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Abstract

This thesis is concerned with fourth-order two-point non-linear Sturm-Liouville

boundary value problems. It also focused on constructing Green’s function for

corresponding non-trivial homogeneous equation by using its properties. Under

the suitable conditions, we established the existence of at least one positive

solution by applying Guo-Krasnoselskii’s fixed point theorem. We provided

examples to demonstrate for the applicability of our main result.
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1 Introduction

1.1 Background of the study

Boundary value problems (BVPs for short) of fourth-order ordinary differen-

tial equations have received much attention due to their striking applications

in engineering, physics, material mechanics, fluid mechanics and so on.

Boundary value problems associated with linear as well as non-linear ordinary

differential equations or finite difference equations have created a great deal

of interest and play an important role in many fields of applied mathemat-

ics such as engineering design and manufacturing and, major industries like

automobile, aerospace, chemical, pharmaceutical, petroleum, electronics and

communications as well as emerging technologies like biotechnology and nan-

otechnology rely on the boundary value problems to simulate complex phenom-

ena at different scales for designing and manufacturing of high-technological

products.

In the field of differential equations, a boundary value problem is a differential

equation together with a set of additional constraints, called the boundary

conditions. A solution to a boundary value problem is a solution to the differ-

ential equation which also satisfies the boundary conditions.

Boundary value problems for ordinary differential equations play a very im-

portant role in both theory and applications.

They are used to describe a large number of physical, biological and chemical

phenomena. Fourth-order differential equations boundary value problem oc-

curs in beam theory (Bernis, 1982, Zill and Cullen, 2001), such as a beam with

small deformation: a beam of a material which satisfies a nonlinear power-like

stress and strain law; a beam with two-sided links which satisfies a nonlinear

power-like elasticity law.

All these can be described by some fourth-order differential equations along

with their boundary conditions. For example, the work of Timoshenko, (Tim-

oshenko, 1961) on elasticity, the monograph by Soedel (Soedel, 1993) on defor-

mation of structure, and the work of Dulacska (Dulacska, 1992) on the effects

of soil settlement are rich sources of such applications.
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In addition, the other works for beam equation (Chen, Ni and Wang (2006),

Graef, Qian and Yang (2003), Ma, Zhang and Fu, (1997) and Lian, (2004)) in

details.

Many authors have studied the existence of positive solutions to some fourth-

order BVPs by using Guo-Krasnoselskii’s fixed point theorem in cones. How-

ever, it is necessary to point out that, in most of the existing literature, the

Green’s functions involved are nonnegative, which is an important condition

in the study of positive solutions of BVPs.

In analyzing nonlinear phenomena, many mathematical models give rise to

problems for which only positive solutions make sense.

Therefore, since the publication of the monograph positive solutions of Opera-

tor Equations in the year 1964 by academician M.A. Krasnoselskii’s, hundred

of research articles on the theory of positive solutions of nonlinear problems

have appeared.

In this vast field of research, we focused on the existence of positive solutions

for fourth-order two-point nonlinear Sturm-Lioville boundary value problems.

Recently the existence of positive solutions of boundary value problems was

studied by many researchers.

We list down few of them which are related to our particular problem.

Erbe, L.H and Haiyan Wang, (1994), Lian, Wong, and Yeh, (1996), Henderson

and Wang, (1997), Xin Dong and Zhanbing Bai, (2008), Moustafa El-Shahed

and Tahani Al-Dajani, (2008), R.Vrabel, (2015), Yongxiang Li, (2016), Yun

Zhang Jian-Ping Sun and Juan Zhao, (2018), Dang Quang A and Ngo Thi

Kim Quy, (2018) and Yongfang Wei, Qilin Song, Zhanbing Bai, (2019).

Motivated by the above mentioned results, in this thesis, we established the ex-

istence of positive solutions for fourth-order two-point Sturm-Liouville bound-

ary value problems,

y(4)(t) + k2y′′(t) = f(t, y(t)), 0 ≤ t ≤ 1, (1.1)

αy(0)− βy′(0) = 0, γy(1) + δy′(1) = 0, (1.2)

y′′(0) = y′′(1) = 0, (1.3)
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where k ∈ (0, π
2
) is a constant, α, β, γ and δ are positive constants such that f :

[0, 1]×[0,∞) −→ [0,∞) is continuous function by applying Guo-Krasnoselskii’s

fixed point theorem in a cone Banach space. We also provided examples to

demonstrate the applicability of our main result. By a positive solution of

(1.1)-(1.3) we understand a function y(t) which is positive on 0 ≤ t ≤ 1 and

satisfies the differential equation (1.1) for 0 ≤ t ≤ 1 and the Sturm-Liouville

boundary conditions (1.2), (1.3).

The rest of this thesis organized as follows: We first present some definitions

which are needed throughout this work and construct Green’s function by

using its properties for corresponding homogeneous boundary value problems

and state fixed point result by applying the Guo-Krasnoselskii’s fixed point

theorem in a cone Banach space. Finally, we investigate the existence of at

least one positive solution for fourth-order two-point Sturm-Liouville boundary

value problems (1.1)-(1.3) and as an application, examples were included to

verify the applicability of our result.

1.2 Statement of the problem

In this study we focused on establishing the existence of positive solutions for

fourth-order two-point Sturm-Liouville boundary value problems (1.1)-(1.3).

1.3 Objectives

1.3.1 General objective:

The main objective of this thesis was establishing the existence of positive

solutions for fourth-order two-point Sturm-Liouville boundary value problems

by applying Geo-Krasnoselskii’s fixed point theorem.

