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Abstract
In this thesis , ε - Uniform Numerical Method for solving Singularly Perturbed 1D Parabolic

Convection-Diffusion Problems is developed using non-standard finite difference method with

Runge-Kutta method by applying the method of lines procedure. First, discretizing the spatial

domain using uniform mesh and applying non-standard finite difference methods for the spatial

direction of singularly perturbed 1D parabolic convection-diffusion problem. Then, the given dif-

ferential equation transformed to system of initial value problems(IVP) which is solved by Runge-

Kutta method of order two and three implicit. To validate the applicability of the proposed method

two model examples were considered and solved for different values of perturbation parameter and

mesh sizes. Numerical experiments are carried out extensively to support the theoretical results.

The stability is analyzed and the present numerical scheme is of first-order convergence.
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Chapter 1

Introduction

1.1 Background of the Study
Numerical analysis is a technique used to solve mathematical problems on a computer and also

widely used by scientists and engineers to solve some problems. It does not strive for exactness.

Instead, attempts to devise a method which yields an approximation differing from exactness by

less than a specified tolerance, or by an amount which has less than a specified probability of ex-

ceeding that tolerance. The ultimate aim of the field of numerical analysis is to provide convenient

methods for obtaining useful solutions to mathematical problems and for extracting useful infor-

mation from available solutions which are not expressed in tractable forms. Such problems may

each be formulated, for example, in terms of algebraic or transcendental equation, an ordinary or

partial differential equation, or in terms of a set of such equations.

A partial differential equation (PDE) is a mathematical equation that involves two or more

independent variables, as unknown function (dependent on those variables), and partial derivatives

of the unknown function with respect to the independent variables. Linear second order PDEs with

two independent variables (x, t) and one dependent variable u has general form of

A
∂ 2u
∂x2 +B

∂ 2u
∂x∂ t

+C
∂ 2u
∂ t2 +D = f (x, t) (1.1)

where A,B and C are functions of x, t and D is a function of x, t,u, ∂u
∂x and ∂u

∂ t . If the discriminant

B2−4AC = 0, it is called parabolic PDE.
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The wide use of computing techniques, combined with the demands of scientific and tech-

nical practices, has stimulated the development of numerical methods to a great extent, and in

particular, methods for solving differential equations. The efficiency of such methods is governed

by their accuracy, simplicity in computing the discrete solution and also their relative insensitiv-

ity to parameters in the problem. At present, numerical methods for solving partial differential

equations, in particular, finite difference scheme, are well developed for wide classes of problems

Shishkin(2009).

Differential equations whose highest-order derivative(s) are multiplied by a perturbation pa-

rameter ε,0 < ε << 1 is called singularly perturbed differential equation O’Malley (1991), Vishik

and Lyusternik (1960, 1961)). Solutions of singularly perturbed problems, unlike regular prob-

lems, have boundary and/or interior layers, that is, narrow sub domains specified by the parameter

on which the solutions vary by a finite value. The derivatives of the solution in these sub domains

grow without bound as ε tends to zero.

In the case of singularly perturbed problems, the use of numerical methods developed for solving

regular problems leads to errors in the solution that depend on the value of the parameter ε . Errors

of the numerical solution depend on the distribution of mesh points and become small only when

the effective mesh-size in the layer is much less than the value of the parameter ε( Shishkin ,1992;

Miller et al., 1996 and Farrell et al., 2000). Such numerical methods turn out to be in applicable

for singularly perturbed problems.

Due to this, there is an interest in the development of special numerical methods where solu-

tion errors are independent of the parameter or that converge ε - uniformly. When the solutions

of a PDE are ε-uniformly convergent, we call these methods and solutions robust, Farrell .et al,

(2000). At present, only few methods are devoted to the development of numerical methods for

solving singularly perturbed problems. Grid methods (fitted mesh methods) for partial differential

equations are considered in the book of Miller et al., (1996).
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Singularly perturbed 1D parabolic convection-diffusion problem has the form:

∂u
∂ t
− ε

∂ 2u
∂x2 +a(x)

∂u
∂x

+b(x)u(x, t) = f (x, t), (x, t) ∈Ωx×Q = (0,1)× (0,T ] (1.2)

with the boundary conditions and the initial condition

u(0, t) =µ0(t), t ∈ [0,T ]

u(1, t) =µ1(t), t ∈ [0,T ]

and

u(x,0) =φ(x), x ∈ [0,1]

(1.3)

where ε is the perturbation parameter such that 0 < ε � 1 the coefficient functions a(x),b(x) and

f (x, t) are sufficiently smooth. The convection-diffusion-reaction equation is classified into three

processes Makungu et al. (2012). The first process is called convection and is due to movement of

materials from one region to another. The second process is called diffusion and is due to move-

ment of materials from region of high concentration to a region of low concentration. The last

process is called reaction and is due to decay, adsorption and reaction of substances with other

components. The convection-diffusion-reaction PDE provides a very useful and important math-

ematical model in wide range of applications in natural sciences and engineering Mickens et al.,

(1999). These applications includes the transport of air, adsorption of pollutants in soil, diffusion

of neutrons, food processing, modeling of biological systems, modeling of semiconductors, oil

reservoir flow transport and reaction of chemical species etc. In many of these applications, the

unknown variables in the governing PDE represent physical quantities that cannot take negative

values such as pollutants, population, and concentration of chemical compounds Chen-Charpentier

and Kojouharov, (2013).

Singularly Perturbed Parabolic Equation Models

In the real life, there are many singular perturbation models which arise in parabolic partial differ-

ential equations. We leave out the techniques used to solve these models. Interested readers can
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see the references cited along with these models, for more details.

a. Think about the time-dependent Navier-Stokes problem in two space variables x and y

(Roos et al., 2008) given by:
∂u
∂ t
− 1

Re
4(U.∇)u =−∇p (1.4)

In the upper half-plane y > 0.

∇.U = 0, (1.5)

in the same domain

u = 0 (1.6)

on the boundary y = 0 at large Reynolds number Re. One can regard the boundary y = 0 as a fixed

plate,and we assume that the velocity U at y = ∞ is parallel to the x-axis with magnitude U. We

seek as flow, at constant pressure p whose velocity is parallel to the plate and independent of x.

Then Eq.(1.4) requires to:
∂u
∂ t

= ε
∂ 2u
∂x2 (1.7)

where ε = 1
Re Set ϒ = y

2
√

εt and let u(y, t) =U f (ϒ ).A complication leads to:

u =U
2√
π

∫
ϒ

0
ρ

s−2
ds (1.8)

Eqs.(1.8) show that there is a narrow region near y = 0 where u departs significantly from the

constant flow U.We say that u has a boundary layer at y = 0. Linearizion of Eqs.(1.5-1.7) yields an

equation of the form:
∂U
∂ t
− ε4u+b∇u+ cu = f (1.9)

where b is independent of u. Such convection-diffusions model many fluid flows;the appear in the

well know ocean equation and in related subjects like water pollution problems,simulation of oil

extraction from underground preservers,flows in chemical reactors and convective heat transport

problems with large p’eclet numbers(Roos et al.,2008).
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b. Ground water flow and solute transport

The movement of water and solutes through the unsaturated zone has been of importance in tradi-

tional applications of ground water hydrology, soil physics and agronomy.

In one dimension, the theoretical basis for modeling the liquid phase water movement in unsat-

urated porous media can be described by a combination of the darcy’s law and the equation of

continuity (Kadalbajoo and Gupta, 2010)

∂c(x, t)
∂ t

= D
∂ 2c(x, t)

∂x2 −V
∂c(x, t)

∂x
−λc(x, t),∀x,t > 0 (1.10)

where t is time,x is horizontal distance taken zero at the soil center and measured positive to the

right of the soil center;c(x,t) is the solute concentration at time t;distance x; D is the soil water

diffusivity; v is the average velocity and λ is the decay coefficient.The contamination in ground

water can be calculated by means of Eqs.(1.10).

