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Abstract 

In this thesis, eighth order compact finite difference method has been presented for solving 

singularly perturbed one dimensional reaction diffusion problems. First, the given interval is 

discretized and the given differential equation is replaced by finite difference approximations. 

Then, the given differential equation is transformed to linear systems of algebraic equations and 

then using Taylor’s series and central finite difference approximation, it is reduced to a three 

term recurrence relation which can be easily solved by using Thomas Algorithm. To validate the 

applicability of the proposed method three model examples with and without exact solution were 

considered and solved for different values of perturbation parameter and mesh sizes. Numerical 

experiments are carried out extensively to support the theoretical results using MATLAB 

software. The results have been presented in tables in terms of maximum absolute errors and 

also in graphs. The present method approximates the exact solution very well. Both the 

theoretical and computational rate of convergence has been established and observed to be in 

agreement. In a net shell the present method is simple and efficient than some of the methods 

reported in the literature. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the study 

Numerical analysis is the branch of mathematics that deals with the computational methods which 

helps to find approximate solutions for difficult problems such as finding the roots of non-linear 

equations, integration involving complex expressions and solving differential equations for which 

analytical solutions does not exist. 

The problems in which the highest order derivative term is multiplied by a small positive 

parameter  where 10  are known to be Singularly Perturbed Problems and the parameter is 

known as the perturbation parameter.  Singularly perturbed problems have always played a 

prominent role in the theory of differential equations and in their applications to the physical 

world. Ever since Prandtl’s [26] work in the beginning of 20
th

 century, singular perturbation 

techniques have been a traditional tool of fluid dynamics. These techniques entered into various 

other areas of application, where of course, the same terminology of ‘boundary layer’, ‘interior 

layer’, ‘outer’ and ‘inner’ was already in use.   

The various applications of singularly perturbation problems are fluid dynamics, plasticity, 

chemical reactor theory, nuclear reactor theory, plasma physics, aerodynamics, meteorology, 

oceanography, rarefied gas dynamics, diffraction theory, reaction-diffusion process, non-

equilibrium and other domains of the great world of fluid motion. 

In the intensive development of science and technology, many practical problems, such as the 

mathematical boundary layer theory or approximation of solutions of various problems described 

by differential equations involving large or small parameters become more complex. In some 

problems, the perturbations are operative over a very narrow region across which the dependent 

variable undergoes very rapid changes. These problems depend on a small positive parameter , 

where 10  in such a way that the solution varies rapidly in some parts of the domain and 

varies slowly in some other parts of the domain. Typically, there are thin transition layers where 

the solution varies rapidly or jumps abruptly, while away from the layers the solution behaves 

regularly and varies slowly. If we apply the existing standard numerical methods for solving such 



 

2 
 

types of problems large oscillations may arise and pollute the solution in the entire interval 

because of the boundary layer behavior. 

For more than two decades, a great deal of research work on the qualitative and quantitative 

analysis of these problems both for ordinary and partial differential equations has been reported in 

the literature. But the major problem of obtaining accurate approximations to the solutions of 

these problems is still an open question. Classical numerical methods which have been known to 

be effective for solving most problems that arise in applications have failed when applied to 

singularly perturbed problems. As a result, this area has attracted a keen interest amongst 

mathematicians today. 

Consequently, there are now a variety of methods for solving these kinds of problems. Basically, 

the problem of inaccuracy in results of singularly perturbed problems has been associated with the 

perturbation parameter. This perturbation parameter prevents us from obtaining satisfactory 

numerical solutions. Most of the classical numerical methods are not effective for solving such 

problems because, as the singular perturbation parameter tends to zero, the errors in the numerical 

solutions increase and often becomes comparable in magnitude to the exact solution Farrell [8].   

Thus, more efficient and simpler computational techniques are required to solve singularly 

perturbed two-point boundary value problems. Sometimes, to find the exact solutions of the 

boundary value problems is too difficult, so we have to apply numerical methods. In addition to 

that, obtaining accurate and fast numerical solution of two-point boundary value problems is a 

great importance due to its wide application in scientific and engineering researches. As a result, 

many numerical methods intensively have been proposed to solve two-point boundary value 

problems such as finite difference, finite element and finite volume methods. Further, compact 

finite difference scheme in one dimension on a uniform step length found in Collatz [6] and Lele 

[18] which have been formulated on the first and second order derivatives concludes that it was 

high order accurate and also resolves shorter scales of the solution better than classical finite 

difference schemes which brings them closer to higher accuracy. 

The fourth and sixth order compact finite difference methods for  singularly perturbed one 

dimensional reaction diffusion of two boundary value problem was done by Fasika Wondimu 

who was worked under the supervision of my supervisor. 
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Therefore, the main objective of this study is to extend the previous work to the eighth order 

compact finite difference method for solving singularly perturbed one dimensional reaction 

diffusion problems of two-point boundary value problems.  

1.2. Statement of the Problem 

The subject of numerical analysis is concerned with devising methods for approximating in an 

efficient manner of the solutions to mathematical problems. The efficiency of the method depends 

up on the accuracy required and the ease with which it can be implemented. In practical situation 

the mathematical problem is derived from physical phenomena where some simplifying 

assumptions have been made to allow the mathematical representation to develop. The increasing 

desire for the numerical solutions to mathematical problems, which are more difficult or 

impossible to solve analytically, has become the present- day scientific research. This time it 

sounds more appropriate to find an approximate solution to a more complicated model. It is clear 

that numerical methods can give approximate solutions in an efficient manner, when ordinary 

analytic methods fail. 

Obtaining accurate and fast numerical solutions for singularly perturbed reaction diffusion 

problem has a great importance due to its wide applications in scientific and engineering research. 

Owing to this, in this study we developed the eighth order compact finite difference method to 

find the solutions of singularly perturbed one dimensional reaction diffusion problems. 

As a result, this study attempted to answer the following questions: 

1. How do we formulate eighth order compact finite difference method for singularly 

perturbed one dimensional reaction diffusion problems? 

2. To what extent the present method approximate the exact solution? 

3. To what extent the proposed method converges? 

4. What is the advantage of the proposed method over other numerical methods? 
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1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this research is to present eighth order compact finite difference method 

for solving singularly perturbed one dimensional reaction diffusion problems.  

