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ABSTRACT  

In this thesis, fitted fourth order finite difference method is presented for solving singularly 

perturbed differential-difference equations. First the given singularly perturbed differential-

difference equations are transformed into an asymptotically equivalent singularly perturbed 

boundary value problem. Using fitted finite difference approximation, the given differential 

equation is transformed into a three-term recurrence relation, which can easily be solved by 

Thomas Algorithm. The stability and convergence of the method have been investigated. To 

validate the applicability of the proposed method three model examples have been considered 

and solved for different values of parameters and mesh size h. Both theoretical error bounds and 

numerical rate of convergence have been established for the method. The numerical results have 

been presented in tables and further to examine the effect of delay and advance parameters on 

the left and right boundary layer of the solution; graphs have been given for different values of 

parameters. Concisely, the present method gives better result than some existing numerical 

methods reported in the literature.  
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CHAPTER ONE 

INTRODUCTION 

 1.1. Background of the Study 

Numerical analysis  is  a  branch  of  mathematics  concerned  with  theoretical  foundations  of 

numerical algorithms for the solution of problems arising in scientific applications, (Wasow, 

1942). Science and technology develop many practical problems, such as the mathematical 

boundary layer theory or approximation of solution of various problems described by differential 

equations and almost all physical phenomena in nature are modeled using differential equations, 

and singularly perturbed problems are vital class of these kinds of problems, (Cengizci, 2017). In 

general, a singular perturbation problem is a differential equation that is controlled by a small 

positive parameter 0 < 𝜀 ≪ 1 that exists as multiplier to the highest derivative term in the 

differential equation. As 𝜀 tends to zero, the solution of problem exhibits interesting behaviors 

(rapid changes) since the order of the equation reduces. The region where these rapid changes 

occur is called inner region and the region in which the solution changes mildly is called outer 

region. A singularly perturbed differential-difference equation (SPDDE) is an ordinary differential 

equation in which the highest derivative is multiplied by a small parameter and involving at least 

one delay or advance term.  

We often encounter many problems which are described by parameter dependent differential 

equations. Any system involving a feedback control will almost involve time delays. These arise 

because a finite time is required to sense information and then react to it. If we restrict the class 

of delay differential equations to a class in which the highest derivative is multiplied by a small 

positive parameter and involving at least one delay term, then it is said to be a singularly 

perturbed delay differential equation. In this problem typically there are thin transition layers 

where the solution varies rapidly or jumps abruptly, while away from the layers the solution 

behaves regularly and varies slowly.  In recent years, there has been a growing interest in the 

numerical treatment of such differential equations. This is due to the versatility of such type of 

differential equations in the mathematical modeling of various physical and biological 

phenomena. For example, population ecology, control theory, viscous elasticity, and materials 

with thermal memory. Boundary value problems in differential-difference equations arise in a 

very natural way in studying variation problems in control theory where the problem is 
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complicated by the effect of time delays in signal transmission (Elsgol’cs, 1964). According to 

Kadalbajoo and Gupta, (2010) these singularly perturbed problems arise in the modeling of 

various modern complicated processes, such as fluid flow at high Reynolds numbers, water 

quality problems in rivers networks, drift diffusion equation of semi-conductor device modeling, 

electro-magnetic field problem in moving media, financial modeling of option pricing, 

turbulence model, simulation of oil extraction from under-ground reservoirs, theory of plates and 

shells, atmospheric pollution, and groundwater transport. 

Some researchers are tried to find the approximate solutions of SPDDEs. 

          "( ) ( ) '( ) ( ) ( ) ( ) ( ) ( ),   0 1y x a x y x b x y x c x y x f x x        ε         (1.1)  

subject to the interval and boundary conditions,     

    ,  , 0y x x x        and  1 ( )y x .         (1.2)                       

where 𝜀 is a perturbation parameter (  𝜀 ≪  ), and   are delay parameters with 

0 ( ), 0 ( )o o        and  ( )  ( )  ( )  ( )  ( )      ( ) are smooth functions. 

According to Doolan et al, (1980) still there is a lack of accuracy and convergence because of the 

treatment of singular perturbation problems is not trivial and the solution depends on 

perturbation parameter and mesh size. Due to this, numerical treatment of singularly perturbed 

boundary value problems needs improvement.  

