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Abstract

The purpose of this research is to establish the existence and uniqueness of a cou-
pled coincidence and coupled common fixed point theorem involving pairs of weakly
compatible mappings satisfying certain rational type contractive condition in the
setting of dislocated quasi metric spaces. Our result extends and generalizes sev-
eral well-known comparable results in literature. We also provided an example in
support of our main result. In this research undertaking, we followed analytical
design, secondary source of data such as published articles, related works browsed
from internet etc. were used. The study procedure we used was that of Jhade and
Khan, (2014) and Mohammed et al., (2018).
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Chapter 1

Introduction

1.1 Background of the study

Fixed point theory is an important tool in the study in functional analysis. It is
also considered to be the key connection between pure and applied mathematics.
Its application is not limited to various branches of mathematics but also in many
fields such as, Economics, Biology, Chemistry, Physics, Statistics, Computer Sci-
ence, engineering etc. The beginning of fixed point theory on complete metric
space is related to the work of Polish mathematician Stefan Banach ( Banach Con-
traction Principle), published in 1922. Banach Contraction Principle says that any
contractive self-mapping on a complete metric space has a unique fixed point. This
principle is one of a very powerful test for existence and uniqueness of the solution
of considerable problems arising in mathematics. Because of its importance for
mathematical theory, Banach Contraction Principle has been extended and general-
ized in many directions. Since then, a number of generalizations have been made
by many researchers in their works. For instance, (Dass and Gupta, 1975) presented
the generalized form of well-known Banach contraction principle in a metric space
for some rational type contractive conditions.

The idea of metric space has also been generalized in different directions. Some
of well-known and important generalizations of metric spaces are dislocated metric
space, quasi-metric space, dislocated quasi-metric space, generalized quasi-metric
space, b-metric space, cone metric space, cone b-metric space, etc.
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Hitzler (2001) introduced the concept of dislocated metric space and also gener-
alized famous Banach contraction principle in dislocated metric space. In such
a space self-distance between point need not to be zero necessarily. Dislocated
metric space play a vital role in logical programming, computer science, topol-
ogy and electronic engineering etc. Zeyada et al. (2005) generalized the result of
Hitzler (2001) in dislocated quasi-metric space. With the passage of time many
papers have been published containing fixed point results for a single and a pair
of mapping for different types of contraction conditions in dislocated quasi metric
spaces we refers Aage and Salunk (2008); Rahman and Sarwar (2014); Zeyada et

al. (2005). Bhaskar and Lakshmikantham (2006) initiated the concept of coupled
fixed point for non-linear contractions in partially ordered metric spaces.

Lakshmikantham and Ciric (2009) proved coupled coincidence and coupled com-
mon fixed point theorems for nonlinear contractive mappings in partially ordered
complete metric spaces. There are also a number of works in this line of research
in different spaces, for example we refer Akcay and Alaca (2012); Fadil and Bin
Ahmad (2010); Kumer and Vantish (2013). Mohammed et al. (2018) has proved
the coupled fixed point result in the setting of dislocated quasi-metric spaces.

Inspired and motivated by the result of Mohammed et al. (2018) the purpose of
this research was to extend and generalize their main theorem to coupled coinci-
dence and coupled common fixed point theorem involving pairs of weakly compat-
ible mappings satisfying certain rational type contractive condition in the setting of
dislocated quasi metric space.

1.2 Statement of the Problem

In this study, we focused in establishing the existence of coupled coincidence and
coupled common fixed point theorem involving pairs of weakly compatible map-
ping satisfying certain rational type contractive condition in the setting of dislocated
quasi metric space.
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1.3 Objectives of the study

1.3.1 General objective

The general objective of this research was to establish a coupled common fixed
point theorem involving a pair of weakly compatible mappings satisfying certain
rational type contractive condition in the setting of dislocated quasi metric spaces.

1.3.2 Specific objectives

This study has the following specific objectives

• To prove existence of coupled coincidence point and coupled common fixed
points involving a pair of weakly compatible mappings satisfying certain
rational type contractive condition in the setting of dislocated quasi metric
spaces.

• To verify the uniqueness of the coupled coincidence and coupled common
fixed points.

• To provide an example in support of the main result.

1.4 Significance of the study

The result of this study may have the following importance

• The outcome of this study may contribute to research activities in the study
area.

• It may provide basic research skill to researcher.

• It may have application in studying the existence and uniqueness of solution
of nonlinear integral equation.
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1.5 Delimitation of the Study

This study was delimited to establishing and proving existence and uniqueness of
coupled coincidence and coupled common fixed points involving a pair of weakly
compatible mappings satisfying certain rational type contractive condition in the
setting of dislocated quasi metric spaces.
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Chapter 2

Review of Related Literature
Fixed point theory is very important in diverse disciplines of mathematics since it
can be applied for solving various problems and it is one of the most dynamic re-
search subjects in nonlinear analysis. In this area the first important and significant
result was proved by Banach in 1922 for a contraction mapping in a complete met-
ric spaces .Due to the importance generalization of Banachs contraction principle
have been investigated heavily by many researchers (Sumit Chandok and Deepak
Kumar, 2013). Consequently, a number of generalization of Banach Contraction
Principles have appeared ( Banach, 1922).