The solute transport Eqs.(1.10) represents the mathematical modeling for the unknown concentra-

tion c(x, t). We now scale this mathematical problem by selecting the characteristic values for the

dependent and independent variables.

Consequently,we define dimensionless variables by:

T =
t

λ−1 ,X =
x

vλ−1 ,C =
c
c0

(1.11)

Reformulating the problem in terms of these scaled variables easily gives the scaled problem.

∂c(x, t)
∂ t

= ε
∂ 2c(x, t)

∂x2 − v
∂c(x, t)

∂x
− c(x, t),∀x,t > 0, where ε =

λD
v2 � 1 (1.12)

Definition: ε - uniform convergence

Consider (Pε ) be a family of singularly perturbed parabolic PDEs parametrized by a singular per-

turbation parameter ε , where ε satisfies 0 < ε � 1. Assume that each problem in (Pε ) has unique

solution denoted by uε , and that each uε is approximated by sequence of numerical solutions
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{(
Uε , D̄M,∆t)} obtained by using a monotone numerical method

(
PM,∆t

ε

)
where Uε is defined on

the mesh D̄M,∆t and; M and ∆t are discretization parameters. Then Uε is said to converge ε− uni-

formly to the exact solution uε , if there exists positive integers M0,K0 and positive numbers C, p

and q, such that for all M ≥M0 and K ≥ K0, where K = T/∆t, we have

sup
0<ε≤1

‖Uε −uε‖∞≤C
(
M−q +(∆t)p) (1.13)

where M0,K0,C, p and q are all independent of ε. Here p and q are called the ε− uniform order

of convergence of the temporal and spatial direction respectively, and C is called the ε− uniform

error constant.

The Method of Lines (MOL) is a technique that enables us to convert partial differential equations

into sets of ordinary differential equations that, in some sense, are equivalent to the former PDEs.

The basic idea behind the MOL methodology is straight forward. The method of lines is a general

way of viewing a partial differential equation as a system of ordinary differential equations . The

partial derivatives with respect to the space variables are discretized to obtain a system of ODE’s

in the variable t .

The theoretical basis of non-standard discrete modeling method is based on the concept of”exact”

and ”best” finite difference schemes. Mickens (2005) presented techniques for constructing non-

standard finite difference methods. According to Mickens rules, to construct a discrete scheme,

denominator function for the discrete derivatives must be expressed in terms of more complicated

functions of step sizes than those used in the standard procedure. These complicated functions

constitutes a general property of these schemes, which is useful while designing reliable schemes

for such problems. On the spatial domain [0, 1], uniform meshes with mesh length is introduced,

where N is the number of mesh points in spatial direction. And then apply non-standard finite

difference method for the spatial derivatives.

In recent years, different authors developed different numerical methods for solving such differen-

tial equations. It is well known that classical numerical methods for solving singular perturbation
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problems are unstable and fail to give accurate results when the perturbation parameter ε is small.

But, still the accuracy and convergence of the methods need attention, because of the treatment of

singular perturbation problems is not trivial and the solution depends on perturbation parameter

and mesh size h, Doolan et al., (1980). Due to this, numerical treatment of singularly perturbed 1D

parabolic convection-diffusion problems needs improvement. The presence of the singular pertur-

bation parameter ε , leads to occurrences of oscillations or divergence in the computed solutions

while using classical numerical methods. In order to avoid these oscillations or divergence, an

unacceptably large number of mesh points are required when ε is very small.

Therefore, in order to overcome this drawback associated with classical numerical methods,

we need to develop a method based on method of lines (MOL) using non-standard finite differ-

ence method in spatial direction together with Runge-Kutta method of order two and three implicit

for temporal direction, which treat the problem without creating an oscillation. Thus, this study

present an accurate and ε-uniform convergent numerical method for solving singular perturba-

tion 1D parabolic convection-diffusion problem using methods of lines with non-standard finite

difference method.

1.2 Objectives of the study

1.2.1 General objective

General objective of this study is to solve singularly perturbed 1D parabolic convection-diffusion

problem using methods of lines with non-standard finite difference method.

1.2.2 Specific Objectives

The specific objectives of this study are:

• To apply MOL with non-standard finite difference method on singularly perturbed 1D parabolic

convection-diffusion problems.

• To establish the ε-uniform convergence of the present scheme .
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1.3 Significance of the Study
The result obtained from this study may:

• be used as a reference material for scholars who works on this area.

• help graduate students to acquire research skills and scientific procedures.

• be used a numerical method for solving singularly perturbed parabolic convection-diffusion

problems.

1.4 Delimitation of the Study
This study is delimited to solve the singularly perturbed 1D parabolic convection-diffusion

problems of the form:

∂u
∂ t
− ε

∂ 2u
∂x2 +a(x)

∂u
∂x

+b(x)u(x, t) = f (x, t), (x, t) ∈Ωx×Q = (0,1)× (0,T ] (1.14)

with the boundary conditions and the initial condition

u(0, t) =µ0(t), t ∈ [0,T ]

u(1, t) =µ1(t), t ∈ [0,T ]

and

u(x,0) =φ(x), x ∈ [0,1]

(1.15)

where ε is the perturbation parameter such that 0 < ε � 1 the coefficient functions a(x),b(x) and

f (x, t) are sufficiently smooth and satisfy the following. a(x)≥ α > 0, b(x)≥ β > 0, ∀x ∈ [0,1].

In general, the problem in Eqn. (1.14) - (1.15) admits a unique solution u(x, t) which exhibits a

regular boundary layer of width O(ε) at x = 1.
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Chapter 2

Literature Review
Ng-Stynes et al. (1998) presented the numerical methods for time-dependent convection-diffusion

equations. The authors consider the initial-boundary value problem: εyxx + a(x, t)yx− b(x, t)y−

d(x, t)yt = f (x, t),(x, t)∈Ω = (0,1)×(1,T ] y(0,1) = q0(t) for 0≤ t ≤ T, y(1, t) = q1(t) for 0≤

t ≤ T,y(x,0) = s(x) for 0 ≤ t ≤ 1, and a, b, d and f are sufficiently smooth with α∗ ≥ a(x, t) ≥

α > 0,β ∗ ≥ b(x, t)≥ β > 0,δ ∗ ≥ d(x, t)≥ δ > 0,on[0,1]× [0,T ]. In this article,they examined a

singularly perturbed linear parabolic initial-boundary value problem in one space variable. Various

finite difference schemes are derived for this problem using a semi-discrete Petrov-Galerkin and

finite element methods. The schemes do not have a cell Reynolds number restriction and are shown

to be first-order accurate, uniformly in the perturbation parameter.