For example; Awoke and Reddy (2013) presented parameter fitted scheme to solve singularly 

perturbed delay differential equations. Soujanya et al., (2013) presented an exponentially fitted 

non symmetric numerical method for singularly perturbed differential equations with layer 

behavior. Chakravarthy et al., (2015) presented fitted numerical scheme to solve singularly 

perturbed delay differential equation. Gemechis et al., (2015) presented a fitted-stable central 

difference method for solving singularly perturbed two point boundary value problems with the 

boundary layer at one end left or right of the interval. Erdogan, (2009) presented an 

exponentially fitted method to solve singular perturbed delay differential equation, using 

exponentially fitted difference schemes (Erdogan et al., 2012), and (Kadalbajoo and Ramesh, 

2007; Kadalbajoo and Kumar, 2008; Sirisha and Reddy, 2015) are developed a numerical 

methods for solving singularly perturbed differential-difference equations and so on. Thus, in 

this study we develop a fitted finite difference method for solving singularly perturbed 

differential-difference equations.   
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1.2. Statement of the Problem  

Singularly perturbed differential-difference equations occur very frequently in mathematical 

modeling and control theory. More specifically, the boundary value problems (BVPs) for 

differential-difference equations (DDEs) come up in the study of the effect of time delays in 

signal transmission of control theory and in the phenomenon where Markov process governs, 

such as persistence times of population with large number of random fluctuations and time 

between the impulses of the nerve cell, (Bellman and Cooke, 1963). Depending on the parameter 

values, the resulting solutions of the class of differential-difference equations exhibit oscillations, 

boundary and interior layers, or turning point behavior. Thus, existing numerical methods 

produce good results only when we take step size   𝜀  This shows that there is a challenge for 

singularly perturbed boundary value problems to get more accurate solution due to perturbation 

parameter is sufficiently small and no good result when 𝜀   .  

Recently, some researchers are tried to develop a numerical methods for solving singularly 

perturbed differential-difference equations. For examples; Sirisha and Reddy, (2014) presented 

solution of singularly perturbed delay differential equations with dual layer behaviour using 

numerical integration; Swamy et al., (2016) introduced a Galerkin Method for solving this 

problem; Kanth and Kumar, (2017) also introduced a fitted tension spline method for solving 

such problem; Cengizci, (2017) also used two-term Taylor series expansion for the delayed 

convection term. However, the issue of accuracy and convergence of the method still needs 

attention and improvement. Therefore, it is important to develop an alternative numerical method 

which may be more accurate, stable and convergent for solving singularly perturbed differential-

difference equations.  

Owning to this, the present study attempts to answer the following questions:  

1. How does the fitted finite difference method be described for solving singularly perturbed 

differential-difference equations?  

2. To what extent the proposed method approximate the solutions?  

3. To what extent the proposed method is stable and convergent?  
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1.3. Objectives of the Study  

1.3.1. General Objective  

The general objective of this study is to develop fitted finite difference method for solving 

singularly perturbed differential–difference equations.  

1.3.2. Specific Objectives  

The specific objectives of the present study are:  

1. To formulate the fitted finite difference method for solving singularly perturbed 

differential–difference equations. 

2. To investigate the accuracy of the present method.   

3. To establish the stability and the convergence of the present scheme.  

1.4. Significance of the Study  

The outcomes of this study may help to introduce the application of numerical methods in 

solving problems arising in different field of studies and serve as reference material for scholars’ 

who works on this area.  

1.5. Delimitation of the Study  

The singularly perturbed problems are perhaps arises in variety of mathematical and physical 

problem. However, this study is delimited to fitted finite difference method for solving singularly 

perturbed differential–difference equations of the form: 

"( ) ( ) '( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),   0 1y x a x y x b x y x c x y x d x y x f x x         ε      (1.3) 

subject to the interval and boundary conditions,        

   

   

 ,  0,

, 1  1 .

y x x x

y xx x

 

 

   

   
            (1.4)                              

where 𝜀 is a perturbation parameter (  𝜀 ≪  ),   is delay parameter,   is advance parameter 

with 0 ( ), 0 ( )o o       and  ( )  ( )  ( )  ( )  ( )  ( )      ( ) are smooth 

bounded functions.  
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1. Singularly Perturbation Differential-Difference Equation 

The study of many theoretical and applied problems in science, engineering and technology leads 

to boundary value problems for singularly perturbed differential equations that have a multi-scale 

character. However, most of the problems cannot be completely solved by analytic techniques. 