1.3.2. Specific Objectives  

The specific objectives of the study are: 

 To formulate the numerical method for solving singularly perturbed one dimensional 

reaction diffusion problems.  

 To test the extent to which the proposed method approximate the exact solution. 

 To establish convergence of the method formulated. 

 To describe the advantage of the present method over others. 

1.4. Significance of the Study 

The outcome of the study may: 

 be used as a reference material for students, teachers and anyone who works on this area. 

 provide significant contribution for scientific investigation in the area of applied 

mathematics.  

 improve the application of numerical methods in different field of studies. 

1.5. Delimitation of the Study 

Singularly perturbed problems can be solved using different numerical techniques such as finite 

difference method (FDM), finite element method (FEM), finite volume method (FVM), B-Spline 

method, calculus of variation and so on. However, this study was delimited to eighth order 

compact finite difference method to solve one dimensional reaction diffusion equations of the 

form:  

 1x0             ),()()()(y- ''  xfxyxgx       (1.1) 

   y(1)                 y(0)         (1.2) 
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where  ,  are constants, 10   (perturbation parameter), f and g are sufficiently smooth 

functions and according to Khan and et al. [16], we can assume 0)(  gxg , with uniform step 

length.  

1.6. Definition of Key Terms 

Compact finite difference method: is a finite difference method which employs a linear 

combination of three consecutive points of derivatives to approximate a linear combination of the 

same three consecutive values of function 1,,1 ),(  iiijxy j  

Boundary Value Problem: A problem, typically an ODE or a PDE, which has values assigned   

on the physical boundary of the domain in which the problem is specified, is called a boundary 

value problem (BVP). 

Two-Point Boundary Value Problem: Let f :  RlR 3 be given function and  ,  are given 

constants. The problem ),.,('' 'yyxfy  ),( bax ,  

,)( ay )(by  

 is called two-point boundary value problem. 
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1. Singular Perturbation Theory  

Since Prandtl [26] work in the beginning of 20
th

 century, singular perturbation techniques have 

been a traditional tool of fluid dynamics, which has the same terminology of ‘boundary layer’, 

‘interior layer’, ‘outer’ and ‘inner’ was already in use. As a term singular perturbation was first 

introduced by Friedrichs, et al. [9]. In Russia, mainly at Moscow State University, research 

activity on singular perturbations for ordinary differential equations, originated and developed 

and continues to be vigorously pursued even today Vasil’yeva [33]. An excellent survey of the 

historical development of singular perturbations is found in a recent book by O’Malley [24].  

In Mathematics, more precisely in perturbation theory, a singular perturbation problem is a 

problem containing a small parameter  that cannot be approximated by setting the parameter 

value to zero. This is in contrast to regular perturbation problems, for which an approximation can 

be obtained by simply setting the small parameter to zero. It means the solution cannot be 

uniformly approximated be an asymptotic expansion as 0 . 

The problems in which the highest order derivative term is multiplied by a small positive 

parameter are known to be Singularly Perturbed Problems and the parameter is known as the 

perturbation parameter. The various applications of singularly perturbation problems are fluid 

dynamics, plasticity, chemical reactor theory, nuclear reactor theory, plasma physics, 

aerodynamics, meteorology, oceanography, rarefied gas dynamics, diffraction theory, reaction-

diffusion process, non-equilibrium and other domains of the great world of fluid motion. 

In the intensive development of science and technology, many practical problems, such as the 

mathematical boundary layer theory or approximation of solutions of various problems described 

by differential equations involving large or small parameters become more complex. In some 

problems, the perturbations are operative over a very narrow region across which the dependent 

variable undergoes very rapid changes. These problems depend on a small positive parameter , 

where 10  in such a way that the solution varies rapidly in some parts of the domain and 

varies slowly in some other parts of the domain. Typically, there are thin transition layers where 

the solution varies rapidly or jumps abruptly, while away from the layers the solution behaves 

regularly and varies slowly. If we apply the existing standard numerical methods for solving such 
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types of problems large oscillations may arise and pollute the solution in the entire interval 

because of the boundary layer behavior. 

2.2. Two Boundary Value Problem 

The numerical solution of a boundary value problem will be more difficult matter than the 

numerical solution of the corresponding initial-value problems. Hence, many scholars prefer to 

convert the second-order problem into first order problems.   

Reddy and Chakravarthy [27] proposed method of reduction of order for solving singularly 

perturbed two point boundary value problems. The solution of the given two-point boundary 

value problem is numerically computed by solving two suitable initial-value problems easily 

deduced from the original problem through asymptotic expansion procedures. The method is very 

easy to implement and is tested on several linear and non-linear problems. They proposed an 

initial value technique for solving singularly perturbed two point boundary value problems. 

Gasparo and Macconi [10-11], Natesan and Ramanujam [22] have studied initial-value technique 

for singularly perturbed boundary-value problems for second-order ordinary differential equations 

arising in chemical reactor theory. Error estimates for approximate solutions are obtained. The 

initial-value technique has been applied to solve various singularly perturbed boundary value 

problems for second-order ordinary differential equations subjects to Dirichlet-type boundary 

conditions. 

To demonstrate the applicability of this method, it can be applied on several nonlinear examples 

with left-end boundary layer and right end layer. The survey paper by Kadalbajoo and Reddy 

[13], gives an erudite outline of the singular perturbation problems and their treatment starting 

from the fluid dynamical boundary layers. It remains as one of the most readable source on 

singular perturbations. This theory can be explained in detail on the monographs: Nayfeh [23], 

Kevorkian and Cole [15], Smith [29], Brauner et.al. [3] and Kato [14]. From the numerical 

results, the method seems accurate and solutions to problems with extremely thin boundary layers 

are obtained.  

2.3. Singularly Perturbed Reaction Diffusion Problem 

Clavero et al. [5], considered the finite difference hybrid scheme constructed by Natesan et al. 