In the fixed point theory, contraction is one of the main tools to prove the exis-
tence and uniqueness of a fixed point Banachs contraction principle, which gives an
answer on the existence and uniqueness of the solution of an operator, is used in all
analysis. The advantage of topology in logic programming has come to be recogni-
tion (Hitler and Seda, 2000). Particularly topological methods are applied to obtain
fixed point semantics for logic programs. Such considerations motivated the con-
cept of dislocated metric space. Especially, Jungck and Rhoades (1998), gave a
common fixed point theorem for commuting mappings in metric spaces which gen-
eralize Banachs contraction theorem as a generalization metric spaces and Hitler
and Seda, (2000) introduced dislocated metric spaces. In 2005, Zeyada et al. in-
troduced a new space called a dislocated quasi metric space which is more general
than the well-known metric spaces. In 2016, Sarwar et al. investigate the existence
of fixed point of theorem of contractive type mapping involving rational expression
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in context of dislocated quasi metric spaces. Aage and Salunk (2008) derived fixed
point theorem in dislocated quasi-metric spaces, similarly Isufati (2010) proved
some fixed point results for continuous contractive condition with rational type ex-
pression in the context of dislocated quasi metric spaces.

In fact, recently, the existence of coupled fixed point, coupled coincidence point,
coupled common fixed point and common fixed for nonlinear maps with two vari-
ables have attracted more and more attention. In 2006, Bhasker and Lakshmikan-
tham introduced the concept of the mixed monotone property and a coupled fixed
point. They also established some coupled fixed point theorems for mappings that
satisfy the mixed monotone property and gave some applications in the existence
and uniqueness of a solution for a periodic boundary value problem. Because of
their important role in the study of nonlinear differential equations, nonlinear inte-
gral equations and differential inclusions, a number of coupled fixed point theorems
have been studied by many authors.

In 2009, Lakshmintham and Ciric extended the concept of mixed monotone prop-
erty to a mixed g-monotone property and proved coupled coincidence point and
coupled common fixed point results. Recently, Abbas et al., defined the concept of
w-compatible mappings and obtained coupled coincidence point theorems for non-
linear contractive mappings in a cone metric space with a cone having nonempty
interior.
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Chapter 3

Methodology
This chapter contains study design, description of the research methodology, data
collection procedures and data analysis process.

3.1 Study period and site

The study has been conducted from November 2017 to September 2018 in Jimma
University under Mathematics department.

3.2 Study Design

In order to achieve the objectives stated, this study has employed analytical design.

3.3 Source of Information

This study mostly depended on document materials or secondary data. So, the
available sources of information for the study were Books, published articles.

3.4 Mathematical Procedure of the Study

In this research under taking we followed the standard procedures used in the pub-
lished works of Jhade and Khan, (2014) and Mohammed et al., (2018). The proce-
dures are
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1. Establishing a theorem.

2. Constructing sequences.

3. Show that sequences are Cauchy.

4. Proving the existence and uniqueness of coupled coincidence and coupled
common fixed point of weakly compatible mappings satisfying certain con-
tractive condition of rational type in the setting of dislocated quasi metric
spaces.

5. Giving applicable example for supporting the main result.
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Chapter 4

Preliminaries and Main Results
4.1 Preliminaries

Definition 4.1 Let X be a non-empty set, ℜ+ be the set of non-negative real num-

bers and let d : X×X →ℜ+ be a function satisfying the conditions

(i) d(x,x) = 0.

(ii) d(x,y) = d(y,x) = 0⇒ x = y.

(iii) d(x,y) = d(y,x) for all x,y ∈ X .

(iv) d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

If d satisfy conditions from (i) to (iv), then it is called a metric on X .

If d satisfy conditions (ii) to (iv), then it is called a dislocated metric (d-metric) on
X .
If d satisfy conditions (ii) and (iv) only, then it is called a dislocated quasi-metric
(dq-metric) on X . In this case the pair (X ,d) is called a dislocated quasi-metric
space.
Every metric space is a dislocated metric space which is also a dislocated quasi
metric space, but the converse is not true. The following example shows this fact.
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Example 4.1 (Sarwar and Rahman, 2014) Let X = ℜ+ and d : X×X →ℜ+

define by

d(x,y) = max{x,y}.

Clearly (X ,d) is a dislocated metric space but it is not a metric space.

Example 4.2 (Zeyada et al., 2005) Let X = [0,1] and d : X×X →ℜ+ defined by

d(x,y) = |x− y|+ |x|.

Then (X ,d) is a dislocated quasi metric space on X since the symmetric condition

fails to hold, it is neither a dislocated metric nor a metric space on X.

The following definition can be seen in Zeyada et al., (2005).

Definition 4.2 A sequence {xn} in a dislocated quasi metric space (X ,d) is said to

converge to a point x ∈ X if and only if

lim
n→∞

d(xn,x) = lim
n→∞

d(x,xn) = 0.

In this case x is called a dislocated quasi limit (dq-limit) of the sequence {xn}.

Definition 4.3 A sequence {xn} in a dislocated quasi metric space (X ,d) is called

a Cauchy sequence if for every ε > 0, there exists a positive integer n0 such that for

m,n > n0, we have d(xn,xm)< ε . That is, lim
n,m→∞

d(xn,xm)=0.