Consequently, numerical simulations are of fundamental importance in gaining some useful 

insights on the solutions of the singularly perturbed differential equations.  

The differential-difference equation plays an important role in the mathematical modeling of 

various practical phenomena in the biosciences and control theory. Any system involving a 

feedback control will almost always involve time delays. These arise because a finite time is 

required to sense information and then react to it. Many phenomena in real life and science may 

be modeled mathematically by delay differential or differential difference equations (DDEs). 

Equations of this type arise widely in scientific fields such as biology, medicine, ecology and 

physics, in which the time evolution depends not only on present states but also on states at or 

near a given time in the past. If we restrict the class of DDEs to a class in which the highest 

derivative is multiplied by a small parameter, then we get a class of singularly perturbed 

differential difference equations (SPDDEs). These equations are used to model a large variety of 

practical phenomena, for instance, variational problems in control theory, (Glizer, 2003). Like 

ordinary differential equations, the order of a DDE is the order of the highest derivative term. A 

DDE is classified into two categories, retarded and neutral. A delay-differential equation is said 

to be of retarded DDE if the delay argument does not occur in the highest order derivative term, 

otherwise it is said to be neutral DDE. A differential-difference equation model incorporating 

stochastic effects due to neuronal variability and the solution to this model was approximated by 

Monte Carlo techniques. More generalization of this model, to deal with distribution of post 

synaptic potential amplitudes, was discussed by Stein, (1967). Asymptotic approach to study 

general boundary-value problems for singularly perturbed differential-difference equations was 

given in a series of papers by Lange and Miura, (1994). A variety of numerical approaches have 

been presented by Kadalbajoo and Sharma, (2004) for singularly perturbed differential-
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difference equations with only negative shift and as well as with both positive and negative 

shifts. 

2.2. Fitted Finite Difference Method 

As Phaneendra et al., (2014) presented a numerical finite difference approach to solve the 

boundary-value problem for singularly perturbed differential-difference equation, which contains 

only negative shift in the differentiated term. In this method, first approximate the shifted term 

by Taylor series and apply a fitted finite difference scheme. The existence and uniqueness of the 

discrete problem along with stability estimates are discussed. The effect of small shifts on the 

boundary layer solution of the problem has been given by considering several numerical 

experiments. Frequently, delay/advance differential equations or differential–difference 

equations have been reduced to differential equations with coefficients that depend on the 

delay/advance by means of first-order accurate Taylor series expansions of the terms that involve 

either delay or advance, and the resulting differential equations have been solved either 

analytically when the coefficients of these equations are constant or numerically, when they are 

not. The arguments for small delay problems are found throughout the literature on epidemics 

and population where these small shifts play an important role in the modeling of various real 

life phenomena, (Kuang, 1993). Many researchers have investigated the effect of small shift on 

the layer behavior of the solution and observed that it is very small and affects the solution 

significantly. In this direction, Lange and Miura, (1994) provided asymptotic approach to 

SPDDE Eq. (1.3) with Eq. (1.4) and showed that the effect of the small delay and shift terms on 

the solution cannot be neglected. The numerical study of singularly perturbed delay differential 

equations is initiated in (Kadalbajoo and Sharma, 2002).   

It is well known that standard discretization methods for solving singular perturbation problems 

are not useful and fail to give accurate results when the perturbation parameter ε tends to zero. 

