
 

i 
 

COMPARISON OF GENERALIZED ITERATIVE METHODS FOR SOLVING 

SYSTEMS OF LINEAR EQUATIONS 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, JIMMA 

UNIVERSITY IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF DEGREE OF 

MASTERS SCIENCE IN MATHEMATICS (NUMERICAL ANALYSIS STREAM) 

 

                       BY: MERGA GULUMA 

 

            ADVISOR: GENANEW GOFE (PhD) 

       CO-ADVISOR: HAILU MULETA (MSc) 

                                              

 

 

         OCTOBER, 2015 

                                                                                                                 JIMMA, ETHIOPIA 

 



 

i 
 

Declaration 

 I hereby declare that Comparison of Generalized Iterative Methods for Solving Systems of 

Linear Equations is my own work for the M.Sc. degree in Mathematics and that, to the best of 

my knowledge, it contains no materials previously published by another person nor material 

which has been accepted for the award of any other degree of the university, except where due 

acknowledgement has been made in the study. 

_______________________________ _______________ 

     Merga Guluma (Candidate) Date 

          Certified by: 

_________________________ _______________ 

Dr. Genanew Gofe (Supervisor) Date 

                           

________________________                                                         _______________ 

Ato. Hailu Muleta (Co-advisor)                                                         Date 

 

 

 

 

 

 

 

 

 



 

ii 
 

ACKNOWLEDGEMENTS 

 

 First of all, I would like to thank the almighty God who is the source of everything in this world. 

Secondly, I would like to express my deepest gratitude to my advisor, Dr. Genanew Gofe and my 

co-advisor Ato Hailu Muleta for their genuine comments and supports for successful 

accomplishment of this research report.  

  Thirdly, my thanks reach to my colleagues and my darling brothers and sisters for their 

ideological and financial supports.  

  Lastly, my thanks go to my classmate who support me morally and psychologically to complete 

this research report. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Table of Contents 

Contents 
Declaration ................................................................................................................................... i 

ACKNOWLEDGEMENT .......................................................................................................... ii 

Table of Contents ....................................................................................................................... iii 

Acronyms .................................................................................................................................... v 

List of Tables .............................................................................................................................. vi 

Abstract ..................................................................................................................................... vii 

CHAPTER ONE ........................................................................................................................................... 1 

INTRODUCTION ........................................................................................................................................ 1 

1.1 Background ........................................................................................................................... 1 

1.2 Statement of the Problem ...................................................................................................... 3 

1.3 Objective of the Study ........................................................................................................... 4 

1.3.1 General Objective ........................................................................................................................ 4 

1.3.2 Specific Objectives ...................................................................................................................... 4 

1.4 Significance of the Study ...................................................................................................... 4 

1.5 Delimitation of the Study ...................................................................................................... 4 

CHAPTER TWO .......................................................................................................................................... 5 

REVIEW OF RELATED LITERATURE .................................................................................................... 5 

2.1. Generalized Jacobi (GJ) Method .......................................................................................... 7 

2.2. Generalized Gauss -Seidel (GGS) Method .......................................................................... 8 

2.3. Generalized Successive over Relaxation (GESOR) Method ............................................... 8 

CHAPTER THREE ...................................................................................................................................... 9 

METHODOLOGY ..................................................................................................................................... 10 

3.1 Study Area and Period......................................................................................................... 10 

3.2 Study Design ....................................................................................................................... 10 

3.3 Source of Information ......................................................................................................... 10 

3.4 Study Procedures ................................................................................................................. 10 

3.5 Ethical Consideration .......................................................................................................... 11 

CHAPTER FOUR ....................................................................................................................................... 12 

RESULTS AND DISCUSSION ................................................................................................................. 12 

4.1 Preliminary .......................................................................................................................... 12 

4.2 Generalized Iterative Methods ............................................................................................ 13 



 

iv 
 

4.2.1 Generalized Jacobi Method ........................................................................................................ 14 

4.2.2 Generalized Gauss-Seidel Method ............................................................................................. 14 

4.2.3 Generalization of successive over Relaxation Method .............................................................. 15 

4.3 Results ................................................................................................................................. 16 

4.4 Discussion ........................................................................................................................... 29 

CHAPTER FIVE ........................................................................................................................................ 31 

CONCLUSION AND FUTURE WORKS ................................................................................................. 31 

5.1 Conclusion ........................................................................................................................... 31 

5.2 Future Works ....................................................................................................................... 31 

References ................................................................................................................................................... 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 
 

Acronyms 

 

GJ-Generalized Jacobi method 

GGS- Generalized Gauss-Seidel method 

GESOR-Generalized Successive over Relaxation method 

SPD-Symmetric Positive Definite 

SDD-Strictly diagonally Dominant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

 List of Tables 

Table 4.1 A GJ for system of linear equation of 4x4, when m=1…………………………18  

Table 4.2 A GGS for system of linear equation of 4x4, when m=1……………………....18 

Table 4.3 A GESOR for system of order 4x4, when m=1and  =1.01………….…….….19 

Table 4.4 A GJ for system of linear equation of 6x6, when m=1………………….….…..19 

Table 4.5 A GGS for system of linear equation of 6x6, when m=1……………….……...20 

Table 4.6 A GESOR for system of linear equation of 6x6, when m=1and  =1.05.…….20 

Table 4.7 A GJ for system of linear equation of 20x20, when m=1………………..…….21 

Table 4.8 A GGS for system of linear equation of 20x20, when m=1…………….……...22 

Table 4.9 A GESOR for system of linear equation of 20x20, when m=1 and  =1.10…..23 

Table 4.10 A Consolidated result for the generalized iterative methods………….………24 

Table 4.11 Varying   for GESOR the number of iteration and CPU time……………….24 

Table 4.12 A GJ for system of linear equation of 4x4, when m=2………………….……..24 

Table 4.13 A GGS for system of linear equation of 4x4, when m=2……………….……..25 

Table 4.14 A GESOR for system of linear equation of 4x4, when m=2 and  =1.05.…...25 

Table 4.15 A GJ for system of linear equation of 20x20, when m=2………………….…..26 

Table 4.16 A GGS for system of linear equation of 20x20, when m=2……………….…..27 

Table 4.17 A GESOR for system of linear equation of 20x20, when m=2 and  =1.03.…28 

 

 

 

 

 



 

vii 
 

Abstract 

 

In this study we present a survey of three generalized iterative methods for the solution of the 

system of linear equations. The study used splitting of matrix, when the matrix satisfies strictly 

diagonally dominant, symmetric and positive definite property to guarantee the efficiency of the 

three methods. The thesis shows that the generalized successive over relaxation method is more 

efficient than the generalized Gauss-Seidel method and is much more efficient than the 

generalized Jacobi method taking into account the number of iterations, the computational 

running time and level of accuracy required to converges.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

 

Nowadays the foundation of new innovations in the field of computational mathematics is due to 

the numerical methods that most widely being used to solve the equations arising in the fields of 

applied medical sciences, engineering and technology. 