1.3.2 Specific Objectives:

This study has the following specific objectives:

i) To construct Green’s function by following its properties for corresponding
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homogeneous boundary value problem.

ii) To formulate the equivalent integral equation for the boundary value

problems (1.1)-(1.3).

iii) To prove the existence of at least one positive solution by applying

Guo-Krasnoselskii’s fixed point theorem.

iv) To verify the main result by providing illustrative examples.

1.4 Significance of the study:

The result of this thesis may have the following importance:

1) It may build the research skill and scientific communication skill of the

researcher.

2) It may develop the researcher knowledge on applied mathematics research.

3) It may provide some background information for other researchers who want

to conduct a research on related topics.

1.5 Delimitation of the study

The study was delimited to finding the existence of at least one positive solu-

tion for fourth-order two-point Sturm-Liouville boundary value problems.
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2 Literature Review

2.1 Overview of positive solution

A positive solution is very important in diverse disciplines of mathematics since

it can be applied for solving various problems and it is one of the most dynamic

research subjects in nonlinear analysis. In this area the first important and

significant result the existence of positive solution was proved by Erbe and

Wang in 1994. Due to the importance of existence of positive solutions have

been investigated heavily by many researchers:

Erbe, L.H and Haiyan Wang, (1994), established positive solutions for the

two-point boundary value problem,

u′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0.

Lian, Wong, and Yeh, (1996), studied the existence of at least one positive solu-

tion and multiple positive solutions for the two-point boundary value problem.

u′′(t) + f(t, u(t)) = 0, t ∈ (0, 1),

αu(0)− βu′(0) = 0,

γu(1) + δu′(1) = 0.

Henderson and Wang, (1997), determined eigenvalue intervals, for which there

exist positive solutions of the boundary value problem,

u′′(t) + λa(t)f(u(t)) = 0, t ∈ (0, 1),

u(0) = u(1) = 0.
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Xin Dong and Zhanbing Bai, (2008), considered the existence of one or two

positive solutions for the fourth-order boundary value problem with variable

parameters,

u(4)(t) +B(t)u′′(t)− A(t)u(t) = f(t, u(t), u′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where A(t), B(t) ∈ C[0, 1] and f(t, u, v) : [0, 1]× [0,∞)→ [0,∞) is continuous.

Moustafa El-Shahed and Tahani Al-Dajani, (2008), established the existence

of positive solutions to nonlinear fourth order boundary value problem,

u(4)(t) + λa(t)f(u(t)) = 0, 0 ≤ t ≤ 1,

u(0) = u′′(0) = u′′′(0) = u(1) = 0,

where λ > 0, positive parameter, a : (0, 1) → [0,∞] is continuous and∫ 1

0
a(t)dt > 0.

R.Vrabel, (2015), established the existence of solution of the fourth-order dif-

ferential equation by using lower and upper solution, namely, the ordinary

differential equation,

u(4)(t) + λu′′(t) = h(t, u(t)), λ < 0,

subject to the Lidestone boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0.

Yongxiang Li, (2016), discussed the existence of positive solutions of the fully

fourth-order nonlinear boundary value problems,

u(4)(t) = f(t, u′, u′′, u′′′), 0 ≤ t ≤ 1,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
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where f : [0, 1]×R3
+ ×R− → R+ is continuous.

Yun Zhang, Jian-Ping Sun and Juan Zhao, (2018), concerned with the fol-

lowing fourth-order three-point boundary value problem with sign-changing

Green’s function,

u(4)(t) = f(t, u(t)), 0 ≤ t ≤ 1,

u′(0) = u′′(0) = u′′′(η) = u(1) = 0,

where η ∈ [1/3, 1).

Dang Quang A and Ngo Thi Kim Quy, (2018), investigated the solvability and

iterative solution of a nonlinear fully fourth order boundary value problem,

u(4)(t) = f(t, u(t), u′(t), u′′(t), u′′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f : [0, 1]×R4 is continuous.

Yongfang Wei, Qilin Song, Zhanbing Bai, (2019), proved the existence of the

iterative solution to a fourth order boundary value problems,

u(4)(t) = f(t, u(t), u′(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = u′′(1) = 0.

2.2 Preliminaries

First we recall some known definitions and basic concepts on Green’s function

that we used in the proof our main results.

Definition 2.1 Let X be a non-empty set. A map T : X → X is said to be a

self-map with domain of T = D(T ) = X and range of T = R(T ) = T (X) ⊂ X.

Definition 2.2 Let T : X → X be self-map. A point x ∈ X is called a fixed

point of T if Tx = x.

Definition 2.3 We consider the second-order linear differential equation
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p0(t)y
′′ + p1(t)y

′ + p2(t)y = r(t), t ∈ J = [0, 1]. (2.1)

Where the functions p0(t), p1(t), p2(t) and r(t) are continuous in J and bound-

ary conditions of the form

l1[y] = a0y(0) + a1y
′(0) + b0y(1) + b1y

′(1) = A,

l2[y] = c0y(0) + c1y
′(0) + d0y(1) + d1y

′(1) = B,
(2.2)

where ai, bi, ci, di, i = 0, 1 and A, B are given constants.

The boundary value problems (2.1), (2.2) is called a nonhomogeneous two-

point linear boundary value problems, whereas the homogeneous differential

equation

p0(t)y
′′ + p1(t)y

′ + p2(t)y = 0, t ∈ J = [0, 1]. (2.3)

together with the homogeneous boundary conditions

l1[y] = 0,

l2[y] = 0,
(2.4)

be called a homogeneous two-point linear boundary value problems.