This motivates the need for other methods that have ε-uniform convergence. In general there are 

two approaches for construction ε-uniform methods. The first one is the fitted operator method 

which contains specially designed finite difference operator which reflects the singularly 

perturbed nature of the solution. Extensive details of ε-uniform fitted operator methods can be 

found in (Miller et al., 1996). The second one is the fitted mesh method which contains finite 

difference operator on specially designed meshes such as non-uniform layer-adapted meshes. In 
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this study the proposed finite difference method to solve singularly perturbed differential 

equation with small shifts. To overcome the defect and weakness of the standard methods, use a 

piecewise uniform mesh and approximate the terms containing small shifts (delay and advance) 

by Taylor series, then apply fitting factor on finite difference method of uniform mesh. Both 

cases, when boundary layer occurs in left and right side of interval will be study. The method is 

useful for obtaining numerical solution of considered problem in both cases. The advantages of 

this method are that it is simple to implement and it achieves high accuracy comparing with other 

methods. In this section, we consider a boundary-value problem for SPDDE with mixed type of 

small shifts of the form Eqs. (1.3) and (1.4). It is noted that if 0   , then Eqs. (1.3) and (1.4) 

reduces to the singularly perturbed differential equation (SPDE), which is studied by numerous 

researchers, see for example,  Miller, et al (1996) for sufficiently small δ and η, we follow the 

same technique in,  Lange and Miura, (1994). To tackle the shift terms, we expand the shift 

terms through Taylor series expansions assuming smoothness condition on the solution of Eqs. 

(1.3) and (1.4).  

As introduced in the literature, most researchers try to find approximate solution for singularly 

perturbed differential-difference equations, but mainly focuses on constant coefficients, and 

some others those who have done for variable coefficients did not get more accurate solutions. 

Owing this, we find a more accurate and convergent numerical method for solving singularly 

perturbed differential-difference equations, by using fitted finite difference method.  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Sites 

This study is conducted at Jimma University under the department of Mathematics from 

September 2016 to September 2017. Conceptually, the study focus on the area of fitted finite 

difference method for solving singularly perturbed differential–difference equations.  

3.2. Study Design 

The study employed mixed-design (documentary review and numerical experimentation) on 

singularly perturbed problem with delay and advanced parameters. 

3.3. Source of Information 

The relevant sources of information for this study are books, published articles & related studies 

from internet and the experimental result obtained by using MATLAB ver. 2013a. 

3.4. Mathematical Procedures 

Important materials and data for the study are collected by means of documentary review. Hence, 

in order to achieve the stated objectives, the study follows the following steps: 

1. Defining the problem, 

2. Discretizing the solution domain/interval, 

3. Replacing the derivatives in the differential equation by the finite difference 

approximation and fit the scheme 

4. Finding the fitting factor and obtain the fitted schemes, 

5. Rewriting the obtained schemes into tri-diagonal systems and solve by Thomas 

Algorithm, 

6. Establishing the stability and convergence of the method, 

7. Writing MATLAB code for the Algorithm, 

8. Validating the schemes by using numerical examples, 

9. Presenting the numerical results in different forms (tables and graphs), 

10. Discussing the results against the previous findings. 
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CHAPTER FOUR 

DESCRIPTION OF THE METHOD, ANALYSIS AND DISCUSSION 

4.1. Description of the Method  

Consider the singularly perturbed differential-difference equation of the form: 

"( ) ( ) '( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),   0 1y x a x y x b x y x c x y x d x y x f x x         ε           (4.1) 

subject to the interval and boundary conditions,        

   

 

 ,   0,

( ), 1  1

y x x x

y x x x

 

 

   

   
                       (4.2)           

where 𝜀 is a perturbation parameter (  𝜀 ≪  ),   is delay parameter,   is advance parameter 

with 0 ( ), 0 ( )o o       and  ( )  ( )  ( )  ( )  ( )  ( )      ( ) are smooth 

bounded functions. The boundary layer and oscillatory behaviour of the problem under 

consideration is maintained for  0  but sufficiently small, depending on the sign of 

   ( )b x c x d x  , for all (0,1).x  If      ( ) 0b x c x d x   , the solution of the problem in 

Eqs. (4.1) and (4.2) exhibits boundary layer behaviour at both end points 0 and 1x x  , and if 

   ( ) 0b x c x d x   , it exhibits oscillatory behaviour. The solution ( )y x  should be continuous 

on 0,1 , continuously differentiable on  0,1  and also satisfies Eqs. (4.1) and (4.2). 

