8.36 77.3 78.2 1.2 206.8 127.5 13.8 38.9 17.5 4.3 349.3 

L43 x T2 8.6 76.6 77.8 1.1 231.9 127.5 14.4 38.1 15.8 4.8 352.4 

L1 x T1 8.4 71.8 73 1.3 191.7 122.5 14 34 14.8 4.7 326.1 

L2 x T1 9.16 71.2 72.2 1.1 222.4 105 14.8 32.9 15.6 4.8 381.3 

L3 x T1 7.94 73.5 74.4 1 209.6 95 16 40.3 15.8 4.8 314.5 

L4 x T1 8.81 75 76.9 1.2 236.2 140 14.2 42.5 17.8 4.7 381.9 

L5 x T1 8.56 70.6 71.3 1.1 186.2 92.5 13.2 39.1 15.5 4.8 373.5 

L6 x T1 7 77.6 78.6 1.2 243 137.5 14.6 36 15.8 4.9 244.9 

L7 x T1 9.7 71.9 73.6 1 196.3 95 14 39 17.9 5 455.7 

L8 x T1 7.04 72.8 73.8 1.1 192.5 97.5 14.4 38.7 18 4.8 354 

L9 x T1 6.91 74.5 77.2 1.1 191.9 97.5 14.2 34.5 14.7 4.6 346.3 
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L10 x T1 8.65 76 77.6 1.2 222.3 140 14.6 37.4 15.6 4.6 342.1 

L11 x T1 9.86 72.1 73.6 1.4 214.5 120 14 37.9 17.3 4.7 382.9 

L12 x T1 7.06 77 78 1.7 206 97.5 13 34.5 14.6 4.4 345 

L13 x T1 8.23 76 77.6 1.2 220.6 100 14.6 36.8 15.6 4.8 348.2 

L14 x T1 7.6 77.3 79.4 1.1 237.4 132.5 14.2 35.4 16.6 4.9 364 

L15 x T1 7.75 76.2 77.6 1.2 242.4 140 13.6 38.8 16.1 4.7 287.3 

L16 x T1 6.8 76.8 77.8 1.1 218.8 115 14.2 42.1 16.7 4.8 350.8 

L17 x T1 9.53 75.4 76 1.2 230.8 120 14.4 35.9 16.2 5.2 412.4 

L18 x T1 8.2 74.4 76 1.3 213.8 117.5 13.4 40.2 16.5 4.9 407.3 

L19 x T1 7.56 74.2 75.7 1.3 229.4 110 13.2 31.1 14.6 4.7 423.9 

L20 x T1 8.42 75.5 75.9 1.1 216.6 110 14.6 31 15.1 5 358.2 

L21 x T1 10.61 74.8 75 1.4 231.9 142.5 13.8 37.9 16 5.4 488.5 

L22 x T1 8.92 74.1 75 1.2 248.5 135 14.2 39.4 17 5.1 400.5 

L23 x T1 8.92 77.7 79.2 1.5 247.5 135 14.2 35.5 15.3 4.5 368.7 

L24 x T1 7.88 77.1 78.2 1.3 222.9 117.5 13.2 36.8 15.6 4.5 367.6 

L25 x T1 8.5 77.9 78.8 1.5 235.9 130 13 39.6 15.7 4.6 314.3 

L26 x T1 8.2 76 76.9 1.1 227.6 119.5 14 39.9 15.1 5 492.5 

L27 x T1 9.11 76.2 77.6 1.1 243.4 127.5 13.8 40.5 16.3 5 288.5 

L28 x T1 7.88 75.2 76.2 1.1 211.1 127.5 13.8 39.3 16.9 4.8 355.9 

L29 x T1 9.04 78 78.8 1.5 221.4 115 15.4 38.8 16.4 4.7 392.9 

L30 x T1 9.21 77.6 78.3 1.3 255 130 14 40 18.4 4.7 351.4 

L31 x T1 7.18 74.4 74.8 1.1 219.4 120 14 39.1 16 4.9 373.9 

L32 x T1 7.15 77.9 78.5 1.2 208.7 102.5 14.6 34.9 15.7 4.8 306.2 

L33 x T1 6.79 78 80.1 1.3 230.3 115 14 36.2 15.5 4.6 266.7 

L34 x T1 8.93 75 75.5 1.5 221.8 112.5 15.2 41.3 19.1 4.8 369.8 

L35 x T1 8.32 76.8 77.8 1.4 221.2 127.5 14.2 39.1 17.5 4.5 318.3 

L36 x T1 6.31 77.8 79.4 1.2 223.3 115 15.2 33.9 14.2 4.6 295.9 

L37 x T1 9.08 74.7 75.9 1.1 215.8 105 14 37 16.9 4.9 530 



94 
 

 Appendix Table 6 (Continued) 

L38 x T1 8.51 76.9 77.7 1.3 225.8 140 14.6 37.7 15.2 5 372.5 

L39 x T1 7.98 76.5 79.1 1.3 227.3 127.5 13 40.6 18.7 4.8 374.3 

L40 x T1 8.37 76.1 76.5 1.1 215.5 120 14.4 38.5 16.1 5.1 405.3 

L41 x T1 10.26 76.5 77.7 1.4 238.5 122.5 13.4 35.1 17.1 4.9 501.3 

L42 x T1 7.93 74.7 75.7 1.1 216.5 120 13.6 42.7 18.1 4.6 448.8 

L43 x T1 8.12 77.5 78.7 1.1 220.3 115 13.8 32.6 15.1 4.7 358.3 

BH-543 7.23 78.3 79.8 1.1 230.9 115 14.6 38.2 17.8 4.3 350.2 

Melkasa-2 6.23 71.6 72.7 1.1 240 130 14.2 35.8 17 4.9 366.7 

Cr mean 8.21 75.7 77 1.2 222.5 121.2 14.1 37.7 16.3 4.8 370.8 

Ck mean 6.73 75 76.3 1.1 235.5 122.5 14.4 37 17.4 4.6 358.5 

Mean 8.18 75.7 76.9 1.2 222.8 121.2 14.1 37.7 16.3 4.8 370.5 

LSD (5%) 2.04 2.2 2.4 0.3 30.1 34 1.3 5.3 2.6 0.3 124.4 

CV 12.5 1.4 1.5 11.5 6.8 14 4.6 7 8 3.3 16.8 

Min 5.53 70.6 71.3 1 186.2 92.5 13 31 13.7 4.2 244.9 

Max 11.67 79.3 81.3 1.7 255 147.5 16.2 42.9 20.4 5.4 530 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH=plant height, RPE= Number of rows per ear, SD= number of days to silking, TKWT= thousand kernels weight
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Appendix Table 7. Estimates of mean values for grain yield and related traits at Ziway 

 

Genotypes GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 x T2 4.5 70 70.2 0.8 190.5 95.6 15 36.6 12.5 4.5 276.6 

L2 x T2 4.5 68.5 70.4 1.1 225 107 14.4 35.7 14.5 4.5 227 

L3 x T2 4.5 69 69.4 1 210.8 110 16 37.7 15.2 4.3 208.2 

L4 x T2 3 73.4 75.9 1 233.9 127.5 13.6 36.3 14 4.1 195.8 

L5 x T2 3.6 69.4 70.8 1 197 102.7 13.6 33.4 11.2 3.9 190.9 

L6 x T2 4.1 74 76.2 1 220.6 115.5 13.6 36.4 15 4.3 198.5 

L7 x T2 3.5 68.9 71.4 0.8 205.1 105.3 14.1 35.4 13.6 4 205.2 

L8 x T2 5 69 71 0.9 198.5 97.4 13.2 36.8 14.3 3.9 253.3 

L9 x T2 3 73.5 76.8 0.8 218.3 113 13.6 33.9 13 4.4 245.7 

L10 x T2 4.5 73 75.2 1 208.2 107.6 15.4 36.1 14.3 4.2 244.7 

L11 x T2 4.5 70.5 73.7 0.9 225.8 125.6 14.4 33 13.6 4.1 244.2 

L12 x T2 4.7 70.5 72.6 1.3 209.7 112.2 13.2 34.9 11.8 3.9 187.2 

L13 x T2 4.2 72.9 74.8 1.2 234.9 122.2 14.8 35.1 14.6 4.4 219.4 

L14 x T2 3.2 76 78.1 0.9 214.2 124.7 14.4 33.4 12.5 4.3 212 

L15 x T2 3.7 73.4 75 0.9 223.6 130 13.8 35.9 13.2 4 225.9 

L16 x T2 3.7 73 75.1 0.9 225.5 122.2 14.8 33.5 13.1 4.2 303 

L17 x T2 3.4 74.6 75.7 0.9 218.9 124.7 14.2 33 12.5 4.5 246 

L18 x T2 3.8 73 74.9 1 211.7 115 14.2 38.2 14.4 4.3 247.8 

L19 x T2 4.6 70 71.9 1.2 232.9 132.4 14 34.6 13.6 4.4 263.3 

L20 x T2 4.5 70.5 73.7 1 215 122.6 14.2 34.8 14.6 4.4 295.2 

L21 x T2 4.7 70.4 73.4 1.1 220 125.3 13.8 29.4 11.1 4.4 224.6 

L22 x T2 4.7 68.9 69.9 0.9 210 119.9 13.6 30.3 12 4.5 271.9 

L23 x T2 5.2 74.1 75.4 1 205.8 105.4 14.2 36.4 12.8 4.3 208.3 

L24 x T2 5.8 75.5 76.8 1.1 226.7 112.7 13.8 38.1 14.9 4.2 232.6 

L25 x T2 4.3 75.1 76.1 1.1 218.1 110.2 13.2 39.5 14.7 4.3 211.4 

L26 x T2 4 72.6 74.4 1 203.4 114.7 15 36.7 13 4.6 250 
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L27 x T2 5.7 73 75.8 0.9 216.5 102.2 13.2 34.8 12.4 4.3 208 

L28 x T2 4 73.9 75.3 1.4 218.3 114.9 13.6 30.6 11.8 4.2 247.5 

L29 x T2 4.8 75 75.5 1.3 216.2 119.8 14 35.4 13.5 4.1 240.3 

L30 x T2 3.4 76 78.5 1 226.4 125.3 13.2 36.1 13.8 4.1 216 

L31 x T2 4 73 74.1 0.9 213.5 112.8 13.4 34.4 13.2 4.3 219.6 

L32 x T2 4 73 75 1.1 225.6 117.3 15.4 35.9 14.5 4.5 230.7 

L33 x T2 5.5 73 75.2 0.9 227.4 112.6 14.6 39.5 15.6 4.3 255.7 

L34 x T2 4.2 75.5 78.6 0.9 221.9 115 13.2 36.9 15.9 4 215.9 

L35 x T2 3.2 75 77.3 0.8 216.7 109.7 13.8 38.6 16.4 4 236.6 

L36 x T2 5.6 73.1 74.8 1.1 228.5 117.1 14.6 38.6 15.4 4.4 207 

L37 x T2 4.7 72.5 73.7 1.1 202.2 105 13.2 37.7 15 4 224.7 

L38 x T2 3.6 75.5 75.9 1.5 206.7 114.4 13.6 35.9 13 4 231.9 

L39 x T2 6.4 75.5 77.3 1.5 216.2 119.6 14.4 40.3 16.8 4.2 241.8 

L40 x T2 3.1 76 76.9 1 213.2 119.9 14.2 33.3 13.2 4.1 251.4 

L41 x T2 4.1 74.1 74.8 0.9 218.5 112.2 13.2 35.6 14 4.1 289.1 

L42 x T2 3.8 74.4 75 0.9 218.1 135.4 13.6 36.6 13.4 3.9 172.3 

L43 x T2 5 70.1 71.3 1 225.2 125 13.4 39.8 15.1 4.2 236.4 

L1 x T1 5.1 69.6 71.1 1.3 199.7 109.8 14.6 28.3 10.5 4.1 179.6 

L2 x T1 4.9 69.4 71.8 1 219 97.1 13.2 31.4 12.3 4.3 260.6 

L3 x T1 3.4 69.5 71.8 0.8 205.3 109.9 16 35.5 13.3 4.1 202.6 

L4 x T1 5.9 68.6 71 0.9 218.6 109.9 10.8 34.9 13.5 4 233.4 

L5 x T1 3.7 68 69.1 1 175.4 85.1 12.2 37 13.4 4.2 247.1 

L6 x T1 3.5 74.9 76.5 1 222.3 140.2 14.8 33.9 12.8 4.3 199.9 

L7 x T1 5.3 67.5 70.5 0.9 197.4 102.4 13.6 39.7 16.9 4.5 265.2 

L8 x T1 4 68 69 1.1 197.5 87.5 14 35.4 14.5 4.1 245.6 

L9 x T1 4.4 69.9 74.7 1.1 221.5 115.2 14.2 35.6 14.1 4.3 234.2 

L10 x T1 4.6 71.6 73.9 1 225.9 125.5 14.8 34.4 11.8 4.3 230.8 

L11 x T1 4.4 70 71.1 1 215.2 117.7 14.8 34.7 13.6 4.2 263.4 
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L12 x T1 4 76 76.9 0.9 216.4 114.8 14 30.7 11.5 4 217.4 