[21] for obtaining uniformly convergent global solution and uniformly convergent normalized 

flux for singularly perturbed reaction diffusion equation under the consideration. The global 
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solution is obtained from the numerical solution at mesh points of this scheme having almost 

second order uniform convergence at the nodal points when it is constructed on piecewise 

uniform Shishkin mesh. Using classical cubic spline Clavero et al. [5], defined and proved the 

normalized flux on the entire domain which is almost second order uniformly convergent in the 

whole domain. 

Reshidinia et al. [28], used spline in compression to develop a class of methods which are second 

and fourth order convergent for singularly perturbed reaction-diffusion equation under the 

consideration. Natesan et al. [22], proposed a numerical scheme for singularly perturbed reaction 

diffusion equation under consideration which is a combination of the cubic splines and the 

classical central difference scheme with piecewise uniform Shishkin mesh which uniformly 

convergent of second order. 

Kumar et al. [17], proposed a high order parameter robust finite difference method for singularly 

perturbed reaction diffusion equation of the form: )()()()( xfxyxgxy  ,  10  x with the 

boundary condition; 0)0( y ,  0)1( y , where,   is small  positive parameter such that 

10   and )( ),( xfxg are assumed to be sufficiently continuously differentiable functions 

such that 0)(  xg . The problem is discretized using a suitable combination of upwind 

scheme and central difference scheme on generalized Shishkin mesh in which it is almost fourth 

order uniformly convergent in maximum norm with respect to perturbation parameter . 

Bawa et al. [2], considered a one dimensional singularly perturbed reaction-diffusion equation of 

the above type. A modified Shishkin mesh is introduced and a higher order compact finite 

difference solution on this mesh is presented. Piece-wise cubic interpolants for both exact and 

discrete solution were formulated. The authors proved that the convergence in the sense that the 

convergence accuracy is the same for any value of the diffusion parameter  . More precisely, the 

convergence order analysis contains two principle results. The first result states that the method is 

almost fourth order convergence. The second result states the normalized flux of the piece-wise 

cubic interpolant of the discrete solution approximates the exact solution by order three, almost 

everywhere and by the order four at mid-points of the mesh. 
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2.4. Numerical solution versus Analytical solution 

The method of finding the exact solution of the differential equation by using calculus, 

trigonometry and other techniques is known as analytic methods because we used the analysis to 

figure it out. The exact solution is also referred to as a closed form solution or analytical solution. 

But this tends to work only for simple differential equations with simple coefficients. For higher 

order or non-linear differential equations with complex coefficient, it becomes very difficult to 

find exact solution. Therefore, we need numerical methods for solving the equations.                                                                   

Even, classical numerical methods which have been known to be effective for solving most 

problems that arise in applications have failed when applied to singularly perturbed problems. 

Basically, the problem of inaccuracy results of singularly perturbed problems has been associated 

with the perturbation parameter. This perturbation parameter prevents us from obtaining 

satisfactory numerical solutions. Most of the classical numerical methods are not effective for 

solving such problems because, as the singular perturbation parameter tends to zero, the errors in 

the numerical solutions increase and often becomes comparable in magnitude to the exact solution 

Farrell [8]. Thus, more efficient and simpler computational techniques are required to solve 

singularly perturbed two-point boundary value problems. Sometimes, to find the exact solutions 

of the boundary value problems is too difficult, so we have to apply numerical methods 

2.5. Finite Difference Method 

Finite difference methods are one of the most widely used numerical schemes to solve differential 

equations. In finite difference methods, derivatives appearing in the differential equations are 

replaced by finite difference approximations obtained by Taylor series expansions at the grid 

points. This gives a large algebraic system of equations to be solved by different iterative 

techniques in place of the differential equation to give the solution value at the grid points and 

hence the solution is obtained at grid points. Some of the finite difference methods include 

forward difference method, backward difference method, central difference method, etc.  

Vesna et al. [34], presented a numerical-asymptotic solution technique for solving singular 

perturbation problems. They constructed a division point which divides the initial interval in to 

two sub intervals, so that the layer belongs only to one of them. The reduced problem is used to 

get the solution at the terminal point. The inner region problem is solved as a two-point boundary 

value problem. Hu et al. [12], developed a discretization method for one-dimensional singular 
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perturbation problems based on finite difference scheme. Its discretization error has a bound that 

is second order in the mesh size and uniform in the perturbation parameter.  

2.6. Compact Finite Difference Method 

Pinto, et.al [25], has analyzed the difference scheme of exponential type for solving non-linear 

singular perturbation problems. The compact finite difference schemes, introduced as far back as 

the 1930s, have been found simple ways of reaching the objectives of high accuracy and low 

computational cost. Compared with the others finite difference schemes of the same order, 

compact schemes have proved to be significantly more accurate with the added benefit of using 

smaller stencil sizes, which can be essential when treating the boundary conditions. 

In the standard compact finite difference methods the formulation of the method for the 

approximation of first derivative includes the function and its odd derivatives. In a similar 

manner, the formula of the method for approximation of the second derivative includes the 

function and its even derivatives. But it is possible to derive another class of compact finite 

difference schemes that their formulation can be used to approximate the first and second 

derivatives simultaneously.  

By using the sufficient conditions, which ensure the well conditioning of tri diagonal matrices, 

Mazzia and Trigiante [19] have developed methods for singularly perturbed two-point boundary 

value problems. A compact finite difference method for second order singular perturbation 

problems is presented by Mazzia and Trigiante [19]. It is based on a mesh selection strategy 

derived by using sufficient conditions which ensure the well conditioning of tri-diagonal matrices. 

Using the theory of n – widths, the solutions of singularly perturbed reaction diffusion problems 

is quantified by Stynes [30]. 

Chu and Fan [4] in 1998 presented a higher order compact scheme and showed that their method 

has better resolution characteristics than others. In this article, the idea of using both odd and even 

derivatives as unknowns in the formulation of a compact finite difference scheme is used to 

introduce a general class of highly accurate finite difference schemes of arbitrary order with the 

uniform and non-uniform grid points. It is shown that the solution of this scheme converges 

uniformly in ε to the exact solution.   
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CHAPTER THREE 

METHODOLOGY 

This chapter consists of methods and materials used to undertake the study. These are; study 

design, study site and period, source of information, procedure of the study and ethical 

consideration. 

