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ABSTRACT 

The aim of this research work was to establishsome common fixed point results in complete 

dislocated quasi metric spaces. In this study we established common fixed point theorems for a 

pair of self- maps involving contractive condition of rational type in complete dislocated quasi 

metric spaces by extending the work of Rahman and Sarwar. Our resultextend and improves the 

result of Rahman and Sarwar. In this research undertaking, we followed analytical study design. 

Secondary sources of data such as journal, internet and books were used for the study. The 

analysis techniques which we adopted for the successful completion of this study were that of 

Rahman and Sarwar. We provided examples in support of our main findings.  
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CHAPETER ONE 

INTRODUCTION 

1.1 Background of the study 

Fixed point theory is one of the most important topics in the development of nonlinear functional 

analysis. It is the mixture of analysis, topology and geometry. 

Definition 1.1: Let 𝑋 be a non-empty set. A map 𝑇: X → X is said to be a self-map ofX if   𝑇𝑥 =

𝑥. An element 𝑥  in  𝑋 is called a fixed point ofT. 

Definition 1.2:  Let X, d be metric space. A self-map T: X → X  is said to be a contraction map if 

there exists a constant 𝑘 ∈ [0,1)  such that 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑘𝑑 𝑥,𝑦 forall  𝑥,𝑦 ∈ 𝑋, where k is contraction constant. 

The fixed point theorem in metric spaces plays an essential role to construct method to solve 

problems in mathematics and other sciences involving certain mapping and space structures 

required in various areas such as economics, chemistry, biology, computer science, engineering 

and others (Dugudji, 1982). 

In this area the first and the significant result was proved by Banach, (1922) for contraction 

mapping in metric spaces which is called Banach contraction principle.  

Theorem 1.1:  (Banach Contraction Principle)Let(𝑋, 𝑑) be a complete metric space, then each 

contraction map 𝑇:𝑋 → 𝑋 has a unique fixed point. 

The Banach contraction theorem is importantasa source of existence and uniqueness theorems in 

different branch of science and the sequence of successive approximation converges to a solution 

of the problem. The theorem provides an illustration of the unifying power of functional analytic 

methods and usefulness of fixed point theory in analysis. 

Since a number of fixed point theorems for different types of nonlinear contraction mappings 

have been investigated and proved by various authors and various generalizations of this theorem 

have been established. Many researchers have obtained fixed point theorems, common fixed 

point theorems and other fixed point results in metric spaces, cone metric spaces, quasi metric 

spaces, dislocated metric spaces, dislocated quasi metric spaces and other spaces (Chandoks, 

2015). Also Dass and Gupta,(1975) generalized the Banach contraction in metric space for some 

rational type contractions. Most of the works of Banach contraction theorems involves continuity 
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of self-mappings for different type of contracions. Then a natural question arises whether the 

continuity mapping is essential for the existence of fixed points. Thisquestion has been 

affirmatively answered by Kannan, (1968).  In 1968,Kannan proved a fixed point theorem for 

operators that need not be continuous. 

Theorem 1.2:  Kannan, (1968) Let (𝑋,𝑑  ) be a nonempty complete metric space and a self-map 

𝑇:𝑋 →  𝑋 satisfying: 

𝑑 (𝑇𝑥,𝑇𝑦) ≤ 𝛼[𝑑(𝑥,𝑇𝑥) + 𝑑(𝑦,𝑇𝑦)]forall  𝑥,𝑦 ∈ 𝑋,where  𝛼 ∈ [0,
1

2
).  

Then T has a unique fixed point. Mappings satisfying this inequality are called Kannan type 

mappings. 

Further,Chatterjea,(1972) also proved a fixed point theorem for maps which are actually dual of 

Kannan type mappings. 

Theorem 1.3: Chatterjea, (1972) Let (𝑋,𝑑 )be a nonempty complete metric space and a self-map 

𝑇 satisfying: 

    𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝛼 𝑑 𝑥,𝑇𝑦 + 𝑑 𝑦,𝑇𝑥  forall  𝑥, 𝑦 ∈ 𝑋, where 𝛼 ∈ [0,
1

2
). 

Then T has a unique fixed point. And the mapping satisfying the above inequality is called 

Chatterjea type mappings. 

Zamfirescu, (1972)proved the following fixed point theorem by combiningtheorems1.1, 1.2 and 

1.3  as follows. 

Theorem 1.4: Zamfirescu (1972)Let (𝑋,𝑑) be a complete metric space and 𝑇:𝑋 → 𝑋 be a map 

for which there exist the real numbers 𝑎 , 𝑏 and 𝑐 satisfyinga ∈  0,1 , 𝑏 ∈  0,
1

2
 and  c ∈ [0,

1

2
) 

such that for each pair 𝑥,𝑦 ∈  𝑋  at least one of the following hold. 

(𝑍1)   𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎 𝑑 𝑥,𝑦 . 

(𝑍2)   𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑏 𝑑 𝑥,𝑇𝑥 + 𝑑 𝑦,𝑇𝑦  . 

(𝑍3)   𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑐[𝑑 𝑥,𝑇𝑦 + 𝑑 𝑦,𝑇𝑥 .Then 𝑇 has a unique fixed point. 

Zamfirescu’s theorem,(1972) is a generalization of  Banach,(1922),Kannan,(1968) and 

Chatterjea,(1972). 

In 1977, Rhoades compared various definitions of contractive mapping on a complete metric 

space which were used to generalize the contraction mapping principle. Due to the wide 
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applications of fixed point theorems in different fields, the study of existence and uniqueness of 

fixed points and common fixed points have become a subject of great interest.There are a good 

number of common fixed point theorems available for commuting as well as non-commuting 

mappings in metric spaces satisfying different contractive conditions.  

Jungck, (1976), gave a common fixed point theorem for commuting mappings in metric spaces, 

which generalized Banach's contractiontheorem.Dass and Gupta, (1975) generalized the Banach 

contraction principle in metric space for some rational type contractive conditions. 

In general, various results pertaining to common fixed point have been investigated for maps 

satisfying different contractive conditions in different settings, equations such as differential and 

integral equations.  
 

Kirishna and Deheri, (2015) obtained common fixed points of two continuous mappings in a 

complete metric spaces. Jha andpanths, (2012) obtained common fixed points of self-maps in 

dislocated metric spaces. Also Mannoj and Daheriya, (2015) obtained a common fixed point 

theorem for three maps in a d-metric and dq-metric spaces. Recently, many researchers have 

obtained fixed point and common fixed point theorems in dislocated quasi metric spaces. 

Also Rahaman and Sarwar, (2016) established the following fixed point result in complete 

dislocated quasi metric space. 

Theorem 1.5: Let   𝑋,𝑑  be a complete dislocated quasi metric space. And  𝑇:𝑋 → 𝑋  be self-

mapping satisfying   

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑 𝑑 𝑥,𝑦  + 𝑏𝜑 max{𝑑 𝑥,𝑇𝑥 ,𝑑 𝑥, 𝑦 } +  𝑐𝜑  
𝑑 𝑥 ,𝑦  1+ 𝑑 𝑥 ,𝑦 𝑑 𝑥 ,𝑇𝑥  

2

 1+𝑑 𝑥 ,𝑦  
2  .      

for all 𝑥,𝑦 ∈  𝑋 , 𝑎, 𝑏, 𝑐 ≥ 0 with   𝑎 + 𝑏 + 𝑐 < 1  and  𝜑  is a comparison function. Then T has a 

unique fixed point. 

So this researcher is motivated and inspired by the work of Rahman and Sarwar, (2016) to 

establish common fixed point theoremsinvolving contractive conditions of rational type  for a 

pair of self-maps in dislocated quasi- metric spaces by extending the result of Rahman and 

Sarwar, (2016) and to verify the result of the study obtained by particular examples. 
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1.2. Objective of study 

1.2.1. General Objective  

The general objective of this study is to establish common fixed point theorems for a pair of self-

maps satisfying certain contractive condition of rational type in dislocated quasi-metric space. 

1.2.2.Specific objectives 

 To prove the existence and uniqueness of common fixed points of self-maps satisfying 

certain contractive condition of rational type in dislocated quasi-metric spaces. 

  To identify additional conditions required to assure uniqueness of common fixed point. 

 To verify the applicability of the result using particular examples. 

1.3. Significance of the Study                           

  The result obtained may contribute to research activities on the study area. 

 It may develop basic research skills of the researcher and also may serve as reference for 

individuals who have interest to be engaged research activities in this line of research. 

 It is applicable in solving some integral and differential equations. 

1.4. Delimitation of the Study 

The study was delimited to find common fixed point results in dq-metric spaces for a pair of self-

maps and focused  on developing a scheme to prove existence and uniqueness of common fixed 

point in complete dq-metric spaces. The study was conducted under the stream of functional 

analysis.           
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CHAPTER TWO 

LITERATURE REVIEW 

Fixed point theory is very important in diverse disciplines of mathematics since it can be applied 

for solving various problems and it is one of the most dynamic research subjects in nonlinear 

analysis. A very interesting and useful result in fixed point theory is the Banach contraction 

principles. This theorem has witnessed numerous generalizations and extensions in the literature 

because of its simplicity and contractive approaches. For this reason generalization of Banach’s 

contraction principle have been investigated heavily by many researchers (Sintunavarat et al., 

2013). Consequently, a number of generalizations of Banach’s contraction principles have 

appeared.  In the fixed point theory, contraction is one of the main tools to prove the existence 

and uniqueness of a fixed point.Banach’s contraction principle, which gives an answer on the 

existence and uniqueness of the solution of an operator, 𝑇𝑥 =  𝑥 is used in all analysis.           

The advantage of topology in logic programming is recognized (Hitzler and Seda, 2000). 

Particularly topological methods are applied to obtain fixed point semantics for logic programs. 

Such considerations motivated the concept of dislocated metric space. 

Definition2.1:Zeyada et al., (2005) LetXbe anon-empty set and 𝑑 ∶ X × X →  0,∞  be a function 

satisfying: 

𝑑1) 𝑑(𝑥, 𝑥) = 0. 

𝑑2) 𝑑 𝑥,𝑦 = 𝑑 𝑦, 𝑥 = 0,imply that𝑥 = 𝑦. 

𝑑3) 𝑑 𝑥,𝑦 = 𝑑 𝑦, 𝑥 . 

𝑑4) 𝑑(𝑥,𝑦) ≤  𝑑(𝑥, 𝑧) + 𝑑(𝑧,𝑦) for all 𝑥,𝑦, 𝑧 ∈  𝑋. 

The pair  X,𝑑  is metric space if d satisfies𝑑1-𝑑4. 

The pair  X,𝑑  is quasi metric space if d satisfies𝑑1,𝑑2 𝑎𝑛𝑑 𝑑4. 

 The pair  X,𝑑  is dislocated metric space if 𝑑 satisfies 𝑑2, 𝑑3 𝑎𝑛𝑑 𝑑4.  

The pair  X,𝑑  is dq-metric if 𝑑 satisfies 𝑑2 𝑎𝑛𝑑 𝑑4 only. 