L13 x T1 5 70.4 73 1 229.2 112.4 15 37.7 14.1 4.4 198.3 

L14 x T1 3.8 75 73.9 0.8 215.4 105.4 13.8 34.4 12.8 4.4 240.6 

L15 x T1 5.3 70.5 73.9 1.3 213.7 117.5 12.8 38.5 13.1 4.1 241.1 

L16 x T1 2.8 70.5 73.6 0.8 200.6 102.3 14.4 30.7 12.5 4.3 267.4 

L17 x T1 4.7 73 74.8 1 230.9 137.5 13.8 32 11.2 4.4 269.3 

L18 x T1 5.3 70 72.1 1 206.7 99.9 13.2 37.7 14.6 4.4 251 

L19 x T1 3.9 72.9 73.5 1.1 231.5 127.6 13.2 30.6 12.6 4.3 268.7 

L20 x T1 2.7 73 75.3 0.9 204 105.2 14.2 30.2 12 4.5 230.5 

L21 x T1 4.8 71.1 73.4 0.9 227.3 122.5 14.4 37.4 13.8 4.6 231.5 

L22 x T1 3.8 69.6 71.3 0.9 227.3 137.5 13.6 33.9 12.9 4.7 264.7 

L23 x T1 5.3 78.9 79.7 1 243.4 129.5 13.4 36.7 14 4.3 233.7 

L24 x T1 5.6 74 75.2 1.2 216.7 119.9 13.4 35.2 13.7 4.3 258.5 

L25 x T1 3.1 77 79.5 0.9 233.5 117.9 13.2 30.5 11.2 3.7 179.5 

L26 x T1 5.5 70 72 1 207.9 112.8 15.6 37.1 13.6 4.9 235.3 

L27 x T1 4.6 72.9 75 1 212.8 107.5 13.4 35.1 12.6 4.2 236 

L28 x T1 4.1 70.6 72.7 0.9 226.8 127.2 13 35.4 13.2 4.2 246.7 

L29 x T1 4.8 72.9 74.9 1 234.6 127.3 14.2 34.4 13.7 4.4 239.3 

L30 x T1 5.5 74 76.5 1.1 230.2 127.2 14 37.1 15 4.4 272.2 

L31 x T1 4.7 70 72 0.9 193.5 90.3 13.8 35.1 13.1 4.4 258 

L32 x T1 2.8 75.5 78 0.9 200.8 102.8 15 30.7 11.8 4.2 194.2 

L33 x T1 3 74 77 0.9 205.4 97.5 13.4 33.3 12.6 4 211.1 

L34 x T1 4.2 73.5 75.2 1.2 223.5 120.6 14 41.2 16.2 4 200.8 

L35 x T1 4.2 73 76 1.1 199.8 107.4 14.8 36.5 13.8 4.1 205.2 

L36 x T1 3.7 72.6 74.3 1.1 209.1 107.6 14.4 35.3 13.8 4.4 206.7 

L37 x T1 4.4 70.1 72.3 1.1 191.8 100.2 14.2 36.3 14.3 4.3 226 

L38 x T1 3.1 73 73.3 0.9 211.9 112.1 13.6 32.2 12.7 4.1 237.7 

L39 x T1 4.3 73.6 74.3 1.2 229.3 142.1 13.6 34.6 13.5 4 272.6 



98 
 

 Appendix Table 7 (Continued) 

L40 x T1 4.9 73.5 74.5 0.9 212.8 117.3 14.6 32.1 12 4.3 233.8 

L41 x T1 5.9 71.1 73.3 1.1 227.9 119.9 13.4 30.5 13.5 4.5 308.3 

L42 x T1 6 72.6 73.3 1 217.8 118 14.8 39.3 15.8 4.3 239.8 

L43 x T1 2.8 74.4 75.5 1 216.5 110.5 13.2 32 12.3 4.1 217.5 

BH-543 4.1 75.9 76.8 1 209.7 119.7 14.6 38.1 13.9 4.1 265.4 

Melkasa-2 2.7 72 73.8 0.9 217.2 117.5 14.2 31.3 12.3 3.9 198.8 

Cr mean  4.3 72.4 74.2 1 215.8 114.9 14 35.1 13.5 4.3 234.5 

Ck mean 3.4 74 75.3 1 213.5 118.6 14.4 34.7 13.1 4 232.1 

Mean 4.3 72.4 74.2 1 215.8 114.9 14 35.1 13.5 4.2 234.5 

LSD (5%) 1.9 2.1 3.2 0.3 26.5 24.8 1.8 6.3 2.7 0.4 68.2 

CV 22.5 1.5 2.1 16 6.2 10.8 6.5 8.9 9.9 4.6 14.6 

Min 2.7 67.5 69 0.8 175.4 85.1 10.8 28.3 10.5 3.7 172.3 

Max 6.4 78.9 79.7 1.5 243.4 142.1 16 41.2 16.9 4.9 308.3 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH=plant height, RPE= Number of rows per ear, SD= number of days to silking, TKWT= thousand kernels weight
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Appendix Table 8. Estimates of mean values for grain yield and related traits at Dhera 

  

Genotypes GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 x T2 3 76.6 78.7 1 180.6 96.3 15 29.2 12.1 4.4 199.9 

L2 x T2 4 73.1 75 1.5 196.9 93.3 14 31 13.3 4.7 190 

L3 x T2 3.5 75.9 78.3 1.1 198.2 110.9 16 34.2 14.6 4.6 152.6 

L4 x T2 2.1 78.4 84 0.9 192.8 92.1 14.2 31.3 12.6 4 210.8 

L5 x T2 2.9 75 77.9 1 182.5 95.3 12.4 28.7 11.1 4 156.3 

L6 x T2 2.5 80.2 83.2 1 208 109.1 14.4 32.4 12.2 4.1 205.6 

L7 x T2 2.1 76.1 77 0.9 200.2 90.4 13.8 32 12.7 4.5 284.8 

L8 x T2 3 73.8 77.1 1 186.2 81.9 13.6 26.3 11.4 4 219.8 

L9 x T2 3 73.4 75.4 1 189.8 90.1 14.2 30.4 13.1 4.2 185.6 

L10 x T2 2.8 80.2 82 1 202.4 120.1 13.8 33.2 12.6 4.3 159 

L11 x T2 3 77.8 81.8 1 187.5 97.5 14.6 31.5 14.1 4.3 194.7 

L12 x T2 1.8 78.9 81.2 1.1 187.6 94.8 12.8 32.5 13.3 4.2 148.9 

L13 x T2 2.6 78.9 79.8 1 198.5 101.7 13.8 28.4 12.6 4.7 194.1 

L14 x T2 1.6 83.9 86 0.8 194.3 102.5 13.2 23 10.6 4.1 199.8 

L15 x T2 2.9 79.7 80.9 1.1 194 112.5 13.2 35.7 13.1 3.9 136.8 

L16 x T2 1.9 81.8 83.7 1.1 182.8 85.1 14.5 26.2 11.7 4.3 222.9 

L17 x T2 2.6 81.3 82.3 1 187.7 96.4 13.5 33.9 15 5.1 261.5 

L18 x T2 2.5 79 82.1 1 197 95.8 14 27 11.7 4.4 189.9 

L19 x T2 2.5 79.4 81.6 1 206.9 111 13.4 30.4 12.7 4.3 178.4 

L20 x T2 3 80 82.4 0.9 208.9 114 14.6 28.2 12.7 4.6 215.2 

L21 x T2 2.5 79.3 83.3 0.9 193 94.9 13.9 24.7 10.3 4.4 235.3 

L22 x T2 3.1 76.8 78.7 1 202.8 110.6 13.6 28.2 11.9 4.8 219.5 

L23 x T2 2.5 82.3 84.6 0.9 200.1 95.2 13.2 30.1 12.7 4.5 215.6 

L24 x T2 2.4 82.2 84.1 1 202.1 115.9 13.1 30 12.6 4.3 192.6 

L25 x T2 2.4 82 83.5 1 193.2 102.8 13.6 36 13.9 4.3 168.7 

L26 x T2 2.3 81.2 83.1 1 190.7 85.3 15 22.6 10.3 4.2 185 
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L27 x T2 2.8 80.7 82.9 0.9 205.4 103.2 13.8 32.8 13.4 4.5 213.4 

L28 x T2 1.6 79.8 82.4 0.9 188.3 96.2 13.4 27 11.5 4.2 196.4 

L29 x T2 2.2 82.7 84.7 1.1 204.7 109.4 14.2 27.4 11.1 4 162.2 

L30 x T2 2.6 80.2 84.6 1.1 205.3 126.3 13.8 34.8 14.9 4.6 140.9 

L31 x T2 2.6 79.9 82.7 0.9 192.1 97.7 14.2 33.5 13.6 4.3 256.7 

L32 x T2 1.6 82.8 84.9 0.8 209.5 98.1 15 28.6 11.9 4.5 211.7 

L33 x T2 2.4 80 83.5 1 194.6 100.3 13.8 33.6 13.1 4.4 209.9 

L34 x T2 1.3 83.4 85.4 0.9 178.6 89.6 13.2 26.4 11.4 3.5 146.4 

L35 x T2 2 84 85.8 0.9 192.7 94.7 13.4 32 14.3 3.7 128.5 

L36 x T2 2.3 81.2 83.8 0.8 184 84.6 16.4 28.7 12.9 4.8 180.1 

L37 x T2 3.9 79.4 80.7 1 196.9 107.6 14.4 36.7 16.2 4.3 193 

L38 x T2 1.7 81.7 84 0.8 205.9 105.6 14.8 24.8 10.2 4.1 205.3 

L39 x T2 3 82.8 84.6 0.9 202.7 96.6 13.3 29.6 13.4 4.3 279.9 

L40 x T2 2.1 82.6 84.8 0.9 195.1 110.9 13.2 30.6 12.2 4.1 215.7 

L41 x T2 2 81.2 83.9 0.9 183.8 88.2 13.1 37.3 17.4 4.5 295.4 

L42 x T2 2.6 79.7 83.7 1 203.8 102.7 13.8 33 12.9 4 151.7 

L43 x T2 2.8 80.5 84 1 186.6 96.7 13.8 29.4 12.7 4.6 195.5 

L1 x T1 3 77.5 80.1 1 200.2 110.1 14.8 33.3 14.1 4.5 185.3 

L2 x T1 3.7 77.1 78.4 1 193.1 80.5 14.4 32.5 15.1 4.6 290.6 

L3 x T1 2.4 76.6 79.1 1 189.8 109.5 14.8 31.8 12.7 4.2 144.8 

L4 x T1 2.9 77.7 81.6 0.8 185.2 75.3 14.1 33.5 15.8 4.5 305.5 

L5 x T1 3.3 75.6 77.8 1 164.3 77.9 11.8 27.4 10.9 4.1 222.5 

L6 x T1 2.1 79.8 82.2 1 202.8 103.4 15.2 29.8 12 4.3 161.2 

L7 x T1 3.2 76.2 78.2 0.8 195.4 105.2 13.2 33.6 15.3 4.4 219.2 

L8 x T1 2.4 73.6 77.3 1.1 165.4 72.6 12.4 29 13.7 3.7 161.8 

L9 x T1 3.2 81.3 83.6 1 181.2 100.9 13 28.3 13.1 4.4 202.4 

L10 x T1 3.3 83.8 84.9 1 193.8 109.2 14.1 33.6 13.8 4.7 207.7 

L11 x T1 3.3 76.6 78.4 1 196.6 97.6 14 30.5 13.8 4.2 271.2 
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L12 x T1 2.3 81.6 83.2 1 190.2 108.1 13.8 29.4 11.5 4.4 195.4 

L13 x T1 3.1 78.7 80.4 1.1 197.4 103.3 16.6 27.6 12.4 4.4 183.9 

L14 x T1 3.1 82.5 83.4 1 211.6 112.1 13.9 28.5 12.1 4.4 183.7 

L15 x T1 2.9 78.1 80.2 1 186.5 98.9 13.6 35.6 14.1 4.4 184.5 

L16 x T1 3.5 80.4 82.6 1 191.7 102.3 14 30.8 12.7 4.7 213.5 

L17 x T1 3.8 80.5 83 1 200.3 94.6 14.1 32.9 12.2 4.9 278.2 

L18 x T1 2.9 77.6 80.1 0.9 184.3 87.4 14.8 31.2 13.1 4.5 213.4 

L19 x T1 3.2 79 83 0.9 192.5 92.7 13.8 25.7 12.5 4.6 166.1 

L20 x T1 2.7 79.4 80 1 204.3 112.7 14 28.8 12.3 4.5 236.2 

L21 x T1 2.2 82 83.9 0.9 194.6 98.2 13.8 23.4 9.9 4.2 199.2 

L22 x T1 1.9 77.9 82.5 1.2 180.7 93.8 12.6 21.5 10.2 4 199.1 

L23 x T1 2.7 82.5 85.4 0.9 196.6 91.3 13.8 32.7 13.8 4.8 219.2 

L24 x T1 3.1 82 83.9 1 200.7 95.1 13.4 34 14.8 4.5 263.3 

L25 x T1 2 83.4 85.8 1 211.2 109.2 12.6 25.6 10.4 3.7 175.3 

L26 x T1 3.5 76.7 79.1 0.9 194.7 86.4 14 29.9 11.8 4.6 174.7 

L27 x T1 3.2 79 80.6 1 191.1 91.4 12.8 32.8 13 4.6 243.8 

L28 x T1 3.1 79.3 80.9 1 196.2 103.4 14.4 30.5 12.9 4.3 210.2 

L29 x T1 3.8 79.9 81.4 1 200.9 103.6 16.6 33.8 14.3 5 218 

L30 x T1 2.5 83 84.5 1 192.7 105.1 13.8 31.9 13.4 4.5 219.1 

L31 x T1 2.6 77.3 79.5 1 188.2 90.8 13.8 30.4 12.8 4.2 188.1 

L32 x T1 1.3 83.1 85.7 0.8 170.6 85.7 14.6 23.1 10.5 4 209.1 

L33 x T1 1.6 80.9 83 0.9 177.6 71 14 28.3 12.4 4 180.1 

L34 x T1 3.1 81.7 82.6 1.1 193 109.9 13.5 39.5 17.6 4.4 279.1 

L35 x T1 2.9 80.9 82.9 1 198.2 100.7 14.2 33.5 14 4.2 203 

L36 x T1 2.1 81.1 83.8 0.8 174 79.4 14 25.3 11.2 4.4 228 

L37 x T1 3.2 77.1 79.9 0.8 147.5 68.9 12.5 25.3 11.5 3.8 168.6 

L38 x T1 2.1 80 81.4 0.9 196 103.4 14.6 30.4 12.6 4.5 216.9 

L39 x T1 2.3 80 82.1 1.1 205.7 115.6 14.2 29.2 13.2 3.9 176.1 
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L40 x T1 2.5 79.8 82.1 1 202.1 101.8 13.6 28.5 12 4.6 177.3 

L41 x T1 3 79.6 81.9 1 208.1 104.2 13.8 31.3 13.5 4.2 184.1 

L42 x T1 1.3 82.2 85 1 172.4 78.2 12.5 31.5 13.6 3.8 211.2 

L43 x T1 2.3 80.3 82 1 196.3 102.2 13.8 28.2 12.1 4.2 226.2 

BH-543 1.7 83.3 85.1 0.7 190.4 87.8 14.6 30.9 13.8 4.2 208.2 

Melkasa-2 2.2 75 77.5 1 197.8 90 14 33.4 12.6 4 208.7 

Cr mean  2.6 79.7 82 1 193.1 98.2 13.9 30.2 12.8 4.3 203.5 

Ck mean 2 79.2 81.3 0.9 194.1 88.9 14.3 32.2 13.2 4.1 208.5 

Mean 2.6 79.7 82 1 193.2 98 13.9 30.3 12.8 4.3 203.6 

LSD (5%) 1.2 3.4 3.6 0.3 21.6 26.2 1.5 7.9 3.4 0.6 75.4 

CV 23.3 2.2 2.2 14.6 5.6 13.4 5.5 13 13.3 7 18.5 

Min 1.3 73.1 75 0.7 147.5 68.9 11.8 21.5 9.9 3.5 128.5 

Max 4 84 86 1.5 211.6 126.3 16.6 39.5 17.6 5.1 305.5 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH=plant height, RPE= Number of rows per ear, SD= number of days to silking, TKWT= thousand kernels weigh
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Appendix Table 9. Estimates of mean values for grain yield and related traits at Mieso 

