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Abstract 

The performances of Runge-Kutta and Adams-Bashforth-Moulton methods were compared by 

considering first order ordinary differential equations using the MATLAB software. For this 

purpose three major programs were coded for RK4, ABM, and MABM and run using the 

MATLAB software. This is done by varying the step length M and sketching graphs of 

computation time. For the comparison of accuracy, relative errors have been calculated for each 

first order ordinary differential equations and represented by graphs. Moreover the effectiveness 

of modifiers in the Adams-Bashforth-Moulton method has been validated. The result of this 

research show that ABM method is the most efficient method for first order ODE but in terms of 

accuracy there is no one best method among RK4, ABM, and MABM. So it is not possible to 

make generalizations. But it is possible to conclude that the performance of a given method 

depend on the characteristics of the ODEs we are considering. Regarding the modifiers in the 

corrector and predictor formulas of the ABM method, they are effective in improving the 

accuracy of ABM method in most cases but this doesn’t work for some problems due to the 

stiffness of the problem and instability of the modifier in the corrector step. Future experiments 

can be done by increasing the types of numerical methods and extending the first order ODEs in 

to higher order.  

 

 

 

 

 

 

 



 
 

CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

Due to the advancements in the field of computational mathematics, numerical methods are most 

widely being utilized to solve the equations arising in the fields of applied medical sciences, 

engineering and technology. 

There are several numerical methods to solve differential equations related to the initial value 

problem, that is the single-step methods and the multiple-step methods (Chapra and Canale, 

1989). 

Many contributions have been made in the area of numerical methods for ordinary differential 

equations. By contrast, relatively little has been done assessing the merits of various methods in 

a reasonably definitive way. In assessing the merits of various methods, we need to consider the 

problem to be solved, methods to be considered, and comparison criteria (Hull et al., 1972).  

The major factors to be considered in comparing different numerical methods are the accuracy of 

the numerical solution and its computation time (Bedet et al., 1975). They further indicated that 

it is important to note that the comparison of numerical methods is not so simple because their 

performances may depend on the characteristic of the problem at hand. It should also be noted 

that there are other factors to be considered, such as stability, versatility, proof against run-time 

error, and so on which are being considered in most of the MATLAB built-in routines (Yang et 

al., 2005). 

Performance actually depends on several factors: the computation time taken for one iteration of 

the algorithm, the time step for one iteration which represents the time discretization required to 

reach a given accuracy or numerical stability for a given method, the desired accuracy of the 

method, the numerical stability of the method which also limits the time step for a given method 

(Volino and Magnenat-Thalmann, 2000). They further indicated that accuracy increases along 

with time step reduction as better as the method is high-order. 

 



 
 

In our case the methods selected are the explicit Runge-Kutta method of fourth order which is a 

single step method and Adams-Bashforth-Moulton predictor corrector method of fourth order 

which is a multistep method. The methods selected are among the best methods available (Hull 

et al., 1972). 

Runge-Kutta method of fourth order is used to approximate the solution of the initial value 

problem 𝑦 ′ = 𝑓 𝑥, 𝑦  with 𝑦 𝑎 = 𝑦0 over [a, b] with step length h is given as follows: 

 1           𝑦𝑘+1 =  𝑦𝑘 + 
ℎ

6
(𝑘1 + 2𝑘2 +  2𝑘3 + 𝑘4 )  

Where 

𝑘1 = ℎ𝑓 𝑥𝑖 ,  𝑦𝑖 ,  𝑘2 = ℎ𝑓  𝑥𝑖 +  
ℎ

2
,  𝑦𝑖 +  

𝑘1

2
 ,  𝑘3 = ℎ𝑓  𝑥𝑖 +  

ℎ

2
,  𝑦𝑖 +  

𝑘2

2
 , 𝑎𝑛𝑑  𝑘4 =

ℎ𝑓 𝑥𝑖  +  ℎ,  𝑦𝑖  +   𝑘3   

Each Runge-Kutta methods are derived from an appropriate Taylor method in such a way that 

the final global error is of order 𝑂 ℎ𝑁  (Mathews. et al., 2004). In this method several function 

evaluations is performed at each step and eliminate the necessity to compute the higher 

derivatives. These methods can be considered for any order N. 

The Runge-Kutta method of order N = 4 is most popular. It is a good choice for common 

purposes because it is quite accurate, stable, and easy to program. Hence it is not necessary to go 

to a higher-order method because the increased accuracy is offset by additional computational 

effort (Mathews. et al., 2004). If more accuracy is required, then either a smaller step size or an 

adaptive method should be used. 

Step halving (also called adaptive Runge-Kutta) involves halving the step size and comparing the 

answers with two step sizes (Hornberger and Wiberg, 2005). They further explained that a 

significant difference between the two answers would suggest that the step size is too big 

because smaller step sizes generally lead to more accurate results. So, one can see that this 

process can be continued until an acceptably small difference between the two estimates is 

obtained. 

The Adams-Bashforth-Moulton method of fourth order is used to approximate the solution of the 

initial value problem 𝑦 ′ = 𝑓 𝑥, 𝑦  𝑤𝑖𝑡ℎ 𝑦 𝑎 = 𝑦0  𝑜𝑣𝑒𝑟  𝑎, 𝑏  ….(*) 



 
 

with predictor and corrector schemes which are given as follows: 

 2           𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟:        𝑝𝑘+1 =  𝑦𝑘 +  
ℎ

24
(55𝑓𝑘  − 59𝑓𝑘−1 + 37𝑓𝑘−2 − 9𝑓𝑘−3)  

 3           𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟:       𝑦𝑘+1 =  𝑦𝑘 + 
ℎ

24
(9𝑓𝑘+1 +  19𝑓𝑘 − 5𝑓𝑘−1 + 𝑓𝑘−2) 

To obtain equations (2) and (3), the value of f(x, y) in (*) is replaced by the Newton backward 

interpolating polynomial after converting (*) into the appropriate integral form. 

A desirable feature of a multistep method is that the local truncation error can be determined and 

a correction term can be included, which improves the accuracy of the answer at each step. Also 

it is possible if the step size is small enough to obtain an accurate value for 𝑦𝑘+1, yet large 

enough so that unnecessary and time-consuming calculations are eliminated. Using the 

combination of a predictor and corrector requires only two function evaluations of    f(x, y) per 

step. 

By using Taylor expansion of 𝑦𝑘+1 about 𝑥𝑘  and 𝑦𝑘  about 𝑥𝑘+1 , replacing the first, second, and 

third derivatives by their difference approximations, and assuming 𝑓𝑘+1
(4)

=  𝑓𝑘
(4)

 ≅ 𝐾 where K is 

a constant, we can obtain the predictor/corrector errors (Yang et al., 2005). As a result Adams–

Bashforth–Moulton method with modification formulas will be given as follows. 

                𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟:        𝑝𝑘+1 =  𝑦𝑘 + 
ℎ

24
(55𝑓𝑘  − 59𝑓𝑘−1 + 37𝑓𝑘−2 − 9𝑓𝑘−3)  

 4           𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑟:        𝑚𝑘+1 =  𝑝𝑘+1 +  
251

270
(𝑐𝑘  − 𝑝𝑘)  

               𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟:       𝑐𝑘+1 =  𝑦𝑘 + 
ℎ

24
(9𝑓(𝑡𝑘+1, 𝑚𝑘+1) +  19𝑓𝑘 − 5𝑓𝑘−1 + 𝑓𝑘−2) 

 5           𝑦𝑘+1 =  𝑐𝑘+1 −  
19

270
(𝑐𝑘+1 − 𝑝𝑘+1) 

The quantity 𝑐1 − 𝑝1 required for the modification of the first step is generally taken as 𝑐1 −

𝑝1 = 0 (Jain et al., 1984). 



