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Abstract 

In this thesis, distributional solution of singularly perturbed two point boundary value problem is 

presented. In order to achieve this goal, some important terminologies related to distribution are 

defined together with their properties. Homogeneous solution to singularly perturbed two point 

boundary value problem under consideration is described and then Green’s function was 

constructed in the sense of distribution to get the particular solution using convolution or 

without applying convolution. To verify the applicability of the method, three numerical 

examples were considered and solved. Using the developed method, problems with known exact 

solution is solved and it agrees with existing exact solution. Furthermore, using the developed 

method, problems with unknown exact solution is also solved. Finally, MATLAB simulation was 

implemented for various values of perturbation parameter in order to see the effect of this 

parameter and the nature of the layer created due to this parameter.  

 

Key words: Distribution, Distributional solution, singularly perturbed problem, two pint 

boundary value problem, Green’s function, Convolution. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

Distributions or Generalized functions are objects that generalize the classical notion of functions 

in mathematical analysis. Generalized functions make it possible to differentiate functions whose 

derivatives do not exist in the classical sense. The mathematical concept of distribution 

originates from physics. It was first used by O. Heaviside, a British engineer, in his theory of 

symbolic calculus and then by P.A. M. Dirac around 1920 in his research on quantum 

mechanics, in which he introduced the delta -function. The foundations of the mathematical 

theory of distributions were laid by S.L. Sobolev in 1936, while in the 1950s L.Schwartz gave a 

systematic account of the theory. The theory of distributions has numerous applications and is 

extensively used in mathematics, physics and engineering (Gerrit, 2013).  

There has recently been a significant increase in the number of topics for which generalized 

functions have been found to be very effective tools. Familiarity with the basic concepts of this 

theory has become indispensable for students in applied mathematics, physics, and engineering. 

Methods based on generalized functions not only help us to solve unsolved problems but also 

enable us to recover known solutions in a very simple fashion (Kanwal, 1983). Methods of the 

distribution theory have been used in the several important areas, such as theoretical and 

mathematical physics, theory of differential equations, functional analysis and etc.  

One of the important subjects in applied mathematics is the theory of singular perturbation 

problem. The mathematical model for this kind of problem usually arise in the form of either 

ordinary differential equations (ODE) or partial differential equations (PDE) in which the highest 

order derivative is multiplied by a small positive parameter (Tikhonov, 1952).  Prandtl (1905) 

was a pioneer to emphasize the significance of singular problems and the necessity of their 

appearance as mathematical models. He pointed out the importance of the subject while he was 

developing the theory of the boundary layer in hydrodynamics in 1904.  

https://en.wikipedia.org/wiki/Mathematical_analysis
https://en.wikipedia.org/wiki/Derivative
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In 2017, Kamsing et al, collaboratively studied distributional solution of nth order Bessel 

equation and obtained solutions in the form of infinite series of the Dirac delta functions and its 

derivatives. In 2017, Tohru and Kenichi studied about particular solutions of inhomogeneous 

differential equations with polynomial coefficients in terms of the Green’s function and obtained 

in the framework of distribution theory. In 2018, Marat et al studied a singularly perturbed 

differential equation with piecewise constant argument of generalized type and approximate 

solution of the problem in distribution sense. In 1982, Wiener has studied various differential 

equations like second order Bessel equation, Legendre equation, Leguerre’s equation, confluent 

Hypergeometric equations and etc. with singular coefficients and obtained their distributional 

solutions. In 1987, Littlejohn and Kanwal studied the distributional solutions to the 

Hypergeometric differential equation and obtained solutions in the form of infinite series of the 

Dirac delta functions and its derivatives.  

Another motivation for studying solutions of the form of infinite series of the Dirac delta 

functions and its derivatives to ordinary differential equations comes from the works of several 

scholars like (Morton and krall, 1978; Krall, 1981; Cooke and Wiener, 1984; Littlejohn, 1984; 

Wiener and Cooke, 1990; Wiener et al., 1991; Hernandez-Urena and Estrada, 1995). These 

researchers had collectively shown that weight distributions for a certain class of orthogonal 

polynomials have the form of infinite series of the Dirac delta functions and its derivatives and 

simultaneously satisfy a system of ordinary differential equations.  

 

The study of distributional solutions of differential equations plays a pivotal role in different 

field of study. Because once we know the solution of certain differential equation it can be easily 

interpreted in a physical sense to have meaningful message. Singularly perturbed problems have 

wide range applications in various field of applied mathematics such as fluid mechanics, 

elasticity, quantum mechanics, optimal control, chemical reaction, aerodynamics, reaction 

diffusion process, geophysics, and many other areas (Phaneendra et al., 2011). Equations of this 

type typically exhibit solutions with layers, that is, the domain of the differential equations 

contains narrow regions where the solution derivatives are extremely large. The numerical 

treatment of such problems was investigated by different scholars. For example, In 2015, 

Gemechis File et al, studied Fitted-Stable Finite Difference Method for Singularly Perturbed 
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Two Point Boundary Value Problems. They obtained numerical results and compared with exact 

solutions. The error bound and convergence of the proposed method has also been established.  

However, distributional solutions of singularly perturbed problems were not yet investigated in 

the existing literature. Being motivated by the applicability of singularly perturbed problems 

pointed out earlier and distributional solutions- a powerful tool to find a solution of differential 

equations discontinuity involving discontinuities which are not possible in the classical sense. It 

then seems relevant to look for distributional solutions to singularly perturbed two point 

boundary value problem.  

Therefore, the present study focuses on distributional solutions of singularly perturbed two point 

boundary value problem of the form (Phaneendra et al., 2011) 

''( ) '( ) ( ) ( ) ( ), 0 1 , (1.1)

with boundaryconditions

(0) and (1)

k
y x y x b x y x f x x

x

y y



 

     

 

 

where 0 1, ( ), ( )b x f x bounded continuous functions in (0,1) and , ,k   are finite constants. 
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1.2 Statement of the Problem 

Recently there has been considerable interest in problems concerning the existence of solutions 

to differential equations in various spaces of generalized functions. Many important areas in 

theoretical and mathematical physics, theory of partial differential equations, quantum 

electrodynamics, operational calculus, and functional analysis use the methods of distributions 

theory. However, for ordinary differential equations, research in this direction is insufficiently 

developed and remains restricted to isolated results for some second order equations or special 

higher-order systems. Consequently, this study focuses mainly on the following problems. 