The concept of Quasi- metric space was introduced by Wilson, (1931) as a generalization of 

metric spaces. Hitzler and Seda, (2000) introduced dislocated metric spaces as a generalization 

of Metric spaces. 
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Hitzler and seda (2000) investigated the useful application of dislocated topology in the context 

of logic programming semantics. Inorder to obtain a unique supported model for these programs, 

they introduced the notion of dislocated metric space and generalized the Banach contraction 

principle in such spaces. Furthermore, Zeyada,etal.(2005) generalized the result of Hitzler and 

Seda (2000) and introduced the concept of complete dislocated quasi metric spaces.                                                           

Aage and Salunke (2008) derived the following fixed point theorem with Kannan type 

contraction in the setting of dislocated quasi metric spaces. 

 

Theorem 2.1: Aage and Salunke(2008)Let (X; d) be a complete dq- metric space and suppose 

there exist non negativeConstants 𝛼1,𝛼2, 𝛼3 with 𝛼1 + 𝛼2 + 𝛼3 < 1. Let 𝑓:𝑋 → 𝑋 be a 

continuous mapping Satisfying 

𝑑 𝑓𝑥,𝑓𝑦 ≤ 𝛼1𝑑 𝑥, 𝑦 + 𝛼2𝑑(𝑥,𝑓𝑥) + 𝛼3𝑑 𝑦,𝑓𝑦 . 

For all 𝑥,𝑦 ∈ 𝑋,  then 𝑓 has a unique fixed point. 

Similarly Isufati, (2010) proved the following fixed point result for continuous contractive 

condition with rational type expression in the context of dislocated quasi metric spaces. 

 

Theorem 2.2:Isufati, (2010) Let  𝑋,𝑑  be a complete dq-metric space and 𝑇:𝑋 → 𝑋 be a 

continuous self–mappings satisfying the following conditions: 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝑑 𝑥,𝑦 + 𝑏𝑑 𝑦,𝑇𝑥 + 𝑐𝑑(𝑥,𝑇𝑦) 

For all x, y∈ 𝑋 where a, b, c > 0, with sup {a+2b+2c} < 1.Then T has a unique fixed point.  

Kohil, et al. (2010) investigated a fixed point theorem which generalizes the result of Isufati. 

In 2012, Zoto gave some new result in dislocated and dislocated quasi metric spaces. 

For continuous self-mappings the fixed point theorem in dislocated quasi metric space was 

investigated by Shrivastava,et al.(2010).  

In 2013 Patel constructed the following new fixed point results in a dislocated quasi metric 

space. 

Theorem 2.3: Let  𝑋,𝑑 be a complete dislocated quasi metric space and 𝑇:𝑋 → 𝑋  be 

continuous self-mapping satisfying the following condition:  

𝑑(𝑇𝑥,𝑇𝑦) ≤ 𝑎 𝑑 𝑥,𝑇𝑥 + 𝑑 𝑦,𝑇𝑦  for all 𝑥, y∈ 𝑋, where 𝑎 ∈ [0,
1

2
), Then T has a unique fixed 

point. 
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Tiwari and Sarwar, (2015), also established fixed point and common fixed point theorems on dq-

metric spaces. 

In addition Tiwari and Vishuw, (2017), established the following common fixed point theorem 

on a complete dislocated quasi b-metric space. 

Theorem 2.4: Let(𝑋,𝑑)be a complete dislocated quasi b-metric space. Let𝑇1 : 𝑋 → 𝑋and 

𝑇2: 𝑋 → 𝑋  are continuous functions on 𝑋 .for  𝑘 ≥ 1 satisfying 

𝑑 𝑇1𝑥,𝑇2 𝑦 ≤ 𝜑 𝑑 𝑥,𝑦 for all 𝑥 ,𝑦,∈  𝑋. 

Where,  𝜑is a comparison function,then𝑇1 and 𝑇2  have a unique common fixed point in 𝑋. 
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CHAPTER THREE 

METHODOLOGY 

This chapter contains study design, description of the research methodology, data collection 

procedures and data analysis process. 

3.1.Study period and site 

The study was conducted from October, 2016 to October, 2017GCinJimma University under 

Mathematics department. 

3.2.Study Design 

In order to achieve the objective of this research analytical design method was used.   

3.3.Source of information 

To conduct this research secondary data was used. Hence, the available sources of information 

are different mathematics reference books, published journals and published research worksand 

articles from internet. 

3.4.Mathematical procedures 

In this study we followed the analysis and the techniques used by Rahman and Sarwar, (2016), 

and also using additional techniques from the other related references like  Manoj and Deheriya, 

(2015),  Jha and Panths, (2012). 
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CHAPTER   FOUR 

 

DISCUSSION AND RESULT 

4.1 Preliminaries 

Definition 4.1:  Zeyada et al., (2005)Let𝑋 be a non- empty set.  A function                          

d: X × X → [0,∞)   is called a dislocated quasi metric provided that for all 𝑥, y, z ∈𝑋 

𝑑1) 𝑑 𝑥,𝑦 = 𝑑 𝑦, 𝑥 = 0,implies𝑥 = 𝑦. 

𝑑2) 𝑑 𝑥,𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦 . 

The pair  𝑋, 𝑑  is called dq-metric space. A dq-metric space is a function 𝑑:𝑋 × 𝑋 → [0,∞) 

satisfying all the conditions of metric space with the exception of self-distance and symmetry. It 

should be noted that the class of dq- metric spaces is effectively general than that of metric 

spaces. Hence every metric space is dq-metric space but the converse is not true. 

Example4.1: Let 𝑋 = R define 𝑑 𝑥,𝑦 =  𝑥 + 𝑦2.It is adq-metric but not metric for all     

𝑥,𝑦, 𝑧 ∈ 𝑋.                                                                   

𝐏𝐫𝐨𝐨𝐟:We need to show that 𝑑 satisfies definition 4.1 

𝑑1) 𝑑 𝑥,𝑦 =  𝑥 + 𝑦2,  𝑑 𝑦, 𝑥 =  𝑦 + 𝑥2 

 𝑥 + 𝑦2 =  𝑦 + 𝑥2 = 0 implies  𝑥 = 𝑦 = 0,  

𝑑 𝑥,𝑦 = 𝑑 𝑦, 𝑥 = 0implies 𝑥 = 𝑦 

𝑑2) 𝑑 𝑥,𝑦 =  𝑥 + 𝑦2 ≤  𝑥 + 𝑧2 +  𝑧 + 𝑦2, since   𝑧2 ,  𝑧 ≥ 0 

≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧,𝑦 . 

Then 𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧,𝑦 for all 𝑥,𝑦 ∈ 𝑋. 

Thus 𝑑satisfies both properties of definition (4.1) . Thenthe pair   𝑋,𝑑  isdq-metricspace. 

The pair (𝑋, 𝑑) does not satisfy conditions(𝑑1) and  𝑑3   of definition 2.1. 

That means self-distance is zero only when 𝑥 is zero and also 𝑑 is not symmetric. Hence 𝑑 is not 

metric. Therefore a dq-metric space is more general than metric space. 



 

10 
 

Definition 4.2:Zeyada et al., (2005) A sequence  𝑥𝑛  in a dq-metric space 𝑋, 𝑑  is called 

Cauchy sequence if for all 𝜀 > 0, there exists 𝑛0 ∈ 𝑁 such that for  𝑚,𝑛 ≥ 𝑛0, we have 

𝑑 𝑥𝑛  , 𝑥𝑚  < 𝜀  and   𝑑 𝑥𝑚  , 𝑥𝑛 < 𝜀. 

Proposition 4.3:Zeyada et al., (2005) Let (𝑋,𝑑)  be a dq-metric space 𝑥𝑛  be a sequence in𝑋, 

and𝑥 ∈ 𝑋. Thena sequence {𝑥𝑛}  converges to𝑥 if and only if  

lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑥 = lim𝑛→∞ 𝑑 𝑥, 𝑥𝑛 = 0. In this case 𝑥 is called the limit of {𝑥𝑛} and we 

write𝑥𝑛 → 𝑥. 

Proof: Suppose that {𝑥𝑛  } is a dq-convergent sequence.  Then there exists𝑥 ∈ 𝑋 such that     

lim𝑛→∞ 𝑥𝑛 = 𝑥, that is lim𝑛→∞ 𝑑 𝑥𝑛 , 𝑥 = lim𝑚→∞ 𝑑 𝑥, 𝑥𝑚  = 0. 

  Hence, {𝑥𝑛  } converges to 𝑥 (or dq-convergent). 

Proposition 4.4: Zeyada et al., (2005) Limit of a convergent sequence in a dq-metric space is 

unique.  

Proof: Let x and y be limits of the sequence {𝑥𝑛}, then using triangular inequality it follows 

that 𝑑 𝑥,𝑦 ≤ 𝑑 𝑥, 𝑥𝑛 + d(𝑥𝑛 ,𝑦).  

ByProposition 4.4[𝑑 𝑥, 𝑥𝑛 + 𝑑 𝑥𝑛 ,𝑦 ] → 0 hence  𝑑 𝑥,𝑦 = 0   and by property (𝑑1) of 

definition (4.1) it follows that 𝑥 = 𝑦.Therefore, limit of a convergent sequence in a dq-metric 

space is unique. 

Proposition 4.5: Zeyada et al., (2005)Every convergent sequence in a dq-metric space is a dq-

Cauchy.  

 Proof: Let {𝑥𝑛} be a sequence which converges to some 𝑥, and 𝜀 > 0, then there exist  

𝑛0 ∈ 𝑁,With 𝑑 (𝑥𝑛 , 𝑥)  <
𝜀

2
     for all 𝑛 ≥ 𝑛0 . 

For   m, n≥ 𝑛0, we obtain     𝑑(𝑥𝑛 ,  𝑥𝑚 ) ≤ 𝑑 𝑥𝑛 , 𝑥 + 𝑑 𝑥, 𝑥𝑚  ≤
𝜀

2
+

𝜀

2  
=𝜀 

𝑑 𝑥𝑛 ,𝑥𝑚 < 𝜀. Hence  {𝑥𝑛}  is a dq- Cauchy. 
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Definition 4.6:Zeyada et al., (2005) A dislocated quasi-metric space (𝑋,𝑑) is said to be 

complete if every Cauchy sequence in 𝑋 converges to a point in 𝑋. 

 

 

 

Dentition 4.7:Berind, (2003)A map 𝜑: [0,∞)  →  0,∞   is called comparison function if it 

satisfies: 

i) 𝜑 is monotonically increasing. 

ii) The sequence  {𝜑𝑛   (t)𝑛=0  
∞ }converges to zero for all 𝑡 ∈  0,∞ . 

If  𝜑 satisfies 

iii)  𝜑𝑘∞
𝑘=0  𝑡 Converges for all  𝑡 ∈ [0,∞). 

Then 𝜑   is called (c)comparison function.  Every comparison function is (c) 

comparison.Prototype example for comparison function is 𝜑 𝑡 =  𝛼𝑡 , 𝑡 ∈  0,∞  and  𝛼 ∈

[0,1). 

 

Lemma 4.8: For every comparison function 𝜑;  0,∞ →  0,∞  

𝜑 𝑡 < 𝑡for all𝑡 > 0, and  𝜑 𝑡 = 0  if and only if  𝑡 = 0. 