3.1. Study Area and Period 

The study site of this research is at Jimma University and the period is from September, 2014 to 

September, 2015. Conceptually, the study was focused on eighth order compact finite difference 

scheme for singularly perturbed one dimensional reaction diffusion problems with Dirichlet 

boundary conditions. 

3.2. Study Design 

The study was employed mixed design i.e. documentary review and experimental design. 

3.3. Source of Information 

The study depends on various sources of information such as; books, journals and different 

related studies published/ unpublished. The experimental results were obtained by writing code 

using MATLAB software for the presented numerical method.  

3.4. Procedures of the study 

Important materials and data for the study were collected by means of documentary review and 

algorithm development. Hence, to attain the objective of the study, the following procedure was 

undertaken:  

i. Defining the problem /formulating the method. 

ii. Discretizing the domain /interval. 

iii. Replacing the given equation by the finite difference approximation and obtaining 

systems of equations. 

iv. Rewrite the resulting systems of equations in tri-diagonal form. 

v. Writing a code for the problem by using MALAB language. 

vi. Validating the schemes using numerical examples. 
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3.5. Ethical Consideration 

In order to conduct this research, it was made appropriate communication with responsible 

officials of Jimma University to get a cooperation letter to concerned bodies for legal consent. 

Moreover, rules and regulations of the campus were kept.  
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CHAPTER FOUR 

DESCRIPTION OF THE METHOD, RESULT AND DISCUSSION 

4.1. Description of the Method 

In this section, the description of eighth order compact finite difference method and its theoretical 

error analysis have been given. 

Consider a uniform mesh with interval ],[ ba  in which bxxxxa n  ...210
where 

n

ab
h


  and .,...2,1,0  ,0 niihxxi  Let )( ii xyy   denotes the solution of problem (4.1) and 

(4.2) below and also )(  ),(  , )()(

iii

nn

ii xffxyyxx   and )()()(

i

nn

i xff  denote its n
th

 derivative 

at 
ixx   

)()()()( xfxyxgxy  ,    10  x      (4.1)         

)0(y ,     )1(y         (4.2)                 

where 0)(  gxg ,  ,  are constants,  is small positive parameter, f and g are sufficient 

smooth functions.  

By using Taylor Series expansion we obtain:  
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Subtracting Eq. (4.4) from Eq. (4.3), we get:      

 ...
!9
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)5(

5
'''

3
'

11   iiiiiii y
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y
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hyyy      (4.5) 

Now, let us denote the second order central difference by ic y1  of the first derivative of
iy and the 

standard second order central difference ic y2 of the second derivative of
iy  as below:  

1
11'1

2
 


 

h

yy
yy ii

iic         (4.6) 

where )(
6

4'''
2

1 hOy
h

i   
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Again by adding Eqs.(4.3) and (4.4) we obtain:      

  22

11''2 2
 


 

h

yyy
yy iii

iic        (4.7) 

where )(
12

4)4(
2

2 hOy
h

i   

Using Eqs.(4.3), (4.4) and (4.7), we obtain: 

3

)8(
6

)6(
4

)4(
2

''2

2016036012
  iiiiic y

h
y

h
y

h
yy      (4.8) 

where )(
!10

2 10)10(
8

3 hOy
h

i   

To obtain the eighth order finite difference scheme, we can apply
2

c to
)6(

iy and we obtain: 

4

)6(2)8(   ici yy          (4.9) 

where )(
90

4)10(
2

4 hOy
h

i   

Now, at any point 
ix  Eq. (4.1) can be written as: 

iiii ryuy  ''
         (4.10) 

where


ig
iu , 


ifir and gg i  which is positive constant (by previous assumption). 

Thus, differentiating Eq. (4.10) successively, we obtain:  

'''')4(

iiii ryuy           (4.11) 

)4()4()6(

iiii ryuy           (4.12) 

Substituting Eqs.(4.11) and (4.12) into Eq. (4.8), we obtain: 

5

)4(2
64

''2
642

''2
26242

2

20160360

20160360122016036012
1


































ic

ic
ii

ic
iii

ic

r
hh

r
uhuhh

y
uhuhuh

y

   (4.13) 

where )(
90720020160

10)10(
8

34

6

5 hOy
hh

i     



 

15 
 

Solving for
''

iy , we obtain: 

2
26242

5

)4(2
64

''2
642

2

''

2016036012
1

201603602016036012

c
iii

icic
ii

ic

i
uhuhuh

r
hh

r
uhuhh

y

y








































   (4.14) 

Substituting Eq. (4.14) into Eq. (4.10), we obtain: 

iii

c
iii

icic
ii

ic

ryu
uhuhuh

r
hh

r
uhuhh

y



























































2

26242

5

)4(2
64

''2
642

2

2016036012
1

201603602016036012





 

ic
i

i
ii

ic
i

i
ii

i

iciic
i

i
i

ic

r
uh

r
uhuh

y
uh

y
uhuh

u

r
h

r
h

r
uh

r
uhh

y

2
26242

2
36242

5

)4(2
6

)4(
4

''2
6

''
42

2

2016036012
1

2016036012
1    

201603602016036012


































 (4.15) 

But from central difference and Eq. (4.7), we have the following conditions 

2

112 2

h

yyy
y iii

ic
 

    
2

112 2

h

rrr
r iii

ic
 

  

2

''

1

''''

1''2 2

h

rrr
r iii

ic
 

    
2

)4(

1

)4()4(

1)4(2 2

h

rrr
r iii

ic
 

   (4.16) 

Substituting these four equations of Eq. (4.16) into Eq. (4.15) and by rearranging, we get: 

)4(

1

4
)4(

4
)4(

1

4
''

1

4
''

42

''

1

4

1

24242

1

24

1

34

2

242

21

34

2

201601120

3

20160201601120

3

12
         

              
20160201601120

3

12
1

20160

20160

1

1120

3

12
1

2

20160

1






































































iiii
i

i
i

i
i

i
i

i
ii

i
i

i
i

i
ii

ii
i

r
h

r
h

r
h

r
uh

r
uhh

r
uh

r
uh

r
uhuh

r
uh

y
uh

h
y

uhuh
u

h
y

uh

h

  (4.17)  