Clavero et al. (2003), proposed “A uniformly convergent scheme on a nonuniform mesh for

convection diffusion parabolic problems”. The authors consider the problem:

∂U
∂ t −ε

∂ 2U
∂x2 +a(x)∂U

∂x +b(x)U = f (x, t), (x, t)∈D≡ Ω×(0,1)≡ (0,1)×(0,T ),u(x,0)= u0(x),x∈

Ω,u(0, t) = u(1, t) = 0, t ∈ [0,T ]. In this paper they constructed a numerical method to solve one-

dimensional time-dependent convection diffusion problem with dominating convection term. They

use the classical Euler implicit method for the time discretization and the simple upwind scheme

on a special nonuniform mesh for the spatial discretization. They show that the resulting method

is uniformly convergent with respect to the diffusion parameter. The main lines for the analysis

of the uniform convergence carried out here can be used for the study of more general singular

perturbation problems and also for more complicated numerical schemes.
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Ramos et al., (2005) studied “An exponentially-fitted method for singularly perturbed, one

dimensional, parabolic problems”. They consider the following singularly perturbed, one di-

mensional (linear) parabolic problem of the advection diffusion reaction type: ∂U
∂ t + a(x, t)∂U

∂x +

b(x, t)U = ε
∂ 2u
∂x2 + f (x, t),0 < x < 1, t ≥ 0 subject to u(0, t) = u(1, t) = 0, t ≥ 0,U(x,0) = u0,0 ≤

x ≤ 1 where 0 < ε � 1 is the diffusion coefficient or perturbation parameter,x and t denote

the spatial coordinate and time, respectively, u is the dependent variable, a(x, t); is the speed,

and f (x, t)− b(x, t)u; is the reaction term. Those authors had been proposed the method based

on an exponentially-fitted method for singularly perturbed, one-dimensional, linear, convection-

diffusion-reaction equations in equally-spaced grids. The method is based on the implicit dis-

cretization of the time derivative, freezing of the coefficients of the resulting ordinary differential

equations at each time step, and the analytical solution of the resulting convection-diffusion dif-

ferential operator. This solution is of exponential type and exact for steady, constant-coefficients

convection- diffusion equations with constant sources.

Kadalbajoo and Awasthi (2006) presented a parameter uniform difference scheme for singu-

larly perturbed parabolic problem in one space dimension. They consider the following singularly

perturbed parabolic problem: Lεu(x, t) ≡ ut − εuxx + a(x)ux + b(x)u = f (x, t),(x, t) ∈ Ω, where

Ω = (0,1)× (0,T ] and ∂Ω = Ω̄/Ω, with initial condition u(x,0) = u0(x),0≤ x≤ 1 and boundary

conditions u(0, t) = 0 = u(1, t),0 ≤ t ≤ T . They made a numerical study to examine a singularly

perturbed parabolic initial-boundary value problem in one space dimension on a rectangular do-

main. The solution of this problem exhibits the boundary layer on the right side of the domain.

The Crank-Nicholson finite difference method consisting of an upwind finite difference operator

on a fitted piecewise uniform mesh is constructed. The resulting method has been shown almost

first order accurate in space and second order in time. The authors have shown that the resulting

method is uniformly convergent with respect to the singular perturbation parameter. It is shown

that a numerical method consisting of same finite difference operator on uniform mesh does not

converge uniformly with respect to the singular perturbation parameter.

Kadalbajoo et al., (2008) proposed“A uniformly convergent B-spline collocation method on

10



a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection-

diffusion problem. They consider the 1D parabolic convection -diffusion problem: ∂u
∂ t − ε

∂ 2u
∂x2 +

a(x) ∂

∂x + b(x)u = f (x, t),(x, t) ∈ D ≡ Ω× (0,T ] ≡ (0,1)× (0, t],u(x,0) = u0(x),x ∈ Ω̄,u(0, t) =

0,u(1, t) = 0, t ∈ [0, t]. They proposed a numerical method for solving this problems. The method

comprises a standard implicit finite difference scheme to discretize in temporal direction on a

uniform mesh by means of Rothes method and B-spline collocation method in spatial direction on

a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and

accurate of order O((4x)2 +4t). An extensive amount of analysis has been carried out to prove

the uniform convergence with respect to the singular perturbation parameter. Several numerical

experiments have been carried out in support of the theoretical results.

Rashidinia et al., (2013), presented “Application of Sinc-Galerkin method to singularly per-

turbed parabolic convection-diffusion problems. They consider the singularly perturbed problem

of the form: ∂u
∂ t − ε

∂ 2U
∂x2 +b(x, t)∂U

∂x +d(x, t)U = f (x, t) subject to the initial and boundary condi-

tion u(x,0) = s(x),u(0, t) = q0(t) and u(1, t) = q1(t). In this article, they apply the Sinc-Galerkin

method to solve the stated problems first their method is based on the discretization of the time

variable by means of the implicit Euler method and freezing the coefficient of the resulting ordi-

nary differential equation at each time step. Second they use Sinc-Galerkin method on the yield

linear ordinary differential equation at each time step resulting from the time semi-discretization.

In the Sinc-Galerkin method the test functions are defined by the Sinc-function S(x) = sin(πx
πx).

This method has many advantages over classical methods that use polynomials as bases. As they

mentioned, in the presence of singularities, it gives a much better rate of convergence and accu-

racy than polynomials method. Those scholars shown and concluded that the convergence analysis

and stability of the proposed method are presented with an exponential convergence was achieved

as well. But, even if the convergence analysis of the proposed method shown as an exponential

convergence was achieved as well, there is no confirmation of theoretical with experimental results.

Suayip and Niyazi (2013), presented “Numerical solutions of singularly perturbed one dimen-

sional parabolic convection diffusion problems by the Bessel collocation method. They considered
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the problem: ∂u
∂ t − ε

∂ 2U
∂x2 +b(x, t)∂U

∂x +d(x, t)U = f (x, t) subject to the initial and boundary condi-

tion u(x,0) = s(x),u(0, t) = q0(t)andu(1, t) = q1(t). The authors proposed the method based on the

Bessel collocation method used for some problems of ordinary differential equations. The method

was implemented within the following procedure: first the approximate solution of the problem in

the truncated Bessel series form was obtained by this method. Secondly, substituting the truncated

Bessel series solution into the problem and then by using the matrix operations and the collocation

points; the suggested scheme reduces the problem to a linear algebraic equation system. Finally,

by solving these algebraic equations, the unknown Bessel coefficients computed. An error estima-

tion technique is given for the considered problem and the method. To show the accuracy and the

efficiency of the method, two model numerical examples are implemented and the numerical result

comparisons are given with the other methods that are developed by Clavero et al., (2003); Ramos

(2005) and Kadalbajoo et. al., (2008). In this article, the comparison of numerical results for the

particular model example given as: ∂u
∂ t −ε

∂ 2U
∂x2 +(2−x2))∂U

∂x +xU = 10t2 exp(−t)x(1−x),(x, t) ∈

(0,1)× (0,1]subject to the condition U(x,0) = 0,0 ≤ x ≤ 1andU(0, t) = 0 = U(1, t),0 < t ≤ 1.

The exact solution of this problem is not known. But from the comparison for the perturbation pa-

rameter 0−6,the maximum absolute error given with the method developed by Suayip and Niyazi

(2013) is 4.2727∗10−02, Kadalbajoo et al., (2008) is 3.7566∗10−03 and the method developed by

Ramos (2005) is 2.25∗10−02.This implies that, though the authors try to improve the accuracy and

the efficiency of the method, the proposed method is not more accurate than previously developed

methods.