 
 

Formula (5) can be used to determine when to change the step size. This can be done by reducing 

the step size to h/2 or increase it to 2h by using the following criterion: 

(6)          If 
19

270

 𝑌𝑗 +1−𝑝𝑗+1 

 𝑌𝑗 +1 +𝑆𝑚𝑎𝑙𝑙
> 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟, 𝑡ℎ𝑒𝑛 𝑠𝑒𝑡 ℎ =

ℎ

2
. 

(7)          If 
19

270

 𝑌𝑗 +1−𝑝𝑗+1 

 𝑌𝑗 +1 +𝑆𝑚𝑎𝑙𝑙
<

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒  𝐸𝑟𝑟𝑜𝑟

100
, 𝑡ℎ𝑒𝑛 𝑠𝑒𝑡 ℎ = 2ℎ. 

When the predicted and corrected values do not agree to five significant digits, then (6) reduces 

the step size. If they agree to seven or more significant digits then (7) increases the step size 

(Mathews. et al., 2004). 

According Mathews et al., (2004), the step size h for a fixed-point iteration using RK4 and ABM 

method must satisfy the following condition. 

(8)           ℎ <
0.75

 𝑓𝑦 (𝑥 ,𝑦) 
 . 

The condition stated in (8) is following the fact that the absolute stability interval for the explicit 

RK4 is 0 <  ℎ < 2 2  when the method is applied to the test equation 𝑦′ = 𝑦 (Jain et al., 

1984). Similarly the intervals of absolute stability for Adams-Bashforth, Adams-Moulton, and 

MABM methods of order 4 are (-0.3, 0), (-3, 0), and (-0.6884, 0) respectively. 

The performance of numerical methods depend on the characteristics of the ODE considered 

(Hull et al., 1972; Bedet et al., 1975; Butcher, 2000; Yang et al., 2005; Petzoid, 2006; Clement 

et al., 2009; Abdul, 2013; Polla, 2013; and Muhammmad and Arshad, 2013). 

The first problem considered in this research is a first-order differential equation 𝑦 ′ =  −𝑦 

with 𝑦 0 = 1 (Hull et al., 1972). It has the following form of analytical solution y = e−x . The 

second problem is 𝑦′ =  −𝑦3/2, 𝑦 𝑂 = 1  is a special case of the Riccati equation and whose 

solution is given by 𝑦 =  
1

 𝑥+1
 (Davis, 1963 as cited in Hull et al., 1972). The third problem is  

 𝑦′ = 𝑦𝑐𝑜𝑠𝑥, 𝑦(𝑂) =   1 which is an oscillatory problem and whose solution is given by 

𝑦 =   𝑒𝑠𝑖𝑛𝑥  (Hull et al., 1972). The fourth problem is  𝑦′  =
𝑦

4
 1 −

𝑦

20
 , 𝑦 0 = 1  whose 

solution is given by 𝑦 =
20

1 + 19𝑒
−

𝑥
4

 which is the logistic curve, (Davis, 1962 as cited in Hull et al., 



 
 

1972). The fifth problem is 𝑦′ =  
𝑦−𝑥

𝑦+𝑥
,   𝑦 0 =  4  whose solution is given by 𝑟 = 4𝑒−𝜃+

𝜋

2   

which is a spiral curve (Davis, 1962 as cited in Hull et al., 1972).  

As it is shown above the problems selected have exact solutions. This is helpful to compare the 

approximated values with the exact values and to calculate relative errors. The selection covers a 

realistically broad spectrum of problem types (Hull et al., 1972).  

The testing of ODE solvers will be done by using MATLAB after the problems are properly 

coded and inserted for analysis. 

Hence the purpose of this research is to compare the performance of Runge-Kutta and Adams-

Bashforth-Moulton methods for first order ordinary differential equations. 

1.2 Statement of the problem 

The performance of numerical methods depend on the characteristics of the ODE considered 

(Hull et al., 1972; Bedet et al., 1975; Butcher, 2000; Yang et al., 2005; Petzoid, 2006; Clement 

et al., 2009; Abdul, 2013; Polla, 2013; and Muhammmad and Arshad, 2013). While the central 

activity of numerical analysts is providing accurate and efficient general purpose numerical 

methods and algorithms, there has always been a realization that some problem types have 

distinctive features that they will need their own special theory and techniques (Butcher, 2000). 

Hence it is important to test methods by considering first order ODEs using modern software.  

Therefore, the researcher will attempt to answer the following research questions: 

a. Which of the two methods register smaller computation time? 

b. Which of the two methods give more accurate results? 

c. What is the effect of modifiers on Adam-Bashforth-Moulton method? 

 

1.3. General and specific objectives 

    1.3.1 General Objective 

              To compare the performances of Runge-Kutta and Adams-Bashforth-Moulton 

methods for first order ordinary differential equations. 

 

    1.3.2 Specific Objectives 

  To compare the computation time of each method for the first order ODEs 

  To compare the accuracy of the results obtained by implementing the codes for the 

first order ODEs 



 
 

             To validate the effectiveness of the modifiers in the accuracy of Adams-Bashforth-

Moulton method for first order ODEs 

 

1.4. Significance of the study 

This research is expected to provide useful results and information for all parties, including 

students, faculty, and other researchers, regarding which method between the two methods, 

Runge-Kutta method of order 4 and Adams-Bashforth-Moulton method of order 4, is better in 

solving first order ordinary differential equations.  

 

1.5. Delimitation of the study 

This paper is delimited to the comparison of the performances of Runge-Kutta method of fourth 

order and Adams-Bashforth-Moulton method of fourth order for first order ODEs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2 

REVIEW OF RELATED LITERATURES 

A code is more efficient if it solves problems in less CPU time.  However, this criterion is 

problem dependent, and hence it is necessary to test efficiency by considering problems (Hull et 

al., 1972).  

The major factors to be considered in evaluating/comparing different numerical methods are the 

accuracy of the numerical solution and its computation time (Bedet et al., 1975). They further 

indicated that it is important to note that the evaluation/comparison of numerical methods is not 

so simple because their performances may depend on the characteristic of the problem at hand. It 

should also be noted that there are other factors to be considered, such as stability, versatility, 

proof against run-time error, and so on which are being considered in most of the MATLAB 

built-in routines (Yang et al., 2005). 

Performance actually depends on several factors: the computation time taken for one iteration of 

the algorithm, the time step for one iteration which represents the time discretization required to 

reach a given accuracy or numerical stability for a given method, the desired accuracy of the 

method, the numerical stability of the method which also limits the time step for a given method 

(Volino and Magnenat-Thalmann, 2000). They further indicated that accuracy increases along 

with time step reduction as better as the method is high-order. 

Jorba and Zou (2004) showed that Taylor method can be competitive, both in speed and 

accuracy, with the standard methods by generating a code having adaptive selection of order and 

step size at run time.   