Eq. (4.17) can be written as a three recurrence relation of the form: 

iiiiiii HyGyFyE   11
       (4.18) 

where ;    

 
20160

1
34

2

i
i

uh

h
E   
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 











1120

3

12
1

2
242

2

ii
ii

uhuh
u

h
F  

 
20160

1
34

2

i
i

uh

h
G   

)4(

1

4
)4(

4
)4(

1

4
''

1

4
''

42

''

1

4

1

24242

1

24

201601120

3

20160201601120

3

12
        

20160201601120

3

12
1

20160





























iiii
i

i
i

i
i

i
i

i
ii

i
i

i

r
h

r
h

r
h

r
uh

r
uhh

r
uh

r
uh

r
uhuh

r
uh

H

 

4.2. Error Analysis 

Writing the tri-diagonal system Eq. (4.18) in matrix vector form, we obtain: 

CAY            (4.19) 

where )( ijmA  , ,1 i 1 Nj  is a tri-diagonal matrix of order ,1N with 

20160

1
34

21
i

ii

uh

h
m   

1120

3

12

2
3422

2

ii
iii

uhuh
u

h
m   

20160

1
34

21
i

ii

uh

h
m   

and )( idC  be a column vector with 

)4(

1

4
)4(

4
)4(

1

4
''

1

4
''

42

''

1

4

1

24242

1

24

201601120

3

20160201601120

3

12
        

20160201601120

3

12
1

20160

























iiii
i

i
i

i
i

i
i

i
ii

i
i

i

r
h

r
h

r
h

r
uh

r
uhh

r
uh

r
uh

r
uhuh

r
uh

d

 

for Ni ....,,2,1 with local truncation error given by: 

  )(
907200

10)10(
8

hOy
h

h iii         (4.20) 

We also have 

ChYA  )(          (4.21) 
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where
t

NyyyyY )...,,,,( 210 denotes the exact solution and 

)(h t

NN hhh ))(...,),(),(( 1201  is local truncation error.  

From Eqs.(4.19) and (4.21), we obtain: 

 
)()( hYYA           (4.22)

 

Thus, we get an error equation 

)(hA            (4.23) 

)...,,,,(  where 210 NeeeeYY   

Let 
iS  be the sum of elements of the 

thi  row of A , then we have: 

For 1i  

 ,
1

1

1





N

j

ji mS
20160

1

1120

3

12

2
34

2

3422

2

iii
i

uh

h

uhuh
u

h
  

Therefore,  

4032

11

12

1 3422

21
ii

i

uhuh

h
uS   

4

11 hAB   

where
12

1
22

21
i

i

uh

h
uB  and 

4032

11 3

1
iu

A   

Therefore, )( 4

11 hOBS  , where 11 min SB   

For 2....,,3,2  Ni  







1

1

,

N

j

jii mS
20160

1

1120

3

12

2

20160

1
34

2

3422

2

34

2

iii
i

i uh

h

uhuh
u

h

uh

h
  

 
36012

3422

ii
i

uhuh
u   

 ,4

0hABi   

 where
360

   and    
12

3

0

22

ii
ii

u
A

uh
uB   

Therefore, 

),( 4hOBS ii  where iB min 
iS  
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For 1Ni  






 
1

1

,11

N

j

jNN mS
1120

3

12

2

20160

1
3422

2

34

2

ii
i

i uhuh
u

h

uh

h
  

 Therefore, 
4032

11

12

1 3422

21
ii

iN

uhuh

h
uS 

 

4

11 hAB   

where 
12

1
22

21
i

i

uh

h
uB   and 

4032

11 3

1
iu

A   

Therefore, )( 4

11 hOBSN  , where 11 min  NSB  

From the above we have 1BBi  which implies iB is the minimum value. 

Since 10   , we can choose h , sufficiently small so that the matrix A  is irreducible and 

monotonic Mohanty and Jha [20]. Then it follows that 1A   exists and its elements are non-

negative. 

Hence, from Eq. (4.23), we get: 

)(1 hA            (4.24) 

And 

)(.1 hA           (4.25) 

Let ikm ,  be the ),( ik elements of 1A . Since ,0, ikm by the definition of multiplication of 

matrices with its inverses (from the theory of matrices) we have: 

1...,,3,2,1,1
1

1

, 




NkSm
N

i

iik        (4.26)

 

Therefore, it follows that  

i
Ni

i

N

i

ik

BS
m

1

min

1

11

1

1

, 







         (4.27) 

We define 





 
1

1

,
11

1 max
N

i

ik
Ni

mA and    hh i
Ni


11
max


  

Therefore, from Eqs.(4.20), (4.23) and (4.27), we obtain: 
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 1....,,3,2,1,)(
1

1

, 




Njhme
N

i

iikj   

 )(.
1

h
B

e i

i

j 
)10(

8

907200

1
i

i

y
h

B
  

Therefore, 1....,,3,2,1,
8

 Nj
B

kh
e

i

j  

where )10(

907200

1
iyk 








 , which is a constant independent of h  

Therefore,  ).( 8hO  

This implies that the method gives an eighth order convergence for uniform mesh. 

4.3. Thomas Algorithm 

To solve the tri-diagonal system the description of the Discrete Invariant Impending Algorithm 

called Thomas Algorithm is presented as follows. Consider the scheme: 

iiiiiii HyGyFyE   11
        (4.28) 

subject to the boundary condition: 

)0(y , and )1(y         (4.29) 

We set 

iiii TyWy  1
,  1,2,...,2,1  NNi       (4.30) 

where  ii xWW  and  ii xTT  which is to be determined. 

Computing Eq. (4.30) at
1 ixx , we obtain: 

111   iiii TyWy          (4.31) 

Substituting Eq. (4.31) to (4.28) and comparing with Eq. (4.30) we obtain the recurrence 

relations: 

1


iii

i
i

WEF

G
W          (4.32) 

1

1










iii

iii
i

WEF

TEH
T          (4.33) 
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To solve these recurrence relations for 1,...,3,2  Ni we need to find initial conditions for

oo TW  and . For this, we take   ooo TyWyy  10 . Choose 0 oW , then the value    0yTo
. 