Gowrisankar and Natesan ,(2014) proposed “Robust numerical scheme for singularly perturbed

convection diffusion parabolic initial boundary value problems on equidistributed grids which

studies the numerical solution of singularly perturbed parabolic convection diffusion problems

exhibiting regular boundary layers. To solve these problems, they use the classical upwind finite

difference scheme on layer-adapted non-uniform meshes. The non-uniform meshes are obtained

by equidistributing a positive monitor function, which depends on the second-order spatial deriva-

tive of the singular component of the solution. The truncation error and the stability analysis
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are obtained with the convergence of first order convergent. Parameter-uniform error estimates

are derived for the numerical solution and this scheme is also appropriate to solve the linear and

semi-linear initial boundary value problems. For numerical experiments, they consider four (two

linear and the others are non-linear) model examples are carried out to support the theoretical re-

sults. From the considered linear model example, one is the same with the example considered

by Suayip and Niyazi (2013), and the second example is given by: ∂u
∂ t − ε

∂ 2U
∂x2 +(1x(1− x))∂U

∂x =

f (x, t),(x, t) ∈ (0,1)× (0,1]subject to the condition U(x,0) = U0(x),0 ≤ x ≤ 1andU(0, t) = 0 =

U(1, t),0 < t ≤ 1. For this particular example the initial data U0(x) and the source function f (x, t)

to fit the exact solution U(x, t) = exp(t)(exp(−1/ε)+ x(1− exp(−1/ε))− exp(−1+ x/ε)). The

authors confirmed the theoretical and experimental results of the proposed method for the two lin-

ear examples with obtaining 9.2101∗1002 maximum absolute errors and 1.1019 maximum rate of

convergence at different values of mesh sizes formed by number of intervals 32 ≤ N ≤ 1024 and

time step size 1
10 ≤4t ≤ 1

320 for the perturbation parameter, 10−08 ≤ ε ≤ 10−02. Since, the numer-

ical results obtained by those authors had been compared with Shishkin and Bakhvalov meshes; it

verify that, the recent one can be used as an alternative mesh generating rather than more efficient

than the two meshes.

Das and Natesan, (2015) presented uniformly convergent hybrid numerical scheme for sin-

gularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh. A simplified

mathematical description of the overall control system is given by: ∂u(x,t)
∂ t = ε

∂ 2u(x,t)
∂x2 +v(g(u(x, t−

τ)))∂u(x,t)
∂x + c[ f (u(x, t − τ))− u(x, t)] defined on a one dimensional spatial domain 0 < x < 1,

where v is the instantaneous material strip velocity depending on a prescribed spatial average of

the time-delayed temperature distribution u(x, t − τ) and f represents a distributed temperature

source function depending on u(x, t− τ). This article studies the numerical solution of singularly

perturbed delay parabolic convection- diffusion initial-boundary-value problems. Since the solu-

tion of these problems exhibit regular boundary layers in the spatial variable, the authors use the

piecewise-uniform Shishkin mesh for the discretization of the domain in the spatial direction, and

uniform mesh in the temporal direction. The time derivative is discretized by the implicit-Euler

13



scheme and the spatial derivatives are discretized by the hybrid scheme. For the proposed scheme,

the stability analysis was carried out, and parameter-uniform error estimates are derived. Numeri-

cal examples are given to show the accuracy and efficiency of the scheme.

Munyakazi (2015) presented “A robust finite difference method for two parameter parabolic

convection-diffusion problems. They author considered the singularly perturbed problem: ∂u
∂ t −

ε
∂ 2U
∂x2 + µb(x, t)∂U

∂x + d(x, t)U = f (x, t) subject to the initial and boundary condition u(x,0) =

s(x),u(0, t) = q0(t) and u(1, t) = q1(t) To implement this method, the basic procedures are; first

discretize the time variable by means of the classical backward Euler method and at each time level

a two-point boundary value problem is obtained. Second, these problems are, in turn, discretized in

space on a uniform mesh following the nonstandard methodology of Mickens and then discrete op-

erator satisfies a minimum principle. Third, the error analysis shows that the method is uniformly

convergent with respect to the perturbation parameters. Finally, validate the developed numerical

scheme compared with Shishkin (1988), and the experimental results to test the parameter-uniform

convergence and the comparison with Kadalbajoo and Yadaw (2012) by considering only the par-

ticular example given as: ε
∂ 2U
∂x2 +µ(1+ x)∂U

∂x −U(x, t)− ∂U
∂ t = 16x2(1− x)2,(x, t) ∈ (0,1)× (0,1]

subject to the initial and boundary conditions: u(x,0) = u0(x),x ∈ [0,1]andu(0, t) = 0 = u(1, t), t ∈

[0,1] respectively. Since, the exact solution for this example is not known; they use a variant of

the double mesh principle. The comparison of numerical results with respect to accuracy (with the

maximum absolute error is 1.49 ∗ 10−03 and order of convergence (the maximum and minimum

order convergence are 1.06 and 1.02) are presented as via schemes at the perturbation parameters

ε = 2−5 and µ ≤ 2−6 within the range of number of intervals 128 ≤ N ≤ 1024 in the space di-

rection and number of intervals M = 2N in time direction. Using the numerical experiment on

this model example, they had shown that the numerical scheme developed by Munyakazi (2015)

approximate the exact solution very well than Kadalbajoo and Yadaw (2012). Yet, there is no more

favored method identified and there is still the need to construct better methods than those which

are available.

Yanping and Li-Bin(2016) presented “An Adaptive Grid Method for Singularly Perturbed
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Time-Dependent Convection-Diffusion Problems”.They consider the following singularly perturbed

time-dependent convection-diffusion problem: ut(x, t)+Lx,ε(x, t)= f (x, t),(x, t)∈G=Ω×(0,T ]≡

(0,1)×(0,T ],u(x,0) = u0(x),x∈Ω,u(0, t) = u(1, t) = 0, t ∈ (0,T ] where Lx,ε ≡−εuxx+a(x)ux+

b(x)u The authors study the numerical solution of singularly perturbed time dependent convection-

diffusion problems. To solve these problems, the backward Euler method is first applied to dis-

cretize the time derivative on a uniform mesh, and the classical upwind finite difference scheme

is used to approximate the spatial derivative on an arbitrary nonuniform grid. Then, in order to

obtain an adaptive grid for all temporal levels, they construct a positive monitor function, which

is similar to the arclength monitor function. Furthermore, the ε-uniform convergence of the fully

discrete scheme is derived for the numerical solution. Finally, some numerical results are given to

support our theoretical results.

Chandru et al., (2017) presented “Numerical treatment of two-parameter singularly perturbed

parabolic convection diffusion problems with non-smooth data”. They considered the following

two-parameter parabolic initial-boundary value problem (IBVP) on the domain Γ=Ωx×Ωt , which

combines the reaction-diffusion and convection-diffusion forms: Lε ,µy(x, t) ≡ (εyxx + µayx −

byx− cyt)(x, t) = f (x, t),(x, t) ∈ (Γ−∪Γ+),y(x, t) = p(x, t),(x, t) ∈ Γc,

y(x, t) = q(x, t),(x, t) ∈ Γl,y(x, t) = r(x, t),(x, t) ∈ Γr. Here, 0 < ε,0 ≤ µ ≤ 1 are two singular

perturbation parameters. The coefficient functions b(x, t),c(x, t) are assumed to be sufficiently

smooth functions on Γ such that b(x, t) ≥ β > 0,c(x, t) ≥ ν > 0. In additional,they assume

a(x, t), f (x, t) are sufficiently smooth on (Γ−×Γ+) such that a(x, t) ≤ −α1 < 0,(x, t) ∈ Γ− and

a(x, t) ≥ α2 > 0,(x, t) ∈ Γ+ Here, α1,α2 are positive constants. Let α = minα1,α2. In addition,

They assume the jumps of a(x, t) and f (x, t) at d(x, t) satisfying |[α](d, t)| ≤ c, |[ f ](d, t)| ≤ c, where

the jump of ω at (d, t) is defined as [ω](d, t) = ω(d+, t)−ω(d−, t). In this paper, they consider

a parabolic convection-diffusion-reaction problem where the diffusion and convection terms are

multiplied by two small parameters, respectively. In addition, the author assume that the convec-

tion coefficient and the source term of the partial differential equation have a jump discontinuity.

The presence of perturbation parameters leads to the boundary and interior layers phenomena
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whose appropriate numerical approximation is the main goal of this paper. they have developed

a uniform numerical method, which converges almost linearly in space and time on a piecewise

uniform space adaptive Shishkin-type mesh and uniform mesh in time. Error tables based on sev-

eral examples show the convergence of the numerical solutions. In addition, several numerical

simulations are presented to show the effectiveness of resolving layer behavior and their locations.