Definition 4.4 A dislocated quasi metric space is called complete if every Cauchy

sequence converges to an element in the same metric space.

The following definition can be seen in Banach, (1922).

Definition 4.5 Let (X ,d) be a metric space and T : X → X be a self-map, then T

is said to be a contraction mapping if there exists a constant k ∈ [0,1) called a

contraction factor, such that

d(T x,Ty)≤ kd(x,y)

for all x,y ∈ X .
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Definition 4.6 Let X be a nonempty set and T : X → X a self-map. We say that x is

a fixed point of T if Tx = x.

Theorem 4.1 Suppose (X ,d) be a complete metric space and T : X → X a con-

traction, then T has a unique fixed point.

Definition 4.7 (Bashkar and Lakshmikatham, (2006)) An element (x,y)∈X×X

, where X is any non-empty set, is called a coupled fixed point of the mapping

F : X×X → X if F(x,y) = x and F(y,x) = y.

The following definition can be seen in Lakshmikatham and Ciric, (2009).

Definition 4.8 (Coupled coincidence point of F and g) An element

(x,y) ∈ X×X is called a coupled coincidence point of the mappings

F : X ×X → X and g : X → X if F(x, y) = g(x) and F(y, x) = g(y), and (gx,gy) is

called coupled point of coincidence.

Definition 4.9 (Coupled common fixed point) An element (x,y) ∈ X ×X, where

X is any non-empty set, is called a coupled common fixed point of the mappings

F : X×X → X and and g : X → X if F(x,y) = g(x) = x and F(y,x) = g(y) = y.

Definition 4.10 The mappings F : X×X → X and g : X → X are called commuta-

tive if g(F(x,y)) = F(gx,gy) for all x,y ∈ X.

Definition 4.11 (Weakly Compatible) The mappings F : X×X → X and

g : X → X are called w-Compatible if g(F(x, y)) = F(gx, gy) and

g(F(y, x)) = F(gy, gx) whenever gx = F(x, y) and gy = F(y, x).
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Theorem 4.2 (Mohammed et al., (2018)) Let (X ,d) be a complete dislocated quasi-

metric space and T : X → X be a continuous mapping satisfying the following ra-

tional contractive condition

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

+a3[d(x,T (u,v))+d(u,T (x,y))]

+a4

[
d(x,T (x,y))d(u,T (u,v))

d(x,u)+d(y,v)

]
+a5

[
[d(x,u)+d(y,v)][d(x,T (x,y))+d(u,T (u,v))]

1+d(x,u)+d(y,v)

]
+a6

[
d(x,T (x,y))+d(x,T (u,v))

1+d(u,T (u,v))d(u,T (x,y))

]
for all x,y,u,v ∈ X and a1,a2,a3,a4,a5, and a6 are non-negative constants with

2(a1 +a2 +a5)+4(a3 +a6)+a4 < 1.

Then T has a unique coupled fixed point in X×X.

Remark 4.1 for real numbers a and b, If a < b and a > 0. Then ab
1+a < b.
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4.2 Main Results

Theorem 4.3 Let (X ,d) be a dislocated quasi-metric space and

T : X×X→X and g : X→X be a continuous and commutative mappings satisfying

the following rational type contractive condition

d[T (x,y),T (u,v)] ≤ a1[d(gx,gu)+d(gy,gv)]

+a2[d(gx,T (x,y))+d(gu,T (u,v))]

+a3[d(gx,T (u,v))+d(gu,T (x,y))]

+a4

[
d(gx,T (x,y))d(gu,T (u,v))

d(gx,gu)+d(gy,gv)

]
+a5

[
[d(gx,gu)+d(gy,gv)][d(gx,T (x,y))+d(gu,T (u,v))]

1+d(gx,gu)+d(gy,gv)

]
+a6

[
d(gx,T (x,y))+d(gx,T (u,v))

1+d(gu,T (u,v))d(gu,T (x,y))

]
+a7

[
d(gx,T (x,y))[1+d(gu,T (u,v))]

1+d(gx,gu)+d(gu,T (u,v))

]
(4.1)

where x,y,u,v ∈ X and a1,a2,a3,a4,a5,a6,a7 ∈ℜ+ with

2(a1 +a2 +a5)+4(a3 +a6)+a4 +a7 < 1. In addition

(i) T (X×X)⊆ g(X),

(ii) g(X) is a complete subspace of X

Then T and g have a unique coupled coincidence point. More over, if T and g are

weakly compatible. then T and g have unique coupled common fixed point the of

the form (u,u).

Proof: Choose x0 and y0 ∈ X , set

gx1 = T (x0,y0),gy1 = T (y0,x0).

This can be done because T (X ×X)⊆ g(X). Continuing this process, we can con-
struct two sequences {xn} and {yn} in X such that

gxn+1 = T (xn,yn) and gyn+1 = T (yn,xn)
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and then we have

d(gxn,gxn+1) = d[T (xn−1,yn−1),T (xn,yn)].