The function called a Green’s function G(t, s) for the homogeneous boundary

value problems (2.3), (2.4) and the solution of the nonhomogeneous boundary

value problems (2.1), (2.2) can be explicitly expressed in terms of G(t, s).

Obviously, for the homogeneous problems (2.3), (2.4) the trivial solution al-

ways exists. Green’s function G(t, s) for the boundary value problems (2.3),

(2.4) is defined in the square [0, 1] × [0, 1] and possesses the following funda-

mental properties:

i) G(t, s) is continuous in [0, 1]× [0, 1],

ii) ∂G(t,s)
∂t

is continuous in each of the triangles 0 ≤ t ≤ s ≤ 1 and 0 ≤ s ≤ t ≤ 1

moreover,

∂G(s+, s)

∂t
− ∂G(s−, s)

∂t
=

1

P0(s)
,
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where ∂G(s+,s)
∂t

= limt→s,t>s
∂G(t,s)
∂t

and ∂G(s−,s)
∂t

= limt→s,t<s
∂G(t,s)
∂t

.

iii) For every fixed s ∈ [0, 1], z(t) = G(t, s) is a solution of the differential

equation

(2.3) in each of the intervals [0, s) and (s, 1],

iv) For every fixed s ∈ [0, 1], z(t) = G(t, s) satisfies the boundary conditions

(2.4).

These properties completely characterize Green’s function G(t, s).

Definition 2.4 Let −∞ < a < b < ∞. A collection of real valued functions

A = {fi|fi : [a, b]→ R} is said to be

Uniformly bounded, if there exists a constant M > 0 with |fi(t)| ≤ M, for all

t ∈ [a, b] and for all fi ∈ A.

Definition 2.5. A normed linear space is a linear space X in which for each

vector x there corresponds a real number, denoted by ‖x‖ called the norm of

x and has the following properties:

i) ‖x‖ ≥ 0, for all x ∈ X and ‖x‖ = 0 if and only if x = 0,

ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X,
iii) ‖αx‖ = |α|‖x‖, for all x ∈ X and α being a scalar.

Definition 2.5 Let X be a normed linear space with norm denoted by ‖.‖. A

sequence of elements xn of X is a Cauchy sequence, if for every ε > 0 there

exists an integer N such that ‖xn − xm‖ < ε, for all m,n ≥ N .

Definition 2.6 A normed linear space X is said to be complete, if every

Cauchy sequence in X converges to a point in X.

Definition 2.7 A complete normed space X is called a Banach space.

Definition 2.8 Let E be a real Banach space. A nonempty closed convex set

P ⊂ E is called a cone, if it satisfies the following two conditions:

i ) y ∈ P, α ≥ 0 implies αy ∈ P, and

ii) y ∈ P and −y ∈ P implies y = 0.
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Definition 2.9 Let X and Y be two metric spaces. A map T : X → Y is said

to be completely continuous, if it is continuous and maps bounded sets into

precompact sets.

Definition 2.10 Let X and Y be Banach spaces and T : X → Y an operator

T is said to be completely continuous, if T is continuous and for each bounded

sequence xn ⊂ (X), (Txn) has a convergent subsequences.

Definition 2.11 Let E be a real Banach space with cone P .

A map f : P → [0,∞) is said to be a nonnegative continuous convex functional

on P , if f is continuous and

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

for all x, y ∈ P and λ ∈ [0, 1].

Definition 2.12 Let E be a real Banach space with cone P .

A map f : P → [0,∞) is said to be a nonnegative continuous concave func-

tional on P , if f is continuous and

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y),

for all x, y ∈ P and λ ∈ [0, 1].

Definition 2.13 The function y(t) ∈ C[0, 1] ∩ C4[0, 1] is a positive solution

of the boundary value problems,

y(4)(t) + k2y′′(t) = f(t, y(t)), 0 ≤ t ≤ 1,

αy(0)− βy′(0) = 0,

γy(1) + δy′(1) = 0,

y′′(0) = y′′(1) = 0.

If y(t) is positive on the given interval and satisfies both the differential equa-

tion and the boundary conditions.
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3 Research Design and Methodology

This chapter contains study period and site, study design, source of informa-

tion and mathematical procedures.

3.1 Study period and site

The study was conducted from September 2018 to June 2019 in Jimma Uni-

versity under the department of mathematics.

3.2 Study design

In order to achieve the objective of the study we employed analytical method

of design.

3.3 Source of information

The relevant sources of information for this study were different mathematics

books, published articles, journals and related studies from internet.

3.4 Mathematical procedure

In this study we followed the following procedures:

i) Defining fourth-order two-point Sturm-Liouville boundary value problems.

ii) Constructing Green’s function by following its properties for the

corresponding homogeneous equation.

iii) Formulating the equivalent integral equation for the boundary value

problems (1.1)-(1.3).

iv) Determining the existence of positive fixed point of the integral equation

by applying Guo-Krasnoselskii’s fixed point theorem.

v) Verifying the main result by providing illustrative examples.
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4 Main Result and Discussion

4.1 Construct Green’s Function

In this section, we construct Green’s function for the homogeneous problem

corresponding to (1.1)- (1.3).

Let G(t, s) be Green’s function for the homogeneous problem,

y(4)(t) + k2y′′(t) = 0, 0 ≤ t ≤ 1,

with the same boundary conditions (1.2), (1.3).

Let −y′′(t) = u(t), y′′(t) ≤ 0.