 

  

Genotypes GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 x T2 3.89 61.7 63 0.9 141.4 70.7 13.6 34.8 14 4.1 198.4 

L2 x T2 4.21 60.4 60.7 0.9 152.6 77.1 14 35.9 14.5 4.3 339.9 

L3 x T2 3.42 60.9 62.3 0.8 130.9 74.1 14.2 27.3 12.1 3.8 185.9 

L4 x T2 3.24 67.5 69.8 0.7 138.5 93.3 13.8 29.4 11.3 4.4 153.2 

L5 x T2 3.1 58.6 59.3 1 131.4 76.3 13 32 12.8 4 236.3 

L6 x T2 4.04 65.3 66.9 0.8 138.8 89.2 12.6 32.2 12.8 4 257.7 

L7 x T2 3.58 65.7 67.4 0.9 145.3 70.8 13.8 30.9 14.4 4.2 231.6 

L8 x T2 3.83 61.6 61.9 1.1 147.7 83.1 13 29.8 13.2 3.8 216.9 

L9 x T2 3.72 62 63 1 138.1 83.6 13 28.5 12.7 3.8 261.6 

L10 x T2 4.13 64.7 66.5 1.1 112.8 81.5 14 29 13 4 251.4 

L11 x T2 3.94 62.3 63.8 1 118.4 89.2 14.4 30.8 13.6 4 230.6 

L12 x T2 4.16 68 69 1.1 122.7 69.8 12.7 30.3 12.9 4.1 222.1 

L13 x T2 4.99 61.9 63.1 1.1 135.4 80.5 14.4 33.4 13.2 4 274.9 

L14 x T2 3.16 67.8 69 0.9 124.3 94.4 12.4 39.7 17.7 4.4 431.4 

L15 x T2 4.11 61.6 63.4 0.9 136.9 92.5 12.4 33 12.1 3.7 183.7 

L16 x T2 4.07 66.1 67.5 1.2 132.9 78.6 14 32.3 13.5 4.1 260.6 

L17 x T2 2.85 67.6 69.3 0.9 118.6 93.6 13.2 32 13 4.1 235.9 

L18 x T2 3.19 63.9 64.2 1 123.2 73.5 12.4 34.6 14.7 3.8 212.9 

L19 x T2 3.46 65.8 67.2 1 132.4 89.1 13.2 31 13.6 4.1 207.8 

L20 x T2 3.36 69.2 70.4 0.9 140.3 71.5 14 27.6 12.1 4.1 247.9 

L21 x T2 4.12 66.6 67 1 146.3 100.6 13.8 24.8 10.3 4.1 177.8 

L22 x T2 3.99 61.8 62.3 1 122.2 86 14.2 36.7 15.7 4.1 304.2 

L23 x T2 4.03 68.5 70 1.1 128.9 103.8 11.8 37.7 15.9 4.2 289.4 

L24 x T2 3.47 68.2 68.8 0.9 132.5 77.5 13.2 31.6 12.2 3.7 180.4 

L25 x T2 3.75 66.8 67.7 1 138.6 84.4 12 30.5 12.8 4.1 221.3 

L26 x T2 4.08 62.9 63.9 0.9 131 89.3 14 32.3 13.9 4.5 249.3 
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L27 x T2 3.66 66.7 68.3 0.9 148.3 78 13 32.3 12.7 3.9 226 

L28 x T2 3.59 65.9 67.2 0.9 152.6 82.2 13.2 30.6 13.1 4.1 286.1 

L29 x T2 4.81 66.4 66.7 1.2 142.5 92.2 13.4 33.4 14.9 4.1 230.7 

L30 x T2 3.21 68.8 71 1 123.3 106.8 13 32.1 13.6 4 226.7 

L31 x T2 2.95 69.7 70.5 0.8 142.6 80.6 13.2 35.4 14.9 4 250.6 

L32 x T2 4.65 66 68.9 0.8 124.4 83.3 13.2 32.4 14 4 223 

L33 x T2 3.72 68.2 69.8 1 128.6 85.6 12.8 34 15.6 4 246.1 

L34 x T2 2.21 72 74.2 1 114.1 82.5 13.4 33.4 14.5 3.7 226.8 

L35 x T2 3.07 69 69.6 0.9 129 83.5 13.2 34.4 16.2 3.5 291.2 

L36 x T2 5.07 63.8 64.2 1 152.9 92.3 14 35.7 16.8 4.5 307.6 

L37 x T2 3.89 65.1 67.3 0.9 111.6 71.8 13.6 37.5 16 4 290 

L38 x T2 2.81 68.5 69.8 0.8 128.4 90.8 14.2 27.6 12 3.9 262.7 

L39 x T2 3.36 66.4 67.8 0.9 132 87.2 14.2 32.4 14.7 4.1 241.6 

L40 x T2 2.75 65 64.9 0.9 122.5 99.9 14.4 37.4 16.6 4.2 182.4 

L41 x T2 4.92 62.8 63.5 1.1 142.2 69 13.2 38.2 17.3 4.3 298.3 

L42 x T2 4.02 62.2 63 0.9 128.4 79.9 14.8 34.8 14.3 4.2 279.5 

L43 x T2 3.73 65.4 66.1 1 134.3 82.5 13.6 32.9 13.5 4 187.6 

L1 x T1 2.43 64.4 65.6 1.1 114.8 71.8 14.2 31.8 12.8 4.1 195.2 

L2 x T1 4.75 60.3 61 1 145.7 88.5 14 33.4 15.5 4.2 238.9 

L3 x T1 4 59.9 60.4 1.1 123.9 88.3 14.2 35.9 15.8 4.2 285.3 

L4 x T1 3.13 63.9 64.9 0.8 148.8 82.8 14 30.5 11.9 4.1 175.7 

L5 x T1 3.55 62.2 63 0.9 138.1 74.2 13.2 28.4 12.4 3.9 214.7 

L6 x T1 3.79 65.9 65.9 0.9 146.8 93.1 14.8 33.5 13.4 4 255.6 

L7 x T1 4.48 64.3 64.7 0.9 125.9 72.4 14 35.4 14.1 4.1 283.8 

L8 x T1 4.25 66.4 67.8 0.9 122.8 67.8 12.4 31.1 13.5 3.9 267.5 

L9 x T1 3.32 67.6 69.2 0.9 141.6 85.7 13.8 30 11.8 3.9 186.4 

L10 x T1 3.79 63.2 64.1 0.9 142.5 95.6 13.8 34.7 14.4 3.9 200.4 

L11 x T1 1.86 67.3 69.7 1.1 138.5 86.8 13 35.5 14.2 4 250 
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L12 x T1 5.09 62.3 62.7 1.2 139.4 69.6 13.2 29 11.8 4.1 318.2 

L13 x T1 5.64 59.3 60.4 1 155.9 80.8 15 38.2 15.6 4.4 210.2 

L14 x T1 2.92 64.8 64.7 0.9 147.6 99.3 15.2 25.7 12.3 4.2 184.7 

L15 x T1 2.78 66 67.2 1.1 131.8 85 13.4 35.9 14.1 3.9 187.4 

L16 x T1 2.9 66.1 66.8 1 155.3 90.5 14.2 33.6 12.4 4.1 193.9 

L17 x T1 5.32 61.9 61.8 1.1 141.9 94.6 13.6 33.9 14.9 4.3 181.3 

L18 x T1 4.05 65 66.6 0.9 135.7 74.7 13.6 33.9 13.4 4.2 236.3 

L19 x T1 3.62 66.6 68.6 1 143.6 78.8 14 28 11.8 4.2 189 

L20 x T1 2.85 69.1 70 1 130.1 85.9 13.6 27.2 12.4 3.4 177.8 

L21 x T1 4.85 61.2 62 1.1 128.8 91.1 13.2 30.3 13.4 4.3 262.8 

L22 x T1 2.72 64.1 65.9 1 130.7 101.3 14.4 29.6 15 3.7 187.2 

L23 x T1 3.07 65 67.4 0.8 136.8 87.6 13 31.9 13.5 4.2 215.5 

L24 x T1 3.36 68.3 68 1 156.1 72.5 13.8 32.4 14.4 4.3 230 

L25 x T1 3.27 68.9 70.4 1 129.4 102.1 12.3 34 13.5 4.2 231.4 

L26 x T1 3.57 66.5 67.2 0.9 131.9 85 14 35.3 14.1 4.3 271.3 

L27 x T1 3.24 66.5 68 1 136.7 91.5 14 35.4 15.9 4.2 158.9 

L28 x T1 3.68 64 64.7 1 133.6 84.8 14.2 29.8 12.6 4.2 245 

L29 x T1 3.79 66.9 67.8 1 133.3 95.1 14 30.2 14.2 4 211.9 

L30 x T1 3.13 65.3 65.7 0.7 134.6 87 12.8 30.5 12.5 4.2 206.7 

L31 x T1 3.32 64.9 65.5 0.9 142 75.3 13.6 33.1 13.7 3.9 253 

L32 x T1 2.5 68.4 70.2 1.1 136 77.9 13.6 28.1 12.4 3.8 164.5 

L33 x T1 3.48 66.6 68 0.9 150.1 72.7 13.8 26.9 11.7 4 226.9 

L34 x T1 4.39 69 70 0.8 147 75.7 12.6 34.3 14.5 3.7 217.2 

L35 x T1 3.24 68.7 71.2 1.1 143.6 84.5 14 35 15 3.7 176.5 

L36 x T1 3.83 65.1 67.1 1 134.2 72.2 14 33.5 13.2 4.1 220.8 

L37 x T1 3.56 63.5 64.2 1.1 138.5 72.7 14.2 32.8 14.3 4 185 

L38 x T1 2.93 66.9 69.3 1.1 140.2 92.3 14 36.2 15.9 4.2 278.2 

L39 x T1 3.37 69.4 71 1 139.2 95.9 12.4 34.9 16.4 4 344.6 
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L40 x T1 3.38 66.9 67.8 1 134.3 79.9 13.8 31.6 12.9 4.2 233 

L41 x T1 5.51 65 66.2 1.1 144.3 85.7 13.4 31.1 12.8 4 265 

L42 x T1 3.83 66.8 69.1 1 119.3 95.4 13.2 32.5 13.6 4 222 

L43 x T1 3.81 64.6 65.4 1 135.3 70.4 12 30.4 12.3 4.2 238 

BH-543 3.75 62 62.5 1 127.2 88.5 14 36.4 15.5 4.3 243.3 

Melkasa-2 3.57 59.6 60.6 1 129 84 13.8 33.3 15 4.6 343.4 

Cr mean 3.68 65.3 66.5 1 135.4 84.2 13.6 32.4 13.8 4.1 234.9 

Ck mean 3.66 60.8 61.6 1 128.1 86.3 13.9 34.9 15.3 4.5 293.4 

Mean 3.68 65.2 66.4 1 135.3 84.2 13.6 32.5 13.8 4.1 236.2 

LSD (5%) 1.57 3.7 3.7 0.2 23.3 21.6 1.5 6.6 3.2 0.5 92.8 

CV 21.37 2.8 2.8 12.4 8.6 12.9 5.7 10.1 11.7 6.1 19.6 

Min 1.86 58.6 59.3 0.7 111.6 67.8 11.8 24.8 10.3 3.4 153.2 

Max 5.64 72 74.2 1.2 156.1 106.8 15.2 39.7 17.7 4.6 431.4 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH=plant height, RPE= Number of rows per ear, SD= number of days to silking, TKWT= thousand kernels weigh
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Appendix Table 10. Estimates of mean values for grain yield and related traits at Pawe 

 

  

Genotypes GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 x T2 5.99 64 66.1 1.2 171.2 78.1 14.2 37.5 15.4 4.6 262.6 

L2 x T2 6.08 63.2 65.8 1.2 188.7 76.4 12.8 36.1 15.6 4.4 318.1 

L3 x T2 5.17 62.7 64.6 1.1 204.5 90.6 15 39.8 17.5 4.7 296.4 

L4 x T2 7.29 65.9 68.5 1.2 217.3 83.3 13.8 45.8 18.6 4.8 341.2 

L5 x T2 5.28 61.5 64.1 1.3 183.5 80.9 12.2 39.1 14.9 4.4 283 

L6 x T2 6.06 68 69.9 1.1 216.7 100.3 13.4 41.2 17.6 4.7 295.1 

L7 x T2 6.02 65.4 68.5 0.9 217.7 89.6 14.2 35.8 18.3 4.9 247.4 

L8 x T2 6.09 64.4 67.4 1.1 185.7 72.4 13.6 36.6 16.2 4.6 334.7 

L9 x T2 5.84 59.2 61.6 1.3 193.1 81.4 12.8 37.5 17.4 4.5 313.8 

L10 x T2 7.18 67.9 70 1.1 215.8 87.8 14 39.8 18.2 4.6 295.7 

L11 x T2 8.06 63.1 65.1 1.3 209 101.9 14 39 17.5 4.8 352.8 

L12 x T2 4.56 68 70 1.3 204.6 87.1 13.2 38.8 15.5 4.3 265.5 

L13 x T2 9.08 63.3 65.2 1.2 214.5 94.9 14.4 42.3 18.7 4.8 306.8 

L14 x T2 4.2 69.1 71 1.1 193.6 90.7 12.8 34.8 15.3 4.6 280.4 

L15 x T2 6.44 67 69 1.4 194.5 86.3 13 41.8 16.8 4.7 291.5 

L16 x T2 7 65.2 67.1 1.3 197.8 94.9 14 42.5 18 4.9 356.9 

L17 x T2 6.09 68.4 70.5 1.2 207.2 100.3 12.8 39.7 17.1 5 360.9 

L18 x T2 5.85 65 68 1.2 192.6 87.3 13.6 39.2 16 4.6 307.5 

L19 x T2 7.94 65 66.4 1.3 218.4 97 12.6 36.5 17.2 4.9 390.1 

L20 x T2 6.23 66.5 69 1 211.5 98.4 14.2 36.1 16.2 5.1 300.9 

L21 x T2 7.78 65.4 67.5 1 205.8 100.4 13.8 37.6 16.5 5.3 381.7 

L22 x T2 8.44 63 65 1.3 192.3 80.4 13.6 40.2 16 4.9 309.2 

L23 x T2 9.35 68.9 71.2 1.2 214 97.5 13.2 40.5 18.7 4.9 361.6 

L24 x T2 8.58 70 71.9 1.1 222.6 86 13 42.6 18.7 5.1 394.8 

L25 x T2 9.85 66.7 68.6 1.2 216.2 96.5 13.4 41.5 18.1 4.9 297 

L26 x T2 6.97 67.3 69.5 1.1 187.1 85 14.4 40 17.4 4.9 291.2 
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L27 x T2 8.05 66.2 68.6 1.2 224 100.9 11.6 43.2 19 4.8 380.4 