Using (4.1), we have

d(gxn,gxn+1) ≤ a1[d(gxn−1,gxn)+d(gyn−1,gyn)]

+a2[d(gxn−1,T (xn−1,yn−1))+d(gxn,T (xn,yn))]

+a3[d(gxn−1,T (xn,yn))+d(gxn,T (xn−1,yn−1))]

+a4

[
d(gxn−1,T (xn−1,yn−1))d(gxn,T (xn,yn))

d(gxn−1,gxn)+d(gyn−1,gyn)

]
+a5

[
[d(gxn−1,gxn)+d(gyn−1,gyn)][d(gxn−1,T (xn−1,yn−1))+d(gxn,T (xn,yn))]

1+d(gxn−1,gxn)+d(gyn−1,gyn)

]
+a6

[
d(gxn−1,T (xn−1,yn−1))+d(gxn−1,T (xn,yn))

1+d(gxn,T (xn,yn))d(gxn,T (xn−1,yn−1))

]
+a7

[
d(gxn−1,T (xn−1,yn−1))[1+d(gxn,T (xn,yn))

1+d(gxn−1,gxn)+d(gxn,T (xn,yn))

]
.

By using the definitions of the sequences {gxn} and {gyn}, we have

d(gxn,gxn+1) ≤ a1[d(gxn−1,gxn)+d(gyn−1,gyn)]

+a2[d(gxn−1,gxn)+d(gxn,gxn+1)]

+a3[d(gxn−1,gxn+1)+d(gxn,gxn)]

+a4

[
d(gxn−1,gxn)d(gxn,gxn+1)

d(gxn−1,gxn)+d(gyn−1,gyn)

]
+a5

[
[d(gxn−1,gxn)+d(gyn−1,gyn)][d(gxn−1,gxn)+d(gxn,gxn+1)]

1+d(gxn−1,gxn)+(gyn−1,gyn)]

]
+a6

[
d(gxn−1,gxn)+d(gxn−1,gxn+1)

1+d(gxn,gxn+1)d(gxn,gxn)

]
+a7

[
d(gxn−1,gxn)[1+d(gxn,gxn+1)]

1+d(gxn−1,gxn)+d(gxn,gxn+1)

]
.
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Using the triangle inequality and the fact that d(x,y)≥ 0, we have

d(gxn,gxn+1) ≤ a1[d(gxn−1,gxn)+d(gyn−1,gyn)]

+a2[d(gxn−1,gxn)+d(gxn,gxn+1)]

+a3[d(gxn−1,gxn)+d(gxn,gxn+1)+d(gxn−1,gxn)+d(gxn,gxn+1)]

+a4

[
d(gxn−1,gxn)d(gxn,gxn+1)

d(gxn−1,gxn)+d(gyn−1,gyn)

]
+a5

[
[d(gxn−1,gxn)+d(gyn−1,gyn)][d(gxn−1,gxn)+d(gxn,gxn+1)]

1+d(gxn−1,gxn)+d(gyn−1,gyn)

]
+a6

[
d(gxn−1,gxn)+d(gxn,gxn+1)+d(gxn−1,gxn)+d(gxn,gxn+1)

1+d(gxn,gxn+1)d(gxn,gxn+1)

]
+a7

[
d(gxn−1,gxn)[d(gxn−1,gxn)+d(gxn,gxn+1)]

1+d(gxn−1,gxn)+d(gxn,gxn+1)

]
.

Using Remark 4.1, we have

d(gxn,gxn+1) ≤ a1[d(gxn−1,gxn)+d(gyn−1,gyn)]

+a2[d(gxn−1,gxn)+d(gxn,gxn+1)]

+a3[d(gxn−1,gxn)+d(gxn,gxn+1)+d(gxn−1,gxn)+d(gxn,gxn+1)]

+a4d(gxn,gxn+1)

+a5[d(gxn−1,gxn)+d(gxn,gxn+1)]

+a6[d(gxn−1,gxn)+d(gxn,gxn+1)+d(gxn−1,gxn)+d(gxn,gxn+1)]

+a7d(gxn−1,gxn)

which implies that

αd(gxn,gxn+1)≤ βd(gxn−1,gxn)+a1d(gyn−1,gyn)

where

α = 1− (a2 +2a3 +a4 +a5 +2a6),

β = a1 +a2 +2a3 +a5 +2a6 +a7.
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It follows that

d(gxn,gxn+1) ≤ ηd(gxn−1,gxn)+θd(gyn−1,gyn). (4.2)

where η = β

α
and θ = a1

α
.

Similarly we can prove that

d(gyn,gyn+1) ≤ ηd(gyn−1,gyn)+θd(gxn−1,gxn). (4.3)

Adding (4.2) and (4.3), we get

[d(gxn,gxn+1)+d(gyn,gyn+1)] ≤ λ [d(gxn−1,gxn)+d(gyn−1,gyn)]. (4.4)

where λ = η +θ .
Similarly, we have

[d(gxn−1,gxn)+d(gyn−1,gyn)] ≤ λ [d(gxn−2,gxn−1)+d(gyn−2,gyn−1)].

Proceeding this way inductively, we get

[d(gxn,gxn+1)+d(gyn,gyn+1)] ≤ λ
n[d(gx0,gx1)+d(gy0,gy1)]. (4.5)

Letting n→ ∞, we have λ n→ 0 since 0 < λ < 1 and

[d(gxn,gxn+1)+d(gyn,gyn+1)]→ 0.