Thus the differential equation (1.1) considering the boundary condition

−(u′′(t) + k2u(t)) = 0, 0 ≤ t ≤ 1, k ∈ (0,
π

2
), (4.1)

u(0) = u(1) = 0. (4.2)

For the de (4.1) two linearly independent solutions are u1(t) = cos kt and

u2(t) = sin kt. Hence, the problem (4.1), (4.2) have only the trivial solution if

and only if

∆ =

[
u1(0) u2(0)

u1(1) u2(1)

]
=

[
cos k(0) sin k(0)

cos k(1) sin k(1)

]
=

[
1 0

cos k sin k

]
= sin k 6= 0.

To show this u1(t) and u2(t) be two linearly independent solutions of the

differential equation (4.1).

From the property(iii) there exist four functions, say, λ1(s), λ2(s), µ1(s) and

µ2(s) such that

G(t, s) =

cos ktλ1(s) + sin ktλ2(s), 0 ≤ t ≤ s ≤ 1,

cos ktµ1(s) + sin ktµ2(s). 0 ≤ s ≤ t ≤ 1.
(4.3)
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Now using properties (i) and (ii), we obtain the following two equations:

cos ktλ1(s) + sin ktλ2(s) = cos ktµ1(s) + sin ktµ2(s), (4.4)

−k sin ktµ1(s) + k cos ktµ2(s) + k sin ktλ1(s)− k cos ktλ2(s) = −1, (4.5)

sin kt(λ1(s)− µ1(s))− cos kt(λ2(s)− µ2(s)) =
−1

k
.

Let v1(s) = λ1(s)− µ1(s) and

v2(s) = λ2(s)− µ2(s),

so that (4.4), (4.5) can be written as

cos ktv1(s) + sin ktv2(s) = 0, (4.6)

sin ktv1(s)− cos ktv2(s) =
−1

k
. (4.7)

Since cos kt and sin kt are linearly independent the Wronskian

W (cos kt, sin kt) 6= 0 for all t ∈ [0, 1].

Thus, the relations (4.6), (4.7) uniquely determine

v1(s) = − sin ks
k

and v2(s) = cos ks
k
.

Now using the relations µ1(s) = λ1(s) + sin ks
k

and µ2(s) = λ2(s)− cos ks
k

,

Green’s function can be written as

G(t, s) =

cos ktλ1(s) + sin ktλ2(s), 0 ≤ t ≤ s ≤ 1,

cos ktλ1(s) + 1
k

cos kt sin ks+ sin ktλ2(s)− 1
k

sin kt cos ks, 0 ≤ s ≤ t ≤ 1.

(4.8)

Finally, using the property (iv) on the boundary condition (4.2) of Green’s

function with the given interval, we find

G(0, s) = cos k(0)λ1(s) + sin k(0)λ2(s)=0,

implies λ1(s) = 0,

G(1, s) = cos k(1)λ1(s)+ 1
k

cos k(1) sin ks+sin k(1)λ2(s)− 1
k

sin k(1) cos ks = 0,

13



We get λ1(s) = 0,

k cos kλ1(s) + k sin kλ2(s) = sin k cos ks− cos k sin ks.
(4.9)

∆ =

[
1 0

k cos k k sin k

]
= k sin k,

Hence,

∆ = k sin k by(4.9).

From (4.9) which easily determine λ1(s) and λ1(s) as

λ1(s) =

 0 0

sin k cos ks− cos k sin ks k sin k


k sin k

= 0.

λ2(s) =

 1 0

k cos k sin k cos ks− cos k sin ks


k sin k

= sin k cos ks−cos k sin ks
k sin k

.

Substituting the value of λ1(s) and λ2(s) in (4.8) and letting ∆ = k sin k.

µ1(s) =
1

k
sin ks

µ2(s) = λ2(s)− v2(s) = sin k cos ks−cos k sin ks
k sin k

− 1
k

cos ks = − cos k sin ks
k sin k

.

Which gives

G(t, s) =

cos kt(0) + sin kt( sin k cos ks−cos k sin ks
k sin k

), 0 ≤ t ≤ s ≤ 1,

cos kt(0) + cos kt( 1
k

sin ks) + sin kt( sin k cos ks−cos k sin ks
k sin k

− cos ks
k

), 0 ≤ s ≤ t ≤ 1.

G(t, s) =

 sin kt sin k cos ks
k sin k

− sin kt cos k sin ks
k sin k

, 0 ≤ t ≤ s ≤ 1

1
k

cos kt sin ks− sin kt cos k sin ks
k sin k

. 0 ≤ s ≤ t ≤ 1

14



G(t, s) =


sin kt sin k(1−s)

k sin k
, 0 ≤ t ≤ s ≤ 1,

sin ks sin k(1−t)
k sin k

, 0 ≤ s ≤ t ≤ 1.
(4.10)

u(t) =

∫ 1

0

G(t, s)f(s, y(s))ds. (4.11)

We consider −y′′(t) = u(t) =
∫ 1

0
G(t, s)f(s, y(s))ds with boundary condition

(1.2).

−y′′(t) = 0, 0 ≤ t ≤ l, (4.12)

αy(0)− βy′(0) = 0,

γy(1) + δy′(1) = 0.

For the homogeneous differential equation (4.12) two linearly independent so-

lutions are y1(t) = 1 and y2(t) = t. Hence, the problem (4.12), (1.2) has only

the trivial solution if and only if

ρ =

[
αu1(0)− βu′1(0) αu2(0)− βu′2(0)

γu1(1) + δu′1(1) γu2(1) + δu′2(1)

]
=

[
α −β
γ γ + δ

]
= γβ + αγ + αδ 6= 0.