As we see in the above literature, most researchers try to find numerical solution for singularly

perturbed 1D parabolic convection diffusion problems. In this thesis, we tried to develop more

accurate and ε-uniformly convergent numerical method for this problem. We used methods of lines

with non standard finite difference method for solving singular perturbed 1D parabolic convection-

diffusion problems.
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Chapter 3

Methodology

3.1 Study Site and Period
This study was conducted at Jimma University in the department of Mathematics from Septem-

ber 2018 to June 2019.

3.2 Study Design
The study employed both documentary review and numerical experimentation .

3.3 Source of Information
The relevant sources of information such as; books, published articles and related studies from

internet are used.

3.4 Mathematical Procedures
In order to achieve the stated objectives, the study followed the following mathematical proce-

dures.

1. Defining the problem.

2. Discretizing the spatial domain using uniform mesh.

3. Applying non-standard finite difference methods for the spatial direction of singularly per-

turbed 1D parabolic convection-diffusion problem.
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4. Solving the obtained system of initial value problems by using implicit Runge-Kutta method

of order two and three .

5. Establishing ε-uniform convergence of the obtained scheme.

6. Writing MATLAB code for the developed scheme.

7. Validate the schemes by using numerical examples and results.

8. Compare the obtained result with the finding of previous studies.
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Chapter 4

Description of the Method, Result and

Discussion

4.1 Description of the Method

4.1.1 Properties of Analytical solution

In order to show on the bounds of the solution u(x, t) , we assume,without loss of generality the

initial to be zero (Bobisud et.al,1968). Since u0(x) is sufficiently smooth and using the property of

the norm, we can prove the following lemma.

Lemma 1: (Continuous maximum principle)

let ψ ∈C2,1(D̄) and be such that ψ ≥ 0,∀(x, t) ∈ ∂D. Then Lεψ(x, t)> 0,∀(x, t) ∈ D implies that

ψ(x, t)≥ 0,∀(x, t) ∈ D̄.

Proof: Let (x∗, t∗) be such that ψ(x∗, t∗) = min(x,t)∈D̄ {ψ(x, t)} and suppose that ψ(x∗, t∗) < 0. It

is clear that ψ(x∗, t∗) /∈ ∂D. So we have

Lψ(x∗, t∗) = ψt(x∗, t∗)− εψxx(x∗, t∗)+a(x)ψx(x∗, t∗)+b(x)ψ(x∗, t∗)

Since ψ(x∗, t∗) =min(x,t)∈D̄ {ψ(x, t)}which implies ψx(x∗, t∗) = 0, ψt(x∗, t∗) = 0 and ψxx(x∗, t∗)≥

0 and implies that Lψ(x∗, t∗)< 0 which is contradiction to the assumption that made above. So we

have Lψ(x∗, t∗)> 0, ∀(x, t) ∈ D. Hence ψ(x, t)≥ 0, ∀(x, t) ∈ D
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Lemma 2: The bound on the solution u(x, t) of the continuous problem Eqs.(1.14-1.15) is given

by

|u(x, t)| ≤C,∀(x, t) ∈ D̄

Proof: From inequality |u(x, t)−u(x,0)|− |u(x, t)−u0(x)| ≤Ct, we have

|u(x, t)|− |u0(x)| ≤ |u(x, t)−u(x,0)| ≤Ct

⇒ |u(x, t)| ≤Ct + |u0(x)|,∀x,t ∈ D̄

since t ∈ [0,T ] and u0(x) is bounded it implies |u(x, t)| ≤C

Lemma 3 (Stability estimate)

Let u(x, t) be the solution of problem (1.14-1.15). Then we have

||u|| ≤ β
−1|| f ||+max(|u0(x)|,max(µ0(x, t),µ1(x, t)))

Under the smoothness and compatibility conditions, proved that the exact solution and its deriva-

tives satisfy

∣∣∣∣∂ i+ ju(x, t)
∂xi∂ t j

∣∣∣∣≤C(1+ ε
−i exp(−α(1− x)/ε)),(x, t) ∈ D̄, i = 0,1,0≤ i≤ 3,0≤ i+ j ≤ 3

Proof: Define barrier functions ϑ± as

ϑ
±(x, t) = β

−1|| f ||+max{u0(x),max{µ0(x, t),µ1(x, t)}}±u(x, t)

At the initial value:

ϑ
±(x,0) = β

−1|| f ||+max{u0(x),max{µ0(x, t),µ1(x, t)}}±u(x,0)

= β
−1|| f ||+max{u0(x),max{µ0(x, t),µ1(x, t)}}±u0(x)

≥ 0.
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at the boundary points:

ϑ
±(0, t) = β

−1|| f ||+max{u0(0),max{µ0(0, t),µ1(0, t)}}±u(0, t)

= β
−1|| f ||+max{u0(0),max{µ0(0, t),µ1(0, t)}}±u0(0)

≥ 0.

ϑ
±(1, t) = β

−1|| f ||+max{u0(1),max{µ0(1, t),µ1(1, t)}}±u(1, t)

= β
−1|| f ||+max{u0(1),max{µ0(1, t),µ1(1, t)}}±u0(1)

≥ 0. and

Lϑ
±(x, t) = ϑ

±
t (x, t)− εϑ

±
xx(x, t)+a(x)ϑ±x (x, t)+b(x)ϑ±(x, t)

= (max{µ0t(x, t),µ1t(x, t)}±ut(x, t))

− ε(max{µ0xx(x, t),u0xx(x),µ1xx(x, t)}±uxx(x, t))

+a(x)
(

max{u0x(x, t),max{µ0x(x, t),µ1x(x, t)}}±ux(x, t)
)
+

b(x)
(

β
−1|| f ||+max{u0(x),max{µ0(x, t),µ1(x, t)}}±u(x, t)

)
≥ 0

since ε ≥ 0,a(x)≥ α > 0 and b(x)≥ β > 0.

which implies that

Lϑ
±(x, t)≥ 0

Hence by maximum principle we have,

ϑ
±(x, t)≥ 0, ∀(x, t) ∈ D̄

u(x, t)≤ β
−1|| f ||+max{u0(x),max{µ0(x, t),µ1(x, t)}}

Hence, the proof is completed.

Lemma 4. The bound on the derivative of the solution u(x, t) with respect to x is given by:
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∣∣∣∣∂ iu(x, t)
∂xi

∣∣∣∣≤C
(

1+ ε
−i exp(−α(1− x)/ε)

)
, (x, t) ∈ D̄, i = 0,1,2,3,4.

Proof: See Clavero et al.,(2003)

4.1.2 Discretization in Spatial direction

On the spatial domain [0, 1], we introduce the equidistant meshes with uniform mesh length

4x = h such that ΩM
x = xi = x0 + ih, i = 1,2,3, ...M,x0 = 0,xM = 1,h = 1

M where M is the number

of mesh points in the spatial direction.

∂u
∂ t
− ε

∂ 2u
∂x2 +a(x)

∂u
∂x

+b(x)u(x, t) = f (x, t), (x, t) ∈Ωx×Q = (0,1)× (0,T ] (4.1)

with the boundary conditions and the initial condition

u(0, t) =µ0(t), t ∈ [0,T ]

u(1, t) =µ1(t), t ∈ [0,T ]

and

u(x,0) =φ(x), x ∈ [0,1]

(4.2)

For the problem in the form Eqs.(4.1),we consider the sub- equation which is more influenced by

the perturbation parameter.