 

The essence of computational science is numerical algorithm and/or computational mathematics. 

In fact, substantial effort in computational sciences has been devoted to the development of 

algorithms, the efficient implementation in programming languages, and validation of 

computational results. A collection of problems and solutions in computational science can be 

found [13,17]. 

 

Numerical analysis is the branch of mathematics concerned with the theoretical foundation of 

numerical algorithms for the solution of problems arising in scientific applications. The subject 

addresses a variety of questions ranging from the approximation of system of linear algebraic 

equations, with particular emphasis on the convergence, stability, accuracy, efficiency and 

reliability of numerical algorithms. In numerical analysis, one of the most important topics that 

can be studied is systems of linear equations. The systems are relevant for modeling and solving 

in many branches of knowledge areas such as physics, engineering, health sciences, economics 

finance and even social sciences [10]. 

 

The major factors to be considered in comparing different numerical methods are the accuracy of 

the numerical solutions and its computational time. They further indicated that it is important to 

note that the comparison of numerical methods is not so simple because their performance may 

depend on the characteristic of the problem at hand. It should also be noted that there are other 

factors to be considered such as stability, versatility, proof against run-time error, and so on 

which are being considered in most of the MATLAB built-in routines [18]. 
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Even though the various methods are being used to solve systems of linear equations, there is no 

unique method is best for all conditions. These methods are applied according to their speed and 

accuracy [12]. In addition to these, speed is a significant factor for the solution of system of 

linear equations as the volume of computation engaged is large so that the iterative methods very 

much effective regarding the time requirements and computer storage. These methods need 

fewer multiplications for huge system of equations as well as have fewer rounds off errors. 

Moreover, iterative methods are much more appropriate for the solution of system of linear 

equations when the number of equations in that system is large the iterative methods are fast and 

efficient [3]. This has encouraged many authors [3, 6, 12] to investigate the solutions of linear 

system of equations directly and indirectly. Systems of linear equations arise in a large number 

of areas directly in modeling physical situations and indirectly in the numerical solutions of the 

other mathematical models. 

 

A general linear iterative method for the solution of the system of equations  

           bAx             (1) 

(where A is the coefficient matrix, b is a column vector and x is solution vectors to be 

determined.), can be written in matrix form as  

           CHxx kk 1
          (2) 

where 
)1( kx and 

)(kx are the approximations for x at the (k+1)
th

 and k
th

 iterations respectively. H 

is called the iteration matrix which depends on A and C is a column vector, which depends on A 

and b. To solve an nxn linear system of (1) A invertible matrix and an n-vector b of nonzero, 

then the problem is to find an n-vector x, starting with an initial approximation 
)0(x to the exact 

solution x and produces a sequence of approximation  0k

kx that converges to x. That means the 

exact solution can be obtained from (1) as follows: 

       bAx 1            (3) 

Generalized iterative methods are defined as a process by which the first computed solution can 

sometimes be improved to yield a more accurate solution.  

 

Sparse systems are (1) in which large numbers of elements in the coefficient matrix are zero and 

system of this type arises frequently in numerical solution of boundary value problem. The 
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numerical methods for the solution of system of linear equation (1) are broadly classified into 

two categories: Direct methods and iterative methods. 

Generalized iterative methods [6] were continued until the residuals stabilize at or very near to 

zero. In practice one step of generalized iterative methods usually suffices if generalized iterative 

methods fail to stabilize. It is likely to have meaningful solutions cannot be obtained using 

conventional computing method. 

 

The criteria considered are convergence rate, number of iterations required, memory 

requirements and accuracy. Therefore, the purpose of this study is to distinguish the fastest 

methods among generalized iterative methods that converge to the exact solution for solving 

large systems of linear equations by taking into account their iteration number, computational 

running time, accuracy and explain the results comparing among the three methods. 

 

1.2 Statement of the Problem 

 

Mathematical models in terms of system of linear equations with iterative method are common in 

many fields of science and engineering such as mechanics, electrodynamics, physics and others 

[11]. Thus, this shows the importance and application of iterative methods to solve problems in 

real life. It is possible to use an iterative method to find the approximate solution of linear system 

of large equation that has fewer round-off errors as compared to direct methods. 

 

Thus the purpose of this study is to compare the methods that approximate linear system of 

equations with number of iteration required and computational running time has been compared 

for solving linear system of equations provide that the accuracy and efficient of numerical 

solutions. Therefore, the research tried to answer the following research questions: 

1) What are the procedures and techniques to be used in order to verify the efficiency the 

methods? 

2) Among the three methods, which one has the least computational running time? 

3) Which one of the three methods gives the most accurate results? 
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1.3 Objective of the Study 

1.3.1 General Objective 

The general objective of this study is to compare the efficiency of the generalized iterative 

methods for solving system of linear equations. 

1.3.2 Specific Objectives 

The specific objectives of the study are  

 To compute iteration numbers, computational running time and accurate numerical 

solutions of each schemes for solving systems of linear equations. 

 To compare the computational time of each method for solving system of linear 

equations. 

 To compare the accuracy of the three methods with exact solutions of system of 

equations. 

 

1.4 Significance of the Study 

The final results of this study may have the following importance: 

 It plays prominent role in approximate solution of systems of linear equations using 

numerical schemes. 

 It may give convenient results and information for students, faculty and others regarding 

iterative methods and which method is better in solving system of linear equations. 

 It may provide some background information for other researchers who want to conduct a 

research on related topics. 

Furthermore, this research would be useful for graduate program of the department and built 

the research skill and scientific communication of the researcher. 

1.5 Delimitation of the Study 

This study is solely emphasized on the numerical method for solving systems of linear equations 

that is subjected to generalized Jacobi, Generalized Gauss-Seidel and Generalized Successive 

over Relaxation method among many other indirect schemes for solving system of linear 

equations. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

 

Authors like Turner [12] faced difficulty with Gauss Elimination approach because of round off 

errors and slow convergence for large systems of equations. To get rid of these problems many 

Authors like [8] and [12] were encouraged to investigate solutions of linear equations by indirect 

methods. Most researchers deal with the iterative methods for solving linear systems of equations 

and inequalities for sparse matrices. A sparse matrix is one whose entries are mostly zero. There 

are many ways of storing a sparse matrix whichever method is chosen some form of compact 

data structure is required that avoids storing the numerically zero entries in the matrix. It needs to 

be simple and flexible so that it can be used in a wide range of matrix operations [14,19]. 