From the property (iii) there exist four functions, say, λ1(s), λ2(s), µ1(s) and

µ2(s) such that

H(t, s) =

λ1(s) + tλ2(s), 0 ≤ s ≤ t ≤ 1,

µ1(s) + tµ2(s), 0 ≤ t ≤ s ≤ 1.
(4.13)

Now using properties (i) and (ii), we obtain the following two equations:

λ1(s) + tλ2(s) = µ1(s) + tµ2(s), (4.14)

µ2(s)− λ2(s) = −1. (4.15)

Let v1(s) = µ1(s)− λ1(s) and v2(s) = µ2(s)− λ2(s).
Thus v1(s) = s and v2(s) = −1, so that (4.14), (4.15) can be written as

v1(s) + tv2(s) = 0, (4.16)
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v2(s) = −1. (4.17)

Since 1 and t both are linearly independent the Wronskian W (1, t) 6= 0 for all

t ∈ [0, 1].

Thus, the relations (4.16), (4.17) uniquely determine v1(s) and v2(s).

Now using the relations µ1(s) = λ1(s) + v1(s)

µ1(s) = λ1(s) + s,

and

µ2(s) = λ2(s) + v2(s),

µ2(s) = λ2(s)− 1,

Green’s function can be written as

H(t, s) =

λ1(s) + tλ2(s), 0 ≤ s ≤ t ≤ 1,

λ1(s) + s+ tλ2(s)− t, 0 ≤ t ≤ s ≤ 1.
(4.18)

Finally, using the property (iv) on the boundary condition (1.2) of Green’s

function with the given interval, we find

H(0, s) = αλ1(s)− βλ2(s) = 0,

αλ1(s)− βλ2(s) = 0.

H(1, s) = γ(λ1(s)− s+ λ2(s)− 1) + δ(λ2(s)− 1) = 0,

γλ1(s) + γs+ γλ2(s)− γ + δλ2(s)− δ = 0.

We have αλ1(s)− βλ2(s) = 0,

γλ1(s) + (γ + δ)λ2(s) = γ + δ − γs.
(4.19)

Let ρ = γβ + αγ + αδ 6= 0,
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λ1(s) =

 0 −β
γ + δ − γs γ + δ


ρ

= β(γ+δ−γs)
ρ

.

λ2 =

[
α 0

γ γ + δ − γs

]
ρ

=
α(γ + δ − γs)

ρ
.

Substituting the value of λ1(s) and λ2(s) in eq (4.18), we have

H(t, s) =

1
ρ
[β(γ + δ − γs) + t(α(γ + δ − γs))], 0 ≤ s ≤ t ≤ 1,

1
ρ
[β(γ + δ − γs)− s+ t(1 + α(γ + δ − γs))], 0 ≤ t ≤ s ≤ 1.

(4.20)

Hence

H(t, s) =

1
ρ
(γ + δ − γt)(β + αs), 0 ≤ s ≤ t ≤ 1,

1
ρ
(β + αt)(γ + δ − γs), 0 ≤ t ≤ s ≤ 1.

(4.21)

y(t) =

∫ 1

0

H(t, s)u(s)ds.

y(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds. (4.22)

Remark. H(t, s) and G(t, s) are Green’s function for the corresponding ho-

mogeneous fourth-order boundary value problems (1.1)− (1.3).

Therefore, y(t) is a solution of the fourth-order two-point boundary value

problems of (1.1)-(1.3).

4.2 Bounds

Lemma 4.1 The Green’s function G(t, s) satisfies the following inequalities.

i) G(t, s) > 0, for all t, s ∈ (0, 1),

ii) G(t, s) ≤ G(s, s), for 0 ≤ t, s ≤ 1,

iii) G(t, s) ≥ NG(s, s), for 1
4
≤ t, s ≤ 3

4
,
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where N =
sin k

4

sin 3k
4

.

Proof : i) The Green’s function G(t, s) is positive for all t, s ∈ (0, 1).

ii) Let s ≤ t, then

G(t, s)

G(s, s)
=

sin ks sin k(1− t)
sin ks sin k(1− s)

=
sin k(1− t)
sin k(1− s)

≤ 1

G(t, s) ≤ G(s, s) is bounded.

Let t ≤ s, then

G(t, s)

G(s, s)
=

sin kt sin k(1− s)
sin ks sin k(1− s)

=
sin kt

sin ks
≤ 1.

We have G(t, s) ≤ G(s, s) is bounded.

Furthermore,for 1
4
≤ t ≤ 3

4
.

iii) Let s ≤ t, then

G(t, s)

G(s, s)
=

sin ks sin k(1− t)
sin ks sin k(1− s)

=
sin k(1− t)
sin k(1− s)

≥
sin(k

4
)

sin(3k
4

)
.

G(t, s)

G(s, s)
≥

sin(k
4
)

sin(3k
4

)
.

Let t ≤ s, then

G(t, s)

G(s, s)
=

sin kt sin k(1− s)
sin ks sin k(1− s)

=
sin kt

sin ks
≥

sin k
4

sin 3k
4

.

G(t, s)

G(s, s)
≥

sin k
4

sin 3k
4

.

where N =
sin k

4

sin 3k
4

.

So that G(t, s) ≥ NG(s, s). The proof is complete.

Lemma 4.2 The Green’s function H(t, s) satisfies the following inequalities.

i) H(t, s) > 0, for all t, s ∈ (0, 1),
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ii) H(t, s) ≤ H(s, s), for all 0 ≤ t, s ≤ 1,

iii) H(t, s) ≥MH(s, s), for all 1
4
≤ t, s ≤ 3

4
,

where M = min{ γ + 4δ

4(γ + δ)
,
α + 4β

4(α + β)
} ≤ 1.

