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ABSTRACTS

In this research, we introduced a pair of self-maps satisfying contractive condition of integral
type in complete metric spaces and establish the existence and uniqueness of common fixed
points for those maps. We used analytical design in our work. The analysis technique we
adopted for the successful completion of this study was by extending a single map of Zeqing Liu,
Heng Wu ,Jeong Sheok Ume and Shin Min Kang [20] to a pair of maps. Secondary source of
data such as journal articles, books and internet was used to carry out the study. We also provided
examples in support of our results. This study was conducted from September 2014 to September
2015.

Key words: Fixed point, Common fixed point, complete metric space, contractive condition of
integral type and Lebesgue integrable maps.



CHAPTER ONE

1. INTRODUCTION
1.1 BACKGROUND OF THE STUDY

Fixed point theory is one of the famous and traditional theories in Mathematics and has a

broad set of applications. In this theory contraction is one of the main tools to prove
existence and uniqueness of a fixed point. Banach contraction principle, which gives an
answer on the existence and uniqueness of a solution of an operator equation, Tx = x is
most widely used tool in the study of nonlinear equations. There are many extension of
Banach contraction principle [1, 9. 15].

Let X be a nonempty setand T:X — X amap, we call T aself-map of X . An element
x in X is called a fixed point of T if Tx=x. Let (X, d) be a metric space. A self-map
T is said to be a contraction if there is a real number k in [0, 1) such that for all x, y e X

d(Tx,Ty) <kd(x,y) .

In this case k is called a contraction constant.
The Banach contraction principle [3] which states that a contraction map on a complete
metric space has a unique fixed point is one of the pivotal results of analysis. It is widely
considered as the source of metric fixed point theory. Also, its significance lies in its vast
applicability in a number of branches of Mathematics. In Banach contraction principle
the map T is continuous.
In 1968, Kannan [11] introduced a different contraction, where the map T7:X — X

may not be continuous which is stated as follows:
Let (X, d) be a complete metric space and T be a self-map on X and if there exists a

constant a in [0, 1) such that
d(Tx,Ty) <a[d(x,Tx)+d(y,Ty)] forall x, y e X

then T has a unique fixed point.
In 1972, Chatterjea [7] gave the dual of Kannan fixed point theorem as follows.

Let (X,d) be a complete metric space and T be a self-map on x and if there exists a

constant & in [0, %) such that

d(Tx,Ty) <o[d(x,Ty)+d(y,Tx)] forall x, y e X
then T has a unique fixed point.

In 1977, Rhoades [16] showed that Banach contraction principle, Kannan mapping



And Chatterjea are independent.
Definition1.2: Let (X, d) be a metric space. A mapping T: X — X is said to be weakly

contraction d(Tx,Ty) <d(x,y)—e(d(x,y)) forall x, y e X

where ¢:R, —R, is continuous and non-decreasing function and ¢(t) =0 if and only if
t=0.

In 1997, Alber and Guerre Delabrere [1] introduced the concept of weakly contraction in
Hilbert spaces and proved the corresponding fixed point result.

Rhoades [16] extended this concept to Banach spaces and proved the existence of fixed
point of weakly contractive maps in complete metric space.

In recent years there has been an increasing interest in the study of fixed points and
common fixed points using different contractive conditions in [4, 5,10,19] and others
continued the study of Rhoades[16] and Branciari [6] which proved fixed point for
weakly contraction mappings and contractive maps satisfying contractive condition of
integral type, respectively which are generalization of the Banach fixed point theorem
and they extended the idea to prove some fixed point and common fixed point theorems
for various generalization of weakly contraction mappings and contractive mappings of
integral type in a complete metric space. Branciari [6] studied fixed point theorem of
integral type. For more results in this directions of study see [2,8,13,15,21] and the
reference therein. Rhoades [17] and Liu et al. [12] extended the work of Branciari [6] and
obtained fixed point theorems for the contractive mappings of integral type. Inspired and
motivated by the results of [20] on fixed point theorems for maps satisfying contractive
condition of integral type. The researcher planned to study about the existence and
uniqueness of common fixed point results for a pair of maps satisfying contractive
condition of integral type.

1.2 STATEMENT OF THE PROBLEM

The purpose of the research is to establish common fixed point for a pair of self-maps
satisfying contractive condition of integral type. The research answered the following
basic questions.

1. How can we prove the existence of common fixed points of pair of self-maps
satisfying contractive condition of integral type?

2. How can we assure the uniqueness of the common fixed point?

3. How can we support the results obtained by providing applicable examples?



1.3 OBJECTIVE

1.3.1 General Objective

The general objective of this study was to establish the existence of common fixed points
for a pair of self-maps satisfying contractive condition of integral type, by extending the
works of [20] of 2014.

1.3.2 Specific Objectives
1. To prove the existence of common fixed points of a pair of self-maps satisfying
contractive condition of integral type.
2. To discuss conditions required to assure uniqueness of common fixed point.
3. To provide examples in support of the results obtained.

1.4 SIGNIFICANCE OF THE STUDY

Recently wide interest in the study of fixed points and common fixed points of mappings
satisfying contractive conditions of integral type with wide range of applications in
several fields are observed (see [2, 8, 12,13, 20]). Hence, the results of this study may
contribute in giving some background information and guiding activities for researchers
who need to conduct further research in this line of research. The researcher has gained
basic research skills in pure mathematics which will help him to be engaged in research
activities in his future career.

1.5 DELIMITATION OF THE STUDY

This study was conducted under the Streams of Functional Analysis and is delimited to
the existence of common fixed point of maps satisfying contractive condition of integral

type.



CHAPTER TWO

2. LITERATURE REVIEW

The theory of fixed point in metric space is originated from the well-known Banach
contraction principle [3] which is a very popular tool for solving existence problems in
many branches of Mathematical analysis that has many applications in solving non-linear
equations which can be stated as, “on a complete metric space (X ,d)if a self-mapping T

satisfies
d(Tx, Ty) <kd(x,y)forall x, ye X,
where k is a constant in [0,1) . Then T has a unique fixed point X € X.