 

Various methods converge to the root at different rates. That is, some methods are slow to 

converge and it takes a long time to arrive at the root, while other methods can lead us to the root 

faster. This is in general a compromise between ease of calculation and time. The rate at which 

an iterative method converges depends greatly on the spectrum of the coefficient matrix. Hence, 

iterative methods usually involve a second matrix that transforms the coefficient matrix into one 

with a more favorable spectrum. The transformation matrix is called a preconditioner. A good 

preconditioner improves the convergence of the iterative method, sufficiently to overcome the 

extra cost of constructing and applying the preconditioner. Indeed, without a preconditioner the 

iterative method may even fail to converge [15]. The term ‘iterative method’ refers to a wide 

range of techniques that use successive approximations to obtain more accurate solutions to a 

linear system at each step. There are two major types of iterative methods. Stationary methods 

are older, simpler to understand and implement; but usually not as effective. Non-stationary 

methods are a relatively recent development; their analysis is usually harder to understand, but 

they can be highly effective [15]. 

 

The natural idea to take advantage of the zeros of a matrix and their location was initiated by 

engineers in various disciplines. In the simplest case involving banded matrices, special 

techniques are straightforward to develop. Electrical engineers dealing with electrical networks 

in the 1960s were the first to exploit sparsity to solve general sparse linear systems for matrices 
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with irregular structure. The main issue, and the first addressed by sparse matrix technology, was 

to devise direct solution methods for linear systems. These had to be economical, both in terms 

of storage and computational effort. Sparse direct solvers can handle very large problems that 

cannot be tackled by the usual ‘dense’ solvers [22].  

The matrix-by-vector product is an important operation which is required in most of the iterative 

solution algorithms for solving sparse linear systems. 

 

The major factors to be considered in evaluating/comparing different numerical methods are the 

accuracy of the numerical solution and its computational time. They further indicated that it is 

important to note that the evaluation/comparison of numerical methods is not so simple because 

their performance may depend on the characteristic of the problem at hand. It should also be 

noted that there are other factors to be considered such as stability, versatility, proof against run-

time error and so on which are being considered in most of the MATLAB built-in routines [18]. 

 

Iterative methods have traditionally been used for the solution of large linear systems with 

diagonally dominant sparse matrices. For such systems the methods of Gauss-Jacobi and Gauss-

Seidel could be used with some success, not so much because of the reduction in computational 

work, but mainly because of the limited amount of memory that is required. Of course, reduction 

of the computational work was also a serious concern, and this led Jacobi (1846) to apply plane 

rotations to the matrix in order to force stronger diagonal dominance, giving up sparsity.  Jacobi 

had to solve many similar systems in the context of eigenvalue computations [20]. 

 

Different sequential methods (derived mostly from Kalambi’s) have been proposed [8]. These 

methods only consider one equality and inequality at a time and each iterate is obtained from the 

previous iterate. Various methods have been introduced to solve systems of linear equations. 

There is no single method that is best for all situations. These methods should be determined 

according to speed and accuracy [6].  

 

The Jacobi method is one of the methods with a few computations but its rate of convergence is 

slow as compared to other iterative methods. It is also a method of solving a matrix equation 

which has non-zero element in its main diagonal. An approximate value can be obtained by 
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solving each main diagonal element. We shall continue the iteration process until it converges. 

Generalized Gauss-Seidel method is introduced by Davod K. Salkueh[4] and mentioned that this 

method is much faster than conventional Gauss-Seidel iterative method. We can use the most 

recent value in this method. It is fast and simple to use when the coefficient matrix is sparse as 

well as accuracy is developed in every iteration that is continue the iteration process until the 

relative error is less than the pre-defined tolerance Kalambi[8]. 

 

 The successive over relaxation (SOR) algorithm is a stationary iterative method for solving 

linear system of equation [5 and 7]. In his research a generalization of the successive over 

relaxation say GESOR has been proposed and its convergence properties have been discussed. 

Some numerical examples have also been taken to show the efficiency of the proposed method. 

A couple of years ago, David Khojasteh Salkueh[5] introduced an equivalent splitting which led 

to the generalized Jacobi, Gauss-Seidel and Successive over relaxation methods.  

 

In this research we have presented the indirect methods for solving large system of linear 

equations and try to find out the more efficient method for solving these systems of linear 

equations. The criteria considered are time to converge, number of iteration and memory 

requirements and accuracy for generalized Jacobi, generalized Gauss-Seidel and generalized 

Successive over Relaxation methods and compare the result of each method.  

                    2.1. Generalized Jacobi (GJ) Method  

It is an adjustment formed by splitting the coefficient matrix of bAx   from Jacobi iterative 

method [7]. It is the simplest technique to solve a system of linear equations with largest absolute 

values in each row and column dominated by the diagonal element. The Jacobi method is one of 

the methods with a few computations but its rate of convergence is slow as compared to other 

iterative methods. It is also a method of solving a matrix equation on a matrix which has non-

zero element in its main diagonal. An approximate value can be obtained by solving each main 

diagonal element. We shall continue the iteration process until it converges. It is easily derived 

by examining each of the equation in the linear system bAx  in iteration. 

As it is discussed by Ibrahim B.Kalambi [6] and  Davod K. Salkuyeh [4], that Jacobi method is 

easier method to use for determination of the n-dimensional solution vector x of linear system 



 

8 
 

but slow to converge. As Author [4, 9], introduced generalized method of Jacobi, which is more 

efficient than conventional Jacobi method. More-importantly, the order in which the equations 

are examined is irrelevant as this method treated them independently. In this method it is not 

possible to use most recently available information. But in the next step, we can use the recently 

calculated value. We shall move on until residual difference is less than predefined tolerance. 

This method is convergent when the coefficient matrix of the system of linear equations is 

diagonally dominant and that is a necessary condition for this method. 

                    2.2. Generalized Gauss -Seidel (GGS) Method  

  It is an alteration formed by splitting the coefficient matrix of  bAx   from Gauss-Seidel 

iterative method and it is mainly an iterative method used to solve a system of linear equations 

[7].  It is also a method of solving a matrix equation on a matrix that has no zeroes along its main 

diagonal. In the same manner with Gauss Seidel method, it is also an iterative method used for 

the solution of linear system of equations. This method is introduced by Davod K. Salkueh [4] 

and mentioned that this method is much faster than conventional Gauss-Seidel iterative method. 

Each and every main diagonal element is solved and an approximate value got in. Proceeding 

with the Gauss Seidel method and supposing that the equations are examined in a sequence and 

also the previously computed results are used as soon as the process over. 

Finally, we start with an initial approximation and substitute the solution in the given equation. 

We shall use the most recent value in this method. The iteration process is to be continued until 

the relative error is less than the pre-specified tolerance. It is fast and simple to use as well as 

accuracy is developed in all iteration. The Gauss-Seidel method is sometimes called the method 

of successive displacements to indicate the dependence of iterate on the order. It is a necessary 

condition for the Gauss-Seidel method to have nonzero elements on the main diagonal.  