Definition 4.9: Let  𝑋 be a nonempty subset of a metric space (𝑋,𝑑).  A point  𝑥 ∈  𝑋 is a 

common fixed point of self-maps  𝑇,𝑓: 𝑋 →  𝑋  if  𝑓𝑥 = 𝑇𝑥 = 𝑥. 

Definition 4.10:Jungck (1976) Two self-maps 𝑇 and 𝑓 on a nonempty set 𝑋 are said to be 

commuting if     𝑇𝑓𝑥 =  𝑓𝑇𝑥  for all𝑥 ∈  𝑋.  

If  𝑇𝑥 = 𝑓𝑥  for some 𝑥 ∈ 𝑋,  then 𝑥 is called coincidence point of  𝑇and 𝑓. 

 We call𝑧 a point of coincidence of 𝑓  and 𝑇 if 𝑧 = 𝑇𝑥 = 𝑓𝑥.If  𝑧 = 𝑥,  𝑥 is called the common 

fixed point of  𝑓  and 𝑇.The set of coincidence points of 𝑓  and 𝑇 is denoted by 𝑐(𝑇,𝑓). 

Definition 4.11:Jungck (1986)Two self-mappings 𝑓  and 𝑇  of a metric space    𝑋,𝑑 are called 

compatibleif limn→∞ d  𝑓𝑇𝑥𝑛 ,𝑇𝑓𝑥𝑛 = 0  whenever  {𝑥𝑛  }𝑛=0  
∞ is a sequence in X  such that 

limn→∞ 𝑓𝑥𝑛 = limn→∞ 𝑇𝑥𝑛 =  t   for some 𝑡 ∈  𝑋. 
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Definition 4.12: Jungck and Rhoades (1998)Two self- maps 𝑓 and  𝑇 of a metric space  𝑋,𝑑  

are called weakly compatible if they commute at their coincidence points. That is, 𝑓𝑢 =

𝑇𝑢  𝑓𝑜𝑟 𝑢 ∈ 𝑋,  then 𝑇𝑓𝑢 =  𝑓𝑇𝑢,   for  𝑢 ∈  𝑋.        

 

4. 2.Main result 

Theorem 4.1: Let  𝑋,𝑑  be a complete dislocated quasi metric spaces and 𝑇,𝑓:𝑋 → 𝑋 be self-

maps satisfying the following condition. 

𝑖)  𝑇𝑋 ⊆  𝑓𝑋 .                                                     

𝑖𝑖)   𝑓 𝑎𝑛𝑑 𝑇are weakly compatible and 𝑓𝑋  is closed subset of  𝑋. 

𝑖𝑖𝑖)𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑 𝑑 𝑓𝑥,𝑓𝑦  + 𝑏𝜑 max{𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥 } + 

𝑐𝜑  
𝑑(𝑓𝑥 ,𝑓𝑦 ) 1+ 𝑑 𝑓𝑥 ,𝑓𝑦 𝑑(𝑓𝑥 ,𝑇𝑥) 

2

 1+𝑑(𝑓𝑥 ,𝑓𝑦 ) 2  . 

For all 𝑥,𝑦 ∈ 𝑋  𝑎𝑛𝑑  𝑎, 𝑏, 𝑐 ≥ 0 𝑤𝑖𝑡ℎ  𝑎 + 𝑏 + 𝑐 < 1  𝑎𝑛𝑑 𝜑  𝑖s a comparison function, then 

𝑇 and 𝑓 have a coincidence points. If 𝑓 and 𝑇 commute at their coincidence points then 𝑓 and 𝑇 

have a unique common fixed point.  

Proof: Let 𝑥0 ∈ 𝑋,  so that 𝑦0=𝑇𝑥0=𝑓𝑥1.  Again since 𝑇𝑥1 ∈ 𝑓𝑋  there exist  𝑥2   ∈ 𝑋. 

Such that 𝑦1 = 𝑇𝑥1=𝑓𝑥2. Continuing this process we construct sequences {𝑥𝑛} and  

{ 𝑦𝑛} such that  yn=T𝑥𝑛 = 𝑓𝑥𝑛+1   for   𝑛 = 0, 1, 2,…  

To proof we consider two cases. 

Case (i): Suppose𝑦𝑛 = 𝑦𝑛+1for some 𝑛 = 0,1,2,…, then 

𝑇𝑥𝑛 = 𝑇𝑥𝑛+1 = 𝑓𝑥𝑛+1.  So that 𝑥𝑛+1  is coincidence point of 𝑇 and 𝑓. 

Let𝑇𝑥𝑛=𝑇𝑥𝑛+1 = 𝑓𝑥𝑛+1 =  𝑢, for some 𝑢 ∈ 𝑓𝑋. 

Then by the weakly compatibility of  𝑇 𝑎𝑛𝑑 𝑓  we have 
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𝑇𝑢 = 𝑇𝑓𝑥𝑛+1 = 𝑓𝑇𝑥𝑛+1 = 𝑓𝑢.                                                                                         (4.1) 

Which shows 𝑇 𝑎𝑛𝑑  𝑓commute and 𝑢  is the coincidence point of𝑇 𝑎𝑛𝑑 𝑓. 

Now we show 𝑑  𝑇𝑢,𝑇𝑢 = 0. 

𝑑(𝑇𝑢,𝑇𝑢) ≤ 𝑎𝜑 𝑑 𝑓𝑢,𝑓𝑢  + 𝑏𝜑 max{𝑑 𝑓𝑢, 𝑓𝑢 ,𝑑 𝑓𝑢,𝑇𝑢)  + 

𝑐𝜑  𝑑 𝑓𝑢, 𝑓𝑢 
 1 +  𝑑 𝑓𝑢,𝑓𝑢 𝑑 𝑓𝑢,𝑇𝑢  

2

 1 +  𝑓𝑢,𝑓𝑢  
2   .  

= 𝑎𝜑 𝑑 𝑇𝑢,𝑇𝑢  + 𝑏𝜑 max{𝑑 𝑇𝑢,𝑇𝑢 ,𝑑 𝑇𝑢,𝑇𝑢)  + 

𝑐𝜑 𝑑 𝑇𝑢,𝑇𝑢 
 1 +  𝑑 𝑇𝑢,𝑇𝑢 𝑑 𝑇𝑢,𝑇𝑢  

2

 1 +  𝑇𝑢,𝑇𝑢  
2   .  

Since φ t ≤ t, for all 𝑡 ≥ 0, we have  

 𝑑 𝑇𝑢,𝑇𝑢 ≤ 𝑎𝑑 𝑇𝑢,𝑇𝑢 + 𝑏 𝑑 𝑇𝑢,𝑇𝑢 + 𝑐𝑑 𝑇𝑢,𝑇𝑢 . 

𝑑 𝑇𝑢,𝑇𝑢 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑇𝑢,𝑇𝑢 . 

[1 −  𝑎 + 𝑏 + 𝑐 ]𝑑(𝑇𝑢,𝑇𝑢) ≤ 0. 

Since  𝑎 + 𝑏 + 𝑐 < 1   then   [1− (𝑎 + 𝑏 + 𝑐)] > 0. 

This implies that  𝑑(𝑇𝑢,𝑇𝑢) ≤ 0, but  𝑑(𝑇𝑢,𝑇𝑢) ≥ 0. 

Hence 𝑑(𝑇𝑢,𝑇𝑢) =  0.   (4.2)   

Now we claimTu = u. 

𝑑 𝑇𝑢,𝑢 = 𝑑 𝑇𝑢,𝑇𝑥𝑛+1 ≤ 𝑎𝜑 𝑑 𝑓𝑢,𝑓𝑥𝑛+1  + 𝑏𝜑 𝑚𝑎𝑥{𝑑 𝑓𝑢,𝑇𝑢 ,𝑑 𝑓𝑢,𝑓𝑥𝑛+1)  + 

             𝑐𝜑 𝑑 𝑓𝑢,𝑓𝑥𝑛+1 
 1 +  𝑑 𝑓𝑢,𝑓𝑥𝑛+1 𝑑 𝑓𝑢,𝑇𝑢  

2

 1 +  𝑓𝑢,𝑓𝑥𝑛+1  
2  . 
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                  =  𝑎𝜑 𝑑 𝑇𝑢,𝑢  + 𝑏𝜑 𝑚𝑎𝑥{𝑑 𝑇𝑢,𝑇𝑢 ,𝑑 𝑇𝑢,𝑢)  + 

  𝑐𝜑  𝑑 𝑇𝑢,𝑢 
 1 +  𝑑 𝑇𝑢,𝑢 𝑑 𝑇𝑢,𝑇𝑢  

2

 1 +  𝑇𝑢,𝑢  
2  . 

Since𝑑 𝑇𝑢,𝑇𝑢 = 0,𝑚𝑎𝑥{𝑑 𝑇𝑢,𝑇𝑢 ,𝑑 𝑇𝑢,𝑢)   𝑖𝑠  𝑑 𝑇𝑢,𝑢 . 

Then 𝑑(𝑇𝑢,𝑢)
 1+ 𝑑 𝑇𝑢 ,𝑢 𝑑 𝑇𝑢 ,𝑇𝑢  

2

 1+ 𝑇𝑢 ,𝑢  
2  ≤ 𝑑 𝑇𝑢, 𝑢 .(4.3) 

Since 𝜑 𝑡 ≤ 𝑡 for all  𝑡 ≥ 0  and using (4.3) we have  

𝑑 𝑇𝑢, 𝑢 ≤ 𝑎𝑑 𝑇𝑢,𝑢 + 𝑏𝑑 𝑇𝑢,𝑢 + 𝑐𝑑 𝑇𝑢,𝑢 = (𝑎 + 𝑏 + 𝑐)𝑑(𝑇𝑢, 𝑢). 

𝑑 𝑇𝑢,𝑢 ≤  𝑎 + 𝑏 + 𝑐  𝑑 𝑇𝑢, 𝑢 . 

Since 𝑎 + 𝑏 + 𝑐 > 0, then 𝑑 𝑇𝑢,𝑢 ≤ 0,  but  𝑑 𝑇𝑢, 𝑢 ≥ 0.   

Hence 𝑑 𝑇𝑢, 𝑢 = 0. (4.4) 

Similarly 

𝑑 𝑢,𝑇𝑢 = 𝑑 𝑇𝑥𝑛+1,𝑇𝑢 ≤ 𝑎𝜑 𝑑 𝑓𝑥𝑛+1,𝑓𝑢  + 𝑏𝜑 𝑚𝑎𝑥 𝑑 𝑓𝑥𝑛+1,𝑓𝑢 ,𝑑 𝑓𝑥𝑛+1,𝑇𝑥𝑛+1    

+𝑐𝜑  𝑑 𝑓𝑥𝑛+1,𝑓𝑢 
 1 +  𝑑𝑓𝑥𝑛+1,𝑓𝑢)𝑑 𝑓𝑥𝑛+1,𝑇𝑥𝑛+1  

2

 1 + 𝑑 𝑓𝑥𝑛+1,𝑓𝑢  
2  . 