Let X beasetand d:X? —R, be a function with the following properties:

Forall x,y,zeX

(i) d(x,y)=0

(i) d(x,y)=0<=x=y

(iii) d(x, y) =d(y,x)

(iv) d(x,z) <d(x,y)+d(y,2).

Then we say that d isametricon x and (X,d) isa metric space.

Related to this many researchers studied and gave generalization of the Banach
contraction principle (see [1, 4, 5, 9, 10, 16, 19]).

In 1997 Alber and Guerre-Delabrere [1] introduced the concept of on weaks contraction
map in Hilbert spaces and established a fixed point theorem. Rhoads [16] showed that
the result of [1] is also valid in complete metric spaces. That is, he introduced the notion
of weakly contractive maps in the setting of metric spaces and proved that any weakly
contractive map defined on a complete metric spaces has a unique fixed point, and he
stated the theorem as follows:

A mapping T : X — X, where (X ,d)is a metric space is said to be weakly contractive if
d(Tx,Ty) <d(x,y) —e(d(x,y)) forall x, yeX

where :R, —»R,_IS



a continuous and non-decreasing function such that ¢(t) = 0if and only t =0. Weak
inequalities of the above type have been used to establish fixed point results in number of
subsequent works. For example Zang and Song [19] used generalized ¢ -weak
contraction which is defined for two mappings and gave conditions for the existence of a
common fixed point which is stated as “ let (X,d) be a complete metric space, and

f,g: X — X be two maps such that for all x, y e X

d(fx, gy) <M (X, ¥) —a(M( X, y))

where ¢:R, —R, isalower semi-continuous function with ¢(t) > 0 for any tin

(0,00) and @(0) =0,

M (X, y) = max{d(x, y).d (x, fx), d(y, gy), %[d(x, gy) +d(y, )1}

then there exists a unique point u € X such that u= fu=gu.

Branciari [6] introduced the first contractive mappings of integral types as

d(Tx,Ty)
k

d(x,y)
qo(t)dtSCL p(t)dt  forall x, ye X

where ¢ in [0,1) IS a constant, ¢ is Lebesgue integrable, and T : X — X is a self-map

and proved the existence of fixed point on complete metric spaces. Recently, from these
conditions an increasing interest in the study of fixed point and common fixed points of
mappings satisfying contractive conditions of integral type, see for example [2, 8, 12, 13,
14, 17, 20, 21] have been branched out (developed).

Researchers in [17] and [12] extended Branciari’s result and proved some fixed point and
common fixed point theorems for various generalized weakly contraction mappings and
contractive mappings of integral type of complete metric spaces. From this [20] and [21]
introduced new classes of contractive mappings of integral type in complete metric
spaces and study the existence and uniqueness and iterative approximations of fixed
points for maps satisfying as follows:

Let (X,d) be a complete metric space and let (@,w)in @; x@, and T: X — X
satisfying

(x,y)

d(Tx,Ty)
_[ ’ p(t)dt forall x, ye X,

(D(t)dt_.r//(d(x,y))

0

p(t)dt<[



where @ 'R, — R, is Lebesgue integrable, summable and I¢(t)dt>0 for each £>0
0

and y:R, — R, is alower semi- continuous function with y(t)=0 and (t) >0 for each
t>0

then T has unique fixed point ain X .

Inspired and motivated by the result in [21] and [20] in this paper we introduced a new
classes of contractive mappings of integral type in complete metric spaces extending [20]
to pair of self-maps, i.e. common fixed point theorems for a pair of self-mappings
satisfying contractive condition of integral type.



CHAPTER THREE

3. METHODOLOGY

The chapter gives the direction (address) study design, description of the research
methodology, data collection procedures and data analysis process

3.1. STUDY SITE

The study was conducted from September 2014 to September 2015 in Jimma university
under mathematics department.

3.2. STUDY DESIGN
In order to achieve the objectives of the study, analytical design method was used.
3.3. SOURCE OF INFORMATION

In this study document materials, so available source of information for the study such as
books, journals, deferent study related to the topic and internet services were used.

3.4. PROCEDURE OF THE STUDY

This study intended to establish common fixed point theorems for maps satisfying
contractions of integral type by using the standard techniques similar to that of Zeqing L.,
Heng, W., Ume, J.S., and Kang, S.M.,[20] of one self-map to a pair of self-maps and also
technique of Sastry, K.P.R., Babu, G.V.R., and Kidane, K.T.,[18]

3.5. ETHICAL CONSIDERATION

The researcher has taken a cooperation letter from mathematics department of Jimma
University to get consent from the institute (s) where books, journals, internet and other
related materials where available for this study to collect related information. Moreover,
kept rules and regulations of the institute(s) from where the researcher got this materials.



CHAPTER FOUR

4. preliminaries and results
4.1. Preliminaries
Notation In this thesis we denote:
i. R, =[0,), N, ={0}UN
where N denotes the set of positive integers.
ii. ¢1 ={§02(01 R, =R, is Lebesgue integrable, summable on each compact

subsetof R, and [g(t)dt>0 for each ¢>o0}.
0

ii. ¢ ={w:w:R >R, isalower semi-continuous function with y (0) = 0and
w (t) > ofor each t > 0}.

Theorem 4.1.1. [16] Let (X, d)be a complete metric space and T is a self-map on
X satisfying
d(Tx, Ty) <d(x,y)-w(d(x,y), forall x, ye X, (4.1.1.1)

where ¥: R, — R, is continuous and non-decreasing such that v is positive on R+ \{0},

w(0)=0 and lIMg(t) = co.

Then T has a unique fixed point X € X.