With these initial values, we compute 
ii TW  and for 1,...,3,2  Ni  from Eqs. (4.32) and (4.33) in 

forward process and obtaining 
iy in backward process from Eqs.(4.29) and (4.30).  

The conditions for the discrete invariant imbedding algorithm to be stable are, set Angel et al. [1], 

Elsgolt’s et al. [7]: 

iiiiiii GEGEFGE   and  ,0 ,0       (4.34) 

One can easily show that in this method Eq. (4.18) satisfies the conditions given in Eq. (4.34) and 

hence Thomas Algorithm is stable in this method.  

4.4. Numerical Examples 

In order to test the validity of the proposed method, we have considered the following model 

problems. 

Example 4.1 Consider the singularly perturbed problem: 

     xyy  ''  

with the boundary conditions:   10 y ,    











1
exp11y ,  

The exact solution is given by: 

  






 




x
xxy exp  

The numerical solutions in terms of maximum absolute errors are given in Table 4.1. 

Example 4.2 Consider the singularly perturbed problem: 

       xxyy  2cos2cos 22''  ,    10  x  

with the boundary conditions:   00 y   01 y , 

The exact solution is given by: 

   x

e

ee
xy

xx






2

1

1

cos

1















 








 







 

. 

The maximum absolute errors of are given in Table 4.2.  
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Example 4.3 Consider the singularly perturbed problem: 

 xxyy  cos31''   

with an boundary condition:      0    1         0  yy  

The exact solution of the problem is not known. The maximum absolute errors are tabulated in 

Table 4.3. 

4.5. Numerical Results 

Table 4.1: The maximum absolute errors E for Example 4.1 

  N=16 N=32 N=64 N=128 N=256 

Our Method      

1/16 9.8908E-012       3.8192E-014        4.4298E-014         2.0206E-014        7.8404E-013 

1/32 1.5796E-010       6.2705E-013        6.8834E-015         5.7732E-014        8.2823E-014 

1/64 2.4930E-009       9.9758E-012        3.8691E-014         5.4956E-014        3.8081E-014 

1/128 3.6637E-008       1.5803E-010        6.2672E-013         9.6589E-015        6.5503E-014 

Rashidinia Method [28] 

1/16 2.96E-006            1.85E-007             1.15E-008            7.24E-010            4.56E-011 

1/32 1.18E-005            7.54E-007             4.67E-008            2.96E-009            1.82E-010 

1/64 4.74E-005            2.96E-006             1.86E-007            1.16E-008            7.30E-010 

1/128 1.78E-004            1.18E-005             7.46E-007            4.67E-008            2.92E-009  
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Table 4.2: The maximum absolute errors E for Example 4.2 

  N=16 N=32 N=64 N=128 N=256 

Our Method 

1/16 9.0031E-010 3.5116E-012 7.2164E-015        1.8596E-015        1.0325E-013 

1/32 4.8094E-010       1.8783E-012        7.6467E-015        1.2657E-014        2.3148E-014 

1/64 2.6577E-009       1.0625E-011        4.2411E-014        2.4425E-014        1.2323E-014 

1/128 3.6756E-008       1.5861E-010        6.2550E-013        3.9413E-015        4.1855E-014 

Rashidinia Method [28] 

1/16 4.07E-005           2.53E-006            1.58E-007            9.87E-009   6.17E-010 

1/32 2.00E-005           1.24E-006            7.74E-008            4.83E-009             3.02E-010 

1/64 5.45E-005           3.42E-006            2.14E-007            1.34E-008             8.39E-010 

1/128 1.83E-004           1.22E-005            7.68E-007            4.81E-008             3.01E-009 

Surla and Herceg and Cvekovic’s Method [32] 

1/16 4.14E-003            1.02E-003           2.54E-004             6.35E-005            1.58E-005 

1/32 3.68E-003            9.03E-004           5.61E-005             1.40E-005            3.50E-006 

1/64 3.45E-003            8.40E-004           2.08E-004             5.20E-005            1.30E-005 

1/128 3.43E-003            8.21E-004           2.03E-004             5.06E-005            1.26E-005 

Surla and Vukoslavcevic’s Method [31] 

1/16 1.20E-004            7.47E-006           4.67E-007             2.90E-008            4.39E-009 

1/32 1.28E-004            8.00E-006           5.00E-007             3.14E-008 1.99E-009 

1/64 1.60E-004            1.00E-005           6.26E-007             3.92E-008            2.31E-009 

1/128 2.344E-004          1.47E-005           9.23E-007             5.77E-008            3.72E-009 

The computational rate of convergence is obtained by using the double mesh principle given as 

below.    

Let 1,...,1,0,max   2  NjyyZ
h

j

h

j
j

h
                                                                                         

where h

jy  is the computed solution on the mesh point  N

jx
0

at the nodal point of jx  for 

Njhxx jj ,...,2,1,1    and 2
h

jy  is the computed solution at the nodal point jx  on the mesh

  N

jx
2

0
 where  

21
hxx jj    for   Nj 211  



 

23 
 

In the same case we can define 
2

hZ  by replacing h  by 
2

h  and N  by N2  we obtain 

1,...,2,1,0,max 42

2

 NjyyZ
h

j

h

j
j

h  

The computed order of convergence is evaluated as 

)2log(

loglog
Rate 2

hh ZZ 
  

Also the maximum absolute error based on double mesh principle mesh principle is given by: 

NjyyE N

j

N

j
j

N

i ,...,2,1,0for    ,max 2

2  and 2
h

jy  denotes the value of 
iy for mesh length 

2
h . 