                2.3. Generalized Successive over Relaxation (GESOR) Method  

It is a decomposition formed by coefficient matrix of eq. (1) from successive over relaxation 

iterative methods [5].We can use the most recent value in this method. It is fast, simple and 

efficient to use when the coefficient matrix is sparse. The accurate result is obtained in all 

iteration that is continuing the iteration process until the residual difference is less than the pre-

specified tolerance.      
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Choosing the value of    

If  =1, then SOR  method simplifies to the Gauss-Seidel method. A theorem due to Kahan [20] 

shows that SOR fails to converge if   is outside the interval (0,2). Though technically the term 

under-relaxation should be used when 0<  <1, for convenience the term over-relaxation is now 

used for any value of 1< <2.  

In general, it is not possible to compute in advance the value of   that is optimal value for  , the 

expense of such computation is usually prohibitive [15]. 

If the coefficient matrix A is symmetric and positive definite, the SOR iteration is guaranteed to 

converge for any value of   between 0 and 2, though the choice of   can significantly affect the 

rate at which the SOR iteration converges. Sophisticated implementations of the SOR algorithm 

employ adaptive parameter estimation schemes to try to home in on the appropriate value of   

by estimating the rate at which the iteration is converging. In principle, given the spectral radius 

  of the Jacobi iteration matrix, one can determine a priori the theoretically optimal value   for 

SOR opt =
211

2


[15]. 

This is seldom done, since calculating the spectral radius of the Jacobi matrix requires an 

impractical amount of computation [7, 15]. 

It was noted that the method will converge if and only if the spectral radius of the iteration 

matrix )(H <1, and the smaller the spectral radius, the faster the convergence. Analysis of the 

residual vectors of the Gauss-Seidel technique leads to the SOR iterative method which involves 

a parameter   to speed convergence [16]. 

The linear system problem of the form (1) where A is an n×n nonsingular matrix, b is an n-vector 

and x is an n-vector expected to be found. As Davod K. Salkuyeh[5] stated that successive over 

relaxation method is convergent for the symmetric positive definite (SPD) matrices if 0< <2 

and   be a fixed parameter. The results shown by [6 and 8] proved that the successive over- 

relaxation method is faster than the Gauss Seidel and Jacobi methods because of its performance, 

number of iterations required to converge and level of accuracy. 
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                                           CHAPTER THREE 

METHODOLOGY 

 

3.1 Study Area and Period 

The study was conducted in Jimma University college of Natural Sciences Department of 

Mathematics in 2014/15 academic year. It focused on comparison of generalized iterative 

method for solving systems of linear equations. 

3.2 Study Design 

The study was used documentary analysis and experimental result that obtained by MATLAB 

software program for the linear system of equations. All algorithms were made in the same 

condition, which use the same type of processor, having the same memory size, the same 

operating system, and using the same equation .The processor used is Intel(R) core (TM) i3-

4005U CPU @1.70GHZ 1.70GHz with 4GM memory (RAM), with the 64-bit operating system 

(windows 8.1 home premium) x64-based processor. The language program used is MATLAB 

version 7.6.0.324(R2008a). 

3.3 Source of Information  

The data was collected from the relevant source of information to achieve the objective of the 

study and experimental results were obtained by using MATLAB software program and using 

the input variables to compare the result of each method. 

3.4 Study Procedures 

Important materials and data for the study were collected using documentary analysis as an 

instrument. In order to achieve the intended objectives we followed the following mathematical 

steps. 

 1
st
 splitting the coefficient matrix of eq. (1) of order n and  expressing it as 

mmm FETA             (4)  

         Where Em and Fm are strictly lower and strictly upper triangular matrix of order n 

            respectively and  Tm= Diagonal matrix of order n.(aij≠0;i= j ) 
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 2
nd

 deriving the iterative formula of each method. 

  3
rd

   deriving  Iterative  generalized  formula of each method  

 4
th

 selecting the initial guess and inserting into the 3
rd

 formula. 

 5
th

    Continue the iteration process until residual difference is less than the pre-  

              defined tolerance. 

 6
th

 possible conclusions and recommendations have been drawn. 

3.5 Ethical Consideration 

 

Regarding the ethical issue, official letters were taken from concerned body in order to get the 

existing materials such as books, journals and published articles from the library and lab of the 

nearby University 
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                     CHAPTER FOUR 

                     RESULTS AND DISCUSSION 

4.1 Preliminary  

Consider the linear system of equations 

                bAX                    (5) 

  where the matrix A      and x,b    

Let A be a non-singular matrix with non-zero diagonal entries and ULDA  , where D is the 

diagonal of A, -L its strictly lower part and –U its strictly upper part of A [1]. 

Then the Jacobi, Gauss-Seidel and Successive over Relaxation methods for solving equation (5) 

are defined as follows: 

  bDXULDX kk 111 )(              (6)                       

bLDUXLDX kk 111 )()(           (7) 

bLDXUDLDX kk 111 )())1(()(         (8) 

     where       is a fixed parameter, respectively. 

Definition 4.1 An nxn matrix A is strictly diagonally dominant if the absolute value of each 

entry on the main diagonal is greater than the sum of the absolute values of the other entries.  

That is, |aii|>      
 
       , i=1, 2, 3, …, n[16]. 

Definition 4.2 The splitting matrix A=M-N is called i) regular if                

                                                               ii) Weak regular if                   

                                                              iii) Convergent splitting if               

Definition 4.3 Let A, M, N be three given matrices satisfying A=M-N. The pair of matrices M, 

N is a regular splitting of A, if M is nonsingular and M
-1

and N is nonnegative. 

Definition 4.4 The spectral radius  (A) of a matrix A is defined by the maximum modulus of

, where  is an eigenvalue of A. (For complex  i , we define | |= 2

1

22 )(   ). 

Definition 4.5 A matrix A is said to be an M-matrix if it satisfies the following four properties: 

i) 0iia for i=1,2,3,…,n. 

ii) 0, jia for i j, i,j=1,2,3,…,n. 

iii) A is nonsingular. 
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iv) 01 A  

Definition 4.6. An nxn matrix is called a band matrix if integers p and q, with 1<p,q<n, exist 

with the property that 0ija  whenever ijp  or jiq  . The band width of a band matrix is 

defined as w=p+q-1[16]. 

Definition 4.7 A matrix A is positive definite if it is symmetric and if 0Axxt

for every n-

dimensional vector 0x . 

Definition 4.8 An nxn matrix A convergent if 0)(lim 


ij

k

k
A , for each i=1,2,3,…,n and 

j=1,2,3,…,n  

Corollary If H is a weak diagonally dominant matrix, then the methods of generalized SOR and 

generalized Jacobi converges for 0      

4.2 Generalized Iterative Methods  

Let A=(aij) be an nxn matrix and Tm=(tij) be a banded matrix of bandwidth 2m+1 defined as 

              tij= 
              

            
  

We consider the decomposition A=Tm-Em-Fm where –Em and –Fm are the strict lower and strict 

upper part of the matrix A-Tm, respectively. In other words matrices Tm , Em and Fm are defined 

as follows. Tm=

 

  
 

           

   
      

 
      

       

  
              

  
 

, Em=        

 
     

 
          

 , 

Fm= 
             

  
         

 . 