Theorem 4.1.2 [6] let T be a mapping from a complete metric space (X,d)in to itself
satisfying

d(x,y)
0

j:”x‘”)go(t)dtsk [ oyt forall x,y in X, 4.1.2.1)

where k e (0,1)is a constant and ¢ < ¢,.Then T has a unique fixed point a € X such that

limT"X =a foreach x e X.

nN—o0

Definition 4.1.3. Let (X,d)be a metric space, X € X and {X,} be a sequence in X ,
then we say that



i {X.} convergesto Xe& X or equivalently !]im X, = X, if for every £>0
—0

there exist a positive integer N, such that N >N, implies d(X,,X) <¢.

ii. {X.} is a Cauchy sequence in X , if for every &> Othere is appositive integer

n, such that n, m >n, implies d(x,,X,)<é&.

Lemma 4.1.4 [12] Let pe<gand {I,},,y be non-negative sequence with r'}'_[g) rhn=a.
rn
lim | p(t)dt = [*
Then lim ! o(t) jo o(t)dt .

Lemma 4.15 [12] Let peg and {l},,n be nonnegative sequence. Then
rn
lim [ o(t)dt =0 ifang only if limr, =0.
0 —>00
Theorem 4.1.6 [20] Let (p,y) bein g x ¢, and T be a mapping from a complete

metric space (X, d) in to itself satisfying,

d(Tx,Ty) d(x,y) (d(x.y)
[ edt< [ pydt— [ p(t)dt, forall x,yex,

0

then T has a unique fixed point ae X such that r!i_)mT "X=4a foreach aeX.

Theorem 4.1.7 [20] Let (p,p)be in 4 x »,and T be a mapping from a complete metric
space (X,d) in to itself satisfying,

J-d(Tx,Ty)(D(t)dt SJ‘OM(X, y)go(t)dt_J‘oy/(M(x, ¥) (/)(t)dt for all X, ye X
where, M (x, y) =max{d (X, y),d (x,Tx),d(y,Ty), %[d(X’Ty) +d(y Tl

Then T has a unique fixed point a e X such that !LFET "X =a for each xe X _



4.2 Main Results

Theorem 4.2.1. Let (p,p) be in g xg,and (X,d) be a complete metric space and let
T,S:X — X be mapping satisfying

d (Tx,Sy) d(x,y) v (d(x,y))
jo p(t)dt < jo p(t)dt- |

0

p(t)dt forall x, y e X. (4.2.1.1)

Then T and S have a unique common fixed point a € X such that

limTx,, , =limx,,, =limx,, , =a and limSx,, , =limx,, =a for each xe X,
N—o0 n—oo n—oo n—oo n—oo
where TX,, , = X,,,,and Sx,,, =X,, forn=1,2,3,...

Proof: For self-maps T and S in metric space (X,d)and (X, Y,n)€ X?xN let X, € X.

Since T,S: X — X, we can choose x, e X such that X; =TX,. Corresponding to X,
we can choose x, e X such that x, = Sx . Continuing this process, we can construct a

sequence X, }»1 given by:
Xon1 = TXppp and Xpq =SX, 4 for n>1. (4.2.1.2)

Denote d, =d(X,,X.,;) for n=0,1,2,... Now, if there exists some N, € N with
Xn,+1 = Xn,, then we shall consider the following two cases:

Case 1:- if n, is odd, then

Xng+1 = SXn, = SXp,41-

CIa'm Txno+1 = xn0+1
0< fod(TanH’anH)(p(t)dt
=f0d(Txno+1,ano) q)(t)dt

< fod(xnoﬂrxno) go(t)dt _ folli(d(xnoﬂ,xno)(p(t)dt -0
That |S, d(Txno+1, xno+1) = 0.

= TXny41 = Xny+1-

10



Case 2:- if nis even then
Xng+1 = Txpy = Txpg4q

Claim: Sxp 41 = Xp 41
0< fod(sxno+1rxno+1)q)(t)dt
— fod(sxno+1,Txn0)(p(t)dt

_ fod( TXn,, SXngy+1) (p(t)dt

< fod(xn"'xn°+1)go(t)dt _ f(;IJ(d(xno,xnou)) (p(t)dt =0

= d(sxnoH, xno+1) =0.
This shows that sx,, 11 = Xp_41.

Hence , x,, is a common fixed point T and S .

Suppose X, # X,,; for all n>0. Now to show that {d,,},,en IS NON-increasing sequence,
we shall again consider two cases using (4.2.1.1) and (¢,y) e ¢,X4,.

Case 1:-if n is even

d(T

d (Xns1:%n) X+ S%n_1)
j o(t)dt = j p(t)dt = jo o(t)dt
d (Xn,Xp-1) (d(Xy%y-1))
< jo o(t)dt - j: o(t)dt
< j p(t)dt- [ O )t
dyy
<J'0 p(t)dt foralln> 1,

which yields d, <d_,, forall N20 .

Case 2:- ifnis odd

d, Xna1 s Xn ) d(SX,,TXy1) d(TX,_1,S%,)
jo o(t)dt = j p(t)dt="| o(t)dt = jo o(t)dt

0

11



d(Xpo1:%n) w (d (Xp-1,%n))
< jo o(t)dt— jo o(t)dt

dng (dp-1)
< jo pO)dt- [ p(t)dt

0

dn—l

<_|'0 p(t)dt, forall 20
which yields d, <d,;, forall n>1
Thus, the sequence {d,},.y is a non-increasing sequence of real numbers which is
bounded below.
This implies that there exists a constant c>0with  limd, =c, which also implies

n—oo

lim d,,,_; = lim d,,_, = c¢. Suppose that C> 0. put lim¥(d,,-,) = a. and we can
n—-oo n—oo n—oo
observe that there exists a sub-sequence  (dapek)-2)nen OF  (dzn—2)nen Satisfying

lliglolf(dm(k)—z) =a.
Since y a lower semi-continuous and y e ¢,, it follows that o > w(c)

Using (4.2.1.1), Lemma4.1.4 and (¢,y) € ¢, x¢,, We get

0< j:go(t)dt = limsup [ p(t)dt

k—o

d (X2n(k)-1, X2n(k))

= Ilkrlljup IO p(t)dt
IimSUp d(TXan(k)-2+ SX2n(k)-1)

= t)dt
k%wL o(t)

“mSUp d (X2n(k)-2 Xan(k)-1) w (d(x; X )
< n n _ n(k)-2,%2n(k)-1
<t pdt- [ p(Ddt )
J‘(d (X2n(ky-2, X2n(k)-1)

J"//(d(XZH(k)—Z, Xon(k)-1,))
0

= i|(im5up o(t)dt — i!imil’lf p(t)dt

0

- I:go(t)dt— jO“ o(t)dt

<[ oyt - [ ot

12



<[Jotyat,

which is impossible. Hence ¢ =0, that means, limd (4.2.1.3)

2n(k)-2 — 0.