L28 x T2 8.91 62.9 64.9 1 214.9 99.1 13.4 43.1 19.8 5 369.1 

L29 x T2 6.4 67.5 69.6 1.2 208.8 99.9 13.6 40.2 18.6 4.7 302.5 

L30 x T2 10.77 67.6 69.5 1 216.8 111.4 13 45 20.1 4.7 377.7 

L31 x T2 7.83 65 67.5 1.3 198.5 86.7 14.4 42.1 18 4.8 287.1 

L32 x T2 7.16 61 63.4 1.3 204.5 91.9 13.6 41.4 18.5 4.8 318.7 

L33 x T2 6.72 66 68.5 1 209.7 93.9 14 42.2 19.7 4.9 282.7 

L34 x T2 5.92 68.6 70.5 1 190.9 85.6 11.8 40.8 19 4.3 372.8 

L35 x T2 6.29 68.5 70.6 1.2 190.5 89.8 13.4 41.9 19.3 4.7 323.9 

L36 x T2 6.77 67 70.5 0.9 213.9 91.5 15.2 40.3 18.2 5.1 246.2 

L37 x T2 6.67 64.9 67 1.2 189.4 85.8 13.6 40.8 17.4 4.7 275 

L38 x T2 8.4 67.4 70 1.2 193.4 79.4 13.4 41.5 17.6 4.7 349 

L39 x T2 5.84 67 69.5 0.9 189.9 84.7 13.4 41.3 19.6 4.6 287 

L40 x T2 7.5 67 69.5 1 207 101.5 14.4 41 17.8 4.7 271.5 

L41 x T2 7.5 67.4 69 1.1 209 86.5 12.4 41.4 19.5 4.9 349 

L42 x T2 7.83 65.9 67.9 1.2 197 94.3 13.2 41.8 18.6 4.6 334.3 

L43 x T2 8.44 64.6 66.6 1.1 202.5 86.5 13.4 39.7 17.6 4.8 314 

L1 x T1 7.7 63 65 1.2 187.1 83.2 14.1 36.8 17.2 5 306.2 

L2 x T1 6.04 61.1 63.5 1.2 206.4 74.6 15 35.7 16.4 5 299.8 

L3 x T1 7.46 62.3 64.4 1.1 195.1 77.2 14.6 40.6 18.1 4.7 287.9 

L4 x T1 7.16 64.7 66.6 1 223.4 92.7 12.8 47 19.9 4.8 297.8 

L5 x T1 5.87 59.4 61.5 1.1 182.6 79.8 12 40.7 15.5 4.6 320.3 

L6 x T1 8.07 67.3 69.3 1 215.5 95.1 14.8 39.3 17.5 5.1 330.7 

L7 x T1 7.53 61.9 64 1.1 192.4 72.1 13.2 39.1 17 4.9 332 

L8 x T1 5.48 61.1 63 1 176 70.9 13.6 38.7 16.9 4.4 308.1 

L9 x T1 7.28 65.6 67.5 1.1 200.3 90.3 13.8 40.9 17.7 5.1 340.7 

L10 x T1 7.76 68.8 70.9 1.2 209.3 93 14.6 42.6 18.2 4.8 276.5 

L11 x T1 6.98 62.1 64 1 211.3 102.1 14.4 38.7 17.7 4.6 298.2 
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L12 x T1 4.62 67.3 69.4 1.1 186 68.1 13 38.7 15.6 4.5 266 

L13 x T1 9.19 63.5 65.5 1.3 220.8 94.4 15 39.4 18.6 5.2 327.9 

L14 x T1 9.2 66.1 68 1 206.1 80.5 13.6 39.4 18.7 5.3 388.4 

L15 x T1 6.23 64.6 67 1.2 207.3 94.6 13.2 43.1 17.7 4.7 261.4 

L16 x T1 6.73 65 67.5 1.3 213.6 88 14.6 43.8 17.7 4.8 315.8 

L17 x T1 7.46 66.8 68.9 1 203.2 84.9 12.2 39.1 16.9 5 332.6 

L18 x T1 6.29 64.1 66.1 1.1 182.4 75.6 13.8 36.5 14.9 4.7 323.4 

L19 x T1 5.89 66.8 68.9 1 210 83.3 12.6 36 17.1 5 326.7 

L20 x T1 7.85 66.5 68.6 1.1 208.3 83 13.2 37.5 16.8 4.9 366.4 

L21 x T1 6.65 64.9 67 1 213.8 108 13.8 36.4 15.7 5.1 338.8 

L22 x T1 5.99 64.2 66.1 1.1 206.2 90.7 13.6 39.7 16.8 5.1 320.4 

L23 x T1 10.88 67.9 70 1.3 227.9 103.1 13.2 42.3 19.9 5 360.5 

L24 x T1 8.98 67.8 69.6 1.2 223.8 97.8 12.3 42.5 18.7 5 401.7 

L25 x T1 10.41 68 70 1.2 224.5 102.9 13 43.6 19 5.1 375.1 

L26 x T1 8.48 66 68 1.1 195.6 85.3 14 42.6 18.4 5.2 309.7 

L27 x T1 9.74 66 68.5 1.1 218.2 92.1 12.2 42.7 19.5 5.1 417.1 

L28 x T1 8.33 63.8 65.9 1.2 191.9 80.5 12.8 43.7 18.6 4.9 355.6 

L29 x T1 8.28 66.5 69 1 231.2 108.6 15 37.8 18.2 5.1 265.3 

L30 x T1 10.61 66.7 68.6 1.1 222.2 105.3 13.4 40.8 19.3 5 396.7 

L31 x T1 9.2 63.9 66.4 1.2 204.3 81.5 13.6 42.4 18.2 5 351.6 

L32 x T1 5.06 66.9 69 0.8 206.6 76.6 13.6 36.7 16.5 4.7 291.2 

L33 x T1 4.4 67.8 69.9 1.1 200.3 89.3 14.2 37.4 16.9 4.6 299.2 

L34 x T1 7.58 64.4 66.5 1.2 195.9 75.6 14 42.6 18.8 4.8 288 

L35 x T1 6 67.4 69.5 0.9 198 81.5 13.8 41.1 19.1 4.9 370 

L36 x T1 6.33 65.1 68 1.1 215.5 104.3 13.6 38.2 17.3 4.8 280.6 

L37 x T1 6.19 64 66.5 1.2 193.6 78.7 13.6 40.3 17.8 4.7 285.1 

L38 x T1 8.83 67.9 70 1 213.1 99 14 42.7 18.3 5 362.5 

L39 x T1 6.52 68 70 1 198.3 94.1 13.4 40.5 20 5 361.9 
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L40 x T1 7.46 66.7 68.6 1.1 219.6 104.6 14.4 40.3 16.4 4.8 337.2 

L41 x T1 7.41 65.9 68.5 1.1 208.8 87.8 14 38.3 18.5 5 356.6 

L42 x T1 9.75 63.1 65 1.1 201.3 94.5 13.2 41.8 18.6 4.9 313.1 

L43 x T1 7.88 64.2 66.1 1.2 200.4 83.5 12.8 41.5 17.9 5 372.8 

BH-543 8.43 66.8 69.4 1.1 227.7 113.7 14.4 40.7 22.4 4.9 370.7 

Melkasa-2 4.51 61 63.5 1.3 186.3 77.4 13.6 33.3 15.1 4.5 310 

Cr mean 7.28 65.5 67.7 1.1 204.5 89.6 13.6 40.2 17.8 4.8 323.2 

Ck mean 6.47 63.9 66.5 1.2 207 95.6 14 37 18.8 4.7 340.4 

Mean 7.26 65.5 67.7 1.1 204.5 89.7 13.6 40.2 17.8 4.8 323.6 

LSD (5%) 1.97 2.1 2.3 0.3 17 15.4 1.3 4.1 2.2 0.3 80.8 

CV 13.57 1.6 1.7 14.1 4.2 8.6 4.8 5.1 6.2 2.9 12.5 

Min 4.2 59.2 61.5 0.8 171.2 68.1 11.6 33.3 14.9 4.3 246.2 

Max 10.88 70 71.9 1.4 231.2 113.7 15.2 47 22.4 5.3 417.1 

AD = number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of 

kernels per row, PH=plant height, RPE= Number of rows per ear, SD= number of days to silking, TKWT= thousand kernels wei
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Appendix Table 11.  Estimates of general combining ability effects (GCA) of 43 inbred lines and two testers for grain yield at Melkasa, 2010 

 

Lines GY(t/ha) AD(days) SD(days) EPP(#) PH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 -0.49 -2.68** -2.71** -0.01 -29.05** 0.78* -1.18 -1.20 0.09 -38.07 

L2 0.65 -4.63** -4.81** -0.06 2.00 0.58 -1.63 -0.60 -0.01 -11.27 

L3 -0.80 -2.68** -2.96** -0.16* -19.75* 1.98** -1.28 -1.55* -0.06 -67.12* 

L4 0.05 -0.33 0.24 -0.11 15.50* -0.22 5.02** 1.50* 0.04 23.69 

L5 -0.76 -4.18** -4.46** -0.16* -25.45** -0.52 1.17 -0.95 -0.06 5.09 

L6 -1.39** 1.47** 1.24* -0.06 13.50 -0.02 0.42 -0.25 0.04 -104.62** 

L7 0.83 -2.83** -3.01** -0.21** -22.70** 0.18 1.62 2.10** 0.24** 113.69** 

L8 -0.76 -2.73** -2.96** -0.11 -14.75 -0.12 -0.83 1.15 -0.06 10.99 

L9 -1.07* -0.48 0.29 -0.16* -0.50 -0.32 -1.13 -0.95 -0.01 14.19 

L10 0.18 0.77 0.89 -0.01 3.90 0.28 0.67 0.25 -0.16* -58.52 

L11 0.98 -3.23** -3.16** 0.04 2.95 0.38 -1.23 1.10 0.04 21.94 

L12 -0.58 1.22* 0.94 0.39** -18.70* -0.72* -2.23 -1.60* -0.41** -14.32 

L13 -0.73 0.92 1.14 -0.06 2.70 0.58 -0.83 -0.90 -0.11 -48.12 

L14 -1.65** 2.37** 3.39** -0.16* 5.50 0.18 -2.78* -0.50 0.04 26.64 

L15 -0.45 0.42 0.54 0.09 7.45 -0.52 1.27 -0.10 -0.06 -31.92 

L16 -1.13* 1.07 0.99 -0.16* -17.15* 0.18 0.72 -0.55 -0.11 -28.32 

L17 0.14 1.02 0.29 -0.01 11.50 -0.02 -2.38 -1.10 0.34** 51.64 

L18 -0.80 -1.18* -0.51 -0.01 -5.15 -0.42 1.62 -0.50 -0.06 33.89 

L19 -0.02 -0.88 -1.16 0.04 15.95* -0.92** -4.63** -1.50* -0.01 77.84* 

L20 -0.02 -0.68 -0.46 -0.11 -7.40 0.28 -4.68** -0.75 0.24** 15.29 
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L21 1.44* -1.43* -1.31* 0.14* 12.25 -0.12 -0.93 -0.85 0.39** 64.09* 

L22 0.48 -2.23** -2.61** -0.01 10.45 0.18 1.72 0.05 0.24** 13.74 

L23 1.96** 1.72** 1.69** 0.34** 20.10* -0.02 0.52 -0.65 -0.06 -40.62 

L24 1.56** 1.77** 1.39* 0.24** 8.95 -0.62 -0.68 -0.30 -0.16* -32.42 

L25 0.89 1.97** 1.69** 0.34** 7.75 -1.12** 2.72* -0.30 -0.16* -65.32* 

L26 -0.31 0.42 0.44 -0.11 -5.35 0.28 1.27 -0.95 0.09 26.44 

L27 0.39 0.72 0.84 -0.11 17.45* -0.32 3.32* 0.40 0.24** -62.77 

L28 -0.25 -0.58 -0.41 0.04 -4.30 -0.22 1.27 -0.10 -0.06 -8.62 

L29 0.80 0.97 0.94 0.14* 3.45 1.08** 1.82 0.55 0.04 31.09 

L30 0.69 2.42** 2.49** -0.06 16.15* -0.32 1.82 1.50* -0.01 -30.67 

L31 -0.34 -1.23* -1.26* -0.11 1.15 -0.32 0.67 -0.30 -0.06 -2.92 

L32 -0.30 1.92** 1.54* -0.01 2.60 0.58 -0.63 0.30 0.14 -55.97 

L33 0.78 0.92 1.44* 0.04 -1.30 -0.22 1.67 1.65* -0.06 -60.47 

L34 -0.27 1.12* 0.79 0.19** -1.60 0.08 1.87 2.10** -0.26** -11.22 

L35 -0.78 2.37** 2.34** 0.09 -8.50 -0.42 1.27 1.50* -0.31** 27.09 

L36 -0.82 1.67** 1.69** 0.04 4.65 1.08** -1.53 -0.05 -0.01 -49.92 

L37 1.28* -1.58** -1.71** -0.11 -3.45 -0.02 -0.63 0.95 0.14 134.34** 

L38 -0.65 1.77** 1.89** -0.01 3.30 0.48 -2.13 -1.15 0.04 -8.22 

L39 -0.25 1.22* 1.79** 0.04 0.55 -0.62 1.27 1.50* -0.16* 15.44 

L40 -0.14 0.47 0.34 -0.06 -11.75 0.18 1.22 0.00 0.19* 48.64 

L41 1.64** 1.32* 0.89 0.09 14.50 -0.92** -4.23** 0.40 -0.01 62.79 

L42 -0.07 0.32 -0.01 -0.06 -10.85 -0.42 3.12* 1.50* -0.31** 28.29 
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L43 0.15 1.37* 1.29* -0.11 3.60 -0.02 -2.33 -0.85 -0.01 -15.42 

SE 0.52 0.55 0.6 0.07 7.64 0.33 1.29 0.65 0.08 31.53 

SED 0.73 0.78 0.85 0.09 10.80 0.46 1.83 0.91 0.11 44.58 

 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, ED = ear diameter, EH = ear 

height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = Number of rows per 

ear, SD = number of days to silking, SE= standard error, TKWT = thousand kernels weight 
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Appendix Table 12.  Estimates of general combining ability effects (GCA) of 43 inbred lines 

and two testers for agronomic traits at Ziway, 2010 

Lines  AD(days) SD(days) PH(cm) EH(cm) RPE(#) EL(cm) ED(cm) KPR(#) 