=  𝑎𝜑(𝑑 𝑢,𝑇𝑢 ) + 𝑏𝜑(max{𝑑 𝑢,𝑇𝑢 𝑑 𝑢, 𝑢) + 

𝑐𝜑  𝑑 𝑢,𝑇𝑢 
 1+ 𝑑 𝑢 ,𝑇𝑢 𝑑 𝑢 ,𝑢  

2

 1+ 𝑢 ,𝑇𝑢  
2  . 

Since 𝑑 𝑢,𝑢 = 0, then max{𝑑 𝑢,𝑇𝑢 ,𝑑 𝑢,𝑢)   is  𝑑 𝑢,𝑇𝑢 . 

This impliesthat𝑑 𝑢,𝑇𝑢 ≤ 𝑎𝜑(𝑑 𝑢,𝑇𝑢 ) + 𝑏𝜑(𝑑 𝑢,𝑇𝑢 ) + 𝑐𝜑(𝑑 𝑢,𝑇𝑢 ). 

Since𝜑 𝑡 ≤ 𝑡,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0,𝑑 𝑢,𝑇𝑢 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑢,𝑇𝑢 . 
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Since  𝑎 + 𝑏 + 𝑐 > 0, 𝑑 𝑢,𝑇𝑢 ≤ 0, but  𝑑 𝑢,𝑇𝑢 ≥ 0. 

Hence   𝑑 𝑢,𝑇𝑢 = 0.     (4.5) 

So,from (4.4) and (4.5) we get  𝑢 = 𝑇𝑢. 

 By (4.1)𝑇𝑢 = 𝑓𝑢 = 𝑢. 

Therefore  𝑢  is a common fixed point of   𝑇 𝑎𝑛𝑑  𝑓. 

 

Now we prove the uniqueness of the common fixed point. 

Suppose 𝑢  𝑎𝑛𝑑  𝑣 are two distinct fixed points of  𝑇 𝑎𝑛𝑑  𝑓. 

That means   𝑓𝑢 = 𝑇𝑢  = 𝑢   and       𝑓𝑣 = 𝑇𝑣 = 𝑣. 

𝑑 𝑢, 𝑣 = 𝑑(𝑇𝑢,𝑇𝑣) ≤ 𝑎𝜑(𝑑 𝑓𝑢, 𝑓𝑣 ) + 𝑏𝜑(max 𝑑 𝑓𝑢,𝑓𝑣 ,𝑑 𝑓𝑢,𝑇𝑢  ) + 

  𝑐𝜑  𝑑 𝑓𝑢,𝑓𝑣 
 1+ 𝑑 𝑓𝑢 ,𝑓𝑣 𝑑 𝑓𝑢 ,𝑇𝑢  

2

 1+ 𝑓𝑢 ,𝑓𝑣  
2  . 

= 𝑎𝜑(𝑑 𝑢, 𝑣 ) + 𝑏𝜑(max 𝑑 𝑢, 𝑣 ,𝑑 𝑢,𝑢  ) + 

  𝑐𝜑  𝑑 𝑢, 𝑣 
 1+ 𝑑 𝑢 ,𝑣 𝑑 𝑢 ,𝑢  

2

 1+ 𝑢 ,𝑣  
2  . 

𝑑(𝑢, 𝑣) ≤ 𝑎𝜑(𝑑 𝑢, 𝑣 )

+ 𝑏𝜑(max 𝑑 𝑢, 𝑣 ,𝑑 𝑢,𝑢  ) +  𝑐𝜑  𝑑 𝑢,𝑣 
 1 + 𝑑 𝑢,𝑣 𝑑 𝑢,𝑢  

2

 1 +  𝑢,𝑣  
2

 . 

Since  max 𝑑 𝑢, 𝑣 ,𝑑 𝑢,𝑢  =  𝑑 𝑢, 𝑣 , then 

𝑑 𝑢,𝑣 
 1+ 𝑑 𝑢 ,𝑣 𝑑 𝑢 ,𝑢  

2

 1+ 𝑢 ,𝑣  
2 ≤  𝑑 𝑢,𝑣 . 

This implies 𝑑 𝑢, 𝑣 ≤ 𝑎𝜑(𝑑 𝑢, 𝑣 ) + 𝑏𝜑(𝑑 𝑢, 𝑣 ) + 𝑐𝜑(𝑑 𝑢, 𝑣 ). 

 Since 𝜑 𝑡 ≤ 𝑡, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0, then  𝑑 𝑢, 𝑣 ≤   𝑎 + 𝑏 + 𝑐 𝑑 𝑢, 𝑣 . 

 𝑎 + 𝑏 + 𝑐 > 0, this implies that   𝑑 𝑢, 𝑣 ≤ 0but  𝑑 𝑢, 𝑣 ≥ 0. 

Hence   𝑑 𝑢, 𝑣 = 0. (4.6) 
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Similarly 

𝑑 𝑣,𝑢 = 𝑑(𝑇𝑣,𝑇𝑢) ≤ 𝑎𝜑(𝑑 𝑓𝑣,𝑓𝑢 ) + 𝑏𝜑(max 𝑑 𝑓𝑣,𝑓𝑢 ,𝑑 𝑓𝑣,𝑇𝑣  ) 

+𝑐𝜑 𝑑 𝑓𝑣,𝑓𝑢 
 1 +  𝑑 𝑓𝑣, 𝑓𝑢 𝑑 𝑓𝑣,𝑇𝑣  

2

 1 +  𝑓𝑣,𝑓𝑢  
2   

  = 𝑎𝜑(𝑑 𝑣, 𝑢 ) + 𝑏𝜑(max 𝑑 𝑣,𝑢 ,𝑑 𝑣, 𝑣  ) + 𝑐𝜑  𝑑 𝑣,𝑢 
 1+ 𝑑 𝑣,𝑢 𝑑 𝑣,𝑣  

2

 1+ 𝑣,𝑢  
2  . 

𝑑 𝑣,𝑢 ≤ 𝑎𝜑(𝑑 𝑣,𝑢 ) + 𝑏𝜑(max 𝑑 𝑣,𝑢 ,𝑑 𝑣, 𝑣  ) + 𝑐𝜑  𝑑 𝑣,𝑢 
 1+ 𝑑 𝑣,𝑢 𝑑 𝑣,𝑣  

2

 1+𝑑 𝑣,𝑢  
2  . 

Since max 𝑑 𝑣,𝑢 ,𝑑 𝑣, 𝑣  =  𝑑 𝑣,𝑢 . 

This implies that 𝑑 𝑣,𝑢 
 1+ 𝑑 𝑣,𝑢 𝑑 𝑣,𝑣  

2

 1+ 𝑣,𝑢  
2 ≤  𝑑 𝑣,𝑢 . 

Then,𝑑 𝑣, 𝑢 ≤  𝑎𝜑𝑑(𝑣,𝑢) + 𝑏𝜑 𝑑 𝑣,𝑢 + 𝑐𝜑𝑑 𝑣,𝑢  . 

Since 𝜑 𝑡 ≤ 𝑡,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0𝑑 𝑣,𝑢 ≤  𝑎𝑑(𝑣,𝑢) + 𝑏𝑑(𝑣,𝑢) +  𝑐𝑑(𝑣, 𝑢) 

= 𝑎 + 𝑏 + 𝑐 𝑑 𝑣,𝑢 . 

Then,𝑑 𝑣, 𝑢 ≤   𝑎 + 𝑏 + 𝑐 𝑑 𝑣,𝑢 . 

Since𝑎 + 𝑏 + 𝑐 > 0,then  𝑑 𝑣,𝑢 ≤ 0,  but𝑑 𝑣,𝑢 ≥ 0. 

Hence,𝑑 𝑣, 𝑢 = 0. (4.7) 

From (4.6)and(4.7)we get𝑢 = 𝑣. 

Hence 𝑢  is a unique common fixed point of  𝑓 𝑎𝑛𝑑  𝑇. 

Case (ii): Suppose𝑦𝑛 ≠ 𝑦𝑛+1 for each  𝑛 = 0, 1, 2,… 

𝑑(𝑦𝑛 ,𝑦𝑛+1)= 𝑑 𝑇𝑥𝑛 ,𝑇𝑥𝑛+1 ≤  𝑎𝜑 𝑑 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1  + 𝑏𝜑 max 𝑑 𝑓𝑥𝑛 ,𝑓𝑥𝑛+1 ,𝑑 𝑓𝑥𝑛 ,𝑇𝑥𝑛    

+𝑐𝜑 𝑑 𝑓𝑥𝑛 , 𝑓𝑥𝑛+1 
 1 +  𝑑 𝑓𝑥𝑛 ,𝑓𝑥𝑛+1 𝑑 𝑓𝑥𝑛 ,𝑇𝑥𝑛  

2

 1 + 𝑑 𝑓𝑥𝑛 ,𝑓𝑥𝑛+1  
2  . 

=  𝑎𝜑(𝑑(𝑦𝑛−1,𝑦𝑛)) + 𝑏𝜑(max{ 𝑑(𝑦𝑛−1,𝑦𝑛),𝑑(𝑦𝑛−1,𝑦𝑛)}) +  
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𝑐𝜑  𝑑 𝑦𝑛−1,𝑦𝑛 
 1+ 𝑑 𝑦𝑛−1 ,𝑦𝑛  𝑑 𝑦𝑛−1 ,𝑦𝑛   

2

 1+𝑑 𝑦𝑛−1 ,𝑦𝑛   
2  .                (4.8) 

Since 𝜑 𝑡 ≤ 𝑡,𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡 ≥ 0,  4.8 becomes 

𝑑(𝑦𝑛 ,𝑦𝑛+1) ≤ 𝑎𝑑(𝑦𝑛−1,𝑦𝑛) + 𝑏 𝑑(𝑦𝑛−1,𝑦𝑛) + 𝑐 𝑑(𝑦𝑛−1,𝑦𝑛) 

= (𝑎 + 𝑏 + 𝑐)𝑑(𝑦𝑛−1,𝑦𝑛). 

Let𝑎 + 𝑏 + 𝑐 = ℎ < 1  

Then  𝑑 𝑦𝑛 ,𝑦𝑛+1 ≤ ℎ𝑑 𝑦𝑛−1,𝑦𝑛 .   (4.9) 

Similarly𝑑(𝑦𝑛−1,𝑦𝑛)  ≤ ℎ 𝑑(𝑦𝑛−2 ,𝑦𝑛−1). 

 Then we have 𝑑(𝑦𝑛 ,𝑦𝑛+1)  ≤ ℎ2𝑑(𝑦𝑛−2,𝑦𝑛−1). 

Now, continuing this process we get𝑑(𝑦𝑛 ,𝑦𝑛+1)  ≤  ℎ𝑛𝑑 𝑦0,𝑦1 .  