Now, to prove that {x,},en is a Cauchy sequence it is sufficient to show

that {x,,}nen 1S Cauchy. Suppose it is not a Cauchy sequence. Then there exist a
constant £>0 and two subsequences {X,,} v and {Xppdeen OF {X,,}..y such that

n(k) is minimal in the sense that n(k) > m(k) > k and (X, s Xon0) > € . It follows that
d(Xam(ky s Xon(k)-2) < &- (4.2.1.4)

£ < d(Xpm@ic) X2n@0))
< d(Xang) X2n00-1) + A(X2n()-1 X2n()-2) + d(X2n(k)-2: Xam@)»  (4.2.1.5)
and

| d(X2m()-1, X2n)) — AX2m) X2no| < damo-1. (4.2.1.6)
taking k — oo in (4.2.1.5) and (4.2.1.6) and using (4.2.1.3) and (4.2.1.4) we have

Nm d(Xom) » Xan(o) = lim d(X2m@)-1, Xanao) = & (4.2.1.7)
And again,
& < d(%am) *2n)) < d(Xam@o, Xam@-1) + d(Xam@ -1 Xam(i)-2)
+d (X2m(k)-2 X2n(0-1) + A(Xan@0 -1, Xan(r))»
and
d(X2m@)-2- X2n(0-1) S d(Xam@o-2 Xam@)-1) + A(Xam@)-1, X2n00))
+ d (Xm0 Xanao-1):
Taking k — oo in the above inequalities and using (4.2.1.3) and (4.2.1.7), we have
Ill_g)lo d(me(k)_z,xZn(k)_l) =¢. (4.2.1.8)
Putting

lim inf y (d(X2m()—2 X2n@)—1)) = 6. From this there exists a subsequence

13



{d(XZm(kj)—z; X2n(k]-)—1)} of {d(X2m@)-2, xZn(k)—l)}keN such that

jEN

lim v (d(amaq)-2 Xangg)-1) = 6. (4.2.1.9)

]—)OO
Since ¥ is lower semi—continuous, it follows from (4.2.1.8) and y € @, that

0> v (e) >0. By equations (4.2.1.1),(4.2.1.8), Lemma 4.1.4 and ¢ €
@, ,we deduce that

0< [ @dt

Cl(X k)= xzn(k.))
= lim sup f; o) ]

] oo

e(t)dt
d(TXzm(i)-2 S¥2n(ky)

=lim sup [

j oo 0

e(t)dt

)2 ¥2n) 4 (d(XZm(kj)_ijzn(kj)))

d(x (ke
< lim sup(f, " oHdt— [ ()

. ‘P(d(sz(kj)_z_xzn(kj)))
= lim sup

] 2>

@(t)dt — lim inf

] o

dX, 1 (k)2 ¥2n (k)
f 2 (]) 2 ) (P(t)dt
0

0

PG (1)-22n(k;)-1)

= lim sup ! K @(t)dt

] >

d(xzm(k-)—z x2n(k-)—1)
j)=2 j o
(t)dt — lim 1nff

= [ @(®dt— foe e(B)dt

< [ o(Ddt - fo"’(‘g) @(Ddt

< J, o®dt,

which is a contradiction. Thus {x,,}sen IS @ Cauchy sequence and hence {x,}isa
Cauchy sequence. Since (X, d) is complete, there existsa in X such that
lim x,, = a. It follows that

n —»oo
lim SX,, ; =a and limTx,, , =a. (4.2.1.10)
n —»oo n —»oo

Next we prove that a is common fixed point of T and S. First we show that Ta = a In
view of (4.2.1.1), (4.2.1.10) and lemma 4.1.5, we obtain

14



0 < fd(a,Ta)

o @(t)dt = lim fod(SXZ"‘l'T(T"Z“—Z”cp(t)dt
n —oo

< lim (fod(xzn—LTin—z) (p(t)dt _ J‘(;V(d(xzn—l,szn—Z) (p(t)dt )

n —»oo

d(Xz —1,X2 _1) v (d(XZH—ltxZn—l))
= lim [{07% ) o(de—lim ) p(dt =0.
n—>o0o

n —»co 0
It follows that

fod(a,Ta)

of T.
Now, to show Ta = Sa.

@(t)dt =0, thend(a,Ta) = 0 thatyields Ta = a this shows a is a fixed point

Suppose a = Ta # Sa then

e(t)dt = lim e(t)dt

n—-oo

d(Ta,Sa) d(T(TXZn_Z)‘S(szn_l))
o< |
0

0

< lim (fod(TXZn—z,szn—ﬂ (p(t)dt _ fO‘lJ(d(Tin—z,szn—l)) (p(t)dt )

n —»oo

a ) ‘li(d(xzn—l,xzn))
1 X2n-1,X2n o
= lim fo p(t)dt rlll_r)rolo fo p(t)dt

n—-oo

d(a, d(a,a)
= [,°%7 0 - ;9 pde = 0,

which means that 0 < | d(Ta,Sa)

o e(t)dt <0,

which is a contradiction.
Thus, d(Ta,Sa) =0, i.e., Ta= Sa=a.
Hence, a is a common fixed point of T and S.
Now, we show that a is unique.
Suppose b in X is also another common fixed point of S and T that is

b =Sb = Tb # a then

0< fod(a’b)’(p(t)dt - fod(Ta’Sa)(p(t)dt < fod(a'b)(p(t)dt - fo‘“(d(a'b))cp(t)dt
< fad(a'b)cp(t)dt.
This is a contradiction. Therefore, d(a,b) = 0.
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Thus, a =b.