−ε
d2u
dx2 +a(x)

du
dx

= 0 (4.3)

Then using the finite difference scheme as

−ε
Ui+1−2Ui +Ui−1

ρ2 +a(x)
Ui−Ui−1

h
= 0 (4.4)
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we calculate for the denominator function ρ2 using the following procedures. First we rewrite the

Eqs.(4.3) equivalently as a system of two first order coupled differential equations as:

du
dx

= y (4.5)

dy
dx

=
a(x)

ε
y (4.6)

which implies that y = exp
(a(x)

ε
x
)

written in the form of : yi = exp
(a(xi)

ε
xi
)
. To get the discrete

difference scheme for y, we apply first order difference scheme Eqs.(4.5) as

yi =
Ui+1−Ui

h
⇒ hyi =Ui+1−Ui and hyi−1 =Ui−Ui−1 (4.7)

and solving for ρ2 from equation (4.4)

Now substituting yi in (4.4) we obtain:

ε
hyi−hyi−1

ρ2 = a(xi)yi⇒ ρ
2 = h

ε

a(xi)
(
yi− yi−1

yi−1
)

⇒ ρ
2 =

hε

a(xi)

(
exp
(ha(xi)

ε

)
−1
)

By using the denominator function ρ2 into the main scheme we get

dU
dt

(xi, t)− ε
Ui+1(t)−2Ui(t)+Ui−1(t)

ρ2 +a(xi)
Ui(t)−Ui−1(t)

h
+b(xi)Ui(t) = f (xi, t)

where ρ2 is the denominator function. From Eqs.(4.1-4.2) reduces to semi- discrete form as

LhUi(t) =
dUi(t)

dt
− ε

Ui+1(t)−2Ui(t)+Ui−1(t)
ρ2 +a(xi)

Ui(t)−Ui−1(t)
h

+b(xi)Ui(t) = fi(t)
(4.8)
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with the semi-discrete boundary and initial condition

U0(t) =µ0(0, t), t ∈ [0,T ]

UM(t) =µ1(1, t), t ∈ [0,T ]

and

Ui(0) =φ(xi) , i = 1,2, ...,M

(4.9)

The above system of equations of IVP in Eqs.(4.8-4.9) can be written in the form:

dUi(t)
dt

+AUi(t) = Fi(t) (4.10)

where A is a tridiagonal matrix of M− 1×M− 1 and Ui(t) and Fi(t) are M− 1 column vectors.

The entries of A and F are given as:

Aii =
2ε

ρ2
i
+

a(xi)

h
+b(xi), i = 1(1)M−1

Aii+1 =
−ε

ρ2
i
, i = 1(1)M−2

Aii−1 =
−ε

ρ2
i
− a(xi)

h
, i = 2(1)M−1

F1(t) = f1(t)+(
ε

ρ2 +
a(x1)

h
)µ0(0, t),

Fi(t) = fi(t), i = 2(1)M−2

FM−1(t) = fM−1(t)+(
ε

ρ2
M−1

)µ1(1, t)

(4.11)

respectively. Now we need to show the semi-discrete operator Lh also satisfies the maximum prin-

ciple and the uniform stability estimate.

Theorem 1. (Semi-discrete maximum principle).

The operator defined by the discrete scheme in Eqs.(4.8) satisfies a semi-discrete maximum prin-

ciple. That is, Suppose U0(t) ≥ 0,UM(t) ≥ 0. Then LhUi(t) ≥ 0,∀i = 1(1)M− 1 implies

that Ui(t)≥ 0,∀i = 1(1)M.
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Proof: Suppose there exists s ∈ {0,1,2, ...M} such that Us(t) = min0≤i≤M {Ui(t)}. Suppose that

Us(t)< 0 which implies s 6= 0,M. Also we have Us+1−Us > 0 and Us−Us−1 < 0. Now we have

LhUs(t) =
dUs(t)

dt
− ε

Us+1(t)−Us(t)− (Us(t)−Us−1(t))
ρ2

s
+as

Us(t)−Us−1(t)
h

+bsUs(t)< 0

Using the assumption, we get LhUi(t)< 0 for i = 1(1)M−1.

Thus the supposition Ui(t)< 0, i = 1(1)M−1 is wrong. Hence Ui(t)≥ 0,∀i = 0(1)M.

Lemma 5. The solution Ui(t) of the semi-discrete problem in Eqs.(4.10) satisfy the following

bound.

|Ui(t)| ≤ β
−1 max |LhUi(t)|+max

(
|u0(xi)|,max(µ0(xi, t),µ1(xi, t))

)
Proof: Let s = β−1 max |LhUi(t)|+max(|u0(xi)|, max(µ0(xi, t),µ1(xi, t)))

and define the barrier function Ψ
±
i (t) by: Ψ

±
i (t) = s±Ui(t)

At the boundary points we have

Ψ
±
0 (t) = s±U0(t) = s±µ0(0, t)≥ 0

Ψ
±
M(t) = s±UM(t) = s±µ1(1, t)≥ 0

On the discretized domain 0 < i < M, we have

Lh
Ψ
±
i (t) =

d(s±Ui(t))
dt

− ε(
s±Ui+1(t)−2(s±Ui(t))+ s±Ui−1(t)

ρ2 )

+ai(
s±Ui(t)− s±Ui−1(t)

h
)+bi(s±Ui(t))

=bis±LhUi(t)

=bi(β
−1 max |LhUi(t)|+max

(
|u0(xi)|,max{µ0(xi, t),µ1(xi, t)}

)
± fi(t))≥ 0,since bi ≥ β

from theorem(1), using the discrete maximum principle, we obtain Ψ
±
i (t)≥ 0,∀(xi, t) ∈ Ω̄M×Q
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4.1.3 Error estimate for semi-discrete scheme

Now let us analyze these spatial discretization for convergence, we prove above the semi-

discrete operator Lh satisfy the maximum principle and the uniform stability estimate.

Theorem 2. Let the coefficient functions a(x), b(x) and f in Eqs.(4.1) be sufficiently smooth

functions so that u(x, t) ∈C4[0,1]× [0,T ]. Then the semi-discrete solution Ui(t) of the Eqs.(4.1)-

(4.2) satisfies.

|Lh(U(xi, t)−Ui(t))| ≤Ch
(

1+ sup
0≤i≤M

exp(−α(1− xi)/ε)

ε3

)
(4.12)

Proof: Consider

|Lh(U(xi, t)−Ui(t))|=|LhU(xi, t)−LhUi(t)|

≤C|− ε(Uxx(xi, t)−
D+

x D−x h2

ρ2 U(xi, t))+ai(Ux(xi, t)−D−x U(xi, t))|

≤Cε|(Uxx(xi, t)−D+
x D−x U(xi, t))|+Cε|( h2

ρ2
i
−1)D+

x D−x U(xi, t)|+Ch|Uxx(xi, t)|

≤Cεh2|Uxxxx(xi, t)|+Ch|Uxx(xi,t)|

Above used estimate ε
∣∣ h2

ρ2
i
−1
∣∣≤Ch is based on the non-standard denominator function behavior.