Each Runge-Kutta methods are derived from an appropriate Taylor method in such a way that 

the final global error is of order 𝑂 ℎ𝑁  (Mathews et al., 2004). In this method several function 

evaluations is performed at each step and eliminate the necessity to compute the higher 

derivatives. These methods can be considered for any order N. So from the above explanation 

one can understand that the Runge-Kutta method can also be competitive, both in speed and 

accuracy. 



 
 

The double step methods require smaller step-by-step evaluation than the one-step methods. One 

of the double step methods is Adams-Moulton method. According to Polla (2013), Adams-

Moulton method is more stable than the Millne method. 

Hull et al., (1972)  compared RK4 and Adams methods  for non-stiff first  order  ordinary  

differential  equations on  a variety  of  initial  value  problems.  The  methods  are  compared  

primarily  as to  how  well  they  can handle  relatively  routine  integration  steps  under  a 

variety  of  accuracy  requirements using the software DETEST. They concluded that  Adams  

method  is efficient than RK4. 

Clement et al. (2008), compared the orbital estimations made by a series of common numerical 

integration schemes such as Euler’s method, Runge-Kutta method of Order 2, Runge-Kutta 

method of Order 4, Adams Bashforth method, and Gill’s method based on stability with varying 

time steps and accuracy requirements. The result of their study revealed that Gill’s Method is 

slightly less stable, but more accurate with smaller time steps and hence it is the best numerical 

integration scheme to implement when estimating orbits in a celestial mechanics problem. 

 

Muhammad and Arshad (2013) described membrane gas separation in chemical engineering 

using a model and identified proper numerical methods for the simulation of the model by 

adjusting the step size and tolerance level in MATLAB. The methods they considered are 

Bogacki–Shampine method, Dormand–Prince method, and Adams-Bashforth-Moulton method. 

They concluded that Adams-Bashforth-Moulton method showed stable and fast behavior and 

hence it is a proper numerical method giving accurate results and requiring an acceptable 

computational effort for the simulation of the model. 

 

Abdul (2013) investigated the efficiency of improved Heun’s (IH) method against the classical 

Runge-Kutta (RK4) and Mid-point (MP) methods for Unforced Van der Pol’s Equation and 

concluded that RK4 method has better accuracy over  IH and MP methods. The solutions by the 

RK4 are relatively better as expected. 

According to Polla (2013) the Adams-Moulton method has more rigorous accuracy than the 

Runge-Kutta Fehlberg method in solving linear ordinary differential equations of first order and 

second order. The comparison of accuracy is obtained through comparing the value of 

differential equations results numerically with differential equations result obtained from 



 
 

MATLAB (version 5.3). A number of experiments on the completion of linear ordinary 

differential equations of first order and second order are done through computerization to 

compare the accuracy between the Runge-Kutta Fehlberg and Adams-Moulton methods. In 

addition, accuracy is being pointed out through relative error. 

Stiffness is a subtle, difficult, and important concept in the numerical solution of ordinary 

differential equations. It depends on the differential equation, the initial conditions, and the 

numerical method. Dictionary definitions of the word “stiff” involve terms like “not easily bent,” 

“rigid,” and “stubborn.” 

A problem is stiff if the solution being sought varies slowly, but there are nearby solutions that 

vary rapidly, so the numerical method must take small steps to obtain satisfactory results. 

Stiffness is a special problem that can arise in the solution of ordinary differential equations. A 

stiff system is one involving rapidly changing components together with slowly changing ones 

(Chapra and Canale, 1989). In many cases, the rapidly varying components are ephemeral 

transients that die away quickly, after which the solution becomes dominated by the slowly 

varying components. 

 

While the central activity of numerical analysts is providing accurate and efficient general 

purpose numerical methods and algorithms, there has always been a realization that some 

problem types have such distinctive features that they will need their own special theory and 

techniques. Stiff ODEs were recognized as such a problem types and received considerable 

attention (Butcher, 2000). 

 

Yatim et al., (2011) derived a variable step of the implicit block methods based on the backward 

differentiation formulae (BDF) namely the 5th-order variable step BBDF   for solving stiff initial 

value problems.  They included a simplified strategy in controlling the step size with the aim of 

optimizing the performance in terms of precision and computation time. They also underlined 

that numerical results obtained support the enhancement of the method proposed as compared to 

MATLAB’s suite of ODE solvers, namely, ode15s and ode23s. 

 

 

 



 
 

CHAPTER 3 

METHODOLOGY 
 

3.1 Study site and period 

 

The study is conducted in Jimma University, which is Ethiopia’s first innovative community-

oriented educational institution of higher learning. The research was conducted from October, 

2014 up to June, 2014. 

 

3.2 Source of information 

 

The source of information for this research is the computation times and relative errors of the 

first order ordinary differential equations considered which are resolved using RK4, ABM, and 

MABM methods. 

 

3.3 Method of the study 

 

The study involves entirely laboratory work with the help of a laptop and a MATLAB software.  

So it is an experimental research. The methods are coded and run using MATLAB software by 

properly inserting the problems and as a result numerical results are automatically generated.  

 

All algorithms have been made in the same condition, which use the same type of processor, 

having the same memory size, the same operating system, and using the same function. The 

processor used is Intel(R) 2.10 GHz, with 2 GB memory, with the 32-bit operating system 

(windows 7 home premium).  The language program used is MATLAB version 7.14. 

 

Three major programs (codes) have been written to solve first order ordinary differential 

equations using RK4, ABM, and MABM methods. The codes contain function definition line, 

input arguments, commands (function body), and output arguments which are written in the 

script file of MATLAB. The function definition line contains type of numerical method, 

function, left end point and right end point of an interval, initial condition, and number of steps. 

The input arguments are written in order to insert the input values after the codes are saved and 

debugged using MATLAB. In the function body the formula for the step size, the formulas for 

the methods, the exact solution, and the formula for relative errors have been coded. In the 

output argument appropriate notation of the outputs such as the partitions of the independent 



 
 

variable(in our case x), the corresponding numerical values of the dependent variable(in our case 

y), and the relative error values (𝜀𝑟 ) have been written. 

The following procedures will be followed to measure the accuracy and computation time. 

 

a) Computation time 

MATLAB has two convenient commands that let us measure how long an operation takes to 

solve a given problem after certain iterations. To start (and reset) a timer, use the command tic;. 

To stop the timer and display the amount of time elapsed, use toc;.  

Computation times for RK4, ABM, MABM using the five problems have been calculated by 

varying the number of steps. 

b) Accuracy 

To find which numerical method gives a more accurate approximation this study compared the 

relative errors obtained by using RK4, ABM, MABM for the five problems selected. 

Relative error (𝜀𝑟 ) is calculated using the formula 𝜀𝑟 =   
𝐸𝑥𝑎𝑐𝑡  𝑉𝑎𝑙𝑢𝑒 −𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑  𝑉𝑎𝑙𝑢𝑒

𝐸𝑥𝑎𝑐𝑡  𝑉𝑎𝑙𝑢𝑒
 . 

 

According Mathews et al., (2004), the step size h for a fixed-point iteration using RK4 and ABM 

method must satisfy the following condition ℎ <
0.75

 𝑓𝑦 (𝑥 ,𝑦) 
 . Hence the value of h is in such a way 

that it satisfies this condition. 