So d(gxn,gxn+1)→ 0 and d(gyn,gyn+1)→ 0.
Now, we show that {gxn} and {gyn} are Cauchy sequences in g(X).

16



Let m > n≥ 1, it follows that

d(gxn,gxm) ≤ d(gxn,gxn+1)+d(gxn+1,gxn+2)+d(gxn+2,gxn+3)

+ ...+d(gxm−1,gxm)

≤ λ
nd(gx0,gx1)+λ

n+1d(gx0,gx1)+λ
n+2d(gx0,gx1)

+ ...+λ
m−1d(gx0,gx1)

≤ λ n

1−λ
d(gx0,gx1). (4.6)

Similarly, we have

d(gyn,gym) ≤ d(gyn,gyn+1)+d(gyn+1,gyn+2)+d(gyn+2,gyn+3)

+ ...+d(gym−1,gym)

≤ λ
nd(gy0,gy1)+λ

n+1d(gy0,gx1)+λ
n+2d(gy0,gy1)

+ ...+λ
m−1d(gy0,gy1)

≤ λ n

1−λ
d(gy0,gy1). (4.7)

Adding (4.6) and (4.7), we get

[d(gxn,gxm)+d(gyn,gym)]≤
λ n

1−λ
[d(gx0,gx1)+d(gy0,gy1)].

[d(gxn,gxm)+d(gyn,gym)]→ 0.

Since λ < 1,λ n → 0 as n→ ∞ and d(gxn,gxm)→ 0 which in turn implies that
d(gyn,gym)→ 0 as n,m→ ∞.
Thus, {gxn} and {gyn} are Cauchy sequences in g(X).
On the other hand, since g(X) is complete subspace, there exist x,y ∈ g(X) satis-
fying that {gxn} and {gyn} converge to x and y respectively. Now, we prove that
T (x,y) = gx and T (y,x) = gy.
Since T and g are commuting, it follows that

ggxn+1 = g(T (xn,yn)) = T (gxn,gyn) (4.8)
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Using (4.8) and continuity of T and g, we have

lim
n→∞

ggxn = lim
n→∞

T (gxn,gyn)

g
(

lim
n→∞

gxn

)
= T

(
lim
n→∞

gxn, lim
n→∞

gyn

)
g(x) = T (x,y).

Similarly, we can show that g(y) = T (y,x).
Hence, (gx,gy) is coupled point of coincidence of T and g.
Now, we claim that (gx,gy) is the unique coupled point of coincidence of T and g.
Suppose not. So, we have another coupled point of coincidence say (gx1,gy1)

where (x1,y1) ∈ X2 with gx1 = T (x1,y1) and gy1 = T (y1,x1).
Using (4.1), we have

d(gx,gx) = d[T (x,y),T (x,y)]

≤ a1[d(gx,gx)+d(gy,gy)]

+a2[d(gx,gx)+d(gx,gx)]

+a3[d(gx,gx)+d(gx,gx)]

+a4

[
d(gx,gx)d(gx,gx)

d(gx,gx)+d(gy,gy)

]
+a5

[
[d(gx,gx)+d(gy,gy)][d(gx,gx)+d(gx,gx)]

1+d(gx,gx)+d(gy,gy)

]
+a6

[
d(gx,gx)+d(gx,gx)

1+d(gx,gx)d(gx,gx)

]
+a7

[
d(gx,gx)d(gx,gx)

1+d(gx,gx)+d(gx,gx)

]
.
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Using Remark 4.1, we have

d(gx,gx) ≤ a1[d(gx,gx)+d(gy,gy)]

+a2[d(gx,gx)+d(gx,gx)]

+a3[d(gx,gx)+d(gx,gx)]

+a4d(gx,gx)

+a5[d(gx,gx)+d(gx,gx)]

+a6[d(gx,gx)+d(gx,gx)]

+a7d(gx,gx).

It follows that
d(gx,gx)≤ φd(gx,gx)+a1d(gy,gy) (4.9)

where φ = a1 +2a2 +2a3 +a4 +2a5 +2a6 +a7.
Similarly

d(gy,gy)≤ φd(gy,gy)+a1d(gx,gx). (4.10)

Adding (4.9) and (4.10), we get

[d(gx,gx)+d(gy,gy)]≤ ψ[d(gx,gx)+d(gy,gy)].

where ψ = φ +a1.
This is possible only when d(gx,gx)+d(gy,gy) = 0 since ψ < 1 which implies that
d(gx,gx) = 0 and d(gy,gy) = 0.
Similarly d(gx1,gx1) = 0 and d(gy1,gy1) = 0.
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Now, we consider

d(gx,gx1) = d[T (x,y),T (x1,y1)]

≤ a1[d(gx,gx1)+d(gy,gy1)]

+a2[d(gx,T (x,y))+d(gx1,T (x1,y1))]

+a3[d(gx,T (x1,y1))+d(gx1,T (x,y))]

+a4

[
d(gx,T (x,y))d(gx1,T (x1,y1))

d(gx,gx1)+d(gy,gy1)

]
+a5

[
[d(gx,gx1)+d(gy,gy1)][d(gx,T (x,y))+d(gx1,T (x1,y1))]

1+d(gx,gx1)+d(gy,gy1)

]
+a6

[
d(gx,T (x,y))+d(gx,T (x1,y1))

1+d(gx1,T (x1,y1))d(gx1,T (x1,y1))

]
+a7

[
d(gx,T (x,y))d(gx1,T (x1,y1))

1+d(gx,gx1)+d(gx1,T (x1,y1))

]
.