L1 -2.58** -3.54** -20.74** -12.16 0.83 -2.03** 0.05 -2.67 

L2 -3.43** -3.09** 6.16 -12.81* -0.17 -0.13 0.15 -1.57 

L3 -3.13** -3.59** -7.79 -4.91 2.03** 0.72 -0.05 1.48 

L4 -1.38* -0.74 10.41 3.84 -1.77** 0.22 -0.20* 0.48 

L5 -3.68** -4.24** -29.64** -20.96** -1.07* -1.23 -0.20* 0.08 

L6 2.07** 2.16** 5.61 12.99* 0.23 0.37 0.05 0.03 

L7 -4.18** -3.24** -14.59* -11.01 -0.12 1.72* 0.00 2.43 

L8 -3.88** -4.19** -17.84** -22.41** -0.37 0.87 -0.25* 0.98 

L9 -0.68 1.56 4.06 -0.76 -0.07 0.02 0.10 -0.37 

L10 -0.08 0.36 1.21 1.69 1.13* -0.48 0.00 0.13 

L11 -2.13** -1.79* 4.66 6.79 0.63 0.07 -0.10 -1.27 

L12 0.87 0.56 -2.79 -1.36 -0.37 -1.88** -0.30** -2.32 

L13 -0.73 -0.29 16.21* 2.44 0.93* 0.82 0.15 1.28 

L14 3.12** 1.81* -1.04 0.19 0.13 -0.88 0.10 -1.22 

L15 -0.43 0.26 2.81 8.89 -0.67 -0.38 -0.20* 2.08 

L16 -0.63 0.16 -2.79 -2.61 0.63 -0.73 0.00 -3.02 

L17 1.42** 1.06 9.06 16.24* 0.03 -1.68* 0.20* -2.62 

L18 -0.88 -0.69 -6.64 -7.41 -0.27 0.97 0.10 2.83 

L19 -0.93 -1.49 16.36* 15.14* -0.37 -0.43 0.10 -2.52 

L20 -0.63 0.31 -6.34 -0.96 0.23 -0.23 0.20* -2.62 

L21 -1.63** -0.79 7.81 9.04 0.13 -1.08 0.25* -1.72 

L22 -3.13** -3.59** 2.81 13.84* -0.37 -1.08 0.35** -3.02 

L23 4.12** 3.36** 8.76 2.59 -0.17 -0.13 0.05 1.43 

L24 2.37** 1.81* 5.86 1.44 -0.37 0.77 0.00 1.53 

L25 3.67** 3.61** 9.96 -0.81 -0.77 -0.58 -0.25* -0.12 

L26 -1.08* -0.99 -10.19 -1.11 1.33** -0.23 0.50** 1.78 

L27 0.57 1.21 -1.19 -10.01 -0.67 -1.03 0.00 -0.17 

L28 -0.13 -0.19 6.71 6.19 -0.67 -1.03 -0.05 -2.12 

L29 1.57** 1.01 9.56 8.69 0.13 0.07 0.00 -0.22 

L30 2.62** 3.31** 12.46 11.39 -0.37 0.87 0.00 1.48 

L31 -0.88 -1.14 -12.34 -13.31* -0.37 -0.38 0.10 -0.37 

L32 1.87** 2.31** -2.64 -4.81 1.23** -0.38 0.10 -1.82 

L33 1.12* 1.91* 0.56 -9.81 0.03 0.57 -0.10 1.28 
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L34 2.12** 2.71** 6.86 2.94 -0.37 2.52** -0.25* 3.93* 

L35 1.62** 2.46** -7.59 -6.31 0.33 1.57* -0.20* 2.43 

L36 0.47 0.36 2.96 -2.51 0.53 1.07 0.15 1.83 

L37 -1.08* -1.19 -18.84** -12.26 -0.27 1.12 -0.10 1.88 

L38 1.87** 0.41 -6.54 -1.61 -0.37 -0.68 -0.20* -1.07 

L39 2.17** 1.61* 6.91 15.99* 0.03 1.62* -0.15 2.33 

L40 2.37** 1.51 -2.84 3.74 0.43 -0.93 -0.05 -2.42 

L41 0.22 -0.14 7.36 1.19 -0.67 0.22 0.05 -2.07 

L42 1.12* -0.04 2.11 11.84 0.23 1.07 -0.15 2.83 

L43 -0.13 -0.79 5.01 2.89 -0.67 0.17 -0.10 0.78 

SE 0.53 0.79 6.69 6.28 0.46 0.67 0.10 1.54 

SED 0.75 1.12 9.46 8.88 0.64 0.95 0.14 2.17 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD = number of days to silking, SE= standard error, TKWT = thousand 

kernelsweight 
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Appendix Table 13.  Estimates of general combining ability effects (GCA) of 43 inbred lines and two testers for grain yield and related traits at 

Dhera, 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lines Gy(t/ha) AD(days) SD(days) PH(cm) EH(cm) RPE(#) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 0.37 -2.64** -2.59** -2.74 4.97 0.99* 1.04 0.28 0.12 -10.92 

L2 1.22** -4.59** -5.29** 1.86 -11.33 0.29 1.54 1.38 0.32* 36.78* 

L3 0.32 -3.44** -3.29** 0.86 11.97* 1.49** 2.79 0.83 0.07 -54.82** 

L4 -0.13 -1.64 0.81 -4.14 -14.53* 0.24 2.19 1.38 -0.08 54.63** 

L5 0.47 -4.39** -4.14** -19.74** -11.63 -1.81** -2.16 -1.82* -0.28 -14.12 

L6 -0.33 0.31 0.71 12.26* 8.02 0.89* 0.89 -0.72 -0.13 -20.12 

L7 0.02 -3.54** -4.39** 4.66 -0.43 -0.41 2.59 1.18 0.12 48.48** 

L8 0.07 -5.99** -4.79** -17.34** -20.98** -0.91* -2.56 -0.27 -0.48* -12.72 

L9 0.47 -2.34** -2.49** -7.64 -2.73 -0.31 -0.86 0.28 -0.03 -9.52 

L10 0.42 2.31** 1.46 4.96 16.42** 0.04 3.19 0.38 0.17 -20.17 

L11 0.52 -2.49** -1.89* -1.09 -0.68 0.39 0.79 1.13 -0.08 29.43 

L12 -0.58 0.56 0.21 -4.24 3.22 -0.61 0.74 -0.42 -0.03 -31.37 

L13 0.22 -0.89 -1.89* 4.81 4.27 1.29** -2.21 -0.32 0.22 -14.52 

L14 -0.28 3.51** 2.71** 9.81 9.07 -0.36 -4.46* -1.47 -0.08 -11.77 

L15 0.27 -0.79 -1.44 -2.89 7.47 -0.51 5.44** 0.78 -0.18 -42.87* 

L16 0.07 1.41 1.16 -5.89 -4.53 0.34 -1.71 -0.62 0.17 14.68 

L17 0.57 1.21 0.66 0.86 -2.73 -0.11 3.19 0.78 0.67** 66.33** 

L18 0.07 -1.39 -0.89 -2.49 -6.63 0.49 -1.11 -0.42 0.12 -1.87 

L19 0.22 -0.49 0.31 6.56 3.62 -0.31 -2.16 -0.22 0.12 -31.27 

L20 0.22 0.01 -0.79 13.46* 15.12* 0.39 -1.71 -0.32 0.22 22.18 
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L21 -0.28 0.96 1.61 0.66 -1.68 -0.06 -6.16** -2.72** -0.03 13.73 

L22 -0.13 -2.34** -1.39 -1.39 3.97 -0.81* -5.36** -1.77* 0.07 5.78 

L23 -0.03 2.71** 3.01** 5.21 -4.98 -0.41 1.19 0.43 0.32* 13.88 

L24 0.12 2.41** 2.01* 8.26 7.27 -0.66 1.79 0.88 0.07 24.43 

L25 -0.43 3.01** 2.66** 9.06 7.77 -0.81* 0.59 -0.67 -0.33* -31.52 

L26 0.27 -0.74 -0.89 -0.44 -12.38* 0.59 -3.96 -1.77* 0.07 -23.67 

L27 0.37 0.16 -0.24 5.11 -0.93 -0.61 2.59 0.38 0.22 25.08 

L28 -0.28 -0.14 -0.34 -0.89 1.57 -0.01 -1.46 -0.62 -0.08 -0.22 

L29 0.37 1.61 1.06 9.66 8.27 1.49** 0.39 -0.12 0.17 -13.42 

L30 -0.08 1.91* 2.56** 5.86 17.47** -0.11 3.14 1.33 0.22 -23.52 

L31 -0.03 -1.09 -0.89 -2.99 -3.98 0.09 1.74 0.38 -0.08 18.88 

L32 -1.18** 3.26** 3.31** -3.09 -6.33 0.89* -4.36* -1.62 -0.08 6.88 

L33 -0.63* 0.76 1.26 -7.04 -12.58* -0.01 0.74 -0.07 -0.13 -8.52 

L34 -0.43 2.86** 2.01* -7.34 1.52 -0.56 2.74 1.68* -0.38* 9.23 

L35 -0.18 2.76** 2.36* 2.31 -0.53 -0.11 2.54 1.33 -0.38* -37.77* 

L36 -0.43 1.46 1.81* -14.14* -16.23** 1.29** -3.21 -0.77 0.27 0.53 

L37 0.92** -1.44 -1.69 -20.94** -9.98 -0.46 0.79 1.03 -0.28 -22.72 

L38 -0.73* 1.16 0.71 7.81 6.27 0.79* -2.61 -1.42 -0.03 7.58 

L39 0.02 1.71* 1.36 11.06* 7.87 -0.16 -0.81 0.48 -0.23 24.48 

L40 -0.33 1.51 1.46 5.46 8.12 -0.51 -0.66 -0.72 0.02 -7.02 

L41 -0.13 0.71 0.91 2.81 -2.03 -0.46 4.09* 2.63** 0.02 36.23 

L42 -0.68* 1.26 2.36* -5.04 -7.78 -0.76* 2.04 0.43 -0.43** -22.07 
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 Appendix Table 13 (Continued) 

 

 

 

  

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, ED = ear diameter, EH = ear 

height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = Number of rows per 

ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels weight

L43 -0.08 0.71 1.01 -1.69 1.22 -0.11 -1.41 -0.42 0.07 7.33 

SE 0.3 

 

0.83 

 

0.89 

 

5.39 

 

5.93 

 

0.38 

 

1.99 

 

0.84 

 

0.15 

 

18.2 

SED  0.43 1.18 1.27 7.63 8.39 0.54 2.81 1.19 0.21 25.74 



119 
 

Appendix Table 14.  Estimates of general combining ability effects (GCA) of 43 inbred lines 

and two testers for grain yield and related traits at Mieso, 2010 

Line GY(t/ha) AD (days) SD(days) EH(days) RPE(days) EL(days) TKWT(gm) 

L1 -0.52 -2.28* -2.18* -12.90* 0.35 -0.38 -38.06 

L2 0.80* -4.98** -5.63** -1.35 0.45 1.22 54.54* 

L3 0.03 -4.93** -5.13** -2.95 0.65 0.17 0.74 

L4 -0.5 0.37 0.87 3.90 0.35 -2.18** -70.41** 

L5 -0.36 -4.93** -5.33** -8.90 -0.45 -1.18 -9.36 

L6 0.23 0.27 -0.08 7.00 0.15 -0.68 21.79 

L7 0.35 -0.33 -0.43 -12.55* 0.35 0.47 22.84 

L8 0.36 -1.33 -1.63 -8.70 -0.85* -0.43 7.34 

L9 -0.16 -0.53 -0.38 0.50 -0.15 -1.53 -10.86 

L10 0.28 -1.38 -1.18 4.40 0.35 -0.08 -8.96 

L11 -0.78* -0.53 0.27 3.85 0.15 0.12 5.44 

L12 0.94 -0.18 -0.63 -14.45** -0.6 -1.43 35.29 

L13 1.63** -4.73** -4.73** -3.50 1.15** 0.62 7.69 

L14 -0.64 0.97 0.37 12.70* 0.25 1.22 73.19** 

L15 -0.24 -1.53 -1.18 4.60 -0.65 -0.68 -49.31* 

L16 -0.2 0.77 0.67 0.40 0.55 -0.83 -7.61 

L17 0.4 -0.58 -0.93 9.95 -0.15 0.17 -26.26 

L18 -0.06 -0.88 -1.08 -10.05 -0.55 0.27 -10.26 

L19 -0.14 0.87 1.42 -0.20 0.05 -1.08 -36.46 

L20 -0.58 3.82** 3.72** -5.45 0.25 -1.53 -22.01 

L21 0.80* -1.43 -1.98* 11.70* -0.05 -1.93* -14.56 

L22 -0.33 -2.38* -2.38 9.50 0.75 1.57 10.84 

L23 -0.13 1.42 2.22 11.55* -1.15** 0.92 17.59 

L24 -0.27 2.92** 1.92* -9.15 -0.05 -0.48 -29.66 

L25 -0.17 2.52** 2.57** 9.10 -1.40** -0.63 -8.51 

L26 0.14 -0.63 -0.93 3.00 0.45 0.22 25.44 

L27 -0.23 1.27 1.67 0.60 -0.05 0.52 -42.41 

L28 -0.05 -0.38 -0.53 -0.65 0.15 -0.93 30.69 

L29 0.62 1.32 0.77 9.50 0.15 0.77 -13.56 

L30 -0.51 1.72 1.87* 12.75* -0.65 -0.73 -18.16 

L31 -0.55 1.97 1.52 -6.20 -0.15 0.52 16.94 

L32 -0.11 1.87 3.07** -3.55 -0.15 -0.58 -41.11 

L33 -0.08 2.07 2.42* -5.00 -0.25 -0.13 1.64 
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Appendix Table 14 (Continued) 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 
Number of rows per ear, SD = number of days to silking, SE= standard error, TKWT = thousand 

kernels weight  

L34 -0.38 5.17** 5.62** -5.05 -0.55 0.72 -12.86 

L35 -0.53 3.52** 3.92** -0.15 0.05 1.82* -1.01 

L36 0.77 -0.88 -0.83 -1.90 0.45 1.22 29.34 

L37 0.04 -1.03 -0.73 -11.90* 0.35 1.37 2.64 

L38 -0.81* 2.37* 3.07** 7.40 0.55 0.17 35.59 

L39 -0.32 2.57** 2.92** 7.40 -0.25 1.77* 58.24* 

L40 -0.62 0.62 -0.13 5.75 0.55 0.97 -27.16 

L41 1.53** -1.43 -1.63 -6.80 -0.25 1.27 46.79 

L42 0.24 -0.83 -0.43 3.50 0.45 0.17 15.89 

L43 0.09 -0.33 -0.73 -7.70 -0.75 -0.88 -22.06 

S.E 0.39 0.9 0.93 5.43 0.39 0.81 23.44 

SED  0.55 1.27 1.32 7.68 0.55 1.15 33.16 
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Appendix Table 15.  Estimates of general combining ability effects (GCA) of 43 inbred lines and two testers for grain yield at Pawe, 2010 