Finally, data obtained by using MATLAB version 7.14 software about computation times and 

relative errors were analyzed after calculating the average and standard deviations. More over 

graphs of computation times and relative errors have been sketched for the purpose of analysis. 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Result 

4.1.1 Comparison of computation times 

Data about computation times (in seconds) obtained using RK4, ABM, and MABM methods by 

varying the number of steps for the five problems. 

ABM method has the greatest speed than RK4 and MABM and MABM is the second faster in 

approximating the solution of the ordinary differential equation 𝑦 ′ =  −𝑦, 𝑦 0 = 1 (fig.1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Plot of computation times of the three RK4, ABM, MABM methods by using the problem 

 𝑦 ′ = −𝑦, 𝑦 0 = 1  

ABM method has the greatest speed than RK4 and MABM and MABM is the second faster in 

approximating the solution of the ordinary differential equation 𝑦 ′ = −𝑦3/2, 𝑦 𝑂 = 1 (fig.2). 
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Figure 2: Plot of computation times of RK4, ABM, MABM methods by using the problem 𝑦′  =

  −𝑦3/2, 𝑦(𝑂)   =   1  

ABM method has the greatest speed than RK4 and MABM and MABM is the second faster in 

approximating the solution of the ordinary differential equation y′ = ycosx, y 0 = 1 (fig.3). 

 

 

 

 

 

 

 

 

 

 

Figure 3: Plot of computation times of RK4, ABM, MABM methods by using the problem y′ = ycosx,

y O = 1 
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ABM method has the greatest speed than RK4 and MABM and MABM is the second faster in 

approximating the solution of the ordinary differential equation  y′  =
y

4
 1 −

y

20
 , y 0 = 1 

(fig.4). 

 

 

 

 

 

 

 

 

Figure 4: Plot of computation times of RK4, ABM, MABM methods by using the problem  y′  =
y

4
 1 −

y

20
 , y 0 = 1 

ABM method has the greatest speed than RK4 and MABM and MABM is the second faster 

(fig.5) in approximating the solution of the ordinary differential equationy′ =  
y−x

y+x
,   y 0 =  4 . 

 

 

 

 

 

 

 

 

Figure 5: Plot of computation times of RK4, ABM, MABM methods by using the problem  y′ =

 
y−x

y+x
,   y 0 =  4  
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4.1.2 Comparison of accuracy 

To compare the accuracies of the RK4, ABM, and MABM methods, relative errors are computed 

by taking the number of steps M = 40 for the five problems considered.  

RK4 method has a better accuracy than ABM method for initial value problem 𝑦 ′ =  −𝑦,  

𝑦 0 = 1 but with the help of modifiers the ABM method has a better accuracy than RK4 (table 

1 and fig.6).  

Table 1: Average and Standard Deviation of the relative errors obtained by RK4, ABM, and 

MABM methods by using the problem 𝑦 ′ =  −𝑦, 𝑦 0 = 1   

 

Method Average Standard Deviation 

RK4 0.366583438693253 0.188061591686641 

ABM 0.366583442029061 0.188061593431763 

MABM 0.363985053128503 0.186498033450762 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of accuracies of the RK4, ABM, MABM methods by using the problem  𝑦 ′ =  −𝑦,  

𝑦 0 = 1 
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RK4 method has a better accuracy than ABM method for initial value problem 𝑦′  =   −𝑦3/2,

𝑦(𝑂)   =   1 but with the help of modifiers the ABM method has a better accuracy than RK4 

(table 2 and fig.7).  

Table 2: Average and Standard Deviation of the relative errors obtained by RK4, ABM, and 

MABM methods by using the problem 𝑦′  =   −𝑦3/2, 𝑦(𝑂)   =   1 

Method Average Standard Deviation 

RK4 0.170943616384583 0.086130080327070 

ABM 0.170943644534010 0.086130089474416 

MABM 0.169627961298122 0.085395757090507 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of accuracies of  RK4, ABM, MABM methods by using the problem 

𝑦′  =   −𝑦3/2, 𝑦(𝑂)   =   1 

RK4 method has the greatest accuracy than both ABM and MABM methods on the interval [0, 

0.475] but ABM method is more accurate than RK4 on the interval (0.475, 1] for the problem 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X

R
e
la

ti
v
e
 E

rr
o
rs

Comparison of Accuracy

 

 

RK4

ABM

MABM



 
 

y′ =   ycosx, y(0)   =   1. Both RK4 and ABM methods have the same accuracy up to eight 

decimal places (Appendix 10). More over the usage of modifiers decreases accuracy of ABM 

(table 3 and fig.8a). So there is no dominant method on the interval [0, 1]. The intensity of the 

problem becomes much greater when we increase the interval to [0, 10] (fig.8b). 

Table 3: Average and Standard Deviation of the relative errors obtained by RK4, ABM, and 

MABM methods by using the problem y′ =   ycosx, y(0)   =   1  

 

Method Average Standard Deviation 

RK4 1.094372953711693e-09 5.046520829601356e-10 

ABM 9.933909000207731e-10 6.967874828411938e-10 

MABM 0.002415176583061   0.001181061887224 

 

 

 

                 

(a)                                                                                  (b) 

Figure 8. Comparison of accuracies of RK4, ABM, MABM methods by using the problem 

y′ =   ycosx, y(0)   =   1 on the intervals [0, 1] and [0, 10]. 

RK4 method has the same accuracy as the ABM method up to twelve decimal places but ABM 

method has a better accuracy for the problem y′  =
y

4
 1 −

y

20
 , y 0 = 1 (Appendix 11) . More 

over MABM method has the least accuracy (table 4 and fig.9). 
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Only the graph of the MABM method is clearly shown (fig.9). The values of the relative errors 

for RK4 and ABM methods is very close to zero (Appendix 11). That is why their graphs seem 

to coincide with the x-axis. 

Table 4: Average and Standard Deviation of the relative errors obtained by RK4, ABM, and 

MABM methods by using the problem  y′  =
y

4
 1 −

y

20
 , y 0 = 1 

Method Average Standard Deviation 

RK4 1.126954380748191e-12 6.642862614622915e-13 

ABM 1.060348498426429e-12 6.939560861558076e-13 

MABM 2.889908354791904e-04 1.893425057964920e-04 

 

 

 

 

 

 

 

     

 

 

 

 

 

Figure 9 : Comparison of accuracies of RK4, ABM, MABM methods by using the problem y′  =
y

4
 1 −

y

20
 , y 0 = 1 

The accuracy of RK4 method is better than ABM method without modifiers but the usage of 

modifiers on ABM method improves the accuracy and becomes more accurate than RK4 for the 
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problem y′ =  
y−x

y+x
,   y 0 =  4  (table 5 and fig.10). The accuracies of RK4 and ABM are equal 

up to seven decimal places (Appendix 12).  

Table 5: Average and Standard Deviation of the relative errors obtained by RK4, ABM, and 

MABM methods by using the problem y′ =  
y−x

y+x
,   y 0 =  4  

Method Average Standard Deviation 

RK4 0.107831530637488 0.060281657417218 

ABM 0.107831530679423 0.060281657400593 

MABM 0.075308300507318 0.035248994175990 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 : Comparison of accuracies of RK4, ABM, MABM methods by using the problem  

                    y′ =  
y−x

y+x
,   y 0 =  4  
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4.2 DISCUSSION 

Using the combination of a predictor and corrector requires only two function evaluations of f(x, 

y) per step and hence unnecessary and time-consuming calculations are eliminated (Mathews. et 

al., 2004). 