 Homogeneous solution of singularly perturbed two point boundary value problem 

represented by eq. (1.1), 

 Constructing Green’s function in the sense of distribution for the particular solution of 

singularly perturbed two point boundary value problem represented by eq. (1.1), 

 Layers of the singularly perturbed two point boundary value problem using different 

numbers via simulation by MATLAB. 

1.3 Objectives of the Study 

1.3.1 General Objective 

The general objective of this study is to investigate distributional or weak solutions of singularly 

perturbed two point boundary value problem given by eq.(1.1).  

1.3.2 Specific objectives  

The specific objectives of the study are to: 

 Determine homogeneous solution of singularly perturbed two point boundary value 

problem  represented by eq. (1.1), 

 Construct Green’s function in the sense of distribution for the particular solution of 

singularly perturbed two point boundary value problem represented by eq. (1.1), 

 Detect Layers (if any) of the singularly perturbed two point boundary value problem 

using different numbers via simulation by MATLAB. 
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 1.4 Significance of the Study 

The output of this research can be used as a bench mark for those interested in this area to 

establish distributional solutions of different mathematical equations in Physics, Engineering and 

other related field of study whose classical solutions are difficult due singularities in the 

coefficients of the equation. Furthermore, it provides opportunities for those working in 

numerical analysis to compare their numerical solution with this solution. 

1.5 Delimitation of the Study  

This study is delimited to distributional or weak solution of singularly perturbed two point 

boundary value problem represented by eq. (1.1). 
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CHAPTER TWO 

2. LITERATURE REVIEW 

In the mathematics of the nineteenth century, aspects of generalized function theory appeared, 

for example in the definition of the Green's function, in the Laplace transform, and in Riemann's 

theory of trigonometric series, which were not necessarily the Fourier series of an integrable 

function. Differential equations appear in several forms. One has ordinary differential equations 

and partial differential equations, equations with constant coefficients and with variable 

coefficients. Equations with constant coefficients are relatively well understood. If the 

coefficients are variable, much less is known.  

Distribution theory stems from the intention to apply the technologies of functional analysis to 

studying partial differential equations. The series of smooth functions cannot be differentiated 

term wise in general, which diminishes the scope of applications of analysis to differential 

equations. Today the concept of generalized derivative occupies a central place in distribution 

theory. Derivation is now treated as the operator that acts on the non-smooth functions according 

to the same integral laws as the procedure of taking the classical derivative. It is exactly this 

approach that was pursued steadily by Sobolev. It turned out that each distribution possesses 

derivatives of all orders; every series of distributions may be differentiated term wise. However, 

many “traditionally divergent” Fourier series admit presentations by explicit formulas. 

Mathematics has acquired additional fantastic degrees of freedom, which makes immortal the 

name of Sobolev as a pioneer of the calculus of the twentieth century (Kutateladze, 2008). 

In 1950 the first volume of Theorie des Dis-tributiones was published in Paris, while Sobolev’s 

book Applications of Functional Analysis in Mathematical Physics was printed in Leningrad. In 

1962 the Siberian Division of the Academy of Sciences of the USSR reprinted the book, while in 

1963 it was translated into English by the American Mathematical Society. The second edition of 

the Schwartz book was published in 1966, slightly enriched with a generalized version of the de 

Rham currents. Curiously, Schwartz left the historical overview practically the same as in the 

introduction to the first edition. 

 

https://en.wikipedia.org/wiki/Green%27s_function
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Riemann
https://en.wikipedia.org/wiki/Trigonometric_series
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Integrable_function
https://en.wikipedia.org/wiki/Integrable_function
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The new methods of distribution theory turned out so powerful as to enable mathematicians to 

write down, in explicit form, the general solution of an arbitrary partial differential equation with 

constant coefficients. In fact, everything reduces to existence of fundamental solutions; i.e., to 

the case of the Dirac delta function on the right-hand side of the equation under consideration. 

Leray was one of the most prominent French mathematicians of the twentieth century. He was 

awarded with the Lomonosov Gold Medal together with Sobolev in 1988 by reviewing the 

contributions of Sobolev from 1930 to 1955. Distribution theory is now well developed due to 

the theory of topological vector spaces and their duality as well as the concept of tempered 

distribution which is one of the important achievements of Schwartz which enabled him to 

construct the beautiful theory of the Fourier transform for distributions 

 

The applications of distribution theory in all areas of mathematics, theoretical physics, and 

numerical analysis remind of the dense forest hiding the tree whose seeds it has grown from. The 

generalized functions are “ideal elements” that complete the classical function spaces in much 

the same way as the real numbers complete the set of rational numbers. 

 

Although the study distributional theory plays a significant role in various field of study there is 

no sufficient research in this direction.  Therefore, the central goal of this study is the present 

distributional solutions of singularly perturbed two point boundary value problem given by 

equation (1.1).  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted in Jimma University under the department of Mathematics from 

September, 2018 to October, 2019 G.C.  

3.2. Study Design 

This study employed mixed-design (documentary review design and experimental design) on 

distributional solutions given by equation (1.1).  

3.3. Source of Information 

The relevant sources of information for this study were books, published articles & related 

studies from internet. 

3.4. Mathematical Procedures 

This study was conducted based on the following procedures 

1. Defining the Problem, 

2. Finding solutions of the associated homogeneous equation (1.1), 

3. Constructing Green’s function in the sense of distribution, 

4. Verifying the method via numerical examples, 

5. Investigating the solution properties by taking into account different values for the 

perturbation parameter, 

6. Identifying layers for different values of the perturbation parameter and the coefficients 

via simulation by MATLAB. 
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CHAPTER FOUR 

DISCUSSION AND RESULTS 

4.1 Preliminaries 

Definition 4.1.1: A function  ( )f x  defined on an open set 
 nU R  is said to have compact 

support if  ( ) 0f x   for x  in the complement of a compact subset ofU . In particular, if
 nU R , 

then f  has compact support if there is a positive constant, C  such that ( ) 0f x   for x C . 

Definition 4.1.2: A function ( )f x is a test function if ( )f x  has compact support and, in addition, 

( )f x is infinitely differentiable onU . We use the notation 
0 ( ) or ( )f C U f D U   to indicate 

that ( )f x is a test function onU . 

For instance, the function           
2

1
exp( ),if 1

1( ) ,

0, if   1  

n
k x

xT x x R

x




 
 

 

where the constant K is chosen such that ( ) 1
nR

T x dx  , is a test function on Rn.   