By using Taylor series expansion in the neighborhood of the point x , we have: 

2( ) ( ) ( ) ( )y x y x y x               (4.3) 

        2y x y x y x o                 (4.4) 

Substituting Eq. (4.3) and Eq. (4.4) into Eq. (4.1), we obtain an asymptotically equivalent 

singularly perturbed two point boundary value problem of the form: 

         ( ) ( ) ( ) ( ) ( ) ( ) ( )Ly x y x p x y x q x y x f x             (4.5) 

under the boundary conditions,  

0(0)y 
 
and 0(1)y          (4.6) 

where, ( ) ( ) ( ) ( )p x a x b x d x      and  ( ) ( ) ( ) ( )q x b x c x d x   . 
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The transition from Eq. (4.1) to Eq.(4.5) is admitted, because of the condition that 0 , 1    

are sufficiently small. Further details on the validity of this transition can be found in Elsgolt’s 

and Norkin (1973). 

Now dividing the solution domain or interval  0,1
 
into N  equal parts with constant mesh length 

h, we have 0 , 0,1,2,...,ix x ih i N    and let ( )i iy x y .  

By using Taylor series expansion, we obtain:  

2 3 4
(3) (4) 5

1 ( )
2! 3! 4!

i i i i i i

h h h
y y hy y y y o h

                (4.7) 

2 3 4
(3) (4) 5

1 1 ( )
2! 3! 4!

i i i i i

h h h
y y hy y y y o h

                 (4.8) 

Subtracting Eq. (4.8) from Eq. (4.7), we obtain, the second order finite difference approximation 

)( 1

ic
y  for the first derivative of 

i
y  as: 

   1 1 1
1

2

i i
c i

y y
y T

h
  

                             (4.9) 

where 
2

(3)

1
6

i

h
T y  .  

Similarly by adding Eq. (4.7) and Eq. (4.8), we obtain, the second order finite difference 

approximation )( 2

ic
y for the second derivative of 

i
y is:  

   2 1 1
22

2i i i
c i

y y y
y T

h
   

                   (4.10) 

where 
2

(4)

2
12

i

h
T y  . 

Substituting  Eqs. (4.7) and (4.8) into Eq. (4.9) yields:  

   
2

1 (3)

3
6

c i i i

h
y y y T                                  (4.11) 

where 
4 4 2

(5) (5) (3)

3 1
120 120 6

i i i

h h h
T y T y y    . 

Again substituting Eqs. (4.7) and (4.8) into Eq. (4.10) yields:  

  
2

2 (4)

4
12

c i i i

h
y y y T                                         (4.12) 
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where 
4 2

(6) (4)

4
360 12

i i

h h
T y y   

Applying 2

c  to iy in Eq. (4.9), we get: 

   (3) 2 (2)

1i c iy y T                                  (4.13) 

Substituting Eq. (4.13) into Eq. (4.11), we obtain: 

     
2

1 2

5
6

c i i c i

h
y y y T                                  (4.14) 

where  
4 2

(5) (3)

5

13

360 6
i i

h h
T y y   

Applying 2

c  to iy in Eq. (4.10) we get a four order finite difference scheme for Eq. (4.5) as: 

                (4) 2 (2)

2i c iy y T                   (4.15) 

Substitution Eq. (4.15) into Eq. (4.12), we obtain: 

    
2

2 2

6
12

c i i c i

h
y y y T                              (4.16) 

where  
4 2

(6) (4)

6

7

720 12
i i

h h
T y y   

From Eqs. (4.14) and (4.16), we get: 

   
1

5

2
21

6

c i
i

c

y T
y

h






 



   and  
2

6

2
21

12

c i
i

c

y T
y

h










           (4.17) 

After evaluating Eq. (4.5) at nodal point ix and using Eq. (4.17), we obtain: 

      
2

6

2
21

12

c i

c

y T

h






 
 
 
  
 

1

5

2
21

6

c i
i i i i

c

y T
p q y f

h





 
 

   
  
 

        (4.18) 

Simplifying Eq. (4.18), we have: 

    

2 2 42 2
2 4 2 1 3 2 4

6

2 4 2
2 4 2

5

1
6 6 12 4 72

1 1
4 72 12

i i i
c i c i c i c i c i i i c i c i

i c c i c

h p h q h qh h
y y T p y y q y y y

h h h
f p T

        

  

 
        

 

   
       

   