Proof : i) The Green’s function H(t, s) is positive for all t, s ∈ (0, 1).

ii) Let s ≤ t, then

H(t, s)

H(s, s)
=

(γ + δ − γt)(β + αs)

(γ + δ − γs)(β + αs)
=

(γ + δ − γt)
(γ + δ − γs)

≤ 1.

So that H(t, s) ≤ H(s, s) is bounded.

Let t ≤ s, then

H(t, s)

H(s, s)
=

(γ + δ − γs)(β + αt)

(γ + δ − γs)(β + αs)
=

(β + αt)

(β + αs)
≤ 1.

So that H(t, s) ≤ H(s, s) is bounded.

Furthermore, for 1
4
≤ t ≤ 3

4
.

iii) Let s ≤ t, then

H(t, s)

H(s, s)
=

(γ + δ − γt)(β + αs)

(γ + δ − γs)(β + αs)
=
γ + δ − γt
γ + δ − γs

≥
γ + δ − γ(3

4
)

γ + δ − γ(1
4
)

=
γ + 4δ

3γ + 4δ
.

H(t, s)

H(s, s)
≥ γ + 4δ

3γ + 4δ
.

Let t ≤ s, then

H(t, s)

H(s, s)
=

(γ + δ − γs)(β + αt)

(γ + δ − γs)(β + αs)
=

(β + αt)

(β + αs)
≥
β + α(1

4
)

β + α(3
4
)

=
α + 4β

3α + 4β
.
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H(t, s)

H(s, s)
≥ α + 4β

3α + 4β
,

H(t, s)

H(s, s)
≥M,

1

4
≤ t ≤ 3

4
, M = min{ γ + 4δ

4(γ + δ)
,
α + 4β

4(α + β)
} ≤ 1.

Hence H(t, s) ≥MH(s, s) for all 1
4
≤ t, s ≤ 3

4
.

The proof is complete.

Lemma 4.3 (Krasnoselskii’s, M.A, 1964), Let E be a Banach space, and let

P ⊂ E be a cone in E. Assume Ω1, Ω2 are bounded open subsets of E with

0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : P ∩ (Ω̄2 \Ω1)→ P

be completely continuous operator such that either

i) ‖Ty‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω2,

ii) ‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω1, and ‖Ty‖ ≤ ‖y‖, y ∈ P ∩ ∂Ω2,

Then T has a fixed point in P ∩ (Ω̄2 \Ω1).

4.3 Results

In this thesis we consider the fourth-order boundary value problems

y(4)(t) + k2y′′(t) = f(t, y(t)), 0 ≤ t ≤ 1,

with boundary conditions (1.1)-(1.3).

The following conditions will be assumed throughout:

C1) 0 ≤
∫ 1

0
H(t, s)(

∫ 1

0
G(s, τ)f(τ, y(τ))dτ)ds <∞,

C2) f : [0, 1]× [0,∞) −→ [0,∞) is continuous function,

C3) ρ = γβ + αγ + αδ > 0, α, β, γ, δ ≥ 0, ∆ = k sin k > 0 and k ∈ (0, π
2
).

By using a Guo-Krasnoselskii’s fixed point theorem the existence of positive

solutions of (1.1)-(1.3) is obtained in the case when, f is either superlinear

or sublinear. To be precise, we define the nonnegative extended real numbers
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f0, f
0, f∞ and f∞

f 0 = lim
y→0+

sup
t∈[0,1]

f(t, y(t))

y(t)
= 0 and f∞ = lim

y→∞
inf
t∈[0,1]

f(t, y(t))

y(t)
=∞

superlinear case.

f0 = lim
y→0+

inf
t∈[0,1]

f(t, y(t))

y(t)
=∞ and f∞ = lim

y→∞
sup
t∈[0,1]

f(t, y(t))

y(t)
= 0

sublinear case.

Assume that they will exist. When f 0 = 0 and f∞ = ∞ correspond to the

superlinear case, and f0 = ∞ and f∞ = 0 correspond to the sublinear case.

By a positive solution of (1.1) − (1.3) we understand a solution y(t) which is

positive on 0 ≤ t ≤ 1 and satisfies the differential equation (1.1) for 0 ≤ t ≤ 1

and the boundary conditions (1.2),(1.3).

Let E = C[0, 1]. For y ∈ E, define ‖y‖ = maxt∈[0,1] |y(t)|. Then (E, ‖.‖) is a

Banach space. Denote

P = {y ∈ E : y(t) ≥ 0, y′′(t) ≤ 0, min
t∈[ 1

4
, 3
4
]
|y(t)| ≥ ω‖y‖}, (4.23)

where ω = MN.

It is obvious that P is a positive cone in E.

Let us define an operator T : P → E by

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds, y ∈ P. (4.24)

We observe that a fixed point of T in E is positive solution of the boundary

value problems.

We use the well-known cone expression and compression Guo-Krasnoselskii’s

fixed point theorem to show at least one fixed point for T .

Lemma 4.4 Let C1, C2 and C3 are hold, then the operator T : P → E defined

as follows:
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Proof. Since H(t, s) and G(t, s) are positive, then Ty(t) ≥ 0 for all y(t) ∈ P.
If y ∈ P , then Ty(t) ∈ P.
Fix R ≥ 0, and ω = {y ∈ E : ‖y‖ ≤ R}

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

‖Ty‖ ≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

‖Ty‖ ≤ ‖y‖.

Therefore Ty(t) is uniformly bounded.

Lemma 4.5 Let C1, C2 and C3 are hold, then the operator T : P → P is

completely continuous.