Then the Generalized Jacobi, Generalized Gauss-Seidel and Generalized Successive over 

relaxation methods are defined as  

bTXFETX m

K

mmm

K 111 )(    

bETXFETX mm

K

mmm

K 111 )()(    

bETXFTETX mm

K

mmmm

K 111 )())1(()(     
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Iterative methods are very important to solve systems of linear equations. But all methods are not 

suitable for some of the equations due to certain conditions. For these reason the study confirm 

by taking some counter examples that justify the pre-stated criteria. Under these section the study 

have found how to drive the formulae for stationary iterative methods and special emphasis on 

generalized iterative methods.  

 4.2.1 Generalized Jacobi Method 

It can be derived from the concept of conventional Jacobi method through regular splitting of the 

coefficient matrix. The derivation of the method can be illustrated as follows: The coefficient 

matrix of equation (1) above can be written as .mmm FETA   

Then Ax=b becomes after substitution of A takes place 

                   bxFET mmm  )(  

              bxFET mmm  ))((  

             bxFExT mmm  )(  

             bxFExT mmm  )(  

            bTxFETx m

k

mmm

k 111 )(
                         (9) 

Where )(
1

mmm FET 


and bTm

1
 are an iteration matrix and a column vector of the generalized 

Jacobi respectively.  

4.2.2 Generalized Gauss-Seidel Method 

It is formed from the stationary iterative method (which is called Gauss-Seidel) through regular 

splitting of the coefficient matrix and where the matrix is sparse. 

We can derive the formula using either the forward or backward Gauss-Seidel methods. Now let 

use only the forward Gauss-Seidel method for the derivation of the method. 

Here the equation Ax=b and then after substitution and certain manipulation the formula looks 

like as follows: 

                           b)xFE(T mmm 
 

                        
b)xF)E((T mmm 

 

                       
bxF)xE(T mmm 

 

                       
bxF)xE(T mmm 
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b)E(TxF)E(Tx 1

mmm

1

mm

 
 

                      b)E(TxF)E(Tx 1

mm

k

m

1

mm

1k     (10)
 

where m

1

mm F)E(T 
 and 

b)E(T 1

mm


 are an iteration matrix and a column vector for 

Generalized Gauss-Seidel respectively. 

4.2.3 Generalization of Successive over Relaxation Method 

We can multiply the original equation (1) by a fixed parameter   to form the following equation:  

              ωbωAx  . After the decomposition of the left hand side term, we have 

                 mmm ωFωEωTωA   

By back substitution, it becomes 

              bxFET mmm   )(  

            bxFETTT mmmmm   )(  

         bxFTTET mmmmm   )(  

         bxFTTET mmmmm   ))()((  

         bxFTET mmmm   )))1(()((  

         bxFTxET mmmm   ))1(()(  

        bxFTxET mmmm   ))1(()(  

        bETxFTETx mmmmmm

11 )())1(()(         

         bETxFTETx mm

k

mmmm

k 111 )())1(()(        (11) 

Where ))1(()( 1

mmmm FTET   
 and bET mm

1)(   are an iteration matrix and a column 

vector of the generalized successive over relaxation method respectively. 

Theorem 4.1 Let A be strictly diagonally dominant (SDD) matrix. Then for any natural number 

m n the generalized Jacobi and generalized Gauss-Seidel methods are convergent for any initial 

guess x0. 

   Proof: see [4]  

Theorem 4.2 Let A and Tm be SPD matrices. Then for every 0<    , the GESOR method 

converges with any initial guess x0. 

  Proof: see [5]. 
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4.3 Results 

In order to compare the efficiency of the three methods, we were considering the three examples 

Example 4.1: consider the 4x4 system given by:

   

 

            
642

425

83

74

43

4321

321

321









xx

xxxx

xxx

xxx

                                                         

   Example 4.2 consider the 6x6 system given by:  

   

04

04

04

04

04

14

653

6542

541

632

5321

421













xxx

xxxx

xxx

xxx

xxxx

xxx
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 Example 4.3 :Consider the 20x20 system given by:                                      

08

18

14

04

14

18

08

18

010

15

05

110

18

18

08

14

04

14

18

08

201814

191713

20181612

19171511

18161410

1715139

201614128

191513117

181412106

17131195

16121084

11973

1410862

139751

12864

11753

10642

9531

842

731









































xxx

xxx

xxxx

xxxx

xxxx

xxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxxx

xxxx

xxxxx

xxxxx

xxxx

xxxx

xxxx

xxxx

xxx

xxx

                   

 

Based on the above three examples, we have made analysis separately using tables below to 

compare the efficiency of the three generalized iterative methods that suits to find the solution of 

system of linear equations. 
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Table 4.1: Numerical solution of Example 4.1 for m=1 by GJ method. 

K kX1  
kX 2  

kX 3  kX 4  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

0.0000000000000 

1.3000000000000 

0.9100000000000 

1.0270000000000 

0.9919000000000 

1.0024300000000 

0.9992710000000 

1.0002187000000 

0.9999343900000 

1.0000196830000 

0.9999940951000 

1.0000017714700 

0.9999994685590 

 

0.00000000000000 

1.80000000000000 

2.06000000000000 

1.98200000000000 

2.00540000000000 

1.99838000000000 

2.00048600000000 

1.99985420000000 

2.00004374000000 

1.99998687800000 

2.00000393660000 

1.99999881902000 

2.00000035429400 

0.0000000000000 

-1.3000000000000 

-0.9100000000000 

-1.0270000000000 

-0.9919000000000 

-1.0024300000000 

-0.9992710000000 

-1.0002187000000 

-0.9999343900000 

-1.0000196830000 

-0.9999940951000 

-1.0000017714700 

-0.9999994685590 

0.00000000000000 

2.15000000000000 

1.95500000000000 

2.01350000000000 

1.99595000000000 

2.00121500000000 

1.99963550000000 

2.00010935000000 

1.99996719500000 

2.00000984150000 

1.99999704755000 

2.00000088573500 

1.99999973427950 

Exact 

Solution 

1.0000000000000 2.00000000000000 -1.0000000000000 2.00000000000000 

     

Error 0.0000005314410 0.00000035429400 0.00000053144100 0.00000026572050 

 

Number of iteration=12                         Elapsed Time is 0.002405 seconds      

Table 4.2: Numerical solution of Example 4.1 for m=1 by GGS method. 