Since ℎ < 1we have  lim𝑛→∞ ℎ
𝑛 𝑑 𝑦0,𝑦1 = 0. (4.10) 

Similarly 

𝑑(𝑦𝑛+1,𝑦𝑛) = 𝑑(𝑇𝑥𝑛+1 ,𝑇𝑥𝑛) 

≤  𝑎𝜑(𝑑 𝑓𝑥𝑛+1,𝑓𝑥𝑛 ) + 𝑏𝜑(max 𝑑 𝑓𝑥𝑛+1,𝑓𝑥𝑛 ,𝑑 𝑓𝑥𝑛+1,𝑇𝑥𝑛+1  ) + 

𝑐𝜑  𝑑 𝑓𝑥𝑛+1,𝑓𝑥𝑛 
 1 +  𝑑 𝑓𝑥𝑛+1,𝑓𝑥𝑛 𝑑 𝑓𝑥𝑛+1,𝑇𝑥𝑛+1  

2

 1 + 𝑑 𝑓𝑥𝑛+1,𝑓𝑥𝑛  
2  .  

= 𝑎𝜑(𝑑 𝑦𝑛𝑦𝑛−1 ) + 𝑏𝜑(max{ 𝑑(𝑦𝑛 ,𝑦𝑛−1),𝑑(𝑦𝑛 ,𝑦𝑛+1)}) +  

𝑐𝜑  𝑑 𝑦𝑛𝑦𝑛−1 
 𝟏+  𝒅 𝒚𝒏,𝒚𝒏−𝟏 𝒅 𝑦𝑛 ,𝒚𝒏+𝟏  

𝟐

 𝟏+ 𝒅 𝑦𝑛𝑦𝑛−1  
𝟐  .  

Since 𝜑 𝑡 ≤ 𝑡,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

𝑑(𝑦𝑛+1,𝑦𝑛) ≤ 𝑎𝑑(𝑦𝑛𝑦𝑛−1) + 𝑏max{ 𝑑(𝑦𝑛 ,𝑦𝑛−1),𝑑(𝑦𝑛 ,𝑦𝑛+1)} +  
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𝑐  𝑑 𝑦𝑛𝑦𝑛−1 
 1+ 𝑑 𝑦𝑛 ,𝑦𝑛−1 𝑑 𝑦𝑛 ,𝑦𝑛+1  

2

 1+𝑑 𝑦𝑛𝑦𝑛−1  
2   .         

(4.11)From(4.9)max{ 𝑑(𝑦𝑛 ,𝑦𝑛−1),𝑑(𝑦𝑛 ,𝑦𝑛+1)}is 𝑑 𝑦𝑛 ,𝑦𝑛−1 . 

Then   1 +  𝑑 𝑦𝑛 , 𝑦𝑛−1 𝑑 𝑦𝑛 ,𝑦𝑛+1  
2
≤  1 + 𝑑 𝑦𝑛−1,𝑦𝑛  

2
. 

This implies  𝑑(𝑦𝑛 , 𝑦𝑛−1)
 𝟏+ 𝒅 𝒚𝒏−𝟏,𝒚𝒏 𝒅 𝑦𝑛 ,𝒚𝒏+𝟏  

𝟐

 𝟏+𝒅 𝒚𝒏−𝟏,𝒚𝒏  
𝟐 ≤ 𝑑 𝑦𝑛 , 𝑦𝑛−1 .      (4.12) 

From (4.11) and (4.12) we have     

𝑑(𝑦𝑛+1,𝑦𝑛) ≤ 𝑎𝑑(𝑦𝑛 ,𝑦𝑛−1) + 𝑏 𝑑(𝑦𝑛 ,𝑦𝑛−1) + 𝑐 𝑑(𝑦𝑛 ,𝑦𝑛−1) 

= (𝑎 + 𝑏 + 𝑐)𝑑(𝑦𝑛 ,𝑦𝑛−1). 

Let  𝑎 + 𝑏 + 𝑐 = ℎ < 1. 

Thus  𝑑 𝑦𝑛+1,𝑦𝑛 ≤ ℎ𝑑 𝑦𝑛 ,𝑦𝑛−1 . 

Similarly  𝑑 𝑦𝑛 , 𝑦𝑛−1 ≤ ℎ𝑑 𝑦𝑛−1,𝑦𝑛−2 .  

Then    𝑑 𝑦𝑛+1,𝑦𝑛 ≤ ℎ2 𝑑 𝑦𝑛−1,𝑦𝑛−2 . 

Continuing this process we get   𝑑(𝑦𝑛+1,𝑦𝑛) ≤ ℎ𝑛𝑑 𝑦1,𝑦0 . 

Since ℎ < 1,  we have lim𝑛→∞ ℎ
𝑛𝑑 𝑦1,𝑦0 = 0 .  4.13 . 

So, from (4.10) and (4.13)  lim𝑛→∞ ℎ
𝑛 𝑑 𝑦0,𝑦1 =  lim𝑛→∞ ℎ

𝑛𝑑 𝑦1,𝑦0 = 0.  (4.14) 

Now we show  {𝑦𝑛}is a Cauchy sequence in 𝑋. 

 Let 𝑚,𝑛 ∈ 𝑁 with  𝑚 > 𝑛. 

Applying triangular inequality𝑑(𝑦𝑛 ,𝑦𝑚 ) ≤  𝑑(𝑦𝑛 ,𝑦𝑛+1) +  𝑑 𝑦𝑛+1,𝑦𝑚   

≤  𝑑(𝑦𝑛 ,𝑦𝑛+1) +  𝑑(𝑦𝑛+1,𝑦𝑛+2) + . . .+ 𝑑 𝑦𝑚−1,𝑦𝑚   

≤ ℎ𝑛𝑑(𝑦0,𝑦1)+ℎ𝑛+1𝑑 𝑦0,𝑦1 + .  .  . +ℎ𝑚−1𝑑 𝑦0,𝑦1  

≤ ℎ𝑛 1 + ℎ +⋯+  ℎ𝑚−𝑛−1 𝑑 𝑦0,𝑦1  
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= ℎ𝑛   hi

m−n−1

i=0

 𝑑 𝑦0,𝑦1  

≤ ℎ𝑛   hi

∞

i=0

 𝑑 𝑦0,𝑦1  

=
ℎ𝑛

1 − ℎ
𝑑 𝑦0,𝑦1 . 

Thus   𝑑 𝑦𝑛 ,𝑦𝑚  ≤
ℎ𝑛

1−ℎ
 𝑑 𝑦0,𝑦1 . 

Since h< 1 limℎ→0
ℎ𝑛

1−ℎ
𝑑 𝑦0,𝑦1  = 0 . 

Then  lim𝑛 ,𝑚→∞ 𝑑 𝑦𝑛 ,𝑦𝑚  = 0 . (4.15) 

By similar proof, let m, n ∈ 𝑁,𝑚 > 𝑛. 

𝑑 𝑦𝑚 , 𝑦𝑛 ≤  𝑑(𝑦𝑚 ,𝑦𝑚−1) +  𝑑 𝑦𝑚−1,𝑦𝑛 . 

 ≤ 𝑑(𝑦𝑚 ,𝑦𝑚−1) +  𝑑 𝑦𝑚−1,𝑦𝑚−2 +⋯+ 𝑑(𝑦𝑛+1,𝑦𝑛) 

 ≤ ℎ𝑚−1𝑑 𝑦1,𝑦0 + ℎ𝑚−2𝑑 𝑦1,𝑦0 +⋯+  ℎ𝑛𝑑 𝑦1,𝑦0  

      ≤ ℎ𝑛 ℎ𝑚−1−𝑛 + ℎ𝑚−2−𝑛 +⋯+ ℎ + 1  𝑑 𝑦1,𝑦0  

= ℎ𝑛   ℎ𝑖
𝑚−𝑛−1

𝑖=0

 𝑑 𝑦1,𝑦0  . 

Thus 𝑑 𝑦𝑚 , 𝑦𝑛 ≤ ℎ𝑛  ℎ𝑖∞
𝑖=0   𝑑 𝑦1,𝑦0  =

ℎ𝑛

1−ℎ
𝑑 𝑦1,𝑦0  .                                    

This implies that 𝑑 𝑦𝑚 ,𝑦𝑛 ≤
ℎ𝑛

1−ℎ
𝑑 𝑦1,𝑦0 . 

Since h< 1, limℎ→0
ℎ𝑛

1−ℎ
𝑑 𝑦1,𝑦0  = 0 . 

Then  lim𝑛→∞ 𝑑 𝑦𝑚 ,𝑦𝑛  = 0. (4.16) 

Hence from (4.15) and (4.16) we have 
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lim𝑚 ,𝑛→∞ 𝑑 𝑦𝑛𝑦𝑚  = lim𝑚 ,𝑛→∞ 𝑑 𝑦𝑚 ,𝑦𝑛 = 0. 

Thus the sequence  {𝑦𝑛}  is a Cauchy sequence in 𝑋 for  𝑛 = 0, 1, 2,… (4.17) 

Since 𝑋 is complete, there exists 𝑧 ∈ 𝑋,  such   that   lim𝑛→∞ 𝑦𝑛 = 𝑧. 

Thuslim𝑛→∞ 𝑇𝑥𝑛 = lim𝑛→∞ 𝑓𝑥𝑛+1 = 𝑧. 

Since 𝑓𝑋  is a closed subset of 𝑋, there exist 𝑢 ∈ 𝑓𝑋 such that𝑧 = 𝑓𝑢. 

Now we show that 𝑇𝑢 = 𝑧. 

𝑑 𝑇𝑢, 𝑧 = 𝑑(𝑇𝑢,𝑇𝑥𝑛) ≤ 𝑎𝜑( 𝑑 𝑓𝑢,𝑓𝑥𝑛 ) + 𝑏𝜑(𝑚𝑎𝑥𝑑 𝑓𝑢,𝑓𝑥𝑛 ,  𝑓𝑢,𝑇𝑢 }) 

+ 𝑐𝜑  𝑑 𝑓𝑢,𝑓𝑥𝑛  
 1+ 𝑑 𝑓𝑢 ,𝑓𝑥𝑛  𝑑 𝑓𝑢 ,𝑇𝑢  

2

 1+𝑑 𝑓𝑢 ,𝑓𝑥𝑛   
2   . 

From (4.1)wehave𝑇𝑢 = 𝑓𝑢, then 

𝑑(𝑇𝑢, 𝑧) ≤ 𝑎𝜑( 𝑑 𝑇𝑢,𝑓𝑥𝑛 ) + 𝑏𝜑(max 𝑑 𝑇𝑢, 𝑓𝑥𝑛 ,𝑑 𝑇𝑢,𝑇𝑢  ) + 

𝑐𝜑  𝑑 𝑇𝑢,𝑓𝑥𝑛  
 1+ 𝑑 𝑇𝑢 ,𝑓𝑥𝑛  𝑑 𝑇𝑢 ,𝑇𝑢  

2

 1+𝑑 𝑇𝑢 ,𝑓𝑥𝑛   
2   . 

Letting 𝑛 → ∞,𝑑(𝑇𝑢, 𝑧) ≤ 𝑎𝜑( 𝑑 𝑇𝑢, 𝑧 ) + 𝑏𝜑(max 𝑑 𝑇𝑢, 𝑧 ,𝑑 𝑇𝑢,𝑇𝑢  ) + 

𝑐𝜑  𝑑 𝑇𝑢, 𝑧  
 1+ 𝑑 𝑇𝑢 ,𝑧 𝑑 𝑇𝑢 ,𝑇𝑢  

2

 1+𝑑 𝑇𝑢 ,𝑧  
2   . 