Proof. From the continuity of f , we know Ty ∈ E for each y ∈ P . It follows

from the Lemma 4.1 and Lemma 4.2 that for y ∈ P,

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

Note that by the non-negativity of H, G and f , one has

‖Ty‖ ≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

from which we have

min 1
4
≤t≤ 3

4
Ty(t) = min 1

4
≤t≤ 3

4

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,
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≥
∫ 1

0

MH(s, s)(

∫ 1

0

NG(s, τ)f(τ, y(τ))dτ)ds,

= MN

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

= ω

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

‖Ty‖ ≥ ω‖Ty‖, T y ∈ P.

Therefore T : P → P is a self-map. Since H(t, s), G(t, s) and f(t, y) are

continuous, it is easily known that T : P → P is completely continuous.

The proof is complete.

From above arguments, we know that the existence of positive solutions of

(1.1)-(1.3) can be equivalent to the existence of positive fixed points of the

operator T .

Theorem 4.3.1 Assume that the conditions C1 − C3 are satisfied. If f 0 = 0

and f∞ = ∞, then the boundary value problem has at least one positive

solution y ∈ C[0, 1] ∩ C4[0, 1].

Proof. Now since f 0 = 0, there exists an A1 ≥ 0.

limy→0+ supt∈[0,1]
f(t,y(t))
y(t)

= 0,

| supt∈[0,1]
f(t,y(t))
y(t)

− 0| < η where η ≥ 0,

sup f(t,y(t))
y(t)

< η,

so that f(t, y(t)) < ηy, η > 0 satisfy for every y ∈ P, and ‖y‖ = A1 for

0 < y < A1 where η satisfies

η

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)dτ)ds ≤ 1. (4.25)

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)dsηy,
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≤ η

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)ds ‖y‖,

≤ ‖y‖ by (4.25).

Consequently, ‖Ty‖ ≤ ‖y‖. So, if we set

Ω1 = {y ∈ E : ‖y‖ < A1},

then

‖Ty‖ ≤ ‖y‖, for y ∈ P ∩ ∂Ω1. (4.26)

Next, considering f∞ =∞ , limy→∞ inft∈[0,1]
f(t,y(t))
y(t)

=∞ . There exists η2 > 0

and Ā2 > 0. Let A2 = min{2A1, ωĀ2} and let

Ω2 = {y ∈ E : ‖y‖ < A2}.

If y ∈ P with ‖y‖ = A2, then inf f(t,y(t))
y(t)

> η2,

f(t, y(t)) > η2y(t) for y ≥ Ā2,

where η2 satisfy

η2ω
2

∫ 3
4

1
4

H(s, s)ds(

∫ 3
4

1
4

G(s, τ)dτ)ds ≥ 1. (4.27)

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≥ min 1
4
≤t≤ 3

4

∫ 1

0

MH(s, s)(

∫ 1

0

NG(s, τ)f(τ, y(τ))dτ)ds,

≥ η2MN

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)dsy,

≥ ωη2

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)dsω‖y‖ by (4.23),
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= η2ω
2

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)ds‖y‖,

≥ ‖y‖ by (4.27).

Thus, ‖Ty‖ ≥ ‖y‖. For this case, if we let

Ω2 = {y ∈ E : ‖y‖ < A2},

then

‖Ty‖ ≥ ‖y‖, for y ∈ P ∩ ∂Ω2. (4.28)

Hence by combining of (4.26) and (4.28) we have, ‖Ty‖ = ‖y‖.
Therefore, by the first part of the fixed point theorem, it follows that T has a

fixed point in P ∩ (Ω̄2 \Ω1) such that A1 ≤ ‖y‖ ≤ A2 by Guo-Krasnoselskii’s

fixed point theorem. Further since Green’s function positive, it follows that

y(t) ≥ 0 for 0 ≤ t ≤ 1 and y(t) is a desired solution for (1.1) − (1.3). The

proof is complete.

Theorem 4.3.2 Assume that the conditions C1, C2 and C3 are satisfied. If

f0 =∞ and f∞ = 0, then the boundary value problem has at least one positive

solution that lies in P.

Proof. Let T be the cone preserving, completely continuous operator defined

by Lemma 4.5. Beginning with f0 = ∞, there exists an A1 > 0, ξ1 > 0 and

satisfy

η2ω

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)ds ≥ 1. (4.29)

f0 = lim
y→0+

inf
t∈[0,1]

f(t, y(t))

y(t)
=∞.

f(t,y(t))
y(t)

≥ ξ1 for 0 < y ≤ A1,

f(t, y(t)) ≥ ξ1y.
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Where ξ1 ≥ η2 and η2 is given above.Then for y ∈ P and ‖y‖ = A1, we have

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≥MN

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)f(τ, y(τ))dτ)ds,

≥ ωξ1

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)dsy,

≥ ωξ1

∫ 3
4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)ds‖y‖,

≥ ‖y‖ωη2
∫ 3

4

1
4

H(s, s)(

∫ 3
4

1
4

G(s, τ)dτ)ds,

≥ ‖y‖ by (4.29).

Thus, ‖Ty‖ ≥ ‖y‖. So, if we let

Ω1 = {y ∈ E : ‖y‖ < A1},

then

‖Ty‖ ≥ ‖y‖, for y ∈ P ∩ ∂Ω1. (4.30)

It remains to consider f∞ = 0. There exists an Ā2 > 0 such that

f(t, y(t)) ≤ ξ2y, for all y ≥ Ā2. Where ξ2 > 0 satisfies

ξ2

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds ≤ 1. (4.31)

There are two cases, case(i) f is bounded, and case(ii) f is unbounded.