Let define γ = aih/ε,γ ∈ (0,∞). Then

ε

∣∣∣∣ h2

ρ2
i
−1
∣∣∣∣= aih

∣∣∣∣ 1
exp(γ)−1

− 1
γ

∣∣∣∣=: aihR(γ)

where

R(γ) =
exp(γ)−1− γ

γ(exp(γ)−1
)

and from this we have

lim
γ→0

R(γ) =
1
2
, lim

γ→∞
R(γ) = 0
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Therefore

R(γ)≤C, γ(0,∞)

so,the error estimate becomes

|Lh(U(xi, t))−Ui(t))| ≤Cεh2|Uxxxx(xi, t)|+Ch|Uxx(xi, t)|. (4.13)

From (4.13) and boundedness of derivatives of solution in lemma (4),we obtain:

|Lh(U(xi, t)−Ui(t))| ≤Cεh2|1+ ε
−4 exp

(
−α(1− xi)

ε

)
|+Ch|1+ ε

−2 exp
(
−α(1− xi)

ε

)
|

≤Ch2|ε + ε
−3 exp

(
−α(1− xi)

ε

)
|+Ch|1+ ε

−2 exp
(
−α(1− xi)

ε

)
|

≤Ch2|1+ ε
−3 exp

(
−α(1− xi)

ε

)
|+Ch|1+ ε

−3 exp
(
−α(1− xi)

ε

)
|

≤Ch
(

1+ max
i∈0,1,...,M

exp
(
−α(1− xi)/ε

)
ε3

)
, since ε

−2 ≤ ε
−3.

Lemma 6. For a fixed mesh and for ε → 0, it holds

lim
ε→0

max
1≤i≤M−1

exp(−α(1− xi)/ε)

εn = 0, n = 1,2,3, ...

where

xi = ih, h = 1/M,∀i = 1(1)M−1

Proof: Consider the partition [0,1] : 0 = x0 < x1 < ... < xM−1 < xM = 1 for the interior grid points,

we have

max
1≤i≤M−1

(exp(−αxi)/ε)

εn ≤ (exp(−αx1)/ε)

εn =
(exp(−αh)/ε)

εn and

max
1≤i≤M−1

(exp(−α(1− xi)/ε)

εn ≤ (exp(−α(1− xM−1)/ε)

εn =
(exp(−αh)/ε)

εn ,since x1 = h,1− xM−1 = h
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then application of L’Hospital’s rule gives

lim
ε→0

exp(−αh/ε)

εn = lim
s=1/ε→∞

sn

exp(αhs)
= lim

s=1/ε→∞

n!
(αh)n exp(αhs)

= 0

this complete the proof

Theorem 3. Under the hypothesis of boundedness of semi-discrete solution, lemma (6) and theo-

rem (2) above, the semi-discrete solution satisfy the following bound.

sup
0<ε�1

||U(xi, t)−Ui(t)||ΩM×[0,T ] ≤CM−1 (4.14)

Proof: Immediate result from boundedness of solution, lemma (6) and theorem (2) will give the

required estimates.

4.1.4 Discretization in temporal direction

On the time domain [0,T ], we introduce the discretization in time direction step 4t j = t j+1−

t j, j = 0(1)K such that QK = ΩK
t where K denote the number of mesh in the temporal direction. At

this stage we use low order numerical method to discretize the system of IVPs in Eqs.(4.10) using

special type of Runge-Kutta method developed by Bogacki and Shampine in 1989 with order two

and three implicit given in (Shampine et.al,1997). First rewrite Eqs. (4.10) in the form:

dUi(t)
dt

= f (t,Ui(t)) (4.15)
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with the initial condition U(xi,0)= φ(xi), i= 0(1)M,here f (t,Ui(t))=−AUi(t)+Fi(t) so for each j =

1(1)K we write the scheme as:

K1 = f (t j,Ui, j), j = 1(1)K−1

K2 = f (t j +
1
2
4t j,Ui, j +

1
2
4t jK1), j = 1(1)K−1

K3 = f (t j +
3
4
4t j,Ui, j +

3
4
4t jK2), j = 1(1)K−1

U∗i, j+1 =Ui, j +
2
9
4t jK1 +

1
9
4t jK2 +

4
9
4t jK3, j = 1(1)K−1

K4 = f (t j +4t j,U∗i, j+1), j = 1(1)K−1

Ui, j+1 =Ui, j +
7

24
4t jK1 +

1
4
4t jK2 +

1
3
4t jK3 +

1
8
4t jK4, j = 1(1)K−1

It is stated in (Lamba and Stuart,1998) that, for j = 1(1)K the local approximation Ui, j+1 to

Ui(t j+1) has third order accuracy (i.e.(M t)3).

Let4t = max0≤ j≤K4t j then we have the following lemma.

Lemma 7. From the above approximation method in temporal direction, the global error estimates

in this direction are given by

||E j+1||∞ = ||Ui(t j+1)−Ui, j+1||ΩM×Ω
K ≤C(4t)2

where E j+1 is the global error in the temporal direction at ( j+1)th time level.

Proof: Using the local error estimate e j up to jth time step, we obtain the global error estimate at
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( j+1)th time step.

||E j+1||∞ =
j

∑
i=1
||ei||∞, j ≤ K

≤||e1||∞ + ||e2||∞ + ....+ ||e j||∞, ||e j||∞ = jC(4t j)
3

≤C1( j4t)(4t)2

≤C1T (4t)2, since j4t ≤ T

≤C(4t)2

Then using the boundedness of the solution and lemma (7) implies

sup
0<ε�1

||Ui(t j+1)−Ui, j+1||ΩM×ΩK ≤C(4t)2) (4.16)

this show that the discretization in temporal direction is consistent and global error is bounded.

Now we use(4.16) to prove the parameter uniform convergence of the fully discrete scheme as

sup
0<ε�1

||U(xi, t j)−Ui, j||ΩM×ΩK ≤ sup
0<ε�1

||U(xi, t j)−Ui(t j)||ΩM×ΩK

+ sup
0<ε�1

||Ui(t j)−Ui, j||ΩM×ΩK

(4.17)

Using boundedness of the solution,theorem(3), lemma(7) and Eqn.(4.17) we obtain:

sup
0<ε�1

||U(xi, t j)−Ui, j||ΩM×ΩK ≤C
(

M−1 +(4t)2
)

(4.18)

Remark: The inequality in (4.18) shows the parameter uniform convergence of the proposed

scheme with order O
(

M−1 +(4t)2
)

,for h = M−1.

4.2 Numerical results

To verify the established theoretical results in this thesis, we perform some experiments using

the proposed numerical scheme on the problem of the form given in equation (1.2) - (1.3).
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Example 1: Consider the following parabolic initial boundary value problem:

∂u
∂ t − ε

∂ 2u
∂x2 +(2− x2)∂x

∂x + xu(x, t) = 10t2e−tx(1− x), (x, t) ∈ (0,1)× (0,1] with initial condition

u(x,0) = 0, x ∈ (0,1), boundary conditions u(0, t) = 0, t ∈ [0,1], u(1, t) = 0, t ∈ [0,1]

Example 2: Consider the following parabolic initial boundary value problem:

∂u
∂ t − ε

∂ 2u
∂x2 + (1 + x(1− x))∂u

∂x = f (x, t), (x, t) ∈ (0,1)× (0,1] with initial condition u(x,0) =

u0(x), x ∈ (0,1), boundary conditions u(0, t) = 0, t ∈ [0,1], u(1, t) = 0, t ∈ [0,1] where we choose

the initial and the source functions f (x, t) are from the exact solution

u(x, t) = e−t(c1 + c2x− e−(1−x)ε) where c1 = e−
1
ε and c2 = 1− e−

1
ε .