The ABM method registers the smallest computation time than RK4 and MABM methods. 

MABM method is slower than ABM method due to the addition of modifier formulas on the 

predictor and corrector parts but MABM is still faster than the RK4 method. 

The number of iterations of the corrector is highly dependent on the accuracy of the initial 

prediction. Consequently, if the prediction is modified properly, we might reduce the number of 

iterations required to converge on the ultimate value of the corrector (Chapra and Canale, 1989). 

Stiffness is a special problem that can arise in the solution of ordinary differential equations. A 

stiff system is one involving rapidly changing components together with slowly changing ones 

(Chapra and Canale, 1989). In many cases, the rapidly varying components are ephemeral 

transients that die away quickly, after which the solution becomes dominated by the slowly 

varying components. Although the transient phenomena exist for only a short part of the 

integration interval, they can dictate the time step for the entire solution. 

 

The problem y′ =   ycosx, y(0)   =   1 is a stiff differential equation as can be illustrated by the 

graph of its solution which showed a fast transient from y = 0 to 1 that occurs in less than 

0.001166 time unit. This transient is perceptible only when the response is viewed on the finer 

timescale in the inset (fig.11). 

 

 

 

 

 

Figure 11:  Plot of a stiff solution of  y′ =   ycosx, y(0)   =   1 
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Stiffness causes instability in uniform interval methods like RK4 unless many very small 

intervals are used. Stiff equations are problems for which explicit methods don’t work (Hairer 

and Wanner as cited in Higham and Trefethen, 1993). 

The high instability resulted due to the stiff nature of the given differential equation can also be 

clearly seen by increasing the interval from [0, 1] to [0, 10] and sketching the approximated 

solutions by RK4, ABM, MABM methods (fig.12). So it is not possible to compare the 

accuracies of the three methods as their approximated solutions manifest oscillations. 

                   (a)                                                   (b)                                                    (c) 

Figure 12: (a) Oscillations in the computed solution by using RK4; (b) Oscillations in the computed solution by 

using ABM; (c) Oscillations in the computed solution by using MABM 

 

Even though the addition of the modifiers increases both the efficiency and accuracy of multistep 

methods, there are situations where the corrector modifier will affect the stability of the corrector 

iteration process (Chapra and Canale, 2010). The problem of determining when a method is 

stable is more complicated in the case of multistep methods, due to the interplay of previous 

approximations at each step (Faires and Burden, 2002). 

 

It is due to these reasons that the use of modifiers in the ABM method decreases its accuracy for 

the problem y′  =
y

4
 1 −

y

20
 , y 0 = 1. But for the problems 𝑦 ′ =  −𝑦 with  𝑦 0 = 1 , 

𝑦′  =   −𝑦3/2  with  𝑦(𝑂)   =   1  and  y′ =  
y−x

y+x
   with y 0 =  4, the modifiers are effective as 

they improve the accuracy of ABM method to be better in accuracy than RK4 which was 

previously inferior to it. 
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Fig. 6, fig. 7, and fig. 10 show us an interesting fact that, although the ABM method, even 

without modifiers, are theoretically expected to have better accuracy than the RK4 method, they 

turn out to work better than RK4 only with modifiers. Of course, it is not always the case, as 

shown in Appendix 11 where the accuracy of ABM method is better than RK4 method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 5 

CONCLUSION AND FUTURESCOPE 

Based on the results obtained the following conclusions can be derived: 

1. The computation time of ABM method is the lowest compared to RK4 and MABM 

method. So ABM is more efficient than RK4 method. 

2. The modifiers in the corrector and predictor formulas of the ABM method are effective in 

improving the accuracy of ABM method in most cases but this doesn’t work for some 

problems due to the stiffness of the problem and instability caused by the modifier in the 

corrector step. So the argument that modifiers are always effective for all first order ODE 

is invalid. But it can be concluded that such argument is valid for non-stiff first order 

ODEs. 

3. RK4 method is more accurate than the ABM method for some problems. But this is not 

always the case as there is a problem where the accuracy of ABM method is greater than 

the RK4 method. In addition RK4, ABM, and MABM are inaccurate for some problems. 

So it is not possible to make generalizations. However it is possible to conclude that the 

performance of a given method depend on the characteristics of the ODE we are 

considering. 

4. Explicit numerical methods do not work for stiff first order ODEs. 

Future experiments can be done by increasing the types of numerical methods and extending the 

first order ODEs in to higher order.  
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APPENDICES 

Appendix 1: Code for RK4 

function R=rk4(f,a,b,ya,M) 

%Input     - f is a function entered as a string 'f' 

%          - a and b are left and right end points 

%          - ya is the initial condition Y(a) 

%          - M is the number of steps 

%          - h is the step length 

%Output    - R=[X',Y'] where X is the vector of abscissas 

%            and Y is the vector of relative errors 

f = input('Enter the function'); 

a = input('Enter the left end point a'); 

b = input('Enter the right end point b'); 

M = input('Enter the number of steps M'); 

ya = input('Enter the initial condition'); 

format long; 

h=(b-a)/M; 

X=zeros(1,M+1); 

Y=zeros(1,M+1); 

X=a:h:b; 

Y(1)=ya; 

for j=1:M 

    xj=X(j); 

    yj=Y(j); 

    k1=h*feval(f,xj,yj); 

    k2=h*feval(f,xj+h/2,yj+k1/2); 

    k3=h*feval(f,xj+h/2,yj+k2/2); 

    k4=h*feval(f,xj+h,yj+k3); 

    Y(j+1)=Y(j)+(k1+2*k2+2*k3+k4)/6; 

end 

R=[X',Y']; 

 

 

 

 

 

 

 

 

 



 
 

Appendix 2: Code for ABM 
function A=abm(f,a,b,ya,M) 

%Input     - f is a function entered as a string 'f' 

%          - a and b are left and right end points 

%          - ya is the initial condition Y(a) 

%          - M is the number of steps 

%          - h is the step length 

%Output    - R=[X',Y'] where X is the vector of abscissas 

%            and Y is the vector of relative errors 

f = input('Enter the function'); 

a = input('Enter the left end point a'); 

b = input('Enter the right end point b'); 

M = input('Enter the number of steps M'); 

ya = input('Enter the initial condition'); 

format long; 

h=(b-a)/M; 

X=zeros(1,M+1); 

Y=zeros(1,M+1); 

Z=zeros(1,M+1); 

X(1)=a; 

Y(1)=ya; 

for j=1:M 

    xj=X(j); 

    yj=Y(j); 

    k1=h*feval(f,xj,yj); 

    k2=h*feval(f,xj+h/2,yj+k1/2); 

    k3=h*feval(f,xj+h/2,yj+k2/2); 

    k4=h*feval(f,xj+h,yj+k3); 

    Y(j+1)=Y(j)+(k1+2*k2+2*k3+k4)/6; 

    X(j+1)=a+h*j; 

    n=length(X); 

    if n<5,break,end; 

    F=zeros(1,4); 

    F=feval(f,X(1:4),Y(1:4)); 

    h=X(2)-X(1); 

end 

for j=4:n-1 

    % predictor 

    p=Y(j)+(h/24)*(F*[-9 37 -59 55]'); 

    X(j+1)=X(1)+h*j; 