Hence, the common fixed point a of T and S is unique.

Now, we give an example in support of Theorem 4.2.1
Let X=1[0,1] and d: X XX — R, be given by d(x,y) = |x —y|, then (X,d) is a
complete metric space. Let T, S: X - X, o, y: R, - R, be defined by

Tx = 2L Sx=X:—3, e =2t t € R, and
st-g ot

0, 0£t<\/%'

w(t)=

Now, we show that the inequality ( 4.2.1.1) is satisfied.

xt1 y+3 - -
fod(Tery)(p(t)dt — fod( 2’ 2 )2 tdt — (Z(xg y) _ 2(1 8x) )2

_ G 200Gy | (mn?
- 16 16 16

Cases1: Ifx,y€[0,1]and x—y<0,then

d(Tx,Sy) _aN2 _ _ — )2
f y(p(t)dt _G-y)' 20-0@-y A-0
0

_ -2 20-%) -x) | (1-x)? _

BT 16 R (y—x>0)

<( —X)Z—M+l+i (max when x=0,y=1)
=V 16 8 16

=@-02 - (RO-0-2)

d(x,y) w(d(x,y))
=f <p(t)dt—f p(t)dt.
0 0

Case2: If x,y€e[0,1] and x—y>0. Then

d(Tx,5y) C(x=y)? 20-0(-y) (A-x)?
-fo (p(t)dt = 16 - 16 + 16

16



—aN2
LGy

- 16 16
2

- 3

PYCEIE

16 16

= (=Y == = =) = (=) =)

d(x, a(x,
= [ p(ydt - [ (o).

Thus the inequality (4.2.1.1) is satisfied and

1 € X is aunique common fixed point of T and S such that

TA) ="2=1=81) ="

And limT,x=1and limS,x=1.
n—->oo

n—-o0o
Since,

Xo+1
= =x; forx, €X

Tyxy =

Xp+1
2

+3 __x0+7

=X =51x

le =

Xo+7
OT+1 _ %o+ 15

Tx2= 2 16 :.X3:T2x

Xo+15
T T3 _x+127

Sx3= 4 128 = X4 = SX

xXo+127
+1 +255 L . .
Tx, = —128 =X = xz = Tzx. Continuing in this way we have
4 2 256 5 3

2371—2_1
Tnx=x+2T foralln=1 ,n€N.

4n—1_
And  S,x = % foralln = 1.

lim Tx,,,_ lim lim x+23772-1 .
Hence n—>zor<l>2 = X = T =L for eachx inX.
. lim lim x+2%m"1-1 .
And lim Sx,,_; = Spx = —————F— =1, for each xinX
n— o n - oo 2471

n—oo

Therefore it satisfies Theorem 4.2.1.
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lim .., _ lim lim 2™ Voagx
Andalso "7 T"x= TT T(I(T(-(T@)=_—J ~—mH—=1
. 1 x+1 ) x+3 .3 x+15 n 22" 14y
SInCE 7“x =—, 71 X =—, 71 X = ....u......T' (x) ::————?E:TT__
2 4 16 22

And lim Sy — lim (S(S(S)( ...... (S(X)))Z lim Zzn—1+x:1'

n-oo 22"

n — oo n — oo
xX+3 xX+15
. x+3 — t3  x+15 e T3 x+63
(Since s'x = — s?x =s(s(x)) = =, s3x = s(s2x) = 2 =2
n. 22" 14x
SX = 22—n)

It satisfies also theorem (4.1.6) [20].

Remark : InTheorem 4.2.1 ifwetake T=S we get Theorem (4. 1 .6) [20].

Theorem 4.2.2. Let (p,p) be in 4 xg,and (X,d) be a complete metric space and let

T,S:X — X be mapping satisfying:

0

forall x,y in X where

1
M(x,y) = max {dx,), d G T, d(,5y),5 (@0 Sy) + @, To1).

Then T and S have a unique common fixed point a € X such that

lim

n - ooTxZn—Z = aand n - Oosxzn—1=a.

Where sz-n_zzxz-n_l and SxZn—l = xz-n.

d(Tx,Sy) M(x,y) w(M(x.y)
) p(t)dt < [ p)dt — [, p(t)dt (4.2.2.1)

Proof: Let x, € X. since T,S:X — X, we can choose x;eX such that x; = Tx,.
Corresponding to x; we can choose x, € X such that x, = Sx, .continuing in this

process we can construct a sequence{x, }nen »
Xon-1= TXan—2 » Xon = SXap-1.
Now Let x be an arbitrary point in X.
If x21,-1 = X2, fOr some n, € N, then one can show that Tx,,,, . = Sxzn, | = Xan -1

Suppose that x,,,_, # x,,_1 foralln € N. We observe that

18



M(xZn—Z, x2n—1)
= max{d(XZn—Z,XZn—l) ’ d(xZn—Z,TxZn—Z)l d(xZn—l,SxZn—l)l
1
Z [d(xZn—Z,SxZn—l) + d(xZn—l,TxZn—Z)]}
= max{d(xz,l_z'xzﬂ_l), d(xZn—Z,xZn—l)v d(x2n—1,x2n):

1
5 [d (xZn—Z,xZn) + d(Xan-1, X2n-1)]}

= max{d (x2n—2,x2n—1)f d (x2n—1,x2n)f ; [d(x20—2, X201}

= max{d(xZn—Z,xZn—l): d(x2n—1,x2n)}
. 1 1
since (;d(xzn—znxm) < 5 [(dXan—z Xon-1) + d(Xan-1X2m)) )

= max{dy,—; dan-1} (4.2.2.2)