Since 𝑑 𝑇𝑢,𝑇𝑢 = 0, max {𝑑 𝑇𝑢, 𝑧 ,𝑑 𝑇𝑢,𝑇𝑢 } = 𝑑 𝑇𝑢, 𝑧 . 

This implies that    𝑑 𝑇𝑢, 𝑧 
 1+ 𝑑 𝑇𝑢 ,𝑧 𝑑 𝑇𝑢 ,𝑇𝑢  

2

 1+𝑑 𝑇𝑢 ,𝑧  
2  ≤ 𝑑 𝑇𝑢, 𝑧 . 

Then, 𝑑 𝑇𝑢, 𝑧 ≤ 𝑎𝜑( 𝑑 𝑇𝑢, 𝑧 ) + 𝑏𝜑( 𝑑 𝑇𝑢, 𝑧 ) + 𝑐𝜑( 𝑑 𝑇𝑢, 𝑧 ). 

Since𝜑(𝑡) ≤ 𝑡forall𝑡 ≥ 0,𝑑 𝑇𝑢, 𝑧 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑇𝑢, 𝑧 . 

Since 𝑎 + 𝑏 + 𝑐 > 0,𝑑 𝑇𝑢, 𝑧 ≤ 0,  but  𝑑 𝑇𝑢, 𝑧 ≥ 0. 
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 Hence  𝑑 𝑇𝑢, 𝑧 = 0. (4.18) 

Similarly 𝑑 𝑧,𝑇𝑢 = 𝑑 𝑇𝑥𝑛 ,𝑇𝑢 ≤ 𝑎𝜑( 𝑑 𝑓𝑥𝑛 ,𝑓𝑢 ) + 𝑏𝜑(max 𝑑 𝑓𝑥𝑛 ,𝑓𝑢 , 𝑑 𝑓𝑥𝑛 ,𝑇𝑥𝑛  ) 

+𝑐𝜑

 

 
 
𝑑 𝑓𝑥𝑛 ,𝑓𝑢 

 1 + 𝑑 𝑓𝑥𝑛 ,𝑓𝑢)𝑑(𝑓𝑥𝑛 ,𝑇𝑥𝑛)  

2

 1 + 𝑑 𝑓𝑥𝑛 ,𝑓𝑢  
2

 

 
 

. 

Since 𝑇𝑢 = 𝑓𝑢  andtaking  𝑛 → ∞𝑇𝑥𝑛 = 𝑓𝑥𝑛 = 𝑧   

𝑑(𝑧,𝑇𝑢) ≤ 𝑎𝜑( 𝑑 𝑧,𝑇𝑢 ) + 𝑏𝜑(max 𝑑 𝑧,𝑇𝑢 ,𝑑 𝑧, 𝑧  ) + 

𝑐𝜑  𝑑 𝑇𝑢, 𝑧  
 1+ 𝑑 𝑧 ,𝑇𝑢 𝑑(𝑧 ,𝑧) 

2

 1+𝑑(𝑧 ,𝑇𝑢) 2   .                            (4.19) 

Since max 𝑑 𝑧,𝑇𝑢 ,𝑑 𝑧, 𝑧   is 𝑑 𝑧,𝑇𝑢  and 𝜑 𝑡 ≤ 𝑡, for all 𝑡 ≥  0, 

then(4.19)becomes𝑑 𝑧,𝑇𝑢 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑧,𝑇𝑢 . 

Since  𝑎 + 𝑏 + 𝑐 > 0,𝑑 𝑧,𝑇𝑢 ≤ 0  but  𝑑 𝑧,𝑇𝑢 ≥ 0. 

Hence𝑑 𝑧,𝑇𝑢 = 0. (4.20) 

By (4.18) and (4.20) we have   𝑧 = 𝑇𝑢. 

Then   𝑧 = 𝑇𝑢 = 𝑓𝑢. 

 By the weakly compatibility of𝑓 𝑎𝑛𝑑 𝑇,𝑤𝑒 ℎ𝑎𝑣𝑒 𝑇𝑓𝑢 = 𝑓𝑇𝑢.  

Then 𝑇𝑧 = 𝑇𝑓𝑢 = 𝑓𝑇𝑢 = 𝑓𝑧. 

Which implies 𝑓 𝑎𝑛𝑑 𝑇  commute and z is the coincidence point of 𝑓 𝑎𝑛𝑑 𝑇. 

 Now we claim that 𝑧 is a common fixed point of 𝑓 𝑎𝑛𝑑 𝑇.  

Consider 𝑑 𝑇𝑧, 𝑧 = 𝑑(𝑇𝑧,𝑇𝑢) 

≤ 𝑎𝜑( 𝑑 𝑓𝑧,𝑓𝑢 ) + 𝑏𝜑(max 𝑑 𝑓𝑧,𝑓𝑢 ,𝑑 𝑓𝑧,𝑇𝑧  ) + 
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 𝑐𝜑  𝑑 𝑓𝑧,𝑓𝑢  
 1+ 𝑑 𝑓𝑧 ,𝑓𝑢 )𝑑(𝑓𝑧 ,𝑇𝑧)  

2

 1+𝑑 𝑓𝑧 ,𝑓𝑢  
2   . 

= 𝑎𝜑( 𝑑 𝑇𝑧, 𝑧 ) + 𝑏𝜑(max 𝑑 𝑇𝑧, 𝑧 ,𝑑 𝑇𝑧,𝑇𝑧  ) + 

 𝑐𝜑  𝑑 𝑇𝑧, 𝑧  
 1+ 𝑑 𝑇𝑧 ,𝑧)𝑑(𝑇𝑧 ,𝑇𝑧)  

2

 1+𝑑 𝑇𝑧 ,𝑧  
2   . 

𝑑(𝑇𝑧, 𝑧) ≤ 𝑎𝜑( 𝑑 𝑇𝑧, 𝑧 ) + 𝑏𝜑(max 𝑑 𝑇𝑧, 𝑧 ,𝑑 𝑇𝑧,𝑇𝑧  ) + 

 𝑐𝜑  𝑑 𝑇𝑧, 𝑧  
 1+ 𝑑 𝑇𝑧 ,𝑧)𝑑(𝑇𝑧 ,𝑇𝑧)  

2

 1+𝑑 𝑇𝑧 ,𝑧  
2   .                          (4.21) 

Since ma𝑥{𝑑 𝑇𝑧, 𝑧 ,𝑑 𝑇𝑧,𝑇𝑧 }is𝑑 𝑇𝑧, 𝑧 , 

𝑑 𝑇𝑧, 𝑧  
 1+ 𝑑 𝑇𝑧 ,𝑧)𝑑(𝑇𝑧 ,𝑇𝑧)  

2

 1+𝑑 𝑇𝑧 ,𝑧  
2  ≤ 𝑑 𝑇𝑧, 𝑧 . (4.22)Using𝜑 𝑡 ≤ 𝑡,and  (4.22)in (4.21) we get 

   𝑑 𝑇𝑧, 𝑧 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑇𝑧, 𝑧 . 

 But𝑎 + 𝑏 + 𝑐 > 0, then  𝑑 𝑇𝑧, 𝑧  ≤ 0, but 𝑑 𝑇𝑧, 𝑧 ≥ 0. 

Hence  𝑑 𝑇𝑧, 𝑧 = 0(4.23) 

Similarly 

𝑑 𝑧,𝑇𝑧 = 𝑑(𝑇𝑢,𝑇𝑧) ≤ 𝑎𝜑( 𝑑 𝑓𝑢,𝑓𝑧 ) + 𝑏𝜑(ma𝑥  𝑑 𝑓𝑢, 𝑓𝑧 , 𝑑 𝑓𝑢,𝑇𝑢  ) 

 + 𝑐𝜑  𝑑 𝑓𝑢,𝑓𝑧  
 1+ 𝑑 𝑓𝑢 ,𝑓𝑧)𝑑(𝑓𝑢 ,𝑇𝑢)  

2

 1+𝑑 𝑓𝑢 ,𝑓𝑧  
2   . 

= 𝑎𝜑( 𝑑 𝑧,𝑇𝑧 ) + 𝑏𝜑(ma𝑥  𝑑 𝑧,𝑇𝑧 ,𝑑 𝑧, 𝑧  ) 

 + 𝑐𝜑  𝑑 𝑧,𝑇𝑧  
 1+ 𝑑 𝑧 ,𝑇𝑧)𝑑(𝑧 ,𝑧)  

2

 1+𝑑 𝑧 ,𝑇𝑧  
2   . 

Sincemax 𝑑 𝑧,𝑇𝑧  𝑑 𝑧, 𝑧     is  𝑑 𝑧,𝑇𝑧 and 𝜑 𝑡 ≤ 𝑡, we have 

𝑑 𝑧,𝑇𝑧 ≤ 𝑎𝑑 𝑧,𝑇𝑧 + 𝑏𝑑 𝑧,𝑇𝑧 + 𝑐 𝑑 𝑧,𝑇𝑧 =  𝑎 + 𝑏 + 𝑐 𝑑 𝑧,𝑇𝑧 . 



 

23 
 

Then (1 − (𝑎 + 𝑏 + 𝑐)) 𝑑 𝑧,𝑇𝑧 ≤ 0.  

But  𝑎 + 𝑏 + 𝑐 < 1,  this implies that 𝑑 𝑧,𝑇𝑧 ≤ 0,  but  𝑑 𝑧,𝑇𝑧 ≥ 0. 

 Hence  𝑑 𝑧,𝑇𝑧 = 0. (4.24) 

So, from (4.23) and (4.24) we have  𝑇𝑧 = 𝑧. 

Then𝑇𝑧 = 𝑓𝑧 = 𝑧. 

Therefore 𝑧 is common fixed pointof𝑓 𝑎𝑛𝑑 𝑇. 

Now we show the uniqueness of common fixed point of  𝑓  and 𝑇 in 𝑋. 

Let 𝑤 be another common fixed point of 𝑓 𝑎𝑛𝑑 𝑇 𝑖𝑛 𝑋, that means 𝑇𝑤 = 𝑓𝑤 = 𝑤.  

Then we have  

𝑑 𝑧,𝑤 = 𝑑 𝑇𝑧,𝑇𝑤  ≤ 𝑎𝜑 (𝑑 𝑓𝑧,𝑓𝑤 ) + 𝑏𝜑(ma𝑥  𝑑 𝑓𝑧,𝑓𝑤 ,𝑑 𝑓𝑧,𝑇𝑧  ) + 

𝑐𝜑 𝑑 𝑓𝑧,𝑓𝑤  𝑑 𝑓𝑧,𝑓𝑤 
 1 +  𝑑 𝑓𝑧,𝑓𝑤)𝑑(𝑓𝑧,𝑇𝑧)  

2

 1 + 𝑑 𝑓𝑧,𝑓𝑤  
2   . 

= 𝑎𝜑 (𝑑 𝑧,𝑤 ) + 𝑏𝜑(ma𝑥  𝑑 𝑧,𝑤 ,𝑑 𝑧, 𝑧  ) + 

𝑐𝜑 𝑑 𝑧,𝑤  𝑑 𝑧,𝑤 
 1 +  𝑑 𝑧,𝑤)𝑑(𝑧, 𝑧)  

2

 1 + 𝑑 𝑧,𝑤  
2   . 