K kX1  
kX 2  

kX 3  kX 4  

0 

1 

2 

3 

4 

5 

6 

 

Exact 

Solution 

 

Error 

0.000000000000000 

1.268292682926830 

1.013087447947650 

1.000638412095007 

1.000031142053415 

1.000001519124557 

1.000000074103637 

 

1.000000000000000 

 

 

0.000000074103637 

0.000000000000000 

1.926829268292683 

1.996430696014278 

1.999825887610453 

1.999991506712705 

1.999999585693303 

1.999999979789918 

 

2.000000000000000 

 

 

0.000000020210082 

0.000000000000000 

-0.95121951219512 

-0.99762046400908 

-0.99988392507363 

-0.99999433780847 

-0.99999972379553 

-0.99999998652661 

 

-1.00000000000000 

 

 

0.000000013473388 

0.000000000000000 

1.975609756097561 

1.998810232004759 

1.999941962536818 

1.999997168904235 

1.999999861897768 

1.999999993263306 

 

2.000000000000000 

 

 

0.000000006736694 

     

Number of iteration=6                                    Elapsed Time is 0.001748seconds                        
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Table 4.3: Numerical solution of Example 4.1 for m=1 and 01.1 by GESOR method. 

K kX1  
kX 2  

kX 3  kX 4  

0 0 0 0 0 

1 1.280663252865155 1.947346988539381 -0.9572957815167 1.99364789075835 

2 1.008831469548973 1.997105382472240 -0.9990523830343 1.99937619151715 

3 1.000170578801981 1.999950465320743 -0.9999860252357 1.99999451261789 

4 1.000002122119229 1.999999298229650 -0.9999999031918 1.99999993659591 

5 1.000000005527705 1.999999997798376 -1.0000000018771 2.00000000108858 

Exact 

Solution 

1.000000000000000 2.000000000000000 -1.0000000000000 2.00000000000000 

Error 0.000000005527705 0.000000002201624 0.00000000187716 0.00000000108858 

Number of iteration=5                                     Elapsed time is 0.001556 seconds 

 

 Table 4.4: Numerical solution of Example 4.2 for m=1 by GJ method. 

k=13 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 

kx1  

kx2  

 

kx3  

kx4  

kx5  

kx6  

0.294823825778    0.29482401656    0.00000019079  

 

 

 

0.003542 

Seconds 

 

 

 

 

13 

0.09316743276    0.09316770186 0.0000002691 

0.02815716010 0.02815734989    0.00000018979 

0.08612787035 0.08612836439 0.00000049404 

0.04968874517 0.04968944099 0.00000069583 

0.01946120766 0.01946169772 0.00000049007 
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Table 4.5: Numerical solution of Example 4.2 for m=1 by GGS method. 

K=7 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 

kx1  

kx2  

kx3  

kx4  

kx5  

kx6  

0.29482382577    0.294824016563 0.0000001908  

 

 

0.001660 

Seconds 

 

 

 

7 

 0.09316743276 0.093167701863 0.0000002691 

0.02815716010 0.028157349896 0.0000001898 

0.08612829068 0.086128364389 0.0000000737 

0.04968933692    0.049689440994 0.0000001041 

0.01946162426 0.019461697723    0.0000000734 

 

 

 

Table 4.6: Numerical solution of Example 4.2 for m=1 and 05.1  by GESOR method.     

K=5 Approximate 

solution 

Exact solution Error CPU 

time 

Number of 

iteration 

kx1  

kx2  

kx3  

kx4  

kx5  

kx6  

0.29482413940709 0.294824016563147 0.000000122843949  

 

0.001369 

seconds 

 

 

 

5 

0.09316780786102 0.093167701863354 0.000000105997669 

0.02815738885926 0.028157349896480 0.000000038962781 

0.08612838704386 0.086128364389234 0.000000022654633 

0.04968946667164 0.049689440993789 0.000000025677854 

0.01946169962483 0.019461697722567 0.000000001902270 
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Table 4.7: Numerical solution of Example 4.3 for m=1 by GJ method.    

K=20 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 

kx1  

kx2  

kx3  

kx4  

kx5  

kx6  

kx7  

kx8  

kx9  

kx10  

kx11  

kx12  

kx13  

kx14  

kx15  

kx16  

kx17  

kx18  

kx19  

kx20  

 

-0.00133333011505  -0.00133364508583   0.00000031497078  

 

 

 

 

 

0.009624

seconds 

 

 

 

 

 

 

20 

-0.11532115886985   -0.11532109044523    0.00000006842462 

0.17111888081877    0.17111900750313 0.00000012668436 

-0.03118181450736   -0.03118201312238   0.00000019861502 

  -0.2244205597255   -0.22442166064402   0.00000110091845 

0.01210809919268 0.01210819483583 0.00000009564315 

-0.18178824913392   -0.18178816818980   0.00000008094411 

0.10861342021945 0.10861328956049 0.00000013065896 

-0.08976822389022   -0.08976866425760   0.00000044036738 

-0.02151540340354   -0.02151515688014    0.00000024652339 

0.11298236287965 0.11298251811057 0.00000015523092 

0.01943441318971 0.01943428224860 0.00000013094111 

-0.13878085966321   -0.13878137553097   0.00000051586776 

-0.00636576065796   -0.00636563102650    0.00000012963145 

0.09866672194731 0.09866678139961 0.00000005945230 

-0.20444106200084   -0.20444134308744   0.00000028108660 

0.01788507713670 0.01788429098550 0.00000078615119 

0.21011521060115 0.21011541555686    0.00000020495570 

-0.14011217999367   -0.14011213556818    0.00000004442549 

0.02546880398538 0.02546872306629   0.00000008091909 

 

      



 

22 
 

Table 4.8: Numerical solution of Example 4.3 for m=1 by GGS method. 

K=11 Approximate 

solution 

Exact solution Error CPU 

time 

Iteration 

number 

kx1  

kx2  

kx3  

kx4  

kx5  

kx6  

kx7  

kx8  

kx9  

kx10  

kx11  

kx12  

kx13  

kx14  

kx15  

kx16  

kx17  

kx18  

kx19  
kx20  

-0.00133310687998   -0.00133364508583   0.0000005382058  

 

 

 

 

 

 

 

 

 

 

0.004641 

seconds 
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-0.11532136080792  -0.11532109044523    0.000000270362691 

0.171120038756722 0.171119007503133   0.00000103125358 

-0.03118248665115 -0.03118201312238 0.000000473528769 

-0.22442078790579    -0.22442166064402 0.00000087273823 

0.012107998420790 0.012108194835839 0.000000196415049 

-0.18178782074355 -0.18178816818980 0.00000034744625 

0.108613053525004 0.108613289560494 0.000000236035490 

-0.08976838895831 -0.08976866425760 0.00000027529929 

-0.02151549280641 -0.02151515688014 0.000000335926270 

0.112982957798164 0.112982518110579 0.00000043968758 

0.019434158347163 0.019434282248605 0.000000123901442 

-0.13878121286431 -0.13878137553097   0.00000016266666 

-0.00636576105504 -0.00636563102650 0.000000130028535 

0.098666903888315 0.098666781399615   0.00000012248870 

-0.20444153705961 -0.20444134308744 0.000000193972163 

0.017884464354587 0.017884290985503 0.00000017336908 

0.210115314004927 0.210115415556863 0.000000101551936 

-0.14011209356371 -0.14011213556818 0.00000004200446 

0.025468694118736 0.025468723066295 0.000000028947559 
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  Table 4.9: Numerical solution of Example for m=1 and 10.1 by GESOR method.   