Using the fact that gx = T (x,y) and gx1 = T (x1,y1), we have

d(gx,gx1) ≤ a1[d(gx,gx1)+d(gy,gy1)]

+a2[d(gx,gx)+d(gx1,gx1)]

+a3[d(gx,gx1)+d(gx1,gx)]

+a4

[
d(gx,gx)d(gx1,gx1)

d(gx,gx1)+d(gy,gy1)

]
+a5

[
[d(gx,gx1)+d(gy,gy1)][d(gx,gx)+d(gx1,gx1)]

1+d(gx,gx1)+d(gy,gy1)

]
+a6

[
d(gx,gx)+d(gx,gx1)

1+d(gx1,gx1)d(gx1,gx1)

]
+a7

[
d(gx,gx)d(gx1,gx1)

1+d(gx,gx1)+d(gx1,gx1)

]
.

Thus, we have

d(gx,gx1) ≤ (a1 +a3 +a6)d(gx,gx1)+a1d(gy,gy1)

+(a3 +a6)d(gx1,gx)

(1− (a1 +a3 +a6))d(gx,gx1) ≤ a1d(gy,gy1)+(a3 +a6)d(gx1,gx). (4.11)
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Similarly

(1− (a1 +a3 +a6))d(gy,gy1)≤ a1d(gx,gx1)+(a3 +a6)d(gy1,gy). (4.12)

Adding (4.11) and (4.12) and then simplifying, we get

[d(gx,gx1)+d(gy,gy1)]≤ ω[d(gx1,gx)+d(gy1,gy)] (4.13)

where ω =
[

a3+a6
1−(2a1+a3+a6)

]
.

Similarly

[d(gx1,gx)+d(gy1,gy)]≤ ω[d(gx,gx1)+d(gy,gy1)]. (4.14)

Adding (4.13) and (4.14), we get

[d(gx1,gx)+d(gy1,gy)+d(gx,gx1)+d(gy,gy1)] ≤ ω[d(gx1,gx)+d(gy1,gy)+d(gx,gx1)

+d(gy,gy1)]. (4.15)

So, [d(gx1,gx)+d(gy1,gy)+d(gx,gx1)+d(gy,gy1)] = 0 since ω < 1.
It follows that
d(gx1,gx) = 0,d(gy1,gy) = 0,d(gx,gx1) = 0, and d(gy,gy1) = 0.
It follows that gx1 = gx and gy1 = gy so that (gx,gy) = (gx1,gy1).
Thus, (gx,gy) is the unique coupled point of coincidence of T and g.
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Next, we show that gx = gy.

d(gx,gy) = d[T (x,y),T (y,x)]

≤ a1[d(gx,gy)+d(gy,gx)]

+a2[d(gx,T (x,y))+d(gy,T (y,x))]

+a3[d(gx,T (y,x))+d(gy,T (x,y))]

+a4

[
d(gx,T (x,y))d(gy,T (y,x))

d(gx,gy)+d(gy,gx)

]
+a5

[
[d(gx,gy)+d(gy,gx)][d(gx,T (x,y))+d(gy,T (y,x))]

1+d(gx,gy)+d(gy,gx)

]
+a6

[
d(gx,T (x,y))+d(gx,T (y,x))
1+d(gy,T (y,x))d(gy,T (y,x))

]
+a7

[
d(gx,T (x,y))d(gy,T (y,x))

1+d(gx,gy)+d(gy,T (y,x))

]
.

Using (4.1) and the fact that gx = T (x,y) and gy = T (y,x), we have

d(gx,gy) ≤ a1[d(gx,gy)+d(gy,gx)]

+a2[d(gx,gx)+d(gy,gy)]

+a3[d(gx,gy)+d(gy,gx)]

+a4

[
d(gx,gx)d(gy,gy)

d(gx,gy)+d(gy,gx)

]
+a5

[
[d(gx,gy)+d(gy,gx)][d(gx,gx)+d(gy,gy)]

1+d(gx,gy)+d(gy,gx)

]
+a6

[
d(gx,gx)+d(gx,gy)
1+d(gy,gy)d(gy,gy)

]
+a7

[
d(gx,gx)d(gy,gy)

1+d(gx,gy)+d(gy,gy)

]
.

Thus, we have

d(gx,gy) ≤ σd(gy,gx) (4.16)
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where σ =
[

a1+a3
1−(a1+a3+a6)

]
.

Similarly, we can show that

d(gy,gx) ≤ σd(gx,gy). (4.17)

Adding (4.16) and (4.17), we have

[d(gx,gy)+d(gy,gx)]≤ σ [d(gx,gy)+d(gy,gx)].

Since σ < 1, the above inequality is only possible if

d(gx,gy) = d(gy,gx) = 0.

That is, gx = gy.