Definition 4.1.3: The spaces of infinitely differentiable functions with compact support in   is 

defined as ( ) ; ( ) and supp( ) is compact in ( )cD f f C f C        . This space is 

called a space of test functions. The set of test functions, the supports of which are contained in 

the given region, is denoted by ( )D  . 

Properties of Test Functions in ( )D  : 

1. If 1 2and    are in D, then so is 1 1 2 2c c  , where 1c  and 2c  are real numbers. Thus D is a    

     linear space. 

2. If D , then so is kD  . 

3.  For C
 function f(x) and D , .f D  

4. Multiplication by a function: Let D , then .f D   
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Definition 4.1.4:  A continuous linear functional on the space of test functions ( )D  is called a 

distribution '( )D  . Distribution in '( )D  is a class of continuous linear functional that maps a set 

of test function in ( )D   into the (complex) numbers. 

That is, A functional : ( )f D    such that 

1. ,f    

2. 
1 2 1 2, , ,f c c f c f c       

3. 
1 2 1 2lim , , lim ,  where , ,..., ( ),  and  and n n n

n n
f f D c c    

 
    are constants, is called a 

distribution (generalized function). 

4.1.1 Delta function 

Definition 4.1.5: The Dirac delta function is defined by 

              
0,if 0

( ) and   ( ) 1
,if 0

x
x x dx

x
 






 

 
  

Properties of Dirac delta function: 

1. The delta function satisfies the following scaling property for a non-zero scalar c: 

1 ( )
   ( ) ( ) . o,  ( )  

du x
cx dx u S cx

c c c


  

 

 

     

2. Dirac delta function is symmetric:  ( ) ( )x x    

3. Suppose f(x) is a sufficiently smooth function continuous at the origin. Then 

f( ), ( ) (0)x x f   

4. The Dirac delta function has a distributional derivative defined by ', , '      

4.1.2 Heaviside Function: 

Definition 4.1.6: The Heaviside function ( )H x is defined to be equal to zero for every negative 

value of x and to unity for every positive value of x ; that is 

                  
1, 0

( )
0, 0

x
H x

x


 


 

Derivative of Heaviside function 

Let D(R),  

               
1, 0

( )
0, 0

x
H x

x


 


  then,    
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       

 

0

0

H', H, '

H(x) '(x)

'(x)

(x)

( ) (0)

(0)

, 

dx

dx

 







 



 









 

 

 

 

   









 

So, 'H  . That is, the derivative of Heaviside function is a delta function. 

 

Theorem:  Let a function ( )f x  be n times continuously differentiable; then 

( ) ( ) 1 ( 1) 2 ( 2) ( )( 1)
( ) ( ) ( 1) (0) ( ) ( 1) (0) '( ) ( 1) (0) "( ) ... (0) ( ).

2!

n n n n n n n nn n
f x x f x nf x f x f x       

       

 

Proof: First we show its validity with the help of a test function. 

   

   

 

   

 

( ) ( )

( 1) ( 1)

( 1)

( 2) ( 2)

2 ( 2)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ' ( )

( ) ( ) ' ( )

( ) ( ) ( ) ( ) " ( )

( 1) ( ) ( ) " ( )

n n

n n

n

n n

n

f x x x dx f x x x dx

f x x f x x x dx

f x x x dx

f x x f x x x dx

f x x x dx

   

   

 

   

 

 

 




 













 












   

 

 
     
 

 

 









   

 

 

( 3) ( 3)

3 ( 3)

( )

( ) ( ) ( ) ( ) '" ( )

( 1) ( ) ( ) "' ( )

.

.

.

( 1) ( ) ( ) ( )

n n

n

n n

f x x f x x x dx

f x x x dx

f x x x dx

   

 

 




 














 
     
 

 

 






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Substitution of the formula 

 
( ) ( ) ( 1) ( 2) ( )( 1)

( ) ( ) ( ) ( ) ( ) '( ) ( ) "( ) ... ( ) ( )
2!

n n n n nn n
f x x f x x nf x x f x x f x x     

     , 

in the preceding relation and the application of the shifting property yields: 

 ( ) ( ) ( ) ( 1) ( 2) ( )( 1)
( ) ( ) ( ) ( 1) (0) (0) (0) '(0) (0) "(0) ... (0) (0) .

2!

n n n n n nn n
f x x x dx f nf f f     



 



 
      

 


 

Corollary: 

 
( ) ( ) ( 1) ( 2) ( 1)( ) ( ) ( ) ( ) (0) ( ) (0) '( ) ... (0) ( ).
n n n n nf x H x f x H x f x f x f x          

Proof: Observe that 

 
( ) ( ) ( 1) ( ) ( ) ( )( 1)...( 1)

( ) ( ) ( ) ( ) ( ) '( ) ... ( ) ( ) ... ( ) ( )
!

n n n n r nn n n r
f x H x f x H x nf x H x f x H x f x H x

r

   
     

As ( ) ( 1)( ) ( )r rH x x   and by theorem above, 

( 1) 1 ( 1) 2 ( 2) ( )( 1)
( ) ( ) ( 1) (0) '( ) ( 1) (0) "( ) ... (0) ( ).

2!

n n n n n nn n
f x x nf x f x f x       

       

We get, 

 
( ) ( ) ( 1) ( ) ( 1) 1 ( 1)

2 ( 2) ( )

( 1)...( 1)
( ) ( ) ( ) ( ) (0) ( ) ... ( ) ( ) ... ( 1) (0) '( )

!

( 1)
( 1) (0) "( ) ... (0) ( ).

2!

n n n n r n n

n n n

n n n r
f x H x f x H x nf x f x x nf x

r

n n
f x f x

  

 

   

 

  
      


   

Therefore, 

 
( ) ( ) ( 1) ( 2) ( 1)( ) ( ) ( ) ( ) (0) ( ) (0) '( ) ... (0) ( ).
n n n n nf x H x f x H x f x f x f x          

4.1.3 Green’s Function: 

Definition 4.1.7:  A Green’s function ( , )G x   for any Boundary Value Problem satisfies the 

equation 

                   ( , ) ( )LG x x     ,  

for some operator xL  with homogeneous Boundary Conditions, i.e. it is the solution 

corresponding to the data{ ( ) 0}x   . Thus, ( , )G x   is the response under homogeneous 

Boundary Conditions to a forcing function consisting of a concentrated unit impulse (or 

inhomogeneity) at x  . 