  (4.19) 

By successively differentiating both sides of Eq. (4.5) and evaluating at ix , we have: 
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  3 2 11
( )c i i i c i i i c i i iy f p y p q y q y  


             (4.20) 

2
4 2 1( )1

2 2i i i i i i i
c i i i i i c i i i c i i i

p p p p q p q
y f f p q y p q y q y  

    

        
                    

      
 (4.21) 

 Substituting Eqs. (4.20) and (4.21) into Eq. (4.19), we get:     

 
2 2 2 4 22 2

2 2

6

2 4 2
1

4

2 2 1
6 12 12 72 6

( ) ( )
( ) 2 2

12 72 6

72

i i i i
i i i c i c

i i i i i i i i
i i i i i i i c i

i i i
i

h q h p h q ph h
p p q y T

h p h q p p q p p qh
p q p q p q p y

h q p q
q

   
  


   

 

    
            

   

      
                 

    

 
 



2 2

2 4 42 4 2 2
2 2 2

5 2

12 6

1
4 72 12 6 12 72 72

i i i i
i i i

i i i i
i c i c i i c i i i i

h p q p qh
q q y

h p h q h p qh h h h
f f f p T f f f f

 

  
  

   
      

   

 
             

 

(4.22) 

Introducing the fitting factor ( )  into Eq. (4.22), we have: 

  

 
2 2 2 4 22 2

2 2

62 2

2 4 2
1

4

1 2 2 1
6 12 12 72 6

( ) ( )
( ) 2 2

12 72 6

72

i i i i
i i i c i c

i i i i i i i i
i i i i i i i c i

i

h q h p h q ph h
p p q y T

h p h q p p q p p qh
p q p q p q p y

h q

  
    


   



      
             

     

      
                 

    


2 2 2 4

2 2

2 4 42 2
2

5 2

12 6 4 72

1
12 6 12 72 72

i i i i i i
i i i i i c i c i

i i i i
i c i i i i

p q h p q p qh h h
q q q y f f f

h p h q h p qh h
p T f f f f

 
  


  

      
             

    

 
         

 

(4.23) 

Using the central difference approximation for 2

c iy  and 1

c iy , we get: 
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   
2 2 2 4 22 2

2 2

1 1 62 2 2

2 4 2

1 2 2 2 1
6 12 12 72 6

( ) ( )1
( ) 2 2

2 12 72 6

i i i i
i i i i i i c

i i i i i i i i
i i i i i i i

h q h p h q ph h
p p q y y y h T

h

h p h q p p q p p qh
p q p q p q p

h




    

   

 

      
               

     

      
                 

   
 1 1

4 2 2 2 4
2 2

2 4 42 2
2

5 2

72 12 6 4 72

1
12 6 12 72 72

i i

i i i i i i i
i i i i i c i c i

i i i i
i c i i i i

y y

h q p q h p q p qh h h
q q q y f f f

h p h q h p qh h
p T f f f f

 
   


  

 

  
 

  

      
              

    

 
         

 

 

Multiplying both sides of Eq. (4.23) by h  and taking the limit as 0h , we have:  

 

   
2 2 2 2 4 2 2

2 2

1 1 62 20

2 4 2

0

lim 1 2 2 2 1
6 12 12 72 6

1 ( ) ( )
lim ( ) 2 2

2 12 72 6

i i i i
i i i i i i c

h

i i i i i i i i
i i i i i i

h

h h q h p h q p h
p p q y y y h T

h p h q p p q h p p q
p q p q p q




     

   

 




      
               

      

     
              

  
 1 1

5 3 3

0

2 4 2 2 2 4
2 4 2

5
0

lim
72 12 6

lim 1 1
4 72 12 6 12 72

i i i

i i i i i i i
i i i i

h

i i
c c i i c i i i

h

p y y

h q p q h p q h p q
q hq q y

h h h h h p h q
h f p T f f f

   

  
 

 





   
   
   

      
          

    

     
             

     

   

 
2 2

1 1 1 1
0 0

1 lim 2 lim( ) 0
12 2

i i
i i i i i

h h

p p
y y y y y




   

 

   
        

   

,  where 
h




  

   2 2

1 1 1 1
0 0

12 lim 2 lim( ) 0
12 2

i
i i i i i i

h h

p
p y y y y y





   

 
          (4.24) 

From the theory of singular perturbations, we have two cases for ( ) 0p x   and ( ) 0p x  , and is 

of the form in O’Malley, (1974).   