Table 4.3: Maximum Absolute Errors E for Example 4.3       

  N=16 N=32 N=64 N=128 N=256 N=512 

2
-4

 2.2121E-011 8.9040E-014 2.2204E-015 7.1054E-015 5.1936E-013 6.3960E-013 

2
-5

 5.2890E-010 2.0908E-012      1.0436E-014 7.9936E-015 3.8858E-014 6.4393E-014 

2
-6

 8.9703E-009     3.5893E-011      1.4033E-013 7.9936E-015 1.1768E-014 3.1686E-013 

2
-7

 1.3813E-007     5.9595E-010      2.3554E-012      1.2434E-014 1.6431E-014 3.7970E-014 

2
-8

 2.2537E-006     9.6555E-009      3.8634E-011      1.4255E-013     1.5676E-013     4.7518E-014 

2
-9

 3.0463E-005     1.4388E-007      6.200E-010      2.4603E-012     6.6169E-014 2.4025E-013     

 

Table 4.4: Numerical rate of convergence for Example 4.1, 4.2 and 4.3 when 128/1  

 h  
2

h  hZ  
4

h  
2

hZ  Rate 

Example 4.1      2
-4

 2
-5

 3.6479E-008      2
-6

 1.5740E-010                  7.8565 

 2
-5

 2
-6

 1.5740E-010 2
-7 

 6.1706E-013 7.9948 

Example 4.2      2
-4

 2
-5

 3.6597E-008       2
-6

 1.5798E-010     7.8558 

 2
-5

 2
-6

 1.5798E-010       2
-7 

 6.2156E-013                   7.9897 

Example 4.3      2
-4

 2
-5

 1.3753E-007 2
-6

 5.9359E-010 7.8561 

 2
-5

 2
-6

 5.9359E-010     2
-7 

 2.3430E-012 7.9850 

The following figures (figures 4.1-4.9) shows the numerical solutions obtained by the present 

method for h , h and h .       
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Figures 4.1: Numerical Solution of Example 4.1 for 1.0 and 01.0h  

Figure 4.2: Numerical Solution of Example 4.1 for 01.0 and 01.0h  
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Figure 4.3: Numerical Solution of Example 4.1 for 001.0 and 01.0h  

 

Figure 4.4: Numerical Solution of Example 4.2 for 1.0 and 01.0h  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

y
(x

)

 

 

y - Numerical Solution

y1 - Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

y
(x

)

 

 

y - Numerical Solution

y1 - Exact Solution



 

26 
 

Figure 4.5: Numerical Solution of Example 4.2 for 01.0 and 01.0h  

Figure 4.6: Numerical Solution of Example 4.2 for 001.0 and 01.0h  
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Figure 4.7: Numerical Solution of Example 4.3 for 1.0 and 01.0h  

 

Figure 4.8: Numerical Solution of Example 4.3 for 01.0 and 01.0h  
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Figure 4.9: Numerical Solution of Example 4.3 for 001.0 and 01.0h  
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4.6. Discussion 

In this thesis, eighth order compact finite difference method has been presented for solving 

singularly perturbed one dimensional reaction diffusion problems. First, the given interval is 

discretized and the given differential equation is replaced by finite difference approximations. 

Then, the given differential equation is transformed to linear systems of algebraic equations and 

then using Taylor’s series and central finite difference approximation, it is reduced to a three term 

recurrence relation which can be easily solved by using Thomas Algorithm. The results of the 

present method has been compared with numerical results obtained by Rashidinia et al. [28] and 

Surla et al. [31-32] which are reported in the literature ( See Tables 4.1- 4.3).  

As it can be observed from the tables (4.1-4.3), the present method approximates the exact 

solution better than the methods proposed by Rashidinia et al. [28] and Surla et al. [31-32]. 

Further, as it can be observed from the tables and graphs the present method approximates the 

exact solution very well for h for which most of the existing methods fails to give good 

results. Moreover, all the maximum absolute errors decrease rapidly as N  increases. 

To validate the applicability of the proposed method, the  graphs have been plotted in Figures 4.1-

4.6 for exact solutions versus the numerical solutions obtained for different values of provides a 

good agreement of results presenting exact as well as numerical solutions, which proves the 

reliability of the compact finite difference method. Figures 4.7-4.9 provides the numerical 

problem without exact value were evaluated by double mesh principles.  

Both the theoretical and numerical error bounds have been established for the method. Table 4.4   

shows the present method have the rate of convergence which is in agreement with the theoretical 

proofs.  
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CHAPTER FIVE 

CONCLUSION AND SCOPE OF FUTURE WORK 

5.1. Conclusion 

In this thesis, eighth order compact finite difference method has been presented for solving 

singularly perturbed one dimensional reaction diffusion problems. This study has been 

implemented on three model examples by taking different values for the perturbation parameter ε 

and the computational results are presented in the tables and graphs. The results obtained shows 

the present method approximate the exact solution very well. Further, numerical results presented 

in this thesis show the improvement of the proposed method over some existing methods reported 

in the literature.  

The results presented in the new method confirmed that the computational rate of convergence as 

well as theoretical estimates indicate as it is an eighth order convergent. In brief manner, the 

present method is conceptually simple, easy to use and readily adaptable for computer 

implementation for solving singularly perturbed one dimensional reaction-diffusion equation. 

5.2. Scope of the Future Work 

In the present thesis, the numerical method based on eighth order compact finite difference 

schemes were constructed for solving singularly perturbed one dimensional reaction-diffusion 

problems. Hence, the schemes proposed in this thesis can also be extended to higher compact 

finite difference methods for singularly perturbed one dimensional reaction-diffusion problems. 

And also, this thesis considered the uniform mesh length. So, one can be extended this to non-

uniform mesh length. Additionally, this method can also be extended to partial differential 

equation.  

 

 

 

 



 

31 
 

REFERENCES 

[1] Angel, E. and Bellman, R., Dynamic Programming and Partial Differential 

equations,Academic Press, New York, 1972. 

[2] Bawa, R. K., Clavero C., Higher Order Global Solution and Normalized Flux for Singularly 

Perturbed Reaction-diffusion Problems. Appl. Math. Comput., 216(7)(2010), pp. 2058-2068. 

[3] Brauner, C.M., Gay, B. and Mathieu (Eds.), Singular Perturbations and boundary layertheory, 

Lecture Notes in Mathematics, Vol 594, Springer Verlag, Berlin, 1977. 

[4] Chu P. C., and Fan C., A Three Point Combined Compact Differencing Method, J. 

Com.Phys.,140, 1998, pp. 370-399. 