 

K=9  Approximate 

solution 

Exact solution Error CPU 

time 

Number of 

iteration 

kx1  

kx2  

kx3  

kx4  

kx5  

kx6  

kx7  

kx8  

kx9  

kx10  

kx11  

kx12  

kx13  

kx14  

kx15  

kx16  

kx17  

kx18  

kx19  

kx20  

-0.0013335292030 -0.0013336450858 0.000000115882736  

 

 

 

 

 

 

 

0.003115 

seconds 

 

 

 

 

 

 

 

9 

-0.1153212872656 -0.1153210904452 0.00000019682041 

0.17111924071816 0.17111900750313 0.00000023321502 

-0.0311820265037 -0.0311820131223 0.00000001338134 

-0.2244216855862 -0.2244216606440 0.00000002494219 

0.01210818674904 0.01210819483583 0.00000000808679 

-0.1817881080576 -0.1817881681898 0.00000006013213 

0.10861315942108 0.10861328956049 0.00000013013940 

-0.0897686272108 -0.0897686642576 0.00000003704679 

-0.0215151576599 -0.0215151568801 0.00000000077977 

0.11298251882914 0.11298251811057 0.00000000071856 

0.01943426176103 0.01943428224860 0.00000002048757 

-0.1387813659355 -0.1387813755309 0.00000000959542 

-0.0063656720146 -0.0063656310265 0.00000004098817 

0.09866679015170 0.09866678139961 0.00000000875209 

-0.2044413264383 -0.2044413430874 0.00000001664907 

0.01788429192279 0.01788429098550 0.00000000093729 

0.21011540580160 0.21011541555686 0.00000000975526 

-0.1401121348467 -0.1401121355681 0.00000000072139 

0.02546871832848 0.02546872306629 0.00000000473781 
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Table 4.10: The consolidation of the above result for each iterative method can be 

summarized as follows: 

Methods                                                  Order of matrices 

        Example 4.1          Example 4.2              Example 4.3 

Number of 

iteration 

CPU time 

(seconds) 

Number of 

iteration 

CPU time 

(seconds) 

Number of 

iteration 

CPU time 

(seconds) 

GJ 12 0.002405 13 0.003542 20 0.009624 

GGS 6 0.001748 7 0.001660 11 0.004641 

GESOR 5 0.001556 5 0.001369 9 0.003115 

Table 4.11: As varying   for Generalized Successive over Relaxation method  

Parameter  

( ) 

        Example 4.1     Example 4.2         Example 4.3 

Number of 

iteration 

CPU time 

(sec) 

Number of 

iteration 

CPU time 

(sec) 

Number of 

iteration 

CPU time 

(sec) 

1.01 5 0.01213 7 0.00717 11 0.0102 

1.05 10 0.01306 5 0.01291 10 0.0136 

1.1 8 0.00728 6 0.01239 9 0.0241 

1.25 11 0.00580 9 0.00842 12 0.0146 

1.5 22 0.00651 18 0.00708 20 0.0106 

1.9 143 0.03871 110 0.01954 120 0.0524 

In the above tables we took m=1 for the generalized iterative methods while in the next tables 

we have considered m=2 for the first and the third examples to compare the generalized 

iterative methods. 

Table 4.12: Numerical solution of Example 4.1for m=2 by GJ method. 

K=20 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  0.9999997914591 1.0000000000000 0.000000208540   

kx2  2.000000900410 2.000000000000 0.00000090041 0.011943 

seconds 

20 

kx3  -0.999997650535 -1.000000000000 0.00000234946   

kx4  1.999998759486 2.000000000000 0.000001240513   
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Table 4.13: Numerical solution of Example 4.1 for m=2 by GGS method. 

K=11 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  0.999999598820704    1.00000000000000 0.0000004011792   

kx2  2.000000265837072 2.00000000000000  0.000000265837 0.002185 

seconds 
11 

kx3  -0.99999994780206 -1.0000000000000 0.000000052197   

kx4  1.99999997390103 2.00000000000000  0.000000026098   

 

Table 4.14: Numerical solution of Example 4.1 for m=2 and w=1.05 by GESOR method. 

K=10 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  1.0000002116546 1.000000000 0.000000211654   

kx2  2.0000000468825 2.000000000 0.000000046882 0.001827 

seconds 
10 

kx3  -0.999999876757 -1.00000000 0.000000123242   

kx4  1.9999999420243 2.000000000 0.000000057975   
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Table 4.15: Numerical solution of Example 4.3 for m=2 by GJ method.      

 

 

 

 

 

K=12 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  -0.0006862618400   -0.000686315734   0.0000000538946   

kx2  -0.1153209800858   -0.115321090445  0.0000001103593   

kx3  0.1745024793015    0.1745021816595   0.0000002976420   

kx4  -0.031181567382   -0.031182013122  0.0000004457400   

kx5  -0.222379923148   -0.222380528546   0.0000006053979   

kx6  0.0121083093752    0.0121081948358  0.0000001145393   

kx7  -0.179992538592   -0.179992707536   0.0000001689443   

kx8  0.10861333261270    0.1086132895604   0.00000004305221   

kx9  -0.0789243949337   -0.0789244290809  0.00000003414719   

kx10  -0.0215151030750  -0.0215151568801   0.00000005380508   

kx11  0.11596841267469    0.11596841169204   0.00000000098265   

kx12  0.01943432353755    0.01943428224860   0.00000004128894 0.023709 

seconds 

12 

kx13  -0.1379503503902   -0.1379503869322   0.00000003654196   

kx14  -0.00636549282870   -0.00636563102650   0.000000138197804   

kx15  0.100277964148688    0.100277823375814   0.000000140772874   

kx16  -0.20444085911538   -0.20444134308744  0.000000483972065   

kx17  0.019097961385033    0.019097403019697   0.000000558365336   

kx18  0.210115655185792    0.210115415556863   0.000000239628930   

kx19  -0.13985648530596   -0.13985662298906  0.000000137683100   

kx20  0.025468770087164    0.025468723066295   0.000000047020870   
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Table 4.16: Numerical solution of Example 4.3 for m=2 by GGS method.      