A fundamental solution of the differential equation is the solution of  

        ( ( , ))( , ) ( ), , d

xL G x y x y x y x y R    , in the distributional sense. 
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In general, the Green’s function  ( , )G x   associated with the non-homogeneous equation 

( )Ly f x  satisfies the differential equation 

( , ) ( )LG x x    : 

Once ( , )G x    is known, then the solution to ( )Ly f x  is given by  

           ( ) ( , ) ( )y x G x f d  




   

Because, 

              

( , ) ( )

[ ( , )] ( )

( ) ( )

( ) ( )

( ) ( )

( )

Ly L G x f d

LG x f d

x f d

x f x d

f x x d

f x

  

  

   

  

  

























 

 

 













 

Note that this is true over any interval that contains x on which ( )f x  is continuous. 

Hence, Green’s function of a differential equation is a fundamental solution satisfying the 

boundary conditions.  

Properties Green’s function: 

For  
( )

( ) ( ) ( ) ( ),
d dy x

p x q x y x f x
dx dx

 
  

 
 

A Green’s function ( , )G x    satisfies the following properties. 

1. It satisfies the homogeneous form the given differential equation. 

    That is, for x  ,  ( , ) 0LG x    

2. The function ( , )G x   is continuous at x  . 

    That is, lim ( , ) ( ) lim ( , )
x x

G x G x G x
 

  
  

    

3. The derivative of ( , )G x   with respect to   is discontinuous at x   . 
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     That is, jump discontinuity of 
G

x




at x  : 

1
'( , ) '( , )

( )
G x G x

p
 



    

4. ( , )G x  , satisfies a given boundary condition of the problem 

5. The function ( , )G x  is symmetric in its arguments:   ( , ) ( , )G x G x   

All the preliminaries are from (Kanwal, 1983)   

4.2 Main Result 

Consider singularly perturbed two point boundary value problem given by: 

"( ) '( ) ( ) ( ) ( ), 0 1 (1.1)

(0) and (1)

k
y x y x b x y x f x x

x

y y



 

     

 

 

Case1: 0 and ( )k b x p  , where p  is an arbitrary constant.  

Equation (1.1)  becomes  

"( ) ( ) ( ), 0 1 (1.2)

(0) and (1)

y x py x f x x

y y



 

    

 
 

The general solution to Eq. (1.2)  is given by: 

'( ) ( ) ( ) (1.3)h py x y x y x 

where ( )hy x is an homogeneous solution and 
'( )py x is a particular solution of equation (1.2)  

To find the Homogeneous Solution, 

"( ) ( ) 0, 0 1 (1.4)y x py x x      

The solution to eq. (1.4) is assumed to be ( ) mxy x e , where m is a constant. 

Auxiliary equation: 2 0m p    

1

p
m


      or  2

p
m




  
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1 2( ) (1.5)

p p
x x

hy x c e c e 



   

To find the particular solution,               

              
"( ) ( ) ( ), 0 1 and 0 1 (1.6)

(0) and (1)

y x py x x x

y y

   

 

       

 
 

Since the non-homogeneous part of eq. (1.6) is delta function, we assume the form of the 

particular solution to be: 

                ( ) ( ) ( ) (1.7)py x G x H x    

where ( )H x  is the Heaviside function,  ( )G x  is unknown function. 

             

( ) ( ) ( )

' ( ) '( ) ( ) ( ) '( )

'( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

'' ( ) ''( ) ( ) '( ) '( ) ( ) '( )

''( ) ( ) '( ) ( ) ( ) '( )

''( ) ( ) '( ) ( )

p

p

p

y x G x H x

y x G x H x G x H x

G x H x G x x

G x H x G x

y x G x H x G x H x G x

G x H x G x x G x

G x H x G x



 

  

   

    

     

   

 

   

   

   

     

     

     ( ) '( )G x  

 

Plugging ( )py x  and '' ( )py x  into eq. (1.6) gives 

 ''( ) ( ) '( ) ( ) ( ) '( ) ( ) ( ) ( )G x H x G x G x pG x H x x                     

 ''( ) ( ) ( ) '( ) ( ) ( ) '( ) ( ) (1.8)G x pG x H x G x G x x                      

Then, comparing the corresponding coefficients of eq. (1.8) , 

''( ) ( ) 0

'( ) 1

( ) 0

G x pG x

G

G



 

 

  

 

 
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''( ) ( ) 0

1
'( ) (1.9)

( ) 0

G x pG x

G

G








  

 







 

The solution of eq. (1.9) is given by 1 2

3 4( )
m x m x

G x c e c e  , where  

1

p
m


      and  

2

p
m




  

3 4( ) (1.10)

p p
x x

G x c e c e 



   

Using the initial conditions of eq. (1.9)  we find for the constants 3c  and 4c :          

3 4

3 4

( ) 0

1
'( )

p p

p p

G c e c e

p p
G c e c e

 
 

 
 




 





  


  

   

Solving this system of equations gives: 

3

4

 

2
(1.11)

2

p

p

e
c

p

c e
p
















 




 


 

Substituting eq. (1.11) into eq. (1.10) we get 

( ) ( )

( ) (1.12)
2 2

p p
x x

G x e e
p p

 
  

 

 

   
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Plugging eq. (1.12) into eq. (1.7)  we get: 

( ) ( )

( ) ( )
2 2

p p
x x

py x e e H x
p p

 
  


 

  
   
  

 

( ) ( )

0, 1

( ) (1.13)
, 0

2 2

p p
x x

p

x

y x
e e x

p p

 
 



 


 

 

 


 
  



 

is the particular solution of eq. (1.6) . 

Since the non-homogeneous part of eq. (1.6)  is Dirac delta function, this particular solution is 

the same with the Green’s function of eq. (1.2)  

( ) ( )

0, 1

( , ) (1.14)
, 0

2 2

p p
x x

x

G x
e e x

p p

 
 



  


 

 

 


 
  



 

As a result, the particular solution to eq. (1.2)  is given by: 

          

1

'

0

1

0

( ) ( , ) ( )

( , ) ( ) ( , ) ( )

p

x

x

y x G x f d

G x f d G x f d

  

     



 



 
 

( ) ( )
'

0

0, 1

( ) (1.15)
( ) , 0

2 2

p px
x x

p

x

y x
e e f d x

p p

 
 



 
  

 

 

 
   

   
   

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Plugging equations (1.5)  and (1.15) into eq. (1.3)  we get,  

  ( ) ( )
1 2

0

0, 1 (1.16)

( )
( ) , 0

2 2

p p
x x

p px
x x

x

y x c e c e
e e f d x

p p

   
 



 
  

 



 

 
     
   
   


 

Using the given boundary conditions in eq. (1.2) we can get  1c  and 
2c  as follows. 