NOW, if M(.xzn_z, xzn_l)} = dZTL—l, then

fodzn—l p(t)dt = fod(xzn_l'xzn)(p(t)dt

— fod(szn_z'szn_l)(p(t)dt

< fOM(xzn—z,in—ﬂ(p(t)dt _fo‘*’(M(in—z. ¥2n-1)) @(t)dt

— fod(xzn—p X2n) p(D)dt _f(;*’(d(xzn—p xzn)(p(t)dt

dan-1

= [ e@®dt— [V p@)dt

0
dan-1
</, p(t)dt.
It is a contradiction, hence

M(xan_2%m-1) = d(Xan_2, X2n_1). CONSecutively

Jimt goyde = [0 oy

_ fod(TXZn—z, SXan-1) q)(t)dt
‘*’(M(xZn—z, X2n—1 )

M(xZn—z ,xZn_1)
< f o(6)dt - f o(0)dt
0

0

19



= 1272 p(e)de — [P p()de

< fod“‘2<p(t)dt.
This shows thatd,,,_; < d,,_, Yn € N. (4.2.2.3)

Thus there exists a constant ¢ = 0 such that

limdan— _ . (4.2.2.4)
n — oo
Suppose that ¢ > 0. Set nlimooinfq’(dZn—z) = 4. Obviously, there exists a
li .
subsequence {dzn(c)-znen Of {dzn-2} nen Such that l_)mooq’(dZn(k)—Z) = 8. Since w

is lower semi-continuous, it follows from v € @, that § > w(c) > 0. On account of
(4.2.21), (4.2.24), Lemma4d.14and ¢ € @4, we arrive at

0< f, @()dtdt

_ lim dan(k)-1
= 5 ooSUP Jy o(t)

_ lim d(x 2n(k)—1’ in(k))
= Ko Oosup fo e(t)dt

i d(T —2, S -
— lim sup fo( X 2n(k)-2, °X2nk-1) (p(t)dt

k - o
lim M(X 2n@)-2» X2n@)-1) _ ¥MEzn-2, X2n(k)—1)
< ko oosup(f0 e®)dt — [ @(t)dt)
. M(X 2n@)-2» X2n@)-1) . Y(M(Xanm)-2, x )
_lim _lim 2n(k)-1
IR Oosupf0 @(t)dt I o OO1nff0 @(t)dt

lim dyn(i)—2 _lim . w(d2n(k)-2)
_ K o 0o SUP fo @(t)dt K o oo1nff0 @(t)dt

= [Se®dt— [ e0dt

< [Fo®dt— [ ot < [T p(t)dt.
It is contradiction. Hence ¢ = 0.

Now, to show that {x,, },,cx 1S @ Cauchy sequence it suffice to show {x,,},en 1S Cauchy
sequence. Suppose that {x,,},en IS NOt Cauchy sequence. It follows that there exist ¢ >
0 and two subsequence
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{X2m@)} ken AN {Xonk)} ken OF {X21} nen SUCh that n(k) is minimal in the sense
n(k)> m(k)> k and d(xzmk) » X2n)) > € Which follows that d(me(k) ,xZn(k)_z) <e.

Form this,
& < d(Xam(k), X2n(k))
< d(X2m@) Xamo-1) T AXam)-105mu)—2) T T Xamo-20 X2n()-1)
+d(Xan(k) -1 X2n(k))
< dymo-1 + 2d2ma)-2 + Aantey-1+d Xzm)-1, X2maey) + A(X2miy, Xango-2)
+d(X2n0k)-2 Xan(i)-1)
= 2dym@)-1 + 2d2ma)-2) + dangey-1 + A(Xam@y Xanto-2) + dango-2 (4.2.2.5)

and  |d(Xzm@)-1, X2n@) = AXzm@), X2n@)| £ dam@)-1-0 3 k = o which
shows that

lim

K — OO(XZm(k)—lJXZn(k)) =€ (4.2.2.6)
Also
lim
T k- ood(xzm(k)—pxm(k))

€ < d(Xomm)-1 Xomm)-2) + A(X2m)-2» X2nk)-1)
+ d(X2n()-1,X2n(k))
< dom@o-2 T A(Xom)-2, xpng) T 242n00-1
< 2dym@-2 + A(X2m@)-1,X2nk)-1) + 3d2n)-1
< 2dymao—2 + dongo-1.4+damgo -1 Xange) + 3t - (4.2.2.7)

Taking k — oo for (4.2.2.5), (4.2.2.6) and (4.2.2.7) we have

lim
K — ood(XZm(k)—IJXZn(k)—l)
lim
= ko oo d(Xoamk)-1, X2n(k))
lim

= K — oo d(XZm(k)—z»XZn(k)) = ,11_{{)10 d(X2mk)-2, xan_l)
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= lim d(X2m@iy Xan(ry) = ,}ij{,lo(xzm(k)»xm(k)—z) = €.
Thus,
M (X2m(k)-2> X2n(k)-1)
= max{d(me(k)—Z’ x2n(k)—1)» d(X2m@e)-2: TXam@)-2)
d(x2m(k)—1» SxZn(k)—l)’% [d (C2m(i)-2» SxZn(k)—l)
+d(x2n(k)—1»Tx2m(k)—2)]}
= max{d (X2m()-2» X2n00-1)» A(X2mic)-2: X2n00)-1)» A(X2n(0)=1> X2n(k))
+ %[d(XZm(k)—Z' Xon(k)) T d(Xan@-1 X2m@-1)1}
= max {s, 0, 0,%(8 + 6)} =¢ ask - o (4.2.2.8)

lim .
Put ] = o0 inf w (M(me(kj)_z‘, XZn(kj)_l) = Q. (4.2.2.9)

Then there exists a subsequence

M (Xam(kj)-2,%2n(ic;)-1) jen of {M (X2m(k)—2, X2n(i)-1)}ken SUCH that
lim
i > 00 ¥(MCam()-2, Xon(k))-1) = @ 2 #(8)

Combining (4.2.2.3), (4.2.2.1), (4.2.2.5), (4.2.2.6), (4.2.2.7), Lemma 4.1.4 and (o, ) €
@, X @, we get

0 < [, @®adt

d
= lim sup
jooo fo

<x2m(k]_)_1, XZH(kJ')> e(t)dt

lim d(TX m(k;)-2 Sx nlk:)— )
lim M(sz(k]-)—z ,xzn(k]-)—1) W(M(sz(k]-)—z ,xzn(kj)—1))
<5 st o | 99D
Mxm._ X, (k)= AT ‘P(M(Xm._'xn._)
=. llm SUPJ < 2 (k]) 2,2 (k]) 1>(p(t)dt ]lfloolnff 2 (k]) 2,2 (k]) 1 (p(t)dt
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=[S @®dt— [ p(tdt

< fo Scp(t)dt— fo ly(s)(p(t)dt

< fo Scp(t) dt.