𝑑 𝑧,𝑤  ≤ 𝑎𝜑 (𝑑 𝑧,𝑤 ) + 𝑏𝜑(ma𝑥  𝑑 𝑧,𝑤 ,𝑑 𝑧, 𝑧  ) + 

𝑐𝜑 𝑑 𝑧,𝑤 
 1 +  𝑑 𝑧,𝑤)𝑑(𝑧, 𝑧)  

2

 1 + 𝑑 𝑧,𝑤  
2     . (4.25) 

Since𝑚𝑎𝑥 𝑑 𝑧,𝑤 ,𝑑 𝑧, 𝑧    is  𝑑 𝑧,𝑤  and since 𝜑(𝑡) ≤ 𝑡 

(4.25)  become  𝑑 𝑧,𝑤 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑧,𝑤 . 

Since𝑎 + 𝑏 + 𝑐 > 0, 𝑑 𝑧,𝑤 ≤ 0, but𝑑 𝑧,𝑤 ≥ 0. 
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Hence  𝑑 𝑧,𝑤 = 0.(4.26) using similar line of proof𝑑 𝑤, 𝑧 = 𝑑 𝑇𝑤,𝑇𝑧  ≤ 𝑎𝜑( 𝑑 𝑓𝑤,𝑓𝑧 ) +

𝑏𝜑(max 𝑑 𝑓𝑤,𝑓𝑧  ,𝑑 𝑓𝑤,𝑇𝑤  + 

   𝑐𝜑  𝑑 𝑓𝑤,𝑓𝑧  
 1+ 𝑑 𝑓𝑤 ,𝑓𝑧)𝑑(𝑓𝑤 ,𝑇𝑤)  

2

 1+𝑑 𝑓𝑤 ,𝑓𝑧  
2   . 

𝑑(𝑤, 𝑧) ≤ 𝑎𝜑( 𝑑 𝑤, 𝑧 ) + 𝑏𝜑(max 𝑑 𝑤, 𝑧 ,𝑑 𝑤,𝑤  ) + 

 𝑐𝜑  𝑑 𝑤, 𝑧  
 1+ 𝑑 𝑤 ,𝑧)𝑑(𝑤 ,𝑤)  

2

 1+𝑑 𝑤 ,𝑧  
2   .                           (4.27)          Since𝑚𝑎𝑥 𝑑 𝑤, 𝑧 ,𝑑 𝑤,𝑤    

is 𝑑 𝑤, 𝑧 ,  

then 𝑑 𝑤, 𝑧 
 1+ 𝑑 𝑤 ,𝑧)𝑑(𝑤 ,𝑤)  

2

 1+𝑑 𝑤 ,𝑧  
2  ≤  𝑑 𝑤, 𝑧 .                           (4.28) 

Using 𝜑 𝑡 ≤ 𝑡, and (4.28) in (4.27) we get    

𝑑 𝑤, 𝑧 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑤, 𝑧 . 

 1 −  𝑎 + 𝑏 + 𝑐  𝑑 𝑤, 𝑧 ≤ 0. 

Since 𝑎 + 𝑏 + 𝑐 < 1,then   𝑑 𝑤, 𝑧 ≤ 0, but   𝑑 𝑤, 𝑧 ≥ 0. 

Therefore   𝑑 𝑤, 𝑧 = 0. (4.29)  

From (4.26) and (4.29)we conclude that𝑤 = 𝑧. 

So,𝑧is a unique common fixed point of𝑇 𝑎𝑛𝑑  𝑓  𝑖𝑛  𝑋. 

The following is an example in support of Theorem 4.1. 

Example 4.2: Let 𝑋 =  0,4 , define 𝑑:𝑋 × 𝑋 →  0,∞  by 

𝑑 𝑥,𝑦 = 𝑥2 + 𝑦and𝑇,𝑓:𝑋 → 𝑋  by 

    𝑇 𝑥 =  
0, 𝑖𝑓 0 ≤ 𝑥 ≤ 3
1

4
, 𝑖𝑓 3 < 𝑥 ≤ 4

 And𝑓 𝑥 =  

𝑥

3
, 𝑖𝑓 0 ≤ 𝑥 ≤ 3

4, 𝑖𝑓 3 < 𝑥 ≤ 4 
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If 𝑎 =
1

2
, 𝑏 =

1

5
, 𝑐 =

1

5
 ,𝑎𝑛𝑑 𝜑 𝑡 =

3

4
𝑡, for all 𝑡 ≥ 0.                                                                                                        

In fact both properties of definition 4.1 holds true.                                                                             

𝑖) 𝑑 𝑥,𝑦 = 𝑥2 + 𝑦 = 𝑦2 + 𝑥 = 𝑑 𝑦, 𝑥 = 0 implies𝑥 = 𝑦 = 0. 

𝑖𝑖)  𝑑 𝑥,𝑦 = 𝑥2 + 𝑦 ≤ 𝑥2 + 𝑧 + 𝑧2 + 𝑦 = 𝑑 𝑥, 𝑧 + 𝑑(𝑧,𝑦). 

We observe that (𝑋,𝑑) is a dq-metric space and also 𝑇0 = 𝑓0.  This implies 0 is coincidence 

point of  𝑇 𝑎𝑛𝑑  𝑓. Moreover 𝑓𝑋 =  4 ∪ [0,1]and 𝑇𝑋 =  0,
1

4
 .   Hence 𝑇𝑋  ∁ 𝑓𝑋, also  

𝑇0 = 𝑇𝑓0 = 𝑓𝑇0 = 𝑓0 = 0. Then𝑓 and 𝑇are weakly compatible.  

To see contractive condition of theorem 4.1 we consider the following cases. 

Case 𝒊 :Suppose𝑥,𝑦 ∈  0,3 . Then,   

𝑑 𝑇𝑥,𝑇𝑦 = 𝑑 0,0 = 0.                         

𝑑 𝑓𝑥,𝑓𝑦 = 𝑑  
𝑥

3
,
𝑦

3
 =  

𝑥

3
 

2

+
𝑦

3
=

𝑥

9

2
+

𝑦

3
=

𝑥2+3𝑦

9
. 

𝑑 𝑓𝑥,𝑇𝑥 = 𝑑  
𝑥

3
, 0 =

𝑥2

9
. 

From the contractive condition (2) we have 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑( 𝑑 𝑓𝑥,𝑓𝑦 ) + 𝑏𝜑(max 𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥  ) + 

𝑐𝜑  𝑑 𝑓𝑥,𝑓𝑦 
 1 +  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥 

2
 

 1 + 𝑑 𝑓𝑥,𝑓𝑦  
2  . 

This implies     0 ≤
3

8
 
𝑥2+3𝑦

9
 +

3

20
 max  

𝑥2+3𝑦

9
,
𝑥

9

2
  +

3

20
 
𝑥2+3𝑦

9
 . 

 Always true 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  0,3  

Case  𝒊𝒊 : Suppose   𝑥,𝑦 ∈  3,4 . In this case  

𝑑 𝑇𝑥,𝑇𝑦 = 𝑑  
1

4
,
1

4
 =  

1

4
 

2

+
1

4
=

5

16
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𝑑 𝑓𝑥,𝑓𝑦 = 𝑑 4,4 =  4 2 + 4 = 20 

𝑑 𝑓𝑥,𝑇𝑥 = 𝑑  4,
1

4
 =

65 

4
 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑(𝑑 𝑓𝑥, 𝑓𝑦 ) + 𝑏𝜑 (max  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥  ) + 

𝑐𝜑  𝑑 𝑓𝑥,𝑓𝑦 
 1 +  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥 

2
 

 1 + 𝑑 𝑓𝑥,𝑓𝑦  
2  . 

5

16
≤

3

8
 20 +

3

20
 max  20,

65

4
  + 

3

20

 

 
 
 

65

4
 
 1+ 20 

65

4
  

2

 1+
65

4
 

2

 

 
 

.True for all 𝑥,𝑦 ∈(3, 4] 

Case(iii):  If𝑥 ∈  0,3  and 𝑦 ∈ (3, 4], then   

𝑑 𝑇𝑥,𝑇𝑦 = 𝑑  0,
1

4
 =

1

4
 . 

𝑑 𝑓𝑥,𝑓𝑦 = 𝑑  
𝑥

3
, 4 =  

𝑥

3
 

2

+ 4 =
𝑥2

9
+ 4 =

𝑥2+36

9
 . 

𝑑 𝑓𝑥,𝑇𝑥 = 𝑑  
𝑥

3
, 0 =  

𝑥

3
 

2

=
𝑥2

9
 . 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑  𝑑 𝑓𝑥,𝑓𝑦  + 𝑏𝜑(max  𝑑 𝑓𝑥, 𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥  ) + 

                 𝑐𝜑  𝑑 𝑓𝑥,𝑓𝑦 
 1 +  𝑑 𝑓𝑥, 𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥 

2
 

 1 + 𝑑 𝑓𝑥,𝑓𝑦  
2  . 

1

4
≤

3

8
(
𝑥2+36

9
)+

3

20
 
𝑥2+36

9
 +

3

20

 

 
 
 
𝑥2+36

9
 
 1+  

𝑥2

9
 
𝑥2+36

9
 

2

 1+
𝑥2+36

9
 

2

 

 
 

. 

 True for all  𝑥 ∈  0,3  𝑎𝑛𝑑 𝑦 ∈  3,4 . 

Case (iv): Suppose 𝑥 ∈  3,4   and 𝑦 ∈[0, 3], then we have  

𝑑 𝑇𝑥,𝑇𝑦 = 𝑑  
1

4
, 0 =

1

16
  . 

𝑑 𝑓𝑥,𝑓𝑦 = 𝑑  4,
𝑦

3
 =  4 2+= 16 +

𝑦

3
. 
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𝑑 𝑓𝑥,𝑇𝑥 = 𝑑  4,
1

4
 = 42 +

1

4
=

65

4
  .         

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎(𝜑 𝑑 𝑓𝑥,𝑓𝑦 ) + 𝑏𝜑(max  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥  ) + 

𝑐𝜑  𝑑 𝑓𝑥, 𝑓𝑦 
 1+ 𝑑 𝑓𝑥 ,𝑓𝑦  ,𝑑 𝑓𝑥 ,𝑇𝑥 

2
 

 1+𝑑 𝑓𝑥 ,𝑓𝑦  
2  . 

1

16
≤

3

8
(16 +

1

3
y) +

3

20
 16 +

1

3
y +

3

20

 

 
 
 16 +

1

3
y 

 1+  16+
1

3
𝑦 

65

4
 

2

 1+16+
1

3
𝑦 

2

 

 
 

. 

True for all  𝑥 ∈  3,4  𝑎𝑛𝑑 𝑦 ∈  0,3 . 

From cases  i)− (iv  all the conditions of theorem 4.1 are satisfied and 0 is the unique common 

fixed point of 𝑓 𝑎𝑛𝑑 𝑇. 

 

Theorem 4.2:Let 𝑋,𝑑  be a complete dq-metric space. 𝑇, 𝑓:𝑋 → 𝑋be continuous self-mappings 

satisfying the contractive condition of theorem 4.1.Then 𝑇 𝑎𝑛𝑑 𝑓  have a unique common fixed 

point. 