Now, we show that T and g have coupled common fixed point.
Now, let gx = u, then we have that u = gx = T (x,y).
Since T and g are weakly compatible, then we have
gu = g(gx) = gT (x,y) = T (gx,gy) = T (u,u) since gx = gy.
Hence (gu,gu) is a coupled point of coincidence and (u,u) is a coupled coincidence
point of T and g.
The uniqueness of coupled point of coincidence implies that
gu = u = gx = gy. Therefore T (u,u) = gu = u.
That is (u,u) is a coupled common fixed point of T and g.
Finally, we show the uniqueness of a coupled common fixed point of T and g.
let (u1,u1) ∈ X2 be another coupled common fixed point of T and g.
That is, u1 = gu1 = T (u1,u1).
Hence (gu,gu) and (gu1,gu1) are two coupled points of coincidence of T and g.
The uniqueness of coupled point of coincidence implies that
gu = gu1 and so T (u1,u1) = u1 = u.
Hence (u,u) is the unique coupled common fixed point of T and g. 2
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Corollary 4.4 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition of rational type

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

+a3[d(x,T (u,v))+d(u,T (x,y))]

+a4

[
d(x,T (x,y))d(u,T (u,v))

d(x,u)+d(y,v)

]
+a5

[
[d(x,u)+d(y,v)][d(x,T (x,y))+d(u,T (u,v))]

1+d[(x,u),(y,v)]

]
+a6

[
d(x,T (x,y))+d(x,T (u,v))

1+d(u,T (u,v))d(u,T (u,v))

]
for all x,y,u,v ∈ X and a1,a2,a3,a4,a5, and a6 are non-negative constants with

2(a1 +a2 +a5)+4(a3 +a6)+a4 < 1.

Then T has a unique coupled fixed point in X×X.

Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a7 = 0. 2

Corollary 4.5 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition of rational type

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

+a3[d(x,T (u,v))+d(u,T (x,y))]

+a4

[
d(x,T (x,y))d(u,T (u,v))

d(x,u)+d(y,v)

]
+a5

[
[d(x,u)+d(y,v)][d(x,T (x,y))+d(u,T (u,v))]

1+d[(x,u),(y,v)]

]
for all x,y,u,v ∈ X and a1,a2,a3,a4, and a5 are non-negative constants with
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2(a1 +a2 +a5)+4a3 +a4 < 1. Then T has a unique coupled fixed point in X×X.

Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a6 = a7 = 0. 2

Corollary 4.6 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition of rational type

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

+a3[d(x,T (u,v))+d(u,T (x,y))]

+a4

[
d(x,T (x,y))d(u,T (u,v))

d(x,u)+d(y,v)

]
for all x,y,u,v ∈ X and a1,a2,a3, and a4 are non-negative constants with

2(a1 +a2)+4a3 +a4 < 1.

Then T has a unique coupled fixed point in X×X.

Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a5 = a6 = a7 = 0. 2

Corollary 4.7 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

+a3[d(x,T (u,v))+d(u,T (x,y))]

for all x,y,u,v ∈ X and a1,a2, and a3 are non-negative constants with

2(a1 +a2)+4a3 < 1.

Then T has a unique coupled fixed point in X×X.
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Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a4 = a5 = a6 = a7 = 0. 2

Corollary 4.8 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

+a2[d(x,T (x,y))+d(u,T (u,v))]

for all x,y,u,v ∈ X and a1 and a2 are non-negative constants with

2(a1 +a2)< 1.

Then T has a unique coupled fixed point in X×X.

Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a3 = a4 = a5 = a6 = a7 = 0. 2

Corollary 4.9 Let (X ,d) be a complete dislocated quasi-metric space.

T : X ×X → X be a continuous mapping satisfying the following contractive con-

dition

d[T (x,y),T (u,v)] ≤ a1[d(x,u)+d(y,v)]

for all x,y,u,v ∈ X and a1 is non-negative constants with 2a1 < 1.

Then T has a unique coupled fixed point in X×X.

Proof: It follows from Theorem 4.3 by taking g = I (the identity map on X) and
a2 = a3 = a4 = a5 = a6 = a7 = 0. 2

The following example supports our main theorem.

Example 4.3 Let X = [0,1) and d : X×X →ℜ+ be defined by

d(x,y) = |x− y|+ |y|
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for all x,y ∈ X. Then (X ,d) is dq-metric space.

We define the functions T : X×X → X and g : X → X by

gx =

1
3x if 0≤ x < 9

10
3

10 if 9
10 ≤ x < 1

and

T (x,y) =



x+y
27 if 0≤ x,y < 9

10
1

30y if 9
10 ≤ x < 1 and 0≤ y < 9

10
1

30x if 9
10 < y < 1 and 0≤ x < 9

10
1

15 if 9
10 ≤ x < 1 and 9

10 ≤ y < 1.

Clearly T and g are continuous, T (X×X)⊆ g(X), and g(X) is a complete subspace

of X since

T (X×X) = [0,
1

15
]⊆ g(X) = [0,

3
10

].