    F=[F(2) F(3) F(4) feval(f,X(j+1),p)]; 

    % corrector 

    Y(j+1) = Y(j)+(h/24)*(F*[1 -5 19 9]'); 

    F(4)=feval(f,X(j+1),Y(j+1)); 

end 

A=[X',Y']; 

 

 

 



 
 

Appendix 3: Code for MABM 
function A=mabm(f,a,b,ya,M) 

%Input     - f is a function entered as a string 'f' 

%          - a and b are left and right end points 

%          - ya is the initial condition Y(a) 

%          - M is the number of steps 

%          - h is the step length 

%Output    - R=[X',Y'] where X is the vector of abscissas 

%            and Y is the vector of relative errors 

f = input('Enter the function'); 

a = input('Enter the left end point a'); 

b = input('Enter the right end point b'); 

M = input('Enter the number of steps M'); 

ya = input('Enter the initial condition'); 

format long; 

h=(b-a)/M; 

X=zeros(1,M+1); 

Y=zeros(1,M+1); 

Z=zeros(1,M+1); 

X(1)=a; 

Y(1)=ya; 

for j=1:M 

    xj=X(j); 

    yj=Y(j); 

    k1=h*feval(f,xj,yj); 

    k2=h*feval(f,xj+h/2,yj+k1/2); 

    k3=h*feval(f,xj+h/2,yj+k2/2); 

    k4=h*feval(f,xj+h,yj+k3); 

    Y(j+1)=Y(j)+(k1+2*k2+2*k3+k4)/6; 

    X(j+1)=a+h*j; 

    n=length(X); 

    if n<5,break,end; 

    F=zeros(1,4); 

    F=feval(f,X(1:4),Y(1:4)); 

    h=X(2)-X(1); 

    pold=0; 

    cold=0; 

end 

for j=4:n-1 

   % predictor 

    pnew=Y(j)+(h/24)*(F*[-9 37 -59 55]'); 

    X(j+1)=X(1)+h*j; 

    F=[F(2) F(3) F(4) feval(f,X(j+1),pnew)]; 

    % modifier 

    pmod = pnew+(251/270)*(cold-pold); 

    X(j+1)=X(1)+h*j; 

    F=[F(2) F(3) F(4) feval(f,X(j+1),pmod)]; 

     % corrector 

    cnew = Y(j)+(h/24)*(F*[1 -5 19 9]'); 



 
 

                                                                      Cont’d… 

    Y(j+1)=cnew-(19/270)*(cnew-pnew); 

    pold=pnew; 

    cold=cnew; 

    F(4)=feval(f,X(j+1),Y(j+1)); 

    X(j+1)=a+h*j; 

end 

A=[X',Y']; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Appendix 4: Computation times for the three methods for the problem 𝑦 ′ = −𝑦,  𝑦 0 = 1  

 

 

 

 

 

 

 

Appendix 5: Computation times for the three methods for the problem 𝑦 ′ = −𝑦3/2, 𝑦 𝑂 = 1  

 

 

 

 

 

 

 

 

Appendix 6: Computation times for the three methods for the problem y′ = ycosx, y 0 = 1 

 

 

 

 

 

 

 

 

# of steps RK4 ABM MABM 

10 0.002157 0.000867 0.001196 

20 0.003954 0.001702 0.002832 

30 0.006053 0.002778 0.004440 

40 0.007980 0.003794 0.005625 

50 0.010012 0.004736 0.007336 

60 0.011991 0.005373 0.008616 

70 0.014095 0.006580 0.010022 

80 0.015922 0.007515 0.011385 

90 0.018376 0.008117 0.013163 

100 0.019617 0.008964 0.014769 

# of 

steps 

RK4 ABM MABM 

10 0.002286 0.000791 0.001187 

20 0.004206 0.001955 0.002913 

30 0.006355 0.003397 0.004434 

40 0.008310 0.004751 0.005631 

50 0.010225 0.004583 0.007492 

60 0.012260 0.006092 0.008603 

70 0.014597 0.006982 0.010806 

80 0.016313 0.007723 0.011770 

90 0.019082 0.008517 0.013583 

100 0.021476 0.009534 0.017086 

# of steps RK4 ABM MABM 

10 0.002317 0.000855 0.001176 

20 0.004145 0.001681 0.002779 

30 0.006215 0.003181 0.004198 

40 0.008045 0.003760 0.005789 

50 0.010244 0.004480 0.007253 

60 0.012287 0.005458 0.008977 

70 0.014049 0.007481 0.010519 

80 0.015911 0.007787 0.011899 

90 0.018361 0.009544 0.013723 

100 0.019822 0.009599 0.014900 



 
 

Appendix 7: Computation times for the three methods for the problem y′  =
y

4
 1 −

y

20
 , y 0 = 1 

# of steps RK4 ABM MABM 

10 0.002380 0.000808 0.001250 

20 0.004499 0.001828 0.002794 

30 0.006655 0.002877 0.004381 

40 0.009061 0.003659 0.006145 

50 0.010248 0.004702 0.007603 

60 0.012726 0.005647 0.009319 

70 0.016454 0.006643 0.010669 

80 0.017513 0.007885 0.012432 

90 0.019616 0.008445 0.013587 

100 0.021492 0.009709 0.015462 

 

 

Appendix 8: Computation times for the three methods for the problem y′ =  
y−x

y+x
,   y 0 =  4. 

# of steps RK4 ABM MABM 

10 0.002316 0.000769 0.001359 

20 0.004218 0.001892 0.002816 

30 0.006252 0.002915 0.004206 

40 0.008425 0.003785 0.005784 

50 0.010333 0.004760 0.007079 

60 0.012321 0.006307 0.008533 

70 0.014163 0.006636 0.010199 

80 0.016570 0.007443 0.011734 

90 0.017915 0.008726 0.013410 

100 0.019707 0.009912 0.015288 

 

 

 

 

 

 

 



 
 

Appendix 9: Relative errors for the problem𝑦 ′ =  −𝑦,  𝑦 0 = 1 using the three methods 
_______________________________________________________ 
___________________________Relative Errors_______________ 

_ X_________ RK4_____________     ABM_______MABM____ 
                                 0                        0                                  0                                      0 