For case(i). Suppose N > 0 is such that f(t, y(t)) ≤ N, for 0 < y <∞,

f∞ = lim
y→∞

supt∈[0,1]
f(t, y(t))

y(t)
= 0,
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f(t, y(t)) ≤ ξ2y(t) = N for y(t) > A2 > 0.

Let A2 = max{2A1, N
∫ 1

0
H(s, s)(

∫ 1

0
G(s, τ)dτ)ds}.

Then, for y(t) ∈ P with ‖Ty‖ = A2, we have

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)dsξ2y,

= N

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)ds,

≤ A2 = ‖y‖.

So that ‖Ty‖ ≤ ‖y‖. So, if

Ω2 = {y ∈ E : ‖y‖ < A2},

then

‖Ty‖ ≤ ‖y‖, for y ∈ P ∩ ∂Ω2. (4.32)

For case(ii). If f is unbounded, then let A2 > max{2A1, Ā2} be such that

f(t, y(t)) ≤ f(t, A2), for 0 < y ≤ A2. Choosing y ∈ P with ‖Ty‖ = A2, we

have

Ty(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

Ty(t) ≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, y(τ))dτ)ds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)f(τ, A2)dτds,

≤
∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)dsyξ2,
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≤ A2ξ2

∫ 1

0

H(s, s)(

∫ 1

0

G(s, τ)dτ)ds,

≤ A2 = ‖y‖ by (4.31).

and so ‖Ty‖ ≤ ‖y‖. For this case, if we let

Ω2 = {y ∈ E : ‖y‖ < A2},

then

‖Ty‖ ≤ ‖y‖, fory ∈ P ∩ ∂Ω2, (4.33)

Hence by combining of (4.30), (4.32) and (4.33) we have, ‖Ty‖ = ‖y‖.
Thus, in either of the cases, an application of the second part of the Guo-

Krasnoselskii’s fixed point theorem yields a solution of boundary value prob-

lems (1.1)− (1.3) has a positive solution which belongs to P ∩ (Ω̄2 \ Ω1) and

completes the proof of the theorem.

4.4 Example

Let us consider examples to see validity of our main result for fourth-order

two-point Sturm-Liouville boundary value problem.

Example 1
Now consider the following fourth-order differential equation,

y(4)(t) +
1

4
y′′(t) = f1(t, y(t)), t ∈ (0, 1),

subject to the boundary conditions,

y(0)− y′(0) = 0,

y(1) + 2y′(1) = 0,

y′′(0) = y′′(1) = 0,
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where f1(t, y(t)) = ty
3
2 , t ∈ (0, 1) for superlinear case.

The Green’s function G(t, s) for the homogeneous problem,

−(u′′(t) +
1

4
u(t)) = 0, 0 ≤ t ≤ 1,

G(t, s) =


sin 1

2
t sin 1

2
(1−s)

1
2
sin 1

2

, 0 ≤ t ≤ s ≤ 1,

sin 1
2
s sin 1

2
(1−t)

1
2
sin 1

2

, 0 ≤ s ≤ t ≤ 1.

u(t) =

∫ 1

0

G(t, s)sy
3
2ds.

We consider −y′′(t) = u(t) =
∫ 1

0
G(t, s)sy

3
2ds with boundary condition (1.2).

−y′′(t) = 0, 0 ≤ t ≤ l,

satisfying the boundary conditions (1.3) is given by

Hence H(t, s) =

1
4
(−ts− t+ 3s+ 3), 0 ≤ s ≤ t ≤ 1,

1
4
(−ts− s+ 3t+ 3), 0 ≤ t ≤ s ≤ 1.

y(t) =

∫ 1

0

H(t, s)u(s)ds.

y(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)τy
3
2dτ)ds.

Example 2
Now consider the following fourth-order differential equation,

y(4)(t) +
1

4
y′′(t) = f2(t, y(t)), t ∈ (0, 1),

subject to the boundary conditions,

y(0)− y′(0) = 0,

y(1) + 2y′(1) = 0,
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y′′(0) = y′′(1) = 0,

where f2(t, y(t)) = ty
2
3 , t ∈ (0, 1) for sublinear case.

It satisfies the above Green’s function G(t, s) and H(t, s).

y(t) =

∫ 1

0

H(t, s)u(s)ds,

where u(t) =
∫ 1

0
G(t, s)sy

2
3ds.

y(t) =

∫ 1

0

H(t, s)(

∫ 1

0

G(s, τ)τy
2
3dτ)ds.

Therefore these examples satisfy all the given conditions and the final main

results.
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5 Conclusion and Future scope

5.1 Conclusion

Based on the obtained result the following conclusion can be derived:

In this study, we defined fourth-order two-point Sturm-Liouville boundary

value problems and used the properties of Green’s function to construct it for

corresponding homogeneous equation.

After these we formulated equivalent integral equation for the boundary value

problem (1.1)-(1.3) in the given interval and determined the existence of posi-

tive fixed point of the integral equation by applying Guo-Krasnoselskii’s fixed

point theorem.

We established the existence of positive solutions for fourth-order two-point

Sturm-Liouville bvp by applying Guo-Krasnoselskii’s fixed point theorem.

Finally, it was established that, there exists at least one positive solution for

fourth-order two-point Sturm-Liouville boundary value problems.

5.2 Future scope

This study focused on existence of positive solutions for fourth-order two-point

Sturm-Liouville bvp. Any interested researchers may conduct the research on:

i) Existence of positive solutions for fourth-order multi-point (three, four, ...)

Sturm-Liouville boundary value problem.

ii) Existence of positive solutions for nth-order multi-point Sturm-Liouville

boundary value problem.

iii) Uniqueness of these positive solutions for fourth-order two-point

Sturm-Liouville boundary value problem.
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