K=7 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  -0.0013336033244   -0.001333645085   0.0000000417613   

kx2  -0.1153209919656   -0.115321090445   0.0000000984795   

kx3  0.17111907732570    0.17111900750313  0.00000006982257   

kx4  -0.0311816827500  -0.0311820131223   0.00000033037230   

kx5  -0.2244215388420   -0.2244216606440   0.00000012180198   

kx6  0.01210828468823    0.01210819483583   0.00000008985239   

kx7  -0.1817881318420   -0.1817881681898   0.00000003634772   

kx8  0.10861335655591    0.10861328956049   0.00000006699542   

kx9  -0.0897686483193   -0.0897686642576   0.00000001593823   

kx10  -0.0215149929446   -0.0215151568801   0.00000016393552   

kx11  0.11298257132265    0.11298251811057  0.00000005321207 0.030295 

Seconds 

7 

kx12  0.01943432888820    0.01943428224860   0.00000004663960   

kx13  -0.1387813600971   -0.1387813755309  0.00000001543386   

kx14  -0.0063656042465   -0.0063656310265   0.00000002677999   

kx15  0.09866678728988    0.09866678139961   0.00000000589027   

kx16  -0.2044412886729   -0.2044413430874  0.00000005441446   

kx17  0.01788430673558    0.01788429098550   0.00000001575008   

kx18  0.21011544249920    0.21011541555686   0.00000002694234   

kx19  -0.1401121316701   -0.1401121355681   0.00000000389799   

kx20  0.025468729781587    0.025468723066295   0.000000006715292   
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Table 4.17: Numerical solution of Example 4.3 for m=2 and w=1.03 by GESOR method.    

K=6 Approximate 

solution 

Exact solution Error CPU time Number of 

iteration 
kx1  -0.0006863075062 -0.0006863157346   0.00000000822839   

kx2  -0.1153210326422   -0.1153210904452   0.00000005780301   

kx3  0.17450222042481  0.17450218165952  0.00000003876528   

kx4  -0.0311817956431 -0.0311820131223   0.00000021747925   

kx5  -0.2223804860301   -0.2223805285463   0.00000004251619   

kx6  0.01210825303437    0.01210819483583   0.00000005819853   

kx7  -0.1799926979330   -0.1799927075367   0.00000000960368   

kx8  0.10861332560843    0.10861328956049   0.00000003604793   

kx9  -0.0789244219632   -0.0789244290809   0.00000000711769   

kx10  -0.0215150754251   -0.0215151568801   0.00000008145496   

kx11  0.11596842695200    0.11596841169204   0.00000001525996   

kx12  0.0194343057474    0.0194342822486   0.00000002349886   

kx13  -0.1379503831359   -0.1379503869322   0.00000000379629 0.014545 

seconds 

6 

kx14  -0.00636561889635   -0.00636563102650   0.000000012130142   

kx15  0.100277824726188    0.100277823375814   0.000000001350374   

kx16  -0.20444132201148   -0.20444134308744  0.000000021075960   

kx17  0.019097406575542    0.019097403019697   0.000000003555845   

kx18  0.210115425720413    0.210115415556863   0.000000010163550   

kx19  -0.13985662220482   -0.13985662298906  0.000000000784247   

kx20  0.025468725531536    0.025468723066295   0.000000002465242   
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4.4 Discussion  

 

As Ibrahim B. Kalambi[6] result shows that the Successive Over-Relaxation method is more 

efficient than the other two iterative methods(Jacobi and Gauss-Seidel), considering their 

performance, using parameters as time to converge, number of iterations required to converge, 

storage and level of accuracy.  

According  to Davod Khostajeh Salkuyeh[4 and 5] illustrated in his work the generalized Jacobi, 

generalized Gauss-Seidel and generalized Successive Over-Relaxation method are more efficient 

than the conventional Jacobi, Gauss-Seidel and Successive Over-Relaxation methods 

respectively for solving the solution of system of linear equations. 

In this research, the researcher have obtained the result based on three practical examples to 

compare the efficiency of the three generalized iterative methods taking into account their 

performance, number of iteration required to converge, computational running time it takes to 

converge(in seconds) and level of accuracy having the same tolerance factor. The results 

obtained in the Tables above have been discussed as follows: in Table 4.1 generalized Jacobi has 

registered the number of iteration required (12) and time it takes (0.002405) for 4x4 system of 

linear equation considered. In Table 4.2 generalized Gauss-Seidel has registered the number of 

iteration required (6) and time it takes to converge (0.001748) for 4x4 system of linear equation. 

In Table 4.3 generalized Successive over Relaxation has registered the number of iteration 

required (5) and time it takes to converge (0.001556) for 4x4 system of linear equation. In Table 

4.4 generalized Jacobi has registered the number of iteration required (13) and time it takes to 

converge (0.003542) for 6x6 system of linear equation. In Table 4.5 generalized Gauss-Seidel 

has registered the number of iteration required (7) and time it takes to converge (0.001660) for 

6x6 system of linear equation. In Table 4.6 generalized Successive over Relaxation has 

registered the number of iteration required (5) and time it takes to converge (0.001369) for 6x6 

system of linear equation. In Table 4.7 generalized Jacobi has registered the number of iteration 

required (20) and time it takes to converge (0.009624) for 20x20 system of linear equation. In 

Table 4.8 generalized Gauss-Seidel has registered the number of iteration required (11) and time 

it takes to converge (0.004641) for 20x20 system of linear equation. In Table 4.9 generalized 

Successive over Relaxation has registered the number of iteration required (9) and time it takes 

to converge (0.003115) for 20x20 system of linear equation. If we observe table 4.1, table 4.2 

and table 4.3 for m=1 and if we compare these with table 4.12, table 4.13 and table 4.14 for m=2 

the result shows the efficiency of the generalized iterative method is good when m=1. On the 
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other hand table 4.7, table 4.8 and table 4.9 which is the approximation value of the generalized 

iterative methods for m=1 and if we compare respectively with the results of table 4.15, table 

4.16 and table 4.17 which is for the value of m=2 it shows that the efficiency of the generalized 

iterative method is more efficient when m=2.  
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

We have presented the three generalized iterative methods for solving system of linear equations 

and these are generalized Jacobi method, generalized Gauss-Seidel method and generalized 

Successive over Relaxation method. Three model examples are considered: 4x4, 6x6 and 20x20 

systems of linear equation. The study was treated the three methods in different perspective. The 

first mechanism to compare their efficiency is in terms of the iteration number required to 

converge. The second way of comparing the three methods are based on the error obtained from 

the difference between exact solution and approximate solution having in mind pre-specified 

tolerance (5x10
-6

) and finally the three methods have been compared in computational running 

time while calculating the given system of linear equations. The number of iteration required and 

the time it takes to converge for the generalized Jacobi method, the generalized Gauss-Seidel 

method and the generalized Successive over Relaxation method respectively are 12 and 

0.002405 seconds, 6 and 0.001748seconds and 5 and 0.001556seconds for order of 4x4, 13 and 

0.003542seconds, 7 and 0.001660seconds and 5 and 0.001369seconds for order of 6x6, and 20 

and 0.009624seconds, 11 and 0.004641seconds and 9 and 0.003115seconds for order of 20x20.  

The obtained results shows that the generalized successive over relaxation method is more 

efficient than generalized Gauss-Seidel method and is much more efficient than the generalized 

Jacobi method with their performance, number of iteration required, computational running time 

and level of accuracy should be taken into account for each examples.                         

5.2 Future Works  

The results under Table 4.11 show that for different value of   GESOR gives the approximation 

at different iteration steps, different computational time. In the future work it is recommendable 

to calculate its optimal parameter.  
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