Lines GY(t/ha) AD(days) SD(days) PH(cm) EH(cm) RPE(#)) KPR(#) EL(cm) ED(cm) TKWT(gm) 

L1 -0.44 -2.01** -2.13** -25.32** -8.93** 0.6 -3.08** -1.45* -0.03 -38.80 

L2 -1.22* -3.36** -3.03** -6.92** -14.08** 0.35 -4.33** -1.75** -0.13 -14.25 

L3 -0.97 -3.01** -3.18** -4.67* -5.68** 1.25** -0.03 0.05 -0.13 -31.05 

L4 -0.06 -0.21 -0.13 15.88** -1.58 -0.25 6.17** 1.50** -0.03 -3.70 

L5 -1.71** -5.06** -4.88** -21.42** -9.23** -1.45** -0.33 -2.55** -0.33** -21.55 

L6 -0.22 2.14** 1.92** 11.63** 8.12** 0.55 0.02 -0.20 0.07 -10.30 

L7 -0.51 -1.86** -1.43** 0.58 -8.73** 0.15 -2.78** -0.10 0.07 -33.50 

L8 -1.50** -2.76** -2.48** -23.62** -17.93** 0.05 -2.58* -1.20* -0.33** -1.80 

L9 -0.72 -3.11** -3.13** -7.77** -3.73 -0.25 -1.03 -0.20 -0.03 4.05 

L10 0.19 2.84** 2.77** 8.08** 0.82 0.75* 0.97 0.45 -0.13 -37.10 

L11 0.24 -2.91** -3.13** 5.68* 12.42** 0.65* -1.38 -0.15 -0.13 2.30 

L12 -2.69** 2.14** 2.02** -9.17** -11.98** -0.45 -1.48 -2.20** -0.43** -57.45** 

L13 1.85** -2.11** -2.33** 13.18* 5.07* 1.15** 0.62 0.90 0.17* -5.85 

L14 -0.58 2.09** 1.82** -4.62* -3.98* -0.35 -3.13** -0.75 0.12 11.20 

L15 -0.95 0.29 0.32 -3.57 0.87 -0.45 2.22* -0.50 -0.13 -46.75* 

L16 -0.42 -0.41 -0.38 1.23 1.87 0.75* 2.92** 0.10 0.02 13.15 

L17 -0.51 2.09** 2.02** 0.73 3.02 -1.05** -0.83 -0.75 0.17* 23.55 

L18 -1.21* -0.96 -0.63* -16.97** -8.13** 0.15 -2.38* -2.30** -0.18* -7.75 

L19 -0.37 0.39 -0.03 9.73** 0.57 -0.95** -3.98** -0.60 0.12 35.20 
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            Appendix Table 15 (Continued) 

L20 -0.24 0.99 1.12** 5.43* 1.12 0.15 -3.43** -1.25* 0.17* 10.45 

L21 -0.07 -0.36 -0.43 5.33* 14.62** 0.25 -3.23** -1.65* 0.37** 37.05 

L22 -0.07 -1.91** -2.13** -5.22* -4.03* 0.05 -0.28 -1.35* 0.17* -8.40 

L23 2.83** 2.89** 2.92** 16.48** 10.72** -0.35 1.17 1.55** 0.12 37.85 

L24 1.50** 3.39** 3.07** 18.73** 2.32 -0.90** 2.32* 0.95 0.22** 75.05** 

L25 2.85** 1.84** 1.62** 15.88** 10.12** -0.35 2.32* 0.80 0.17 12.85 

L26 0.44 1.14* 1.07** -13.12** -4.43* 0.65* 1.07 0.15 0.22** -22.75 

L27 1.61** 0.59 0.87** 16.63** 6.92** -1.65** 2.72* 1.50** 0.12 75.55** 

L28 1.34** -2.16** -2.28** -1.07 0.22 -0.45 3.17** 1.45* 0.12 39.15 

L29 0.06 1.49** 1.62** 15.53** 14.67** 0.75* -1.23 0.65 0.07 -39.3 

L30 3.41** 1.64** 1.37** 15.03** 18.77** -0.35 2.67* 1.95** 0.02 64.00** 

L31 1.23* -1.06* -0.73* -3.07 -5.48** 0.45 2.02 0.35 0.07 -3.85 

L32 -1.17* -1.56** -1.48** 1.08 -5.33* 0.05 -1.18 -0.25 -0.08 -18.25 

L33 -1.72** 1.39* 1.52** 0.53 2.02 0.55 -0.43 0.55 -0.08 -32.25 

L34 -0.53 0.99 0.82** -11.07** -8.98** -0.65* 1.47 1.15* -0.28** 7.20 

L35 -1.14* 2.44** 2.37** -10.22** -3.93* 0.05 1.27 1.45* -0.03 23.75 

L36 -0.73 0.54 1.57** 10.23** 8.32** 0.85** -0.98 0.00 0.12 -59.80** 

L37 -0.85 -1.06* -0.93** -12.97** -7.33** 0.05 0.32 -0.15 -0.13 -43.15* 

L38 1.33** 2.14** 2.32** -1.22 -0.38 0.15 1.87 0.20 0.02 32.55 

L39 -1.10* 1.99** 2.07** -10.37** -0.18 -0.15 0.67 2.05** -0.03 1.25 

L40 0.2 1.34* 1.37** 8.83** 13.47** 0.85** 0.42 -0.65 -0.08 -18.85 

L41 0.17 1.14* 1.07** 4.43* -2.43 -0.35 -0.38 1.25* 0.12 29.60 
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 Appendix Table 15 (Continued)  

L42 1.51** -1.01 -1.23** -5.32* 4.82* -0.35 1.57 0.85 -0.08 0.50 

L43 0.88 -1.11* -1.33** -3.02 -4.58* -0.45 0.37 0.00 0.07 20.20 

S.E 0.49 0.53 0.58 4.21 3.9 0.31 1.03 0.55 0.07 20.37 

SED  0.69 0.74 0.81 5.95 5.51 0.44 1.46 0.78 0.1 28.81 

 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = number of days to anthesis, ED = ear diameter, EH = ear 

height,  EL = ear length, EPP= number of ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = Number of rows per 

ear, SD = number of days to silking, SE= standard error, TKWT = thousand kernels weight  
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Appendix Table 16.  Estimates of specific combining ability effects (SCA) for line by tester 

crosses of maize inbred lines evaluated at Melkasa, 2010 

crosses GY(t/ha) AD(days) SD(days) ED(cm) KPR(#) 

L1 x T1 0.61 -1.03 -0.98 -0.19 -2.36 

L1 x T2 -0.61 1.03 0.98 0.19 2.36 

L2 x T1 0.22 0.32 0.32 0.01 -3.01 

L2 x T2 -0.22 -0.32 -0.32 -0.01 3.01 

L3 x T1 0.45 0.67 0.67 0.06 4.04* 

L3 x T2 -0.45 -0.67 -0.67 -0.06 -4.04* 

L4 x T1 0.47 -0.18 -0.03 -0.14 -0.06 

L4 x T2 -0.47 0.18 0.03 0.14 0.06 

L5 x T1 1.03 -0.73 -0.93 0.06 0.39 

L5 x T2 -1.03 0.73 0.93 -0.06 -0.39 

L6 x T1 0.11 0.62 0.67 0.06 -1.96 

L6 x T2 -0.11 -0.62 -0.67 -0.06 1.96 

L7 x T1 0.58 -0.78 -0.08 -0.04 -0.16 

L7 x T2 -0.58 0.78 0.08 0.04 0.16 

L8 x T1 -0.49 0.02 0.07 0.06 1.99 

L8 x T2 0.49 -0.02 -0.07 -0.06 -1.99 

L9 x T1 -0.31 -0.53 0.22 -0.19 -1.91 

L9 x T2 0.31 0.53 -0.22 0.19 1.91 

L10 x T1 0.19 -0.28 0.02 -0.04 -0.81 

L10 x T2 -0.19 0.28 -0.02 0.04 0.81 

L11 x T1 0.59 -0.18 0.07 -0.14 1.59 

L11 x T2 -0.59 0.18 -0.07 0.14 -1.59 

L12 x T1 -0.64 0.27 0.37 0.01 -0.81 

L12 x T2 0.64 -0.27 -0.37 -0.01 0.81 

L13 x T1 0.67 -0.43 -0.23 0.11 0.09 

L13 x T2 -0.67 0.43 0.23 -0.11 -0.09 

L14 x T1 0.96 -0.58 -0.68 0.06 0.64 

L14 x T2 -0.96 0.58 0.68 -0.06 -0.64 

L15 x T1 -0.09 0.27 0.37 -0.04 -0.01 

L15 x T2 0.09 -0.27 -0.37 0.04 0.01 

L16 x T1 -0.36 0.22 0.12 0.11 3.84* 

L16 x T2 0.36 -0.22 -0.12 -0.11 -3.84* 

L17 x T1 1.11 -1.13 -0.98 0.06 0.74 
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   Appendix Table 16 (Continued) 

L17 x T2 -1.11 1.13 0.98 -0.06 -0.74 

L18 x T1 0.72 0.07 -0.18 0.16 1.04 

L18 x T2 -0.72 -0.07 0.18 -0.16 -1.04 

L19 x T1 -0.71 -0.43 0.17 -0.09 -1.81 

L19 x T2 0.71 0.43 -0.17 0.09 1.81 

L20 x T1 0.15 0.67 -0.33 -0.04 -1.86 

L20 x T2 -0.15 -0.67 0.33 0.04 1.86 

L21 x T1 0.88 0.72 -0.38 0.21 1.29 

L21 x T2 -0.88 -0.72 0.38 -0.21 -1.29 

L22 x T1 0.16 0.82 0.92 0.06 0.14 

L22 x T2 -0.16 -0.82 -0.92 -0.06 -0.14 

L23 x T1 -1.32* 0.47 0.82 -0.24* -2.56 

L23 x T2 1.32* -0.47 -0.82 0.24* 2.56 

L24 x T1 -1.97** -0.18 0.12 -0.14 -0.06 

L24 x T2 1.97** 0.18 -0.12 0.14 0.06 

L25 x T1 -0.67 0.42 0.42 -0.04 -0.66 

L25 x T2 0.67 -0.42 -0.42 0.04 0.66 

L26 x T1 0.22 0.07 -0.23 0.11 1.09 

L26 x T2 -0.22 -0.07 0.23 -0.11 -1.09 

L27 x T1 0.44 -0.03 0.07 -0.04 -0.36 

L27 x T2 -0.44 0.03 -0.07 0.04 0.36 

   L28 x T1 -0.16 0.27 -0.08 0.06 0.49 

L28 x T2 0.16 -0.27 0.08 -0.06 -0.49 

L29 x T1 -0.04 1.52* 1.17 -0.14 -0.56 

L29 x T2 0.04 -1.52* -1.17 0.14 0.56 

L30 x T1 0.24 -0.33 -0.88 -0.09 0.64 

L30 x T2 -0.24 0.33 0.88 0.09 -0.64 

L31 x T1 -0.76 0.12 -0.63 0.16 0.89 

L31 x T2 0.76 -0.12 0.63 -0.16 -0.89 

L32 x T1 -0.83 0.47 0.27 -0.14 -2.01 

L32 x T2 0.83 -0.47 -0.27 0.14 2.01 

L33 x T1 -2.27** 1.57* 1.97* -0.14 -3.01 

L33 x T2 2.27** -1.57* -1.97* 0.14 3.01 

L34 x T1 0.91 -1.63* -1.98* 0.26* 1.89 

L34 x T2 -0.91 1.63* 1.98* -0.26* -1.89 
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Appendix Table 16 (Continued) 

L35 x T1 0.82 -1.08 -1.23 0.01 0.29 

L35 x T2 -0.82 1.08 1.23 -0.01 -0.29 

L36 x T1 -1.16 0.62 1.02 -0.19 -2.11 

L36 x T2 1.16 -0.62 -1.02 0.19 2.11 

L37 x T1 -0.48 0.77 0.92 -0.04 0.09 

L37 x T2 0.48 -0.77 -0.92 0.04 -0.09 

L38 x T1 0.87 -0.38 -0.88 0.16 2.29 

L38 x T2 -0.87 0.38 0.88 -0.16 -2.29 

L39 x T1 -0.05 -0.23 0.62 0.16 1.79 

L39 x T2 0.05 0.23 -0.62 -0.16 -1.79 

L40 x T1 0.22 0.12 -0.53 0.11 -0.26 

L40 x T2 -0.22 -0.12 0.53 -0.11 0.26 

L41 x T1 0.34 -0.33 0.12 0.11 1.79 

L41 x T2 -0.34 0.33 -0.12 -0.11 -1.79 

L42 x T1 -0.29 -1.13 -0.98 0.11 2.04 

L42 x T2 0.29 1.13 0.98 -0.11 -2.04 

L43 x T1 -0.31 0.62 0.72 -0.09 -2.61 

L43 x T2 0.31 -0.62 -0.72 0.09 2.61 

SE 0.73 0.78 0.85 0.11 1.83 

 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels 

weight 

 

 

SED 1.04 1.10 1.20 0.16 2.59 
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Appendix Table 17.  Estimates of specific combining ability effects (SCA) for line by tester 

crosses of maize inbred lines evaluated at  Ziway, 2010 

crosses GY(t/ha) AD(days) SD(days) 

L1 x T1 0.26 0.17 0.77 

L1 x T2 -0.26 -0.17 -0.77 

L2 x T1 0.16 0.82 1.02 

L2 x T2 -0.16 -0.82 -1.02 

L3 x T1 -0.59 0.62 1.52 

L3 x T2 0.59 -0.62 -1.52 

L4 x T1 1.41* -2.03** -2.13 

L4 x T2 -1.41* 2.03** 2.13 

L5 x T1 0.01 -0.33 -0.53 

L5 x T2 -0.01 0.33 0.53 

L6 x T1 -0.34 0.82 0.47 

L6 x T2 0.34 -0.82 -0.47 

L7 x T1 0.86 -0.33 -0.13 

L7 x T2 -0.86 0.33 0.13 

L8 x T1 -0.54 -0.13 -0.68 

L8 x T2 0.54 0.13 0.68 

L9 x T1 0.66 -1.43 -0.73 

L9 x T2 -0.66 1.43 0.73 

L10 x T1 0.01 -0.33 -0.33 

L10 x T2 -0.01 0.33 0.33 

L11 x T1 -0.09 0.12 -0.98 

L11 x T2 0.09 -0.12 0.98 

L12 x T1 -0.39 3.12** 2.47* 

L12 x T2 0.39 -3.12** -2.47* 

L13 x T1 0.36 -0.88 -0.58 

L13 x T2 -0.36 0.88 0.58 

L14 x T1 0.26 -0.13 -1.78 

L14 x T2 -0.26 0.13 1.78 

L15 x T1 0.76 -1.08 -0.23 

L15 x T2 -0.76 1.08 0.23 

L16 x T1 -0.49 -0.88 -0.43 

L16 x T2 0.49 0.88 0.43 

L17 x T1 0.61 -0.43 -0.13 
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 Appendix Table 17 (Continued) 