Case 1: For ( ) 0p x  (right-end boundary layer), we have: 

     
1

(0)
(0) (0)

1 1 0 0
0

lim 2 (0) 2
p i

p p

i i i
h

y y y y e e e


 

 
    

 


  
      

  

     

     
1

(0)
(0) (0)

1 1 0 0
0

lim (0)
p i

p p

i i
h

y y y e e e


 

 
    

 


  
    

  
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 Thus, from Eq. (4.24), we get:    

 

 

 

   

   

1
(0)

(0) (0)

0 0

12 2 (0)
(0) (0)

0 0

(0)
(0)

2
0

(12 (0)
(0) 2

12

p i
p p

p i
p p

p
y e e e

p
y e e e


 


 









 
  

 

 
  

 

  
   

  
   

   
  

  
 
 

(0) (0)

2 2 (0) (0)

6
0

(12 ) 2

p p

i

p p

i

p e e

p e e

 

 











 

  
 , as 

2 2 2 2

2

2 22

x x x x

x x

x x

x x

e e e e e e

e e e e

 





   
      

  


 
    

 

      

 

(0) (0)

2 2

(0) (0)

2 2 2 2

6 (0)

0

(12 )

p p

p p

i

p e e

p e e

 

 











 
 

  
 

  
 

    

      2 2

6 (0) (0)
0 coth

(12 (0) 2

p p

p

 




 
   

  
              

Case 2: For ( ) 0p x  (left-end boundary layer), we have: 

     
1

(1)
(1) (1)

1 1 0 0
0

lim 2 (1) 2
p i

p p

i i i
h

y y y y e e e


 

 
    

 


  
      

  

 

     
1

(1)
(1) (1)

1 1 0 0
0

lim (1)
p i

p p

i i
h

y y y e e e


 

 
    

 


  
    

  

 

By following the same procedure in case 1 above, we obtain: 

 
 2 2

6 (1) (1)
1 coth

212 (1)

p p

p

 




 
  

    

In general, for discretization we take a variable fitting factor as: 

 2 2

6
coth

212

i i
i

i

p p

p

 




 
  

  
        (4.25) 
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Now using Eqs. (4.9) and (4.10) into Eq. (4.23) for 1

c iy and 2

c iy  and making use of 

2 1 1

2

2i i i
c i

f f f
f

h
   

  and 2 1 1

2

2i i i
c i

f f f
f

h
  

   
 , we obtain:

     

 

       

 

 

2 2 2

2

3

1

2 2

2

1
2 2

6 12 12 72

( ) ( )1
( ) 2 2

2 12 72 6

1
2 2 2

6 12 12 72

i i i i
i i i i

i i i i i i i i i
i i i i i i i

i

i i i
i i

q p h q p
p p q

h

hp h q p p q p p q ph
p q p q p q y

h

q p h q
p

h




  

   




 



   
         

   

       
                  

     

     

 

2

4 2 2

2 2 2

2

3

72 12 6

1
2 2

6 12 12 72

( )1
( ) 2

2 12 72

i
i i

i i i i i i i
i i i i

i i i i
i i i i

i i i i i
i i i

p
p q

h q p q h p q p qh
q q q y

q p h q p
p p q

h

hp h q p p q
p q p



   




  

  

   
     

   

      
          

   

   
          

   

 
        1

( )
2

6

i i i i
i i i i

p p q ph
q p q y

h


     
         

     

    

     
2 4 42 2

1 1 1 1 2

1
2 2

4 72 6 12 72 72

i i i i
i i i i i i i i i i i

h p h q h p qh h
f f f f f f f f f f f T

  
   

                     (4.26) 

where, 

4 4
(5) (6) 5( )

45 240
i i i i

h h
T p y y O h      is the local truncation error. 