1 2(0) 0y c c     , 

2 1 (1.17)c c   

1
( 1) (1 )

1 2

0

(1) ( )
2

p p p p

y c e c e e e f d
p

 
   

  



  

     
  
  

            

1
( 1) (1 )

1 2

0

( ) (1.18)
2

p p p p

c e c e e e f d
p

 
   

  



  

    
  
  

Substituting eq. (1.17)  into eq. (1.18)  we get: 

 
1

( 1) (1 )

1 1

0

( )
2

p p p p

c e c e e e f d
p

 
   

   



  

     
  
  

2

1
( 1) (1 )

1

0

1
( 1) (1 )

1 2
0

1
( )

2

( ) (1.19)
2

1

p
p p p

p

p
p p p

p

e
c e e e f d

p
e

e
c e e e f d

p
e

  
  



  
  




   




   




 


 

 
    
  

 
   
              




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Substituting eq. (1.19) into eq. (1.17) we get   

               

1
( 1) (1 )

2 2
0

( ) (1.20)
2

1

p
p p p

p

e
c e e e f d

p
e

  
  




    




 

 
   
               

  

Therefore,

( ) ( )
1 2

0

0, 1 (1.21)

( )
( ) , 0

2 2

p p
x x

p px
x x

x

y x c e c e
e e f d x

p p

   
 



 
  

 



 

 
     

   
   


 

where 1c  and 2c  are given by equations (1.19)  and (1.20)  respectively. 

As a result, a solution to eq. (1.2)  which is reduced from eq. (1.1) is given by eq. (1.21)  

Case 2: 0 ,  ( ) 0  k b x    

Equation (1.1) is reduced to  

"( ) '( ) ( ), 0 1 (1.22)

(0) and (1)

k
y x y x f x x

x

y y



 

    

 

 

To find the homogeneous solution, 

"( ) '( ) 0, 0 1 (1.23)
k

y x y x x
x

      

"( )

'( )

y x k

y x x
  

"( )

'( )

"( ) 1

'( )

y x k
dx dx

y x x

y x k
dx dx

y x x









 

 
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1

1

1 2

ln '( ) ln ln

ln '( ) ln

'( )

k

k

k
y x x c

y x c x

y x dx c x dx c






 



  

 

1 2( ) (1.24)
k

hy x c x c
k










 


 

To find the particular solution   

"( ) '( ) ( ), 0 1 (1.25)
k

y x y x x x
x

       

Since the non-homogeneous part of eq.  1.25  is delta function, we can assume the form of the 

particular solution to be:                

              ( ) ( ) ( ) (1.26)py x G x H x    

where ( )H x  is the Heaviside function,  ( )G x  is unknown function. 

             

( ) ( ) ( )

' ( ) '( ) ( ) ( ) '( )

'( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

'' ( ) ''( ) ( ) '( ) '( ) ( ) '( )

''( ) ( ) '( ) ( ) ( ) '( )

''( ) ( ) '( ) ( )

p

p

p

y x G x H x

y x G x H x G x H x

G x H x G x x

G x H x G x

y x G x H x G x H x G x

G x H x G x x G x

G x H x G x



 

  

   

    

     

   

 

   

   

   

     

     

     ( ) '( )G x  

 

Plugging ' ( )py x  and '' ( )py x  into eq. (1.25)gives       

( ''( ) ( ) '( ) ( ) ( ) '( )) ( '( ) ( )

( ) ( )) ( )

k
G x H x G x G x G x H x

x

G x x

        

    

       

   
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[ ''( ) '( )] ( ) [ '( ) ( ) ] ( ) ( ) '( ))

( ) (1.27)

k k
G x G x H x G G x G x

x

x

          


 

        

 

 

Comparing the corresponding coefficients of equation (1.27) : 

''( ) '( ) 0

'( ) ( ) 1

( ) 0

''( ) '( ) 0

1
'( ) (1.28)

( ) 0

k
G x G x

x

k
G G

G

k
G x G x

x

G

G



  


 









  


  

 




  











    

  
3

3

3

3 4

''( ) '( ) 0

"( )

'( )

"( )

'( )

ln '( ) ln ln

ln( )

'( )

( )

k

k

k

xG x kG x

G x k

G x x

G x k
dx dx

G x x

k
G x x c

c x

G x c x

G x c x dx c















  





 





 

 



 

3 4( ) (1.29)
k

G x c x c
k










 

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Using the initial conditions of eq. (1.28)  we calculate for the constant 3c  and 4c : 

3

1
'( )

k

G c  



    and   3 4( ) 0

k

G c c
k






 




  


 

3

1
k

c



   and   4c

k







 

Hence, eq. (1.29)  becomes 

1
( ) (1.30)

( )

k

k
G x x

k
k










 




 




 

Substituting eq. (1.30)  into eq. (1.26) we obtain: 

1
( ) (

( )

k

p k
y x x H x

k
k











 

 
   

 
  

 

0, 1

1( ) (1.31), 0

( )

k

p
k

x

y x x x
k

k













 



 
     
 



 

is the particular solution of eq. (1.25) . 

Since the non-homogeneous part of eq. (1.25)  is Dirac delta function, this particular solution is 

the same with the Green’s function of eq. (1.22) . 

0, 1

1( , ) (1.32), 0

( )

k

k

x

G x x x
k

k









 


 



 
     
 


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1

'

0

1

0

( ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

p

x

x

y x G x f x dx

G x f x dx G x f x dx



 



 



 

 

'

0

0, 1

( ) 1
( ) , 0 (1.33)

( )

x k
p

k

x

y x
x f d x

k
k










  


 



 

  

       
   


 

From equations (1.24)  and    (1.33) we get: 

'( ) ( ) ( )h py x y x y x   

1 2

0

0, 1 (1.34)

( ) 1
( ) ,0

( )

k

x k

k

x

y x c x c
x f d xk

k
k














  


 





 

  

          
   


 

Using the given boundary conditions in eq. (1.22) we solve for  1c  and 2c  as follows. 