L17 x T2 -0.61 0.43 0.13 

L18 x T1 0.71 -1.13 -1.08 

L18 x T2 -0.71 1.13 1.08 

L19 x T1 -0.39 1.82* 1.12 

L19 x T2 0.39 -1.82* -1.12 

L20 x T1 -0.94 1.62* 1.12 

L20 x T2 0.94 -1.62* -1.12 

L21 x T1 0.01 0.72 0.32 

L21 x T2 -0.01 -0.72 -0.32 

L22 x T1 -0.49 0.72 1.02 

L22 x T2 0.49 -0.72 -1.02 

L23 x T1 0.01 2.77** 2.47* 

L23 x T2 -0.01 -2.77** -2.47* 

L24 x T1 -0.14 -0.38 -0.48 

L24 x T2 0.14 0.38 0.48 

L25 x T1 -0.64 1.32 2.02 

L25 x T2 0.64 -1.32 -2.02 

L26 x T1 0.71 -0.93 -0.88 

L26 x T2 -0.71 0.93 0.88 

L27 x T1 -0.59 0.32 -0.08 

L27 x T2 0.59 -0.32 0.08 

L28 x T1 0.01 -1.28 -0.98 

L28 x T2 -0.01 1.28 0.98 

L29 x T1 -0.04 -0.68 0.02 

L29 x T2 0.04 0.68 -0.02 

L30 x T1 1.01 -0.63 -0.68 

L30 x T2 -1.01 0.63 0.68 

L31 x T1 0.31 -1.13 -0.73 

L31 x T2 -0.31 1.13 0.73 

L32 x T1 -0.64 1.62* 1.82 

L32 x T2 0.64 -1.62* -1.82 

L33 x T1 -1.29* 0.87 1.22 

L33 x T2 1.29* -0.87 -1.22 

L34 x T1 -0.04 -0.63 -1.38 

L34 x T2 0.04 0.63 1.38 
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Appendix Table 17 (Continued) 

L35 x T1 0.46 -0.63 -0.33 

L35 x T2 -0.46 0.63 0.33 

L36 x T1 -0.99 0.12 0.07 

L36 x T2 0.99 -0.12 -0.07 

L37 x T1 -0.19 -0.83 -0.38 

L37 x T2 0.19 0.83 0.38 

L38 x T1 -0.29 -0.88 -0.98 

L38 x T2 0.29 0.88 0.98 

L39 x T1 -1.09 -0.58 -1.18 

L39 x T2 1.09 0.58 1.18 

L40 x T1 0.86 -0.88 -0.88 

L40 x T2 -0.86 0.88 0.88 

L41 x T1 0.86 -1.13 -0.43 

L41 x T2 -0.86 1.13 0.43 

L42 x T1 1.06 -0.53 -0.53 

L42 x T2 -1.06 0.53 0.53 

L43 x T1 -1.14 2.52** 2.42* 

L43 x T2 1.14 -2.52** -2.42* 

SE 0.69 0.75 1.12 

SED 0.98 1.06 1.59 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis,  GY= grain yield, SD=number of days to silking, SE=standard error 
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Appendix Table 18. Estimates of specific combining ability effects (SCA) for line by tester 

crosses of maize inbred lines evaluated at  Dhera, 2010 

Crosses GY(t/ha) AD(days) SD(days) PH(cm) RPE(#) ED(cm) TKWT(gm) 

L1 x T1 -0.12 0.53 0.89 11.88 -0.08 0.04 -13.01 

L1 x T2 0.12 -0.53 -0.89 -11.88 0.08 -0.04 13.01 

L2 x T1 -0.27 2.08 1.89 0.18 0.22 -0.06 44.59 

L2 x T2 0.27 -2.08 -1.89 -0.18 -0.22 0.06 -44.59 

L3 x T1 -0.67 0.43 0.59 -2.12 -0.58 -0.21 -9.61 

L3 x T2 0.67 -0.43 -0.59 2.12 0.58 0.21 9.61 

L4 x T1 0.28 -0.27 -1.01 -1.72 -0.03 0.24 41.64 

L4 x T2 -0.28 0.27 1.01 1.72 0.03 -0.24 -41.64 

L5 x T1 0.08 0.38 0.14 -7.02 -0.28 0.04 27.39 

L5 x T2 -0.08 -0.38 -0.14 7.02 0.28 -0.04 -27.39 

L6 x T1 -0.32 -0.12 -0.31 -0.52 0.42 0.09 -27.91 

L6 x T2 0.32 0.12 0.31 0.52 -0.42 -0.09 27.91 

L7 x T1 0.43 0.13 0.79 -0.32 -0.28 -0.06 -38.51 

L7 x T2 -0.43 -0.13 -0.79 0.32 0.28 0.06 38.51 

L8 x T1 -0.42 -0.02 0.29 -8.32 -0.58 -0.16 -34.71 

L8 x T2 0.42 0.02 -0.29 8.32 0.58 0.16 34.71 

L9 x T1 -0.02 4.03** 4.29** -2.22 -0.58 0.09 2.69 

L9 x T2 0.02 -4.03** -4.29** 2.22 0.58 -0.09 -2.69 

L10 x T1 0.13 1.88 1.64 -2.22 0.17 0.19 18.64 

L10 x T2 -0.13 -1.88 -1.64 2.22 -0.17 -0.19 -18.64 

L11 x T1 0.03 -0.52 -1.51 6.63 -0.28 -0.06 32.54 

L11 x T2 -0.03 0.52 1.51 -6.63 0.28 0.06 -32.54 

L12 x T1 0.13 1.43 1.19 3.38 0.52 0.09 17.54 

L12 x T2 -0.13 -1.43 -1.19 -3.38 -0.52 -0.09 -17.54 

L13 x T1 0.13 -0.02 0.49 1.53 1.42* -0.16 -10.81 

L13 x T2 -0.13 0.02 -0.49 -1.53 -1.42* 0.16 10.81 

L14 x T1 0.63 -0.62 -1.11 10.73 0.37 0.14 -13.76 

L14 x T2 -0.63 0.62 1.11 -10.73 -0.37 -0.14 13.76 

L15 x T1 -0.12 -0.72 -0.16 -1.67 0.22 0.24 18.14 

L15 x T2 0.12 0.72 0.16 1.67 -0.22 -0.24 -18.14 

L16 x T1 0.68 -0.62 -0.36 6.53 -0.23 0.19 -10.41 

L16 x T2 -0.68 0.62 0.36 -6.53 0.23 -0.19 10.41 

L17 x T1 0.48 -0.32 0.54 8.38 0.32 -0.11 2.64 
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L17 x T2 -0.48 0.32 -0.54 -8.38 -0.32 0.11 -2.64 

L18 x T1 0.08 -0.62 -0.81 -4.27 0.42 0.04 6.04 

L18 x T2 -0.08 0.62 0.81 4.27 -0.42 -0.04 -6.04 

L19 x T1 0.23 -0.12 0.89 -5.12 0.22 0.14 -11.86 

L19 x T2 -0.23 0.12 -0.89 5.12 -0.22 -0.14 11.86 

L20 x T1 -0.27 -0.22 -1.01 -0.22 -0.28 -0.06 4.79 

L20 x T2 0.27 0.22 1.01 0.22 0.28 0.06 -4.79 

L21 x T1 -0.27 1.43 0.49 2.88 -0.03 -0.11 -23.76 

L21 x T2 0.27 -1.43 -0.49 -2.88 0.03 0.11 23.76 

L22 x T1 -0.72 0.63 2.09 -8.97 -0.48 -0.41 -15.91 

L22 x T2 0.72 -0.63 -2.09 8.97 0.48 0.41 15.91 

L23 x T1 -0.02 0.18 0.59 0.33 0.32 0.14 -3.91 

L23 x T2 0.02 -0.18 -0.59 -0.33 -0.32 -0.14 3.91 

L24 x T1 0.23 -0.02 0.09 1.38 0.17 0.09 29.64 

L24 x T2 -0.23 0.02 -0.09 -1.38 -0.17 -0.09 -29.64 

L25 x T1 -0.32 0.78 1.34 11.08 -0.48 -0.31 -2.41 

L25 x T2 0.32 -0.78 -1.34 -11.08 0.48 0.31 2.41 

L26 x T1 0.48 -2.17 -1.81 4.08 -0.48 0.19 -10.86 

L26 x T2 -0.48 2.17 1.81 -4.08 0.48 -0.19 10.86 

L27 x T1 0.08 -0.77 -0.96 -5.07 -0.48 0.04 9.49 

L27 x T2 -0.08 0.77 0.96 5.07 0.48 -0.04 -9.49 

L28 x T1 0.63 -0.17 -0.56 6.03 0.52 0.04 1.19 

L28 x T2 -0.63 0.17 0.56 -6.03 -0.52 -0.04 -1.19 

L29 x T1 0.68 -1.32 -1.46 0.18 1.22* 0.49* 22.19 

L29 x T2 -0.68 1.32 1.46 -0.18 -1.22* -0.49* -22.19 

L30 x T1 -0.17 1.48 0.14 -4.22 0.02 -0.06 33.39 

L30 x T2 0.17 -1.48 -0.14 4.22 -0.02 0.06 -33.39 

L31 x T1 -0.12 -1.22 -1.41 0.13 -0.18 -0.06 -40.01 

L31 x T2 0.12 1.22 1.41 -0.13 0.18 0.06 40.01 

L32 x T1 -0.27 0.23 0.59 -17.37* -0.18 -0.26 -7.01 

L32 x T2 0.27 -0.23 -0.59 17.37* 0.18 0.26 7.01 

L33 x T1 -0.52 0.53 -0.06 -6.42 0.12 -0.21 -20.61 

L33 x T2 0.52 -0.53 0.06 6.42 -0.12 0.21 20.61 

L34 x T1 0.78 -0.77 -1.21 9.28 0.17 0.44* 60.64* 

L34 x T2 -0.78 0.77 1.21 -9.28 -0.17 -0.44* -60.64* 
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L35 x T1 0.33 -1.47 -1.26 4.83 0.42 0.24 31.54 

L35 x T2 -0.33 1.47 1.26 -4.83 -0.42 -0.24 -31.54 

L36 x T1 -0.22 0.03 0.19 -2.92 -1.18 -0.21 18.24 

L36 x T2 0.22 -0.03 -0.19 2.92 1.18 0.21 -18.24 

L37 x T1 -0.47 -1.07 -0.21 -22.62** -0.93 -0.26 -17.91 

L37 x T2 0.47 1.07 0.21 22.62** 0.93 0.26 17.91 

L38 x T1 0.08 -0.77 -1.11 -2.87 -0.08 0.19 0.09 

L38 x T2 -0.08 0.77 1.11 2.87 0.08 -0.19 -0.09 

L39 x T1 -0.47 -1.32 -1.06 3.58 0.47 -0.21 -57.61* 

L39 x T2 0.47 1.32 1.06 -3.58 -0.47 0.21 57.61* 

L40 x T1 0.08 -1.32 -1.16 5.58 0.22 0.24 -24.91 

L40 x T2 -0.08 1.32 1.16 -5.58 -0.22 -0.24 24.91 

L41 x T1 0.38 -0.72 -0.81 14.23 0.37 -0.16 -61.36* 

L41 x T2 -0.38 0.72 0.81 -14.23 -0.37 0.16 61.36* 

L42 x T1 -0.77 1.33 0.84 -13.62 -0.63 -0.11 24.04 

L42 x T2 0.77 -1.33 -0.84 13.62 0.63 0.11 -24.04 

L43 x T1 -0.37 -0.02 -0.81 6.93 0.02 -0.21 9.64 

L43 x T2 0.37 0.02 0.81 -6.93 -0.02 0.21 -9.64 

SE 0.43 1.18 1.27 8.39 0.54 0.21 25.74 

SED 0.61 1.67 1.79 11.87 0.76 0.3 36.4 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels 

weight
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Appendix Table 19. Estimates of specific combining ability effects (SCA) for line by tester 

crosses of maize inbred lines evaluated at Mieso, 2010 

Crosses AD(days) SD(days) PH(cm) KPR(#) EL(cm) TKWT(gm) 

L1 x T1 1.35 1.33 -15.7 -1.3 -0.46 8.19 

L1 x T2 -1.35 -1.33 15.7 1.3 0.46 -8.19 

L2 x T1 -0.05 0.18 -5.85 -1.05 0.64 -40.71 

L2 x T2 0.05 -0.18 5.85 1.05 -0.64 40.71 

L3 x T1 -0.5 -0.92 -5.9 4.5 1.99 59.49 

L3 x T2 0.5 0.92 5.9 -4.5 -1.99 -59.49 

L4 x T1 -1.8 -2.42 2.75 0.75 0.44 21.04 

L4 x T2 1.8 2.42 -2.75 -0.75 -0.44 -21.04 

L5 x T1 1.8 1.88 0.95 -1.6 -0.06 -1.01 

L5 x T2 -1.8 -1.88 -0.95 1.6 0.06 1.01 

L6 x T1 0.3 -0.47 1.6 0.85 0.44 8.74 

L6 x T2 -0.3 0.47 -1.6 -0.85 -0.44 -8.74 

L7 x T1 -0.7 -1.32 -12.1 2.45 -0.01 35.89 

L7 x T2 0.7 1.32 12.1 -2.45 0.01 -35.89 

L8 x T1 2.4 2.98* -14.85 0.85 0.29 35.09 

L8 x T2 -2.4 -2.98* 14.85 -0.85 -0.29 -35.09 

L9 x T1 2.80* 3.13* -0.65 0.95 -0.31 -27.81 

L9 x T2 -2.80* -3.13* 0.65 -0.95 0.31 27.81 

L10 x T1 -0.75 -1.17 12.45 3.05 0.84 -15.71 

L10 x T2 0.75 1.17 -12.45 -3.05 -0.84 15.71 

L11 x T1 2.5 2.98* 7.65 2.55 0.44 19.49 

L11 x T2 -2.5 -2.98* -7.65 -2.55 -0.44 -19.49 

L12 x T1 -2.85* -3.12* 5.95 -0.45 -0.41 57.84 

L12 x T2 2.85* 3.12* -5.95 0.45 0.41 -57.84 

L13 x T1 -1.3 -1.32 7.85 2.6 1.34 -22.56 

L13 x T2 1.3 1.32 -7.85 -2.6 -1.34 22.56 

L14 x T1 -1.5 -2.12 9.25 -6.80** -2.56* -113.56** 

L14 x T2 1.5 2.12 -9.25 6.80** 2.56* 113.56** 

L15 x T1 2.2 1.93 -4.95 1.65 1.14 11.64 

L15 x T2 -2.2 -1.93 4.95 -1.65 -1.14 -11.64 

L16 x T1 0 -0.32 8.8 0.85 -0.41 -23.56 

L16 x T2 0 0.32 -8.8 -0.85 0.41 23.56 

L17 x T1 -2.85* -3.72** 9.25 1.15 1.09 -17.51 
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L17 x T2 2.85* 3.72** -9.25 -1.15 -1.09 17.51 