It is a contradiction. Hence {x,,},en 1S @ Cauchy sequence and hence {x,}nen IS @
Cauchy sequence and the completeness of (X, d) ensures that there exists a in X such
that lim x,=a

n—->oo

Now, suppose d(a, Ta) > 0.
Now,

lim M(a, X2n—1)
n—oo

= lim max {d(a,x,,_1),d(a, Ta),d(x2n_1,Sx2n_1),

n—-oo

1
P [d(a, Sxp-1) + d(XZn—1,Ta)}

= max{0, (a, Ta),d(a,a),> (d(a,a) + d (a, Ta))}

=d (a,Ta) (4.2.2.10)
Put 7{1_{210 inf Y(M(a,x,,-1) = a , clearly, there exists a subsequence
{M(x2nk)-1, D) }ken OF {M(x2n_1, @) }nen Such that
lim Y(M (ongi-1, @))=a = y(d(a,Ta). (2.2.12)

In virtue of (4.2.2.1),(4.2.2.10),(4.2.2.11) and Lemma 4.1.4, we conclude that
d(aTa ) lim d(Xzn) . Ta)
0< J;) e)dt = I o Oosupfo @(t)dt

k- o

. d(SXZn(k)—l,Ta )
lim sup _[ e(t)dt
0

= lim sup fod(Ta' S¥zn(i0-1) p(t)dt

k—oo
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< ,lim Sup(fOM(in(k)_l'a) e(t)dt — Illim f“’(M(XZn(k)—L a)) @(t)dt )

— 00°0

< lim sup fOM(XZH(k)—l.a) (.p(t)dt _ Illlri oolnf fOW(M(XZn(k)—l, a)) (p(t)dt

k—oo

d(a,T a
= [{@™ pdt— [ et
< [7O gwde— [T ptyat

d(aTa)
<[ Yot

That is, 0 < fod(a'm)fp(t)dt < fod(a'Ta) @ (t)dt which is impossible. Consequently,

a =Ta . Thatis, aisthe fixed pointof T in X.
Now to show that a is also a fixed point of S, that is a = Sa,

Suppose Sa # a = Ta(Ta # Sa). Thus,
0 < J-Od(Ta,Sa) (p(t)dt
< [ gyde - [V D gyt (4.2.2.12)

M(a, a) = max {d(a, a),d(a, Ta), d(a, Sa),% [d(a,5a) + d(a, Ta)]}

= max {0, 0,d(a, Sa),%(d(a, Sa))} =d(a,Sa)

=d(Ta,Sa ). (4.2.2.13)
Thus using equations ( 4.2.2.12) and (4.2.2.13) we have,

fod(Ta,Sa) (p(t)dt < fOM(a,a) QD(t)dt _ fol// (M(a,a)) (p(t)dt

_ fod(Ta,Sa) (p(t)dt _ J-OW (M(Ta,Sa)) (p(t)dt

d(Ta,S
< fo( &5 o (t)dt.

This is impossible, hence Ta = Sa = a that confirms a is a common fixed point of T and
S. Now to show the uniqueness of a common fixed point.

Suppose b is also a common fixed point of T and S such that
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b # a(Th =Sb =b). Then,

0 < fod(a'b)fp(t)dt _ fod(Ta,Sb)(p(t)dt
< [P pyde — [V 1 p(0)at. (4.2.2.14)
where

M(a,b) = max{d(a,b),d(a, Ta),d(b,Sb),3 [ d(a, Sb) + d(b,Ta)]}

= max {d(a, b),0,0, 3 (d(a,b) + d(b, a))} = d(a,b).

Hence, 0 < fod(a'b)q)(t)dt = [17 ) p0ydt < fOM(a’b)<p(t)dt— fol// (@) ) 1)at.

_ fod(a,b)(p(t) dt — fOW (d(a,b))(p(t) dt < J-Od(a,b)(p (O)dt

It is a contradiction, thus d(a, b) = 0, that is a = b. Hence, a is a unique common fixed
point of T and S.

We now give an example in support of Theorem 4.2.2.

Let X =[0,1]u{4}be endowed with the Euclidean metric T,S: X — X and

@, ¥ :R, - R, be defined by:

J3

X 01 —1t ,te[01]],
Tx = E’XE[ A SX:% for x e[0,1] U{4}, o(t) =8t and y(t) =

1,x=4 ot ts1
1+t

M (x,y) = max{d(x,y),d(x,Tx),d(y, SY),%[d (x,Sy) +d(y, TX)]}

= max { [x - y|,[x— 4,

y—%‘,%(‘x—%‘ﬂy—%‘)} for x ,y# 4

= max{x -y, 3y, 3 (x—4|+|y-23.