0.025   0.024690087890625   0.024690087890625   0.024690087890625 

0.050   0.048770575341203   0.048770575341203   0.048770575341203 

0.075   0.072256513440178   0.072256513440178   0.072256513440178 

0.100   0.095162581663294   0.095162582009953   0.096388481489407 

0.125   0.117503097048754   0.117503097723587   0.117529984850853 

0.150   0.139292023145825   0.139292024132696   0.138856072372295 

0.175   0.160542978742516   0.160542980025634   0.159824575966977 

0.200   0.181269246377766   0.181269247941900   0.180297007955011 

0.225   0.201483780643456   0.201483782473948   0.200272802189024 

0.250   0.221199216281459   0.221199218364202   0.219762044500648 

0.275   0.240427876080758   0.240427878402179   0.238776370040683 

0.300   0.259181778579592   0.259181781126638   0.257327322298864 

0.325   0.277472645577439   0.277472648337551   0.275426190016955 

0.350   0.295311909461512   0.295311912422618   0.293083989987828 

0.375   0.312710720352384   0.312710723502875   0.310311470935830 

0.400   0.329679953073168   0.329679956401888   0.327119119690347 

0.425   0.346230213946640   0.346230217442866   0.343517167524069 

0.450   0.362371847424532   0.362371851077965   0.359515596375270 

0.475   0.378114942553157   0.378114946353902   0.375124144923372 

0.500   0.393469339279386   0.393469343217942   0.390352314517046 

0.525   0.408444634600937   0.408444638668181   0.405209374957934 

0.550   0.423050188564811   0.423050192751988   0.419704370143429 

0.575   0.437295130117625   0.437295134416334   0.433846123571940 

0.600   0.451188362811504   0.451188367213683   0.447643243713996 

0.625   0.464738570369085   0.464738574867007   0.461104129252458 

0.650   0.477954222111134   0.477954226697386   0.474236974195023 

0.675   0.490843578250140   0.490843582917618   0.487049772862143 

0.700   0.503414695053220   0.503414699795118   0.499550324753384 

0.725   0.515675429877549   0.515675434687346   0.511746239295193 

0.750   0.527633446081462   0.527633450952915   0.523644940472965 

0.775   0.539296217814302   0.539296222741434   0.535253671350225 

0.800   0.550671034688010   0.550671039665103   0.546579498477676 

0.825   0.561765006333367   0.561765011354949   0.557629316194803 

0.850   0.572585066843743   0.572585071904584   0.568409850826644 

0.875   0.583137979109137   0.583137984204237   0.578927664778289 

0.900   0.593430339043196   0.593430344167778   0.589189160529592 

0.925   0.603468579705881   0.603468584855383   0.599200584532537 

0.950   0.613258975324337   0.613258980494405   0.608968031013623 

0.975   0.622807645214490   0.622807650400969   0.618497445683585 

1.000   0.632120557605816   0.632120562804744   0.627794629356713 

 

 

 

 

 



 
 

Appendix 10: Relative errors for the problem 𝑦′  =   −𝑦3/2, 𝑦(𝑂)   =   1 using the three 

methods 

__________________________________________________________ 

___________________________Relative Errors_________________ 

_ X_______   RK4_____________ ABM_____________MABM____ 
0                      0                               0                                0 

0.025   0.012270403335064   0.012270403335064   0.012270403335064 

0.050   0.024099927023193   0.024099927023193   0.024099927023193 

0.075   0.035514355620019   0.035514355620019   0.035514355620019 

0.100   0.046537410706102   0.046537417026142   0.047139462939076 

0.125   0.057190958361956   0.057190969981390   0.057208446964000 

0.150   0.067495191697286   0.067495207793281   0.067224913213931 

0.175   0.077468791903366   0.077468811771855   0.077026971238643 

0.200   0.087129070752541   0.087129093793465   0.086539979696351 

0.225   0.096492097018917   0.096492122720595   0.095769915018566 

0.250   0.105572808921275   0.105572836846499   0.104728902906974 

0.275   0.114385114378696   0.114385144153210   0.113429653782886 

0.300   0.122941980609857   0.122942011912777   0.121884223695245 

0.325   0.131255514389269   0.131255546945077   0.130103924996378 

0.350   0.139337034090425   0.139337067662267   0.138099362672474 

0.375   0.147197134491057   0.147197168875111   0.145880487080963 

0.400   0.154845745184456   0.154845780205184   0.153456644362327 

0.425   0.162292183329289   0.162292218835423   0.160836622557718 

0.450   0.169545201375189   0.169545237236331   0.168028693560167 

0.475   0.176613030320051   0.176613066423782   0.175040651295272 

0.500   0.183503418985171   0.183503455234589   0.181879846518467 

0.525   0.190223669734335   0.190223706045952   0.188553218575707 

0.550   0.196780671011214   0.196780707313155   0.195067324434793 

0.575   0.203180927024671   0.203180963255131   0.201428365259447 

0.600   0.209430584872804   0.209430620978719   0.207642210767480 

0.625   0.215535459362860   0.215535495298767   0.213714421587578 

0.650   0.221501055754826   0.221501091481871   0.219650269805635 

0.675   0.227332590630891   0.227332626115982   0.225454757870929 

0.700   0.233035011070613   0.233035046285675   0.231132636014259 

0.725   0.238613012291970   0.238613047213309   0.236688418314149 

0.750   0.244071053901288   0.244071088509033   0.242126397533084 

0.775   0.249413374879853   0.249413409157469   0.247450658833272 

0.800   0.254644007421651   0.254644041355521   0.252665092470342 

0.825   0.259766789724913   0.259766823303965   0.257773405553559 

0.850   0.264785377829654   0.264785411045043   0.262779132952451 

0.875   0.269703256584189   0.269703289429014   0.267685647421921 

0.900   0.274523749815349   0.274523782284405   0.272496169011057 

0.925   0.279250029769863   0.279250061859428   0.277213773814610 

0.950   0.283885125887824   0.283885157595468   0.281841402120636 

0.975   0.288431932963379   0.288431964287797   0.286381866002821 

1.000   0.292893218742588   0.292893249683455   0.290837856401572 

 

 

 

 

 



 
 

Appendix 11: Relative errors for the problem y′ =   ycosx, y(0)   =   1 using the three methods. 

_______________________________________________________ 

________________________Relative Errors_______________ 

_ X________ RK4_____________  ABM____________MABM___                                                               
             0                        0                                     0                                       0 

0.025   0.000000000077310   0.000000000077310   0.000000000077310 

0.050   0.000000000154375   0.000000000154375   0.000000000154375 

0.075   0.000000000230952   0.000000000230952   0.000000000230952 

0.100   0.000000000306804   0.000000001878810   0.000076704572598 

0.125   0.000000000381696   0.000000001933898   0.000701330479974 

0.150   0.000000000455404   0.000000001940428   0.000899613367122 

0.175   0.000000000527712   0.000000001948098   0.001141975868875 

0.200   0.000000000598415   0.000000001945052   0.001374908839367 

0.225   0.000000000667320   0.000000001932938   0.001597030149591 

0.250   0.000000000734251   0.000000001911757   0.001808494499284 

0.275   0.000000000799044   0.000000001881505   0.002008992320315 

0.300   0.000000000861552   0.000000001842267   0.002198238376714 

0.325   0.000000000921647   0.000000001794192   0.002375964414861 

0.350   0.000000000979215   0.000000001737494   0.002541916605329 

0.375   0.000000001034165   0.000000001672449   0.002695856520861 

0.400   0.000000001086421   0.000000001599400   0.002837561879569 

0.425   0.000000001135927   0.000000001518755   0.002966827241083 

0.450   0.000000001182646   0.000000001430982   0.003083464673198 

0.475   0.000000001226559   0.000000001336612   0.003187304384807 

0.500   0.000000001267665   0.000000001236232   0.003278195323311 

0.525   0.000000001305980   0.000000001130489   0.003356005734799 

0.550   0.000000001341536   0.000000001020078   0.003420623685382 

0.575   0.000000001374383   0.000000000905743   0.003471957542136 

0.600   0.000000001404581   0.000000000788274   0.003509936412210 

0.625   0.000000001432208   0.000000000668497   0.003534510538762 

0.650   0.000000001457350   0.000000000547274   0.003545651652468 

0.675   0.000000001480106   0.000000000425494   0.003543353277485 

0.700   0.000000001500584   0.000000000304067   0.003527630990833 

0.725   0.000000001518899   0.000000000183920   0.003498522634310 

0.750   0.000000001535171   0.000000000065989   0.003456088478129 

0.775   0.000000001549527   0.000000000048788   0.003400411335635 

0.800   0.000000001562097   0.000000000159478   0.003331596628555 

0.825   0.000000001573012   0.000000000265157   0.003249772402364 

0.850   0.000000001582402   0.000000000364923   0.003155089291492 

0.875   0.000000001590399   0.000000000457897   0.003047720434204 

0.900   0.000000001597131   0.000000000543231   0.002927861337150 

                                 0.925   0.000000001602724    0.000000000620119     0.002795729689666 

0.950   0.000000001607298   0.000000000687798   0.002651565128089 

0.975   0.000000001610971   0.000000000745558   0.002495628950428 

1.000   0.000000001613852   0.000000000792744   0.002328203781908 

 