L18 x T1 0.55 1.23 3.85 -0.15 -0.51 21.49 

L18 x T2 -0.55 -1.23 -3.85 0.15 0.51 -21.49 

L19 x T1 0.4 0.73 3.2 -1.3 -0.76 0.39 

L19 x T2 -0.4 -0.73 -3.2 1.3 0.76 -0.39 

L20 x T1 -0.05 -0.17 -7.5 0 0.29 -25.26 

L20 x T2 0.05 0.17 7.5 0 -0.29 25.26 

L21 x T1 -2.70* -2.47 -11.15 2.95 1.69 52.29 

L21 x T2 2.70* 2.47 11.15 -2.95 -1.69 -52.29 

L22 x T1 1.15 1.83 1.85 -3.35 -0.21 -48.71 

L22 x T2 -1.15 -1.83 -1.85 3.35 0.21 48.71 

L23 x T1 -1.75 -1.27 1.55 -2.7 -1.06 -27.16 

L23 x T2 1.75 1.27 -1.55 2.7 1.06 27.16 

L24 x T1 0.05 -0.37 9.4 0.6 1.24 34.59 

L24 x T2 -0.05 0.37 -9.4 -0.6 -1.24 -34.59 

L25 x T1 1.05 1.38 -7 1.95 0.49 14.84 

L25 x T2 -1.05 -1.38 7 -1.95 -0.49 -14.84 

L26 x T1 1.8 1.68 -1.95 1.7 0.24 20.79 

L26 x T2 -1.8 -1.68 1.95 -1.7 -0.24 -20.79 

L27 x T1 -0.1 -0.12 -8.2 1.75 1.74 -23.76 

L27 x T2 0.1 0.12 8.2 -1.75 -1.74 23.76 

L28 x T1 -0.95 -1.22 -11.9 -0.2 -0.11 -10.76 

L28 x T2 0.95 1.22 11.9 0.2 0.11 10.76 

L29 x T1 0.25 0.58 -7 -1.4 -0.21 0.39 

L29 x T2 -0.25 -0.58 7 1.4 0.21 -0.39 

L30 x T1 -1.75 -2.62 3.25 -0.6 -0.41 -0.21 

L30 x T2 1.75 2.62 -3.25 0.6 0.41 0.21 

L31 x T1 -2.4 -2.47 -2.7 -0.95 -0.46 10.99 

L31 x T2 2.4 2.47 2.7 0.95 0.46 -10.99 

L32 x T1 1.2 0.68 3.4 -1.95 -0.66 -19.46 

L32 x T2 -1.2 -0.68 -3.4 1.95 0.66 19.46 

L33 x T1 -0.8 -0.87 8.35 -3.35 -1.81 0.19 

L33 x T2 0.8 0.87 -8.35 3.35 1.81 -0.19 

L34 x T1 -1.5 -2.07 14.05 0.65 0.14 4.99 

L34 x T2 1.5 2.07 -14.05 -0.65 -0.14 -4.99 
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L35 x T1 -0.15 0.83 4.9 0.5 -0.46 -47.56 

L35 x T2 0.15 -0.83 -4.9 -0.5 0.46 47.56 

    L36 x T1 0.65 1.48 -11.75 -0.9 -1.66 -33.61 

L36 x T2 -0.65 -1.48 11.75 0.9 1.66 33.61 

L37 x T1 -0.8 -1.52 11.05 -2.15 -0.71 -42.71 

L37 x T2 0.8 1.52 -11.05 2.15 0.71 42.71 

L38 x T1 -0.8 -0.22 3.5 4.5 2.09 17.54 

L38 x T2 0.8 0.22 -3.5 -4.5 -2.09 -17.54 

L39 x T1 1.5 1.63 1.2 1.45 0.99 61.29 

L39 x T2 -1.5 -1.63 -1.2 -1.45 -0.99 -61.29 

L40 x T1 0.95 1.48 3.5 -2.7 -1.71 35.09 

L40 x T2 -0.95 -1.48 -3.5 2.7 1.71 -35.09 

L41 x T1 1.1 1.38 -1.35 -3.35 -2.11 -6.86 

L41 x T2 -1.1 -1.38 1.35 3.35 2.11 6.86 

L42 x T1 2.3 3.08* -6.95 -0.95 -0.21 -18.96 

L42 x T2 -2.3 -3.08* 6.95 0.95 0.21 18.96 

L43 x T1 -0.4 -0.32 -1.9 -1.05 -0.46 34.99 

L43 x T2 0.4 0.32 1.9 1.05 0.46 -34.99 

SE 1.27 1.32 8.34 2.35 1.15 33.16 

SED 1.80 1.86 11.80 3.33 1.63 46.90 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels 

weig
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Appendix Table 20. Estimates of specific combining ability effects (SCA) for line by tester 

crosses of maize inbred lines evaluated at Pawe, 2010 

Crosses GY(t/ha) AD(days) SD(days) PH(cm) EH(cm) RPE(#) ED(cm) 

L1 x T1 0.65 -0.23 -0.22 6.65 3.55 -0.12 0.13 

L1 x T2 -0.65 0.23 0.22 -6.65 -3.55 0.12 -0.13 

L2 x T1 -0.22 -0.78 -0.82 7.55 0.10 1.03* 0.23* 

L2 x T2 0.22 0.78 0.82 -7.55 -0.10 -1.03* -0.23* 

L3 x T1 0.94 0.07 0.23 -6.00 -5.70 -0.27 -0.07 

L3 x T2 -0.94 -0.07 -0.23 6.00 5.70 0.27 0.07 

L4 x T1 -0.27 -0.33 -0.62 1.75 5.70 -0.57 -0.07 

L4 x T2 0.27 0.33 0.62 -1.75 -5.70 0.57 0.07 

L5 x T1 0.09 -0.78 -0.97 -1.75 0.45 -0.17 0.03 

L5 x T2 -0.09 0.78 0.97 1.75 -0.45 0.17 -0.03 

L6 x T1 0.80 -0.08 0.03 -1.90 -1.60 0.63 0.13 

L6 x T2 -0.80 0.08 -0.03 1.90 1.60 -0.63 -0.13 

L7 x T1 0.55 -1.48* -1.92* -13.95* -7.75 -0.57 -0.07 

L7 x T2 -0.55 1.48* 1.92* 13.95* 7.75 0.57 0.07 

L8 x T1 -0.51 -1.38 -1.87* -6.15 0.25 -0.07 -0.17 

L8 x T2 0.51 1.38 1.87* 6.15 -0.25 0.07 0.17 

L9 x T1 0.52 3.47** 3.28** 2.30 5.45 0.43 0.23* 

L9 x T2 -0.52 -3.47** -3.28** -2.30 -5.45 -0.43 -0.23* 

L10 x T1 0.09 0.72 0.78 -4.55 3.60 0.23 0.03 

L10 x T2 -0.09 -0.72 -0.78 4.55 -3.60 -0.23 -0.03 

L11 x T1 -0.74 -0.23 -0.22 -0.15 1.10 0.13 -0.17 

L11 x T2 0.74 0.23 0.22 0.15 -1.10 -0.13 0.17 

L12 x T1 -0.17 -0.08 0.03 -10.60 -8.50 -0.17 0.03 

L12 x T2 0.17 0.08 -0.03 10.60 8.50 0.17 -0.03 

L13 x T1 -0.15 0.37 0.48 1.85 0.75 0.23 0.13 

L13 x T2 0.15 -0.37 -0.48 -1.85 -0.75 -0.23 -0.13 

L14 x T1 2.30** -1.23 -1.17 4.95 -4.10 0.33 0.28** 

L14 x T2 -2.30** 1.23 1.17 -4.95 4.10 -0.33 -0.28** 

L15 x T1 -0.31 -0.93 -0.67 5.10 5.15 0.03 -0.07 

L15 x T2 0.31 0.93 0.67 -5.10 -5.15 -0.03 0.07 

L16 x T1 -0.34 0.17 0.53 6.60 -2.45 0.23 -0.12 

L16 x T2 0.34 -0.17 -0.53 -6.60 2.45 -0.23 0.12 

L17 x T1 0.48 -0.53 -0.47 -3.30 -6.70 -0.37 -0.07 
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L17 x T2 -0.48 0.53 0.47 3.30 6.70 0.37 0.07 

L18 x T1 0.02 -0.18 -0.62 -6.40 -4.85 0.03 -0.02 

L18 x T2 -0.02 0.18 0.62 6.40 4.85 -0.03 0.02 

L19 x T1 -1.23 1.17 1.58 -5.50 -5.85 -0.07 -0.02 

L19 x T2 1.23 -1.17 -1.58 5.50 5.85 0.07 0.02 

L20 x T1 0.61 0.27 0.13 -2.90 -6.70 -0.57 -0.17 

L20 x T2 -0.61 -0.27 -0.13 2.90 6.70 0.57 0.17 

L21 x T1 -0.77 0.02 0.08 2.70 4.80 -0.07 -0.17 

L21 x T2 0.77 -0.02 -0.08 -2.70 -4.80 0.07 0.17 

L22 x T1 -1.43* 0.87 0.88 5.65 6.15 -0.07 0.03 

L22 x T2 1.43* -0.87 -0.88 -5.65 -6.15 0.07 -0.03 

L23 x T1 0.56 -0.23 -0.27 5.65 3.80 -0.07 -0.02 

L23 x T2 -0.56 0.23 0.27 -5.65 -3.80 0.07 0.02 

L24 x T1 0.00 -0.83 -0.82 -0.70 6.90 -0.42 -0.12 

L24 x T2 0.00 0.83 0.82 0.70 -6.90 0.42 0.12 

L25 x T1 0.08 0.92 1.03 2.85 4.20 -0.27 0.03 

L25 x T2 -0.08 -0.92 -1.03 -2.85 -4.20 0.27 -0.03 

L26 x T1 0.55 -0.38 -0.42 2.95 1.15 -0.27 0.08 

L26 x T2 -0.55 0.38 0.42 -2.95 -1.15 0.27 -0.08 

L27 x T1 0.64 0.17 0.28 -4.20 -3.40 0.23 0.08 

L27 x T2 -0.64 -0.17 -0.28 4.20 3.40 -0.23 -0.08 

L28 x T1 -0.49 0.72 0.83 -12.80* -8.30 -0.37 -0.12 

L28 x T2 0.49 -0.72 -0.83 12.80* 8.30 0.37 0.12 

L29 x T1 0.74 -0.23 0.03 9.90 5.35 0.63 0.13 

L29 x T2 -0.74 0.23 -0.03 -9.90 -5.35 -0.63 -0.13 

L30 x T1 -0.28 -0.18 -0.12 1.40 -2.05 0.13 0.08 

L30 x T2 0.28 0.18 0.12 -1.40 2.05 -0.13 -0.08 

L31 x T1 0.48 -0.28 -0.22 1.60 -1.60 -0.47 0.03 

L31 x T2 -0.48 0.28 0.22 -1.60 1.60 0.47 -0.03 

L32 x T1 -1.25 3.22** 3.13** -0.25 -6.65 -0.07 -0.12 

L32 x T2 1.25 -3.22** -3.13** 0.25 6.65 0.07 0.12 

L33 x T1 -1.36* 1.17 1.03 -6.00 -1.30 0.03 -0.22* 

L33 x T2 1.36* -1.17 -1.03 6.00 1.30 -0.03 0.22* 

L34 x T1 0.63 -1.83* -1.67* 1.20 -4.00 1.03* 0.18 

L34 x T2 -0.63 1.83* 1.67* -1.20 4.00 -1.03* -0.18 
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L35 x T1 -0.35 -0.28 -0.22 2.45 -3.15 0.13 0.03 

L35 x T2 0.35 0.28 0.22 -2.45 3.15 -0.13 -0.03 

L36 x T1 -0.42 -0.68 -0.92 -0.50 7.40 -0.87 -0.22* 

L36 x T2 0.42 0.68 0.92 0.50 -7.40 0.87 0.22* 

L37 x T1 -0.44 -0.18 0.08 0.80 -2.55 -0.07 -0.07 

L37 x T2 0.44 0.18 -0.08 -0.80 2.55 0.07 0.07 

L38 x T1 0.01 0.52 0.33 8.55 10.80 0.23 0.08 

L38 x T2 -0.01 -0.52 -0.33 -8.55 -10.80 -0.23 -0.08 

L39 x T1 0.14 0.77 0.58 2.90 5.70 -0.07 0.13 

L39 x T2 -0.14 -0.77 -0.58 -2.90 -5.70 0.07 -0.13 

L40 x T1 -0.22 0.12 -0.12 5.00 2.55 -0.07 -0.02 

L40 x T2 0.22 -0.12 0.12 -5.00 -2.55 0.07 0.02 

L41 x T1 -0.25 -0.48 0.08 -1.40 1.65 0.73 -0.02 

L41 x T2 0.25 0.48 -0.08 1.40 -1.65 -0.73 0.02 

L42 x T1 0.76 -1.13 -1.12 0.85 1.10 -0.07 0.08 

L42 x T2 -0.76 1.13 1.12 -0.85 -1.10 0.07 -0.08 

L43 x T1 -0.48 0.07 0.08 -2.35 -0.50 -0.37 0.03 

L43 x T2 0.48 -0.07 -0.08 2.35 0.50 0.37 -0.03 

SE 0.69 0.74 0.81 5.95 5.51 0.44 0.1 

SED 0.98 1.05 1.15 8.42 7.80 0.62 0.14 

** = Significant at P<0.01 level of probability, * = Significant at P<0.05 Level of probability, AD = 

number of days to anthesis, ED = ear diameter, EH = ear height,  EL = ear length, EPP= number of 

ears per plant,  GY= grain yield, KPR = number of kernels per row, PH = plant  height, RPE = 

Number of rows per ear, SD=number of days to silking, SE=standard error, TKWT = thousand-kernels 

weight 

 