From Eq. (4.26), we get the tri-diagonal system of equation of the form:    

             
1 1 ,N

i i i i i i iL E y F y G y H      for 1,2, , 1i N                                                   (4.27) 

where, 

         

 
2 2 2

2

3

1
2 2

6 12 12 72

( ) ( )1
( ) 2 2

2 12 72 6

i i i i
i i i i i

i i i i i i i i i
i i i i i i

i

q p h q p
E p p q

h

hp h q p p q p p q ph
p q p q p q

h




  

   

   
         

   

      
                 

    
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 
2 2 2

2

4 2 2

1
2 2 2

6 12 12 72

72 12 6

i i i i
i i i i i

i i i i i i i
i i i

q p h q p
F p p q

h

h q p q h p q p qh
q q q




  

   

   
         

   

     
         

   

 

         

 
2 2 2

2

3

1
2 2

6 12 12 72

( ) ( )1
( ) 2 2

2 12 72 6

i i i i
i i i i i

i i i i i i i i i
i i i i i i

q p h q p
G p p q

h

hp h q p p q p p q ph
p q p q p q

h




  

   

   
         

   

      
                 

      

        

   
2 4 42 2

1 1 1 1 2

1
2 2

4 72 6 12 72 72

i i i i
i i i i i i i i i i i i

h p h q h p qh h
H f f f f f f f f f f f

  
   

                  

The tri-diagonal system in Eq. (4.27) can be easily solved by the method of Discrete Invariant 

Imbedding Algorithm.   

4.2. Stability and Convergence Analysis  

4.2.1. Stability Analysis  

The stability analysis is followed the approach of Gashu et al., (2017).  

Case 1: When   0q x  , i.e. ( ) ( ) ( ) 0b x c x d x   , for  0,1x .  

Lemma 4.1: If  0 0y 
 
and   0Ly x  , for all  0,1x , then the solution   0y x   for all          

 0,1x  for Eqs. (4.5) and (4.6).  

Proof 

Suppose  0,1t , such that  
 

 
0,1

min
x

y t y x


 and   0y t  . Since,  0,1t and is a point of 

minima, then   0y t   and   0.y t   

Therefore, we have:  

            0,Ly t y t p t y t q t y t     
 
since   0y t  (by assumption) and   0q t  . 

But, this is a contradiction. Then, it follows that   0y t  and therefore,   0y x    for all 

 0,1x . 
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Theorem 4.1: If the solution of the problem in Eqs. (4.5) and (4.6) satisfies  

   
 

  0,1
max 0 ,max

x
y x C y Ly x


  for some constant 1,C   then the solution is stable. 

Proof:  

We define two functions,  
 

    
0,1

max 0 ,max
x

C y Ly x y x 


  , then we get: 

 0 0   and  

   
 

    
0,1

max 0 ,max 0,i
x

L x Cq y Ly x Ly x 


   since   0q x  and for suitable 

choice of C. 

Therefore, by Lemma 4.1, we get,   0,x   for all  0,1 .x So, 

      
 

  0,1
max 0 ,max .

x
y x C y Ly x


  

Hence, the stability of the solutions of the problem in Eqs. (4.5) and (4.6) is proved for the case 

of boundary layer behaviour. 

Lemma 4.2: The finite difference operator NL  in Eq. (4.27) satisfies the discrete minimum 

principle, i.e., if iw  is any mesh function such that 0ow  and 0N

iL w  , for all  0,1ix  , then 

0iw   for all  0,1x . 

Proof 

Suppose there exists a positive integer k such that 0kw  and
0
mink i

i N
w w

 
 .  

Then, from Eq. (4.27), we have: 

1 1

N

k k k k k k kL w E w F w G w     

      

 

 

   

2 2 2

12

2 2 2

12

3

2
12 12 3 72

2
12 12 3 72

2
12 6 3 72

k k k k k k
k k k k

k k k k k k
k k k k

k k k k k kk k k k
k

p q p h q p
p q w w

h

p q p h q p
p q w w

h

hp p q p p qp hp hq h q
p q

h

 

  

 

  

  





     
           

     

     
           

     

   
         1 1k k k k kw w A w 

   
   

   
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where,    

2 42

6 12 72

k k k k k k k
k k k k

p q h p q h q p qh
A q q q

   

     
         

   
 

For sufficiently small h   . . 0i e h  and for suitable value of kp , we obtain:

 