 

 

 



 
 

Appendix 12: Relative errors for the problem  y′  =
y

4
 1 −

y

20
 , y 0 = 1 using the three 

methods 
_________________________________________________________ 

___________________________Relative Errors_________________ 

_   X_________RK4_________        ABM_________       MABM___ 
                                     0                        0                                     0                                      0 

0.02125   0.000000000000026   0.000000000000026   0.000000000000026 

0.04250   0.000000000000051   0.000000000000051   0.000000000000051 

0.06375   0.000000000000077   0.000000000000077   0.000000000000077 

0.08500   0.000000000000103   0.000000000000094   0.000062056908031 

0.10625   0.000000000000128   0.000000000000112   0.000032176309877 

0.12750   0.000000000000154   0.000000000000129   0.000041547789309 

0.14875   0.000000000000180   0.000000000000148   0.000053389621574 

0.17000   0.000000000000205   0.000000000000167   0.000065331980973 

0.19125   0.000000000000230   0.000000000000186   0.000077255664318 

0.21250   0.000000000000255   0.000000000000205   0.000089165607583 

0.23375   0.000000000000281   0.000000000000226   0.000101061879711 

0.25500   0.000000000000306   0.000000000000246   0.000112944394727 

0.27625   0.000000000000331   0.000000000000267   0.000124813075748 

0.29750   0.000000000000357   0.000000000000288   0.000136667845733                                                                                                           

0.31875   0.000000000000382   0.000000000000310   0.000148508627311 

0.34000   0.000000000000407   0.000000000000332   0.000160335342791 

0.36125   0.000000000000432   0.000000000000355   0.000172147914167 

0.38250   0.000000000000457   0.000000000000378   0.000183946263116 

0.40375   0.000000000000482   0.000000000000401   0.000195730310998 

0.42500   0.000000000000507   0.000000000000425   0.000207499978856 

0.44625   0.000000000000531   0.000000000000449   0.000219255187413 

0.46750   0.000000000000556   0.000000000000474   0.000230995857079 

0.48875   0.000000000000581   0.000000000000499   0.000242721907943 

0.51000   0.000000000000605   0.000000000000525   0.000254433259777 

0.53125   0.000000000000630   0.000000000000551   0.000266129832035 

0.55250   0.000000000000655   0.000000000000577   0.000277811543855 

0.57375   0.000000000000679   0.000000000000604   0.000289478314054 

0.59500   0.000000000000704   0.000000000000632   0.000301130061133 

0.61625   0.000000000000728   0.000000000000659   0.000312766703276 

0.63750   0.000000000000752   0.000000000000687   0.000324388158346 

0.65875   0.000000000000776   0.000000000000716   0.000335994343890 

0.68000   0.000000000000801   0.000000000000745   0.000347585177137 

0.70125   0.000000000000825   0.000000000000774   0.000359160574998 

0.72250   0.000000000000849   0.000000000000804   0.000370720454066 

0.74375   0.000000000000873   0.000000000000834   0.000382264730617 

0.76500   0.000000000000897   0.000000000000865   0.000393793320608 

0.78625   0.000000000000921   0.000000000000896   0.000405306139679 

0.80750   0.000000000000945   0.000000000000928   0.000416803103153 

0.82875   0.000000000000969   0.000000000000960   0.000428284126037 

0.85000   0.000000000000992   0.000000000000992   0.000439749123018 

 

 

 

 



 
 

Appendix 13: Relative errors for the problem y′ =  
y−x

y+x
,   y 0 =  4 using the three methods 

_______________________________________________________ 

__________________________Relative Errors________________ 

_ X_______ RK4__________        ABM_________  MABM_____ 
                                    0                      0                                      0                                0 

0.025   0.006211259257811   0.006211259257811   0.006211259257811 

0.050   0.012346294716601   0.012346294716601   0.012346294716601 

0.075   0.018406929425530   0.018406929425530   0.018406929425530 

0.100   0.024394906032813   0.024394906159741   0.024515538469876 

0.125   0.030311891738192   0.030311891982142   0.029116958020628 

0.150   0.036159482857307   0.036159483209319   0.033681485068910 

0.175   0.041939209034616   0.041939209486577   0.038028040708785 

0.200   0.047652537137489   0.047652537682042   0.042195954247987 

0.225   0.053300874860602   0.053300875491060   0.046199158803690 

0.250   0.058885574066603   0.058885574776882   0.050049497840650 

0.275   0.064407933886373   0.064407934670929   0.053757321630280                                                                                                       

0.300   0.069869203599745   0.069869204453517   0.057331733972149 

0.325   0.075270585315470   0.075270586233831   0.060780789733294 

0.350   0.080613236467329   0.080613237446046   0.064111654747364 

0.375   0.085898272141627   0.085898273176818   0.067330736293125 

0.400   0.091126767249848   0.091126768337951   0.070443790387442 

0.425   0.096299758558912   0.096299759696655   0.073456010649779 

0.450   0.101418246590338   0.101418247774710   0.076372102401032 

0.475   0.106483197398533   0.106483198626760   0.079196344841702 

0.500   0.111495544237536   0.111495545507061   0.081932643537555 

0.525   0.116456189124670   0.116456190433131   0.084584574971483 

0.550   0.121366004308828   0.121366005654043   0.087155424559983 

0.575   0.126225833650440   0.126225835030391   0.089648219254021 

0.600   0.131036493919542   0.131036495332359   0.092065755626808 

0.625   0.135798776017853   0.135798777461804   0.094410624180531 

0.650   0.140513446130234   0.140513447603711   0.096685230469300 

0.675   0.145181246810487   0.145181248311997   0.098891813528350 

0.700   0.149802898006023   0.149802899534178   0.101032462013760 

0.725   0.154379098025582   0.154379099579090   0.103109128387830 

0.750   0.158910524453832   0.158910526031492   0.105123641429340 

0.775   0.163397835016397   0.163397836617087   0.107077717302396 

0.800   0.167841668398556   0.167841670021233   0.108972969380302 

0.825   0.172242645020646   0.172242646664334   0.110810916990323 

0.850   0.176601367772928   0.176601369436715   0.112592993219873 

0.875   0.180918422712496   0.180918424395532   0.114320551903748 

0.900   0.185194379724616   0.185194381426103   0.115994873894496 

0.925   0.189429793150686   0.189429794869878   0.117617172703461 

0.950   0.193625202384872   0.193625204121072   0.119188599587732 

0.975   0.197781132441323   0.197781134193875   0.120710248147913 

1.000   0.201898094493706   0.201898096261997   0.122183158492860 

 

 