1 2(0) .0 0y c c     ,   and 

1

1 2

0

1
(1) ( )

( )
k

y c c f d
k k

k 

 
  

 
 

 
     

  
  

  

2c  ,   and 

1

1

0

1
( )

( )
k

c f d
k k

k 

 
   

 
 

 
    

  
  

  

` 2c  ,   and 

1

1

0

1
( )

k

c f d
k k




     
 

 
    

   
  
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2c  ,   and 

1

1

0

1
( )

k

c f d
k k




     
 

 
    

   
  

 
1

1

0

2

1
( ) (1.35)

k
k

c f d

c




     
 



   
      

   





   

Substituting eq. (1.35)  into eq. (1.34)  we obtain:  

 
1

0

0

1
( ) ( )

0, 1

1
( ) ,0

( )

k k

x k

k

k
y x f d x

k

x

x f d x
k

k



 







 
      

  




  


 

 



   
       

    

 

  

       
   





1

0

0

1
( ) ( )

0, 1

(1.36)1
( ) ,0

( )

k k

x k

k

y x f d x
k

x

x f d x
k

k



 







      





  


 

 



  
      

   

 

  

       
   





 

As a result a solution to eq. (1.22)  which is reduced from eq. (1.1) is given by eq. (1.36)  

Case 3:  
2

0, ( ) ,
p

k b x
x

  where p is constant. 

In this case eq. (1.1) is reduced to:  

2
"( ) '( ) ( ) ( ),0 1

(0) and   (1) (1.37)

k p
y x y x y x f x x

x x

y y



 

     

 
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Eq. (1.37)   can be written as: 

2 2"( ) '( ) ( ) ( ),0 1

(0) and   (1) (1.38)

x y x kxy x py x x f x x

y y



 

     

 
 

Eq. (1.38)  is Cauchy Euler Equation. 

Its solution is obtained as follows. 

Associated homogenous part: 

2 "( ) '( ) ( ) 0, 0 1 (1.39)x y x kxy x py x x       

The solution to eq. (1.39)  is assumed to be  

1

2

( )

'( ) (1.40)

"( ) ( 1)

m

m

m

y x x

y x mx

y x m m x








 


  

 

Plugging eq. (1.40)  into eq. (1.39)  leads to: 

 2

( 1) 0

0

m m m

m

m m x kmx px

m k m p x



 

    

      

 

 2 0 (1.41)m k m p       

While solving eq.  1.41 , there are three cases. 

Case i: Distinct real roots say
1m  and

2m . 

Its corresponding solution is: 

1 2

1 2( ) (1.42)m m

hy x c x c x   

1c    and  2c   are arbitrary constants.  
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Case ii: Repeated real root say m. 

Its corresponding solution is: 

1 2

1 2( ) ln (1.43)m m

hy x c x c x x   

1c   and  2c   are arbitrary constants. 

Case iii: Complex root of the form 
1 1m i    

Its corresponding solution is: 

 1

1 1 2 1( ) cos( ln ) sin( ln ) (1.44)hy x x c x c x     

To find the particular solution,               

              
2

"( ) '( ) ( ) ( ), 0 1 and 0 1 (1.45)

(0) and (1)

k p
y x y x y x x x

x x

y y

   

 

        

 

 

Since the non-homogeneous part of eq. (1.6) is delta function, we assume the form of the 

particular solution to be: 

                ( ) ( ) ( ) (1.46)py x G x H x    

where ( )H x  is the Heaviside function,  ( )G x  is unknown function. 

             

( ) ( ) ( )

' ( ) '( ) ( ) ( ) '( )

'( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

'' ( ) ''( ) ( ) '( ) '( ) ( ) '( )

''( ) ( ) '( ) ( ) ( ) '( )

''( ) ( ) '( ) ( )

p

p

p

y x G x H x

y x G x H x G x H x

G x H x G x x

G x H x G x

y x G x H x G x H x G x

G x H x G x x G x

G x H x G x



 

  

   

    

     

   

 

   

   

   

     

     

     ( ) '( )G x  

 

Plugging ( )py x , ' ( )py x  and '' ( )py x  into eq. (1.45)gives 
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   

2

''( ) ( ) '( ) ( ) ( ) '( ) '( ) ( ) ( ) ( )

( ) ( ) ( )

k
G x H x G x G x G x H x G x

x

p
G x H x x

x

           

  

         

   

 

2
''( ) '( ) ( ) ( ) '( ) ( ) ( )

( ) '( ) ( ) (1.47)

k p k
G x G x G x H x G G x

x x

G x x

      


     

  
         
   

   

 

Then, comparing the corresponding coefficients of eq. (1.47) , 

2
''( ) '( ) ( ) 0

'( ) ( ) 1

( ) 0

k p
G x G x G x

x x

k
G G

G



  


 


   


  


 


 

2 ''( ) '( ) ( ) 0

1
'( ) (1.48)

( ) 0

x G x xG x pG x

G

G








   

 








 

Eq. (1.48)  is homogeneous Cauchy Euler Equation  

The solution to eq. (1.48) is assumed to be    

1

2

( )

'( ) (1.49)

"( ) ( 1)

m

m

m

G x x

G x mx

G x m m x








 


  

 

Plugging eq. (1.49)  into eq. (1.48)  leads to: 
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2

( 1) 0

( ) 0

m m m

m

m m x kmx px

x m k m p



 

    

      

 

2 ( ) 0 (1.50)m k m p       

While solving eq.  1.50 , there are three cases which can be treated as equations  1.42 ,  1.43   

and  1.44  

From eq.  1.50 we have, 

2

2

2

( ) 0

( ) 0

( ) 4

2

m k m p

m k m p

k k p
m

 

 

  



    

   

   


 

2

1

2

2

( ) 4

2
(1.51)

( ) 4

2

k k p
m

k k p
m

  



  



    





   




 

For case i. 