[5] Clavero C., Bawa Rajesh K., Natesan S., A Robust Second Order Numerical Method for 

Global Solution and Global Normalized Flux of Singularly perturbed Self-adjoint Boundary-

value Problems, Int. J. Comput. Math., 86(10) (2009), pp. 1731-1745. 

[6] Collatz L., The Numerical Treatment of Differential Equations. Springer Verlag, 1996. 

[7] Elsgolt’s, L. E. and Norkin, S. B., Introduction to the Theory of Applications of Differential 

Equations with Deviating Arguments. Academic press, New York 1973. 

[8] Farrell P. A., Hegarty A. F., Miller J. J. H., O’Riordan E., and Shishkin G. I., 

RobustComputational Techniques for Boundary Layers, Chapman & Hall/CRC Press, 2000. 

[9] Friedrichs, K.O., and Wasow., ‘‘Singular Perturbations of Nonlinear Oscillation,’’ Duke 

Mathematical Journal, Vol. 13(1946) pp. 367-381. 

[10] Gasparo M.G. and Macconi M., Initial value methods for second order singularly perturbed 

boundary-value problems, Journal of Optimization Theory and Applications, 66, (1990),197-

210. 

[11] Gasparo M.G. and Macconi M.,Numerical solution of second order nonlinear singularly 

perturbed boundary-value problems by initial value methods, Journal of Optimization Theory 

and Applications, 73,(1992), 309 

[12] Hu, X.C., Manteuffel, T.A., Mccormick, S. and Russell, T.F., Accurate discretization 

forsingular perturbations the one-dimensional case, SIAM J. Numer. Anal., 32 (1995), 83-

109. 

[13] Kadalbajoo M.K. and Reddy Y.N.,An Initial Value Technique for a class of Non-linear 

Singular Perturbation Problems, Journal of Optimization Theory and Applications, 53,(1987), 

395-406. 



 

32 
 

[14] Kato, T., A short introduction to Perturbation theory for linear operators, Springer Verlag, 

Berlin, 1982.  

[15] Kevorkian J. and Cole J.D., Perturbation Methods in Applied Mathematics, Springer-Verlag, 

New York, 1981. 

[16] Khan. A,   Khan. I, Aziz .T, Solution of a singularly perturbed boundary value problem, 

Applied Mathematics and Computation,181, (2006), 432-439. 

[17] Kumar M., Rao S. C. S., High Order Parameter Robust Numerical Method for Singularly 

Perturbed for Reaction-diffusion Problems, Appl. Math. Comput., 216(7)(2010), pp. 1036-

1046. 

[18] Lele S. K., Compact finite difference schemes with spectral-like resolution. Journal of 

Computational Physics, 103; 16-42, 1992.   

[19] Mazzia, F. and Trigiante, D.,Numerical Methods for Second Order Singular Perturbation 

Problems, Computers. Math. Applic. , 23 (1992), 81-89. 

[20] Mohanty, R. K., Jha, N.: A class of variable mesh spline in compression methods 

forsingularly perturbed two-point singular boundary-value problems. Appl. Math. Comput.16 

(2005), 704-716. 

[21] Natesan S., Bawa K. Rajesh, Clavero C., Uniformly Convergent Compact Numerical 

Scheme for the Normalized Flux of Singularly Perturbed Reaction-diffusion Problems., Int. J. 

Inform. Syst. Sci. 3(2) (2007), pp. 207-221. 

[22] Natesan S. and Ramanujam N., Initial-value technique for singularly perturbed 

boundaryvalue problems for second-order ordinary differential equations arising in chemical 

reactor theory, Journal of optimization theory and applications, Vo. 97, No.2, (1998),   455-

470.  

[23] Nayfeh A.H., Introduction to Perturbation Techniques, Wiley, New York, 1981. 

[24] O’Malley, R.E.,Singular Perturbation Methods for Ordinary Differential Equations, 

Springer-Verlag, New York, 1991.  

[25] Pinto, S.G., Casasus, L. and Vera, P.G. ,A Numerical scheme to approximate the solution of 

a singularly perturbed nonlinear differential equation, J. of Comp. and Appl. Maths., 35 

(1991), 217-225. 

[26] Prandtl, L., Uberflussigkeits-bewegungbeikleinerreibung. Verhandlungen, III International 

Mathematical Kongresses, Tuebner, Leipzig,1905, pp. 484-491. 



 

33 
 

[27] Reddy Y.N. and Pramod Chakravarthy P., Method of Reduction of Order for Solving 

Singularly Perturbed Two-Point Boundary Value Problems, Applied Mathematics and 

Computation, Vol. 136, (2003), pp. 27-45. 

[28] Rashidinia J., Ghasemi M., Mahmoodi Z., Spline Approach to the Solution of Singularly 

Perturbed Boundary Value-problems, Appl. Math. Comput., 189(2007), pp. 1036-1046. 

[29] Smith, D.R.,Singular Perturbation Theory – An Introduction with applications, Cambrid 

University Press, Cambridge, 1985.  

[30] Stynes, M. and O'Riordan, E.,A finite element method for a singularly perturbed boundary 

value problem, Numerische Mathematik, 50 (1986), 1-15. 

[31] Surla K., VukoslavcevicV., A Spline Difference Scheme for Boundary-Value Problems with 

a Small Parameter, vol. 25, Review ofResearch, Faculty of Science, Mathematics Series, 

University of Novi Sad, 1995, pp. 159–166. 

[32] Surla K., Herceg D., Cvetkovic L., A Family of Exponential Spline Difference Schemes, vol. 

19, Review of Research, Faculty of Science, Mathematics Series, University of Novi Sad, 

1991, pp. 12–23. 

[33] Vasil’yeva, A.B., ‘‘The Development of the Theory of Ordinary Differential Equations with 

Small Parameters Multiplying by Highest Derivatives in the year 1966-1976,’’ Russia 

Mathematics Surveys, Vol. 31, pp. 109-131. 

[34] Vesna, V., Nevenka, A. and Zorica, U., A Numerical-Asymptotic solution for singular 

perturbation problems, Intern. J. Computer Math., 39 (1991), 229 - 238.   

 

 

 

 

 

 

 

 