Exact solution is not available for the first example, therefore the point-wise and maximum nodal

errors are calculated by using the double mesh principle given as:

EM,Mt
ε = max

1≤i≤M−1,1≤ j≤K−1

∣∣UM,Mt
i, j −U2M,Mt/2

i, j

∣∣
where M the number of mesh points in x and M t is the mesh length in t direction. UM,Mt

i, j are the

computed solution of the problem using M,M t mesh numbers and U2M,Mt/2
i, j are computed solu-

tion on double number of mesh points 2M,M t/2 by adding the mid points xi+1/2 = xi+1+xi
2 and

t j+1/2 =
t j+1+t j

2 into the mesh points . For any value of the mesh points M and M t the ε-uniform

error estimate are calculated using the formula

EM,Mt
ε = max

ε
|EM,Mt |

The rate of convergence of the method is calculated using the formula

rM,Mt = log2
(
EM,Mt/E2M,Mt/2)= log

(
EM,Mt)− log

(
E2M,Mt/2)

log2
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Table 4.1: Maximum absolute error for Example 1 and result in Gowrisankar and Natesan(2014)
ε M=32 M=64 M=128 M=256 M=512 M=1024

M t = 1
10 M t = 1

20 M t = 1
40 M t = 1

80 M t = 1
160 M t = 1

320
present method

100 4.5685e-03 2.3613e-03 1.1974e-03 6.0256e-04 3.0220e-04 1.5133e-04
10−4 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04 2.6114e-04
10−6 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04 2.5606e-04
10−8 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04 2.5606e-04

EM,Mt
ε 6.1336e-03 3.5748e-03 1.9245e-03 9.9750e-04 5.0763e-04 2.5606e-04

Result in Gowrisankar and Natesan(2014
100 9.2151e-04 4.6408e-04 2.3891e-04 1.2182e-04 6.2135e-05 3.1334e-05

10−4 1.1342e-02 6.2851e-03 3.2988e-03 1.7175e-03 8.6996e-04 4.3954e-04
10−6 1.3838e-02 6.6509e-03 3.4377e-03 1.7677e-03 8.9286e-04 4.4781e-04
10−8 1.4524e-02 6.7667e-03 3.6247e-03 1.7939e-03 8.9428e-04 4.4947e-04

EM,Mt
ε 1.4524e-02 6.7667e-03 3.6247e-03 1.7939e-03 8.9428e-04 4.4947e-04

Figure 4.1: 3D plot of the numerical solution of Example 1 with ε = 10−1 in (a),and ε = 10−5 in
(b)
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Rate of convergence of the solution for Example 1
ε M=32 M=64 M=128 M=256 M=512

M t = 1
10 M t = 1

20 M t = 1
40 M t = 1

80 M t = 1
160

present method
100 0.9521 0.9797 0.9907 0.9956 0.9978

10−4 0.7789 0.8934 0.9481 0.9745 0.9590
10−6 0.7789 0.8934 0.9481 0.9745 0.9590
10−8 0.7789 0.8934 0.9481 0.9745 0.9590

Result in Gowrisankar and Natesan(2014)
100 0.9896 0.9579 0.9717 0.9712 0.9876

10−4 0.8517 0.9299 0.9416 0.9812 0.9849
10−6 1.0570 0.9521 0.9595 0.9853 0.9955
10−8 1.1019 0.9005 1.0148 1.0043 0.9925

(a) (b)

Figure 4.2: 3D plot of the numerical solution of Example 2 with ε = 10−1 in (a) and ε = 10−4 in
(b)

(a) (b)

Figure 4.3: Loglog plot of maximum point-wise error of the solution for Example 1 in (a) and
Example 2 in (b)
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Table 4.2: Maximum absolute error for Example 2 and results in Gowrisankar and Natesan(2014)
and Yanping and Li-Bin(2016)

ε M=32 M=64 M=128 M=256 M=512 M=1024
M t = 1

10 M t = 1
20 M t = 1

40 M t = 1
80 M t = 1

160 M t = 1
320

present Method
100 1.6239e-04 9.0171e-05 4.7384e-05 2.4264e-05 1.2281e-05 6.1797e-06

10−4 2.2557e-02 1.1668e-02 5.9325e-03 2.9872e-03 1.4970e-03 7.4735e-04
10−6 2.2557e-02 1.1668e-02 5.9325e-03 2.9872e-03 1.4970e-03 7.4899e-04
10−8 2.2557e-02 1.1668e-02 5.9325e-03 2.9872e-03 1.4970e-03 7.4899e-04

EM,Mt
ε 2.2557e-02 1.1668e-02 5.9325e-03 2.9872e-03 1.4970e-03 7.4899e-04

Result in Gowrisankar and Natesan(2014)
100 7.5333e-04 4.1685e-04 2.1748e-04 1.0922e-04 5.4081e-05 2.6669e-05

10−4 8.1473e-02 4.2740e-02 2.1362e-02 1.0776e-02 5.4258e-03 2.7360e-03
10−6 8.7828e-02 4.3819e-02 2.2051e-02 1.1062e-02 5.5220e-03 2.7590e-03
10−8 9.2101 e-02 4.5172 e-02 2.3305 e-02 1.1137 e-02 5.5484 e-03 2.7720 e-03

EM,Mt
ε 9.2101e-02 4.5172e-02 2.3305e-02 1.1137e-02 5.5484e-03 2.7720e-03

Result in Yanping and Li-Bin(2016)
100 6.8921e-04 3.7085e-04 1.9290e-04 9.8440e-05 4.9739e-05

10−4 9.3382e-02 5.5430e-02 3.9185e-02 2.1997e-02 1.1787e-02
10−6 9.7044e-02 6.0392e-02 3.8509e-02 1.8888e-02 1.1989e-02
10−8 9.7889e-02 5.9632e-02 3.9439e-02 2.0684e-02 1.2039e-02

EM,Mt
ε 9.7889e-02 5.9632e-02 3.9439e-02 2.0684e-02 1.2039e-02

4.3 Discussion
The solution of examples given in 1- 2 has a boundary layer at the right side of the x-domain

(see figure in 4.1 and 4.2). The computed solutions Ui, j of example 1 and 2 for different values

of perturbation parameters are also shown in figures (4.1a - 4.1b) and (4.2a -4.2b) respectively.

The numerical results displayed in tables 4.1 and 4.2 clearly indicate that the proposed method

based on MOL by using a NSFDM in spatial direction with Runge-Kutta method in temporal

direction is parameter-uniform convergent. From the results in tables 4.1 and 4.2 , we observe

that the maximum point-wise error decreases as M, K increases for each value of ε . We see that

the maximum point-wise error is stable as ε → 0 for each M,M t. Using these two examples we

confirm that the proposed numerical method is more accurate, stable and ε-uniform convergent
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with rate of convergence one. Numerical results shows the parameter-uniformness of the proposed

scheme on equidistant mesh . The results in the proposed method is better than that obtained in

Gowrisankar and Natesan(2014 ) and Yanping and Li-Bin(2016).
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Chapter 5

Conclusion and Scope of Future Work

5.1 Conclusion
In this thesis, ε -uniform numerical method is presented for solving singularly perturbed 1D

parabolic Convection-Diffusion Problems that has a boundary layer on the right side of the domain.

The developed method is based on method of lines that constitute the non-standard finite difference

for the spatial discretization and the implicit Runge-Kutta method of order 2 and 3 in the temporal

direction for the system of initial value problem resulting from the spatial discretization. Stability

and convergence analysis of the proposed scheme is shown. This study is implemented on two

model examples by taking different values for the perturbation parameter ε and the computational

results are presented in the tables and graphs. Also stability is analyzed and proposed numerical

scheme is first-order convergence. The performance of the proposed scheme is investigated by

comparing the results with prior studies result in Gowrisankar and Natesan (2014) and Yanping

and Li-Bin (2016) . It has been found that the proposed method gives more accurate and stable

numerical results.

5.2 Scope of Future Work
In this thesis, ε - Uniform Numerical Method for solving singularly perturbed 1D Parabolic

Convection-Diffusion Problems. Hence, the schemes proposed in this thesis can also be extended

to singularly perturbed delay DEs. And also, it is possible to extend for non linear problems.

Additionally, this method can be extended to higher dimension PDEs.
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