1 2

3 4( ) (1.52)m mG x c x c x   

Using the initial conditions of equation  (1.48)  we calculate for the constant 3c  and 4c : 

1
'( )G 




    and    ( ) 0G     

1 2

1 2

3 4

1 1

3 1 4 2

( ) 0

1
'( )

m m

m m

G c c

G c m c m

  

  


 

  


  

 

1 2

4 3 (1.53)m mc c     
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1 21 1

3 1 4 2

1
(1.54)m mc m c m 



  
   

Plugging   eq. (1.53)  into eq. (1.54)  we get: 

 

1 1 2 2

1 1

1 1

3 1 3 2

1 1

3 1 2

1

1

m m m m

m m

c m c m

c m m

  


 


  

 


 


 

 

11

3

1 2

(1.55)
( )

m

c
m m









 

Substituting eq. (1.55)  into (1.53)  we get: 

1

1 2

1

4

1 2( )

m
m mc

m m









 


 

21

4

1 2

(1.56)
( )

m

c
m m










 

Substituting equations (1.55)  and (1.56) into eq. (1.52) we get: 

1 2

1 2

1 1

1 2 1 2

( )
( ) ( )

m m
m mG x x x

m m m m

 

 

 
 

 
 

 2 2 1 11 1

1 2

1
( ) (1.57)

( )

m m m mG x x x
m m

 


 
 


 

Plugging eq. (1.57) into eq. (1.46) we get: 

 2 2 1 11 1

1 2

1
( ) ( )

( )

m m m m

py x x x H x
m m

  


 
  


 

 2 2 1 11 1

1 2

0, 1

( ) (1.58)1
,0

( )

p m m m m

x

y x
x x x

m m



  


 

 


 
   

 

is a particular solution for eq. (1.45) . 
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Since the non-homogeneous part of eq. (1.45)  is Dirac delta function, this particular solution is 

the same with the Green’s function of eq. (1.37) . 

 2 2 1 11 1

1 2

0, 1

( , ) (1.59)1
, 0

( )

m m m m

x

G x
x x x

m m




  


 

 


 
   

 

is a Green function satisfying eq. (1.37)  

  

1

'

0

1

0

( ) ( , ) ( )

( , ) ( ) ( , ) ( )

p

x

x

y x G x f d

G x f d G x f d

  

     



 



 

 

 2 2 1 1' 1 1

1 20

0, 1 (1.60)

( ) 1
( ) , 0

( )

x
p m m m m

x

y x
x x f d x

m m



    


 

 


 
   


 

 
1 2

2 2 1 1

'

1 2 1 1

1 20

( ) ( ) ( )

0, 1

(1.61)1
( ) , 0

( )

h p

m m x

m m m m

y x y x y x

x

c x c x
x x f d x

m m



    


 

 

 


   
   



 

In order to apply the given boundary conditions in eq. (1.2)  we can consider the following cases.  

1. If 1 2, 0m m  , then 0  . In this case we have infinite many solutions. 

2. If 1 2, 0m m  , then 0  . In this case we have trivial solution for homogeneous part. 

3. If 1 20 and 0m m  , then 0  . In this case we have unique solution. 

Since we are interested in unique solution, let 1 20 and 0m m  then 0  . This holds only if 

2 0c   

            2 1

1

1 1

1 2

1 2 0

1
(1) ( )

( )

m m
y c c f d

m m
    



 
    

   
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 

 

2 1

2 1

1

1 1

1

1 2 0

1

1 1

1

1 2 0

1
0 ( )

( )

1
( )

( )

m m

m m

c f d
m m

c f d
m m

    


    


 

 

   


  






 

 

 

1

2 2 1 1

2 1

1 1 1

1 20

1

1 1

1

1 2 0

0, 1

( ) 1
( ) , 0

( )

1
( ) (1.62)

( )

m x

m m m m

m m

x

y x c x
x x f d x

m m

c f d
m m



    


    


 

 

 


  
   

  






 

 

As a result, a solution to eq. (1.37)  which is reduced from eq. (1.1)  and with homogeneous 

solution of eq. (1.42) is given by eq. (1.62)  

4.3 Numerical Examples 

Example 1: Consider singularly perturbed two point boundary value problem (Kanwal, 1983) 

4
"( ) '( ) ( ), 0 1, 0 1

(0) 0  and  y(1) 1

y x y x x x
x

y

         

 

 

Solution: 
4

"( ) '( ) ( )y x y x x
x

       

To find the Homogeneous Solution, 

4
"( ) '( ) 0y x y x

x
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"( ) 4
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"( ) 4
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y x y x
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y x

y x x

y x
dx dx

y x x
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'( )

( )h

y x x m

y x mx

y x mx

y x m x dx








 





 

 

4

( )
4

hy x m x d









 


,    where andm d are arbitrary constants. 

To find the particular solution, 

Assume ( ) ( ) ( )py x G x H x     the particular solution, 

where ( )H x  is the Heaviside function,  ( )G x  is unknown function. 

' ( ) '( ) ( ) ( ) '( )

'( ) ( ) ( ) ( )

'' ( ) ''( ) ( ) '( ) '( ) ( ) '( )

''( ) ( ) '( ) ( ) ( ) '( )

p

p

y x G x H x G x H x

G x H x G x

y x G x H x G x H x G x

G x H x G x G x

 

   

    

      

   

   

     

     

 

Plugging '( ) and  "( )p py x y x  into the problem yields: 

          

4
[ ''( ) ( ) '( ) ( ) ( ) '( )] [ '( ) ( )

( ) ( )] ( )

4 4
[ ''( ) '( )] ( ) [ '( ) ( )] ( ) ( ) '( ) ( )

G x H x G x G x G x H x
x

G x x

G x G x H x G G x G x x
x

        

    

            


       

   

          

 

Comparing the corresponding coefficients: 
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Then, solving      
4

"( ) ( ) 0G x G x
x

   

4
"( ) '( ) 0

"( ) 4

'( )

"( ) 4

'( )

4
ln '( )) ln ln ,
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G x
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G x x A









 





 

 

       

where A is arbitrary constant. 
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
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
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 

 
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Applying the initial conditions 
1
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


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4 4
1
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4
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

  

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4 4
1

( ) ( )
4

py x x H x


   


  
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  
 

 
4 4

0, 1

( ) 1
, 0

4

p
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y x
x x



 



  


 

 


  
      

     is the particular solution. 

Hence, the general solution is:  
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4

4 4

0, 1
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, 04
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 




  




 

 


    
       

 

Using the boundary conditions of the given problem we solve for the constants. 

   (0) 0 0 0y d      

    0d      

4
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 
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Hence, the general solution of the problem is: 
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  
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Figure 1: Graphical Solution for different values of Epsilon
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Example 2: Consider the singularly perturbed two point boundary value problem (Li, 2008) 

2

1 1 2
''( ) '( ) ( ) 2 3 , 0 1

(0) 0 (1)

y x y x y x x
x x x

y y
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Solution:     
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Now integrating each, 
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We have,  
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Up on simplification we obtain, 
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Further,  
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From Eq. (1.62), 
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Therefore,  
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This exact solution agrees with the existing exact solution in the literature. 
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Figure 2: MATLAB Simulation for various Epsilon 
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Example 3: Consider the singularly perturbed two point boundary value problem (Feyisa Edosa   

          and Gemechis File, 2017) 

"( ) ( ) 1 3 cos , 0 1
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y x y x x x x

y y
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 Solution:  

The problem is of the form in case 1with 0, ( ) 1, 0k b x p         and 

( ) 1 3 cosf x x x   

Therefore, the solution of the problem is given by equation (1.21) . 
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From these two equations we see that 1c  and 2c  are equal in magnitude and opposite in sign. 