Proof:  Followingas in the proof of Theorem 4.1 we construct a sequence {𝑦𝑛}. Let 

 𝑥2𝑛   𝑎𝑛𝑑  {𝑥2𝑛+1}  be subsequences of the sequence {𝑦𝑛}.As in the theorem 4.1 we define  

𝑥2𝑛+1 = 𝑇𝑥2𝑛and𝑥2𝑛 = 𝑓𝑥2𝑛−1..  

Similarly as shown in the proof of theorem 4.1 we can show that the sequence   {𝑦𝑛}  is a Cauchy 

sequence. 

By the completeness of  𝑋  one can find that lim𝑛→∞ 𝑦𝑛 = 𝑢  for some 𝑢 ∈ 𝑋. 

Since  𝑥2𝑛  and {𝑥2𝑛+1}  are subsequences of {𝑦𝑛}, lim𝑛→∞ 𝑥2𝑛+1 = 𝑢,  also  lim𝑛→∞ 𝑥2𝑛 = 𝑢. 

Next since 𝑇𝑎𝑛𝑑 𝑓 are continuous we arrive at 

𝑇𝑢 = 𝑇  lim
𝑛→∞

𝑥2𝑛 =  lim
𝑛→∞

 𝑇 𝑥2𝑛  

=  lim
𝑛→∞

𝑥2𝑛+1 

=  𝑢 . 

 Then 𝑇𝑢 = 𝑢. (4.30) 

Similarly 𝑓𝑢 = 𝑓  lim𝑛→∞ 𝑥2𝑛−1 =  lim𝑛→∞ 𝑓𝑥2𝑛−1 

=  lim
𝑛→∞

𝑥2𝑛  
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= 𝑢. 

Then 𝑓𝑢 = 𝑢.(4.31) 

So, from (4.38) and (4.39) we get  𝑇𝑢 = 𝑢 = 𝑓𝑢. 

Therefore 𝑢 is common fixed point of   𝑇𝑎𝑛𝑑 𝑓. 

Now we show uniqueness of the common fixed point. 

Let q be another common fixed point of 𝑓 𝑎𝑛𝑑 𝑇. that is 𝑓𝑞 = 𝑇𝑞 = 𝑞. 

Then by the contractive condition (2) we have 

𝑑 𝑢, 𝑞 = 𝑑(𝑇𝑢,𝑇𝑞) ≤ 𝑎𝜑( 𝑑 𝑓𝑢, 𝑓𝑞 ) + 𝑏𝜑(max  𝑑 𝑓𝑢,𝑓𝑞 ,𝑑 𝑓𝑢,𝑇𝑢  ) + 

𝑐𝜑  𝑑 𝑓𝑢,𝑓𝑞 
 1+ 𝑑 𝑓𝑢 ,𝑓𝑞 ,𝑑 𝑓𝑢 ,𝑇𝑢 

2
 

 1+𝑑 𝑓𝑢 ,𝑓𝑞  
2  . 

 =  𝑎𝜑( 𝑑 𝑢, 𝑞 ) + 𝑏𝜑(max  𝑑 𝑢, 𝑞 ,𝑑 𝑢,𝑢  ) + 𝑐𝜑  𝑑 𝑢, 𝑞 
 1+ 𝑑 𝑢 ,𝑞 ,𝑑 𝑢 ,𝑢 

2
 

 1+𝑑 𝑢 ,𝑞  
2  . 

𝑑(𝑢, 𝑞) ≤  𝑎𝜑( 𝑑 𝑢, 𝑞 ) + 𝑏𝜑(max  𝑑 𝑢, 𝑞 ,𝑑 𝑢, 𝑢  ) + 

𝑐𝜑  𝑑 𝑢, 𝑞 
 1+ 𝑑 𝑢 ,𝑞 ,𝑑 𝑢 ,𝑢 

2
 

 1+𝑑 𝑢 ,𝑞  
2  .                           (4.32) 

Since max  𝑑 𝑢, 𝑞 ,𝑑 𝑢,𝑢  is  𝑑(𝑢, 𝑞), and Since 𝜑 𝑡 ≤ 𝑡 

then(4.32) becomes 𝑑 𝑢, 𝑞 ≤ 𝑎 𝑑 𝑢, 𝑞 + 𝑏 𝑑 𝑢, 𝑞 + 𝑐𝑑 𝑢, 𝑞 . 

𝑑 𝑢, 𝑞 ≤  𝑎 + 𝑏 + 𝑐 𝑑 𝑢, 𝑞 , Since𝑎 + 𝑏 + 𝑐 > 0,𝑑 𝑢, 𝑞 ≤ 0 

but𝑑 𝑢, 𝑞 ≥ 0. Hence 𝑑 𝑢, 𝑞 = 0.(4.33) 

Similarly  

𝑑 𝑞,𝑢 = 𝑑 𝑇𝑞,𝑇𝑢 ≤ 𝑎𝜑( 𝑑 𝑓𝑞,𝑓𝑢 ) + 𝑏𝜑(max  𝑑 𝑓𝑞,𝑓𝑢 ,𝑑 𝑓𝑞,𝑇𝑞  ) 

+𝑐𝜑 𝑑 𝑓𝑞,𝑓𝑢 
 1 +  𝑑 𝑓𝑞,𝑓𝑢 ,𝑑 𝑓𝑞,𝑇𝑞 

2
 

 1 + 𝑑 𝑓𝑞,𝑓𝑢  
2  . 
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𝑑 𝑞,𝑢 ≤

𝑎𝜑( 𝑑 𝑞,𝑢 ) + 𝑏𝜑(max  𝑑 𝑞,𝑢 ,𝑑 𝑞, 𝑞  ) +

𝑐𝜑  𝑑 𝑞,𝑢 
 1+ 𝑑 𝑞 ,𝑢 ,𝑑 𝑞 ,𝑞 

2
 

 1+𝑑 𝑞 ,𝑢  
2  .  Since 𝑚𝑎𝑥  𝑑 𝑞,𝑢 ,𝑑 𝑞, 𝑞    𝑖𝑠  𝑑 𝑞,𝑢  and   𝜑 𝑡 ≤ 𝑡, for all 

𝑡 ≥ 0, 

Thus   𝑞, 𝑢 ≤ 𝑎𝑑 𝑞,𝑢 + b 𝑑 𝑞,𝑢 + c𝑑 𝑞,𝑢 . 

Since 𝑎 + 𝑏 + 𝑐 > 0, then 𝑑 𝑞,𝑢 ≤ 0.  but 𝑑 𝑞,𝑢 ≥ 0.  

Hence  𝑑 𝑞,𝑢 = 0. (4.34) 

So, from (4.33) and (4.34) we have  𝑢 = 𝑞. 

Thus 𝑢  is a unique common fixed point of 𝑓and 𝑇. 

Examplesupporting the result of theorem 4.2 

Example 4.3: Let 𝑋 = [0,1]𝑑:𝑋 × 𝑋 → [0,∞) by 

𝑑 𝑥,𝑦 = 𝑥and define 𝑓,𝑇:𝑋 → 𝑋 by 

𝑇𝑥 =
𝑥

9
 , 𝑓𝑥 =

8𝑥

9
 , and  𝜑 𝑡 =

4

5
t, where  𝑎 =

3

4
 , b= 

1

6
  and  𝑐 =

1

16
. 

                                                            𝑑 𝑇𝑥,𝑇𝑦 = 𝑑(
𝑥

9
 , 
𝑦

9
)=

𝑥

9
. 

𝑑 𝑓𝑥,𝑓𝑦 = 𝑑  
8𝑥

9
,

8𝑦

9
 =

8𝑥

9
. 

𝑑 𝑓𝑥,𝑇𝑥 = 𝑑(
8𝑥

9
,

8𝑥

9
) =

8𝑥

9
. 

From the contractive condition of the theorem we have 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑 (𝑑 𝑓𝑥,𝑓𝑦 ) + 𝑏𝜑(max  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥  ) + 

𝑐𝜑  𝑑 𝑓𝑥,𝑓𝑦 
 1 +  𝑑 𝑓𝑥,𝑓𝑦 ,𝑑 𝑓𝑥,𝑇𝑥 

2
 

 1 + 𝑑 𝑓𝑥,𝑓𝑦  
2  . 
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𝑥

9
≤

12 

20
 

8𝑥

9
 +  

4

30
 max{

8𝑥

9
,
8𝑥

9
} +

4

80

 

 
 
 
 

8𝑥

9
 

 1 + (
8𝑥

9
 )(

8𝑥

9
 ) 

2

 1 +
8𝑥

9
 

2

 

 
 
 

. 

𝑥

9
≤

24𝑥

45
+

16𝑥

135
+

2𝑥

45
which is true for all 𝑥 ∈  0,1 . 

𝑇and𝑓 satisfies all the conditions of the Theorem 4.2 and 𝑇 and 𝑓  have a unique fixed point. 

𝑇0 = 𝑓0 = 0.Also𝑇𝑓0 = 0 = 𝑇𝑓0. 

Therefore 0 is the unique common fixed point of  𝑇and𝑓 . 

 

Remark 1: For 𝑓 = 𝐼(𝐼 =identity map on X) from contractive condition of theorem 4.1 we get 

𝑑 𝑇𝑥,𝑇𝑦 ≤ 𝑎𝜑 𝑑 𝑥,𝑦  + 𝑏𝜑 max 𝑑 𝑥,𝑦 ,𝑑 𝑥,𝑇𝑥   + 𝑐𝜑  𝑑 𝑥,𝑦 
 1+ 𝑑 𝑥 ,𝑦 𝑑 𝑥 ,𝑇𝑥  

2

 1+𝑑 𝑥 ,𝑦  
2  .                      

Whenever 𝑓 = 𝐼contractive condition of theorem 4.1 is simplified to theorem 1.5. 

Hence theorem 1.5 follows asa corollary to theorem 4.1. 

 

 

CHAPTER FIVE 

CONCLUSIONS AND FUTURE SCOPE 

5.1. Conclusion 

In this Thesis, we have explored the properties of dislocated quasi-metric spaces and also discuss 

the difference between metric space and generalizations of metric space. We established two 

common fixed point theorems for a pair of self-maps in complete dislocated quasi metric spaces 

under contractive conditions of rational type. We also obtained sufficient conditions for 

existence of points of coincidence and common fixed points of two self –mappings in dislocated 

quasi metric spaces.  We have supported the result of this work by particular examples. Our 

works extend and generalize some of the results of Rahman and Sarwar(2016). 

5.2 Future scope 
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Fixed point theory is one of the active and vigorous areas of research in mathematics and other 

sciences. There are several published results related to existence of fixed points of self-maps 

defined on dislocated quasi metric space. There are also few results related to the existence of 

common fixed points for a pair or more self-maps in this space. The researcher believes the 

search for the existence of coincidence and common fixed points of self-maps satisfying 

different conditions in dislocated quasi metric space is an active area of study. So, forthcoming 

postgraduate students of department of Mathematics or any researcher persons who are interested 

can exploit this opportunity and conduct their research work in this area. 
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