Clearly, (¢,y) € ¢, Xg,, for x,y,e X we consider the following cases:
Case 1: Let x,y,e[0,1]and 0 < x < ¥, then

M(x,y)=y—-x<1and
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y

e,

X—

Xy
2 4

[ plt)at = [z et = [4t2]§

0 0

= (=7 =Xy = (=) Xy - Y

2

S(x—y)+3y—3y (since xs%)

= (x—y)-2y?
<4(x-y)? -2y*
<Ax-y) —V3(y-x?  (y2y-x

a0 ) -4 (-

=4(M(x,¥))*) -4 (M (x,¥))*)
M (x,y) (M((x.)?)
=[" p(t)dt- [ " o)dt .
Case 2: Let x,ye[01] and %< xs%y

Then M (x,y) = % y and

J.d(Tx,Sy) (p(t)dt — J'O;_th dt

2

= o Iye= (x=D) = xt—xy+
4G =)= (X=7) Y+
< X2 _X'y-l_ yz (Since y < X)
4 4 4

9 2 27 2 9 2 27 2
Tyt oyt Dyt 2L
16 4y 16y 4y 64y

3 5, 3.3 .,
= 4(23/) _4(T(Zy))
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= 4(M (X, y)z) —4((//(m(X, y))2
_ JOM(x,y)¢(t)dt_ IOW(M(X,y)q)(t)dt

Case 3 : Let x,y e[0,1]with %y<xg y

Then, M (x,y) = —y and

2 %‘ 8tdt

a(Txsy) x_
o ewdt =

]
>

|
x
<
+

2

cy?_1T 2_Y

sy 2y 5 (y=Xx)
9 2 7 2

=Y Y
-9 ., 112 ,

4 64

YT

: 4 64

A

S 4GV -ACCY) = [V (YD s

M(xy) y (M (x,y)
=], e®- [ ettt

0

Case 4: Let x,ye[01]with 0<y< % x , then
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M(x,y) =x—y<1and
d(Tx,Sy) Xy
™ty
= (=07 <22 x= ) = 40x- )P =2 (x=y)°

= [0 - ™" ottt

Case 5: Letx,y e[0,1]with %yg%x< y < x then
M (x, y)=§af‘0I

Ld(Tx,Sy)(D(t) dt = IOE_ZStdt

= _XZ
(x=)
y2
=X —Xy+—
y 4

Xy
<X*—X.=+2— (Since X
g "y Sincey >3

4 16 16
X 3 X

= 4(2)° —4(—(2))?
(2 (4(2))

jz 8tdt - J'4 2 stdt
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= [ pat- [ o)t

Case 6: Let 1x<3y<y<xand x,ye[0]],then

M(x,y)=4yand

J«od(Tx,sy) o(tydt = J.O;Z 8tdt

= x> =X y+iy?

<xP-xix*+iy® (Sincey > %)

WY
=2(2)% + -
0+

SZ(Eyz)ﬁ-y—2 (SinceX < 3 y)
16 4 >~%7

181y2S1617 2_4y2 yz
-4(— y)? - (i(gy»

= 4M(x,Y)") - 4w (xy)))

M (x,y) v (M(x,y)
= jo o(t)dt - jo o(t)dt
Case 7: Let y e[0,1]and x =4, then

M (x, y) = max{d(x, y),d(x,Tx),(y,Sy), 3 [d(x,Sy) +d(y, Tx)]}

3.1 5
M(x,y) =max{4—y, 3, Zy’E(S_ZY)}

=4-y>3and
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J«Od (Tx,Sy) ¢(t)dt _ J~\Tx,Sy\ 8'[dt

0

= ], ¢
_ a2 VLI P
= A=) ALY )
<4(4-y) 40—

1+4-y

= 4M (X, y) -4 (M (%, y))?)

M (X,y) v (M (x,y))
= jo o(t)dt - jo o(t)dt

Case 8: Letx = y = 4, then

M (x,y) =max{ [4-4]]4-Tx|,

4| 1 4 4
4-2 a2 4la-2
4"2[‘ ZH 2‘]}

=max {0,3,3, 2}

=3 and

d(Tx,Sy) 3 ‘1—%‘ 3 A 2y _L
[ eltdt= [ “erdt=0 <36-3=4(3")-4( 3

= HM (%, y)* 4w (M (x, Y))?)

M (x,y) v (M (x.y))
= [ oat- [ p(t)dt.

This shows that the example satisfies all the conditions of the Theorem 4.22.2 and T and
S have a unique a common fixed point 0 X.

That is (T (0) = % =0=S5(0) = %) . Also we have

lim lim x lim lim x

T"X = =0and S"x = — =0 forevery xe X

n—s0w  N—wn2" n— o n— 004"

Thus the example holds true.
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lim lim

To check " T, X= S,x=a=0 the fixed point for each xe X

—> © nN—oo

Case 1. Let x_ <[01]

le:T:%:xzzslx
5

szz%:f—%:x3:T2x
i

stzﬁ_%_ 4 =9,X

51,
o4 X° T,X.

Continuing the steps we have,

T, :Tnxzzs_):_zand SX,, , =S xzz% forn=1, 2,... and for each x €[0,1]

n

lim lim ¥ lim lim
Hence, T, X= = S X=
n— oo

nNn>w02"? now " nowg™

Case 2: For X, =4, Tx, =1=X =TxX

1

TXZ :7:§:X3 _TZX
1

SX3 =T=E=X4 =82X
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Continuing the steps we have,

1 _ _ 1
X, , =T, X = P and S xy,_1=Spx = T
lim lim
1
Hence lim T,x = lim — = S X= =0Therefore, all the
noowo M n—oo 2(31-2) n— oo n n— oo 23n—1

condition of the Theorem 4.2.2 are satisfied.

Remark: InTheorem4.2.2 ifwetake T=S we get Theorem (4.1 .7) [20].
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CHAPTER FIVE
5. CONCLUSION AND FUTURE SCOPE

5.1. CONCLUSION

In 2014, Zeqing Liu, Heng Wu, Jeong Sheok Ume and Shin Min Kang [20] have
established the existence and uniqueness of fixed points for a single map satisfying
contractive condition of integral type. In this research work we extended the works of
[20] to a pair of self-maps and proved the existence and uniqueness of common fixed
points for the maps under consideration. The results we established were supported by
examples.

5.2. FUTURE SCOPES

The existence of common fixed point of pair of maps satisfying contractive conditions of
integral type is one of the area of study in analysis. Recently, there are a number of
published research papers related to this area of study. So the researcher recommends the
upcoming post graduate students and other researchers to do their research work in this
area of study.
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