Case 1: 0≤ x,y < 9
10

d[T (x,y),T (u,v)] = d
(

x+ y
27

,
u+ v
27

)
=

∣∣∣∣x+ y
27
− u+ v

27

∣∣∣∣+ ∣∣∣∣u+ v
27

∣∣∣∣
=

∣∣∣ x
27

+
y

27
− u

27
− v

27

∣∣∣+ ∣∣∣ u
27

+
v

27

∣∣∣
≤

∣∣∣ x
27
− u

27

∣∣∣+ ∣∣∣ y
27
− v

27

∣∣∣+ ∣∣∣ u
27

∣∣∣+ ∣∣∣ v
27

∣∣∣
=

1
9

[(∣∣∣x
3
− u

3

∣∣∣+ ∣∣∣u
3

∣∣∣)+(∣∣∣y
3
− v

3

∣∣∣+ ∣∣∣v
3

∣∣∣)]
≤ 1

9
[d(gx,gu)+d(gy,gv)]

≤ 2
9
[d(gx,gu)+d(gy,gv)].
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Case 2: 9
10 ≤ x < 1 and 0≤ y < 9

10

d[T (x,y),T (u,v)] = d
(

1
30

y,
1

30
v
)

=

∣∣∣∣ 1
30

y− 1
30

v
∣∣∣∣+ ∣∣∣∣ 1

30
v
∣∣∣∣

=
1
9

(∣∣∣∣ 3
10

y− 3
10

v
∣∣∣∣+ ∣∣∣∣ 3

10
v
∣∣∣∣)

=
1
9

d(gy,gv)

≤ 1
9
[d(gx,gu)+d(gy,gv)]

≤ 2
9
[d(gx,gu)+d(gy,gv)].

Case 3: 9
10 < y < 1 and 0≤ x < 9

10

d[T (x,y),T (u,v)] = d
(

1
30

x,
1
30

u
)

=

∣∣∣∣ 1
30

x− 1
30

u
∣∣∣∣+ ∣∣∣∣ 1

30
u
∣∣∣∣

=
1
9

(∣∣∣∣ 3
10

x− 3
10

u
∣∣∣∣+ ∣∣∣∣ 3

10
u
∣∣∣∣)

=
1
9

d(gx,gu)

≤ 1
9
[d(gx,gu)+d(gy,gv)]

≤ 2
9
[d(gx,gu)+d(gy,gv)].
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Case 4: 9
10 ≤ x < 1and 9

10 ≤ y < 1

d[T (x,y),T (u,v)] = d
(

1
15

,
1

15

)
=

2
9

(∣∣∣∣ 3
10
− 3

10

∣∣∣∣+ ∣∣∣∣ 3
10

∣∣∣∣)
=

2
9

d(gx,gu)

≤ 2
9
[d(gx,gu)+d(gy,gv)].

It follows that

d[T (x,y),T (u,v)] ≤ a1[d(gx,gu)+d(gy,gv)]

+a2[d(gx,T (x,y))+d(gu,T (u,v))]

+a3[d(gx,T (u,v))+d(gu,T (x,y))]

+a4

[
d(gx,T (x,y))d(gu,T (u,v))

d(gx,gu)+d(gy,gv)

]
+a5

[
[d(gx,gu)+d(gy,gv)][d(gx,T (x,y))+d(gu,T (u,v))]

1+d(gx,gu)+d(gy,gv)

]
+a6

[
d(gx,T (x,y))+d(gx,T (u,v))

1+d(gu,T (u,v))d(gu,T (x,y))

]
+a7

[
d(gx,T (x,y))[1+d(gu,T (u,v))]

1+d(gx,gu)+d(gu,T (u,v))

]
where x,y,u,v∈X and a1 =

2
9 ,a2 =

1
120 ,a3 =

1
64 ,a4 =

1
80 ,a5 =

1
100 ,a6 =

1
128 ,a7 =

1
32

since 2(a1 +a2 +a5)+4(a3 +a6)+a4 +a7 =
472
763 < 1.

Hence all the conditions of Theorem 4.3 are satisfied.
Hence, T and g have unique coupled point of coincidence and unique coupled com-
mon fixed point which are (g0,g0) and (0,0) respectively. This is due to the fact
that

gT (0,0) = T (g0,g0) = T (0,0) = 0.

Also T and g are commuting and weakly compatible at (0,0).
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Chapter 5

Conclusion and Future Scope
In 2018, M. Mohammed established the existence of coupled fixed point for map-
ping satisfying certain rational type contraction condition in a complete dislocated
quasi metric space. In this thesis, we have explored the properties of dislocated
quasi-metric spaces and also discuss the difference between metric space and dis-
located metric space. We established and proved existence of coupled coincidence
point and existence and uniqueness of coupled common fixed point theorem for a
pair of maps T and g in the setting of dislocated quasi metric spaces. Also we pro-
vided an example in support of our main result. Our work extended coupled fixed
point result to common coupled fixed point result. Our result extends and general-
izes several well-known comparable results in literature.

There are several published results related to existence of fixed points of self-maps
defined on dislocated quasi metric space. There are also few results related to the
existence of coupled common fixed points for a pair or more maps in this space.
The researcher believes the search for the existence of coupled coincidence point
and coupled common fixed points of maps satisfying different contractive condi-
tions in dislocated quasi metric space is an active area of study. So, the forthcoming
postgraduate students of Department of Mathematics and any researcher can exploit
this opportunity and conduct their research work in this area.
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