That is, 2 1c c  . 
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Figure 3: MATLAB Simulation for various values of Epsilon
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4.4 Discussion 

Figure 1 indicates that, the problem has right layer because there is rapid increment on the 

behavior of the solution on the right due to perturbation parameter.  It also indicates that, all the 

solution curve occurs when the values of the perturbation parameter lies between one and zero. 

Figure 2 also depicts that the MATLAB simulation for various values of perturbation parameter.  

The shape of the graph agrees with the exact solution that obtained by the method developed in 

this thesis. Figure 3 also support this fact. Therefore, the method developed in this thesis agrees 

with the MATLAB simulation. 
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CHAPTER FIVE 

5. CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, distributional solution of singularly perturbed two point boundary value problem is 

presented. Firstly, some important terminologies like distribution, test function, Heaviside 

function, and Dirac delta function and its properties and Green’s function and its properties are 

briefly explained. Secondly, homogeneous solution to singularly perturbed two point boundary 

value problem under consideration is described. Thirdly, Green’s function was constructed in the 

sense of distribution to get the particular solution using convolution or without applying 

convolution. Fourthly, the general solution was set as the sum of homogeneous solution and 

particular solution. Then, applying the two boundary conditions, the two arbitrary constants were 

fixed in order to get solution free from arbitrary constants. Fifthly, in order to verify the 

applicability of the method three numerical examples were considered and solved. Finally, 

MATLAB simulation was implemented for various values of small perturbation parameter in 

order to see the effect of this parameter and the nature of the layer created due to this parameter. 

Using the developed method, problems with known exact solution is solved and it agrees with 

existing exact solution. Furthermore, using the developed method problems with unknown exact 

solution is also solved. The result of study indicates that Green’s function method is a powerful 

tool to solve singularly perturbed two point boundary value problem. Therefore, the method 

developed in this thesis is reliable and promising to treat other related problems whose exact 

solution is unknown.                              
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5.2 Future work 

Based on the result of the study, the following points are open problems for others researchers 

interested on this area. First, one can investigate the distributional solution to the problem by 

considering other cases. Next, one can introduce another technique which is easier and simpler 

than the technique introduced in this thesis to get the distributional solution to the problem. 

Furthermore, solution to the problem in terms of infinite series of delta function is also another 

open problem. Moreover, the researcher cordially invites other researchers working on numerical 

analysis to compare the approximate solution obtained by numerical method with the exact 

solution obtained in this thesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

46 
 

References 

Feyisa Edosa and Gemechis File.(2017). Higher Order Compact Finite Difference Methods For 

Singular Perturbed One Dimensional Reaction Diffusion Problems, Journal of the 

Nigerian Mathematical Society, 36:491-502, Ethiopia. 

Gemechis File, Awoke Andargie &  Reddy,Y.N. (2015). Fitted-Stable Finite Difference Method 

for Singularly Perturbed Two Point Boundary Value Problems, Ethiop. J. Educ. & Sc. 

Ethiopia. 

Gerrit,V., D.(2013). Distribution Theory, Germany. 

Kanwal, R. P. (1983). Generalized Functions Theory and Technique, Harcourt Brace 

Jovanovich, Publishers, New York.  

Krall,A. (1981). Orthogonal Polynomial Satisfying Fourth Order Differential Equations, Proc. 

Roy. Soc, Edinburgh. 

Leray, J. (1993). “Review of the Works of S. L. Sobolev 1930–1955,” Moscow. 

Li.J.(2008). A Computational Method for Solving Singularly Perturbed Two-Point Singular 

Boundary Value Problem, Journal of Math. Analysis, 2(22):1089-1096, India 

Little, J. and Knawal,R.,P.(1987). Distributional Solutions of the Hypergeometric Differential 

Equations, Journal of Mathematical Analysis and Applications, 122:325-345, 

Pennsylvania 

LITTLEJOHN,L.(1984). On the Classification of Differential Equations having Orthogonal 

Polynomial Solutions, Ann Math. Pura Appl. 138 35-53, USA.   

Marat,A., Muratkhan, D., and Aziza, M. (2018). A Singularly Perturbed Diffrential  Equation 

with Piecewise Constant Argument of Generalized Type, Turkish Journal of 

Mathematics, Turkey. 



 

47 
 

Morton,R.D and Krall, A. (1978). Distributional weight functions for orthogonal polynomials, J. 

Math. Anal., USA 

Phaneendra, K., Reddy, Y.N., and Gbsl,S.(2011). Fourth order Finite Difference Method For 

Singularly Perturbed Two Point Singular Boundary Value Problems, International J. of 

math. Sci. & Engg.Appls, India. 

Shah,S.M. and Wiener, J. (1983). Distributional and Entire Solutions of Ordinary Differential 

and Functional Differential Equations. Int. J. Math. Math. Sci. 6(2): 243-270. 

Sobolev S. L.(1950). Applications of Functional Analysis in Mathematical Physics, Leningrad 

University Press, Leningrad. 

Tikhonov, A.N. (1952). Systems of differential equations containing small parameters in front of 

derivatives, math. sb., 31(3): 575-586. 

Tohru, M. and Kenichi, S.(2017). Solution of Inhomogeneous Differential Equations with 

Polynomial Coefficients in Terms of the Green’s Function, Tohoku University, Japan. 

Wiener, J. (1982). Generalized Function Solutions of Differential and Functional 

Differential Equations, J. Murh. Anal. Appl. USA. 

Wiener, J. 1982. Generalized-function solutions of the differential and functional differential 

equations. J. Math. Anal. Appl. 88: 170-182.  

Wiener, J., K.L. Cooke and Shah,S.(1991). Coexistence of Analytic and Distributional Solutions 

for Linear Differential Equations II. J. Math. Anal. Appl. 159: 271-289. 

Wiener,J. and Cooke, K. (1990). Coexistence of Analytic and Distributional Solutions for Linear 

Differential Equations . J. Math. Anal. Appl. 148: 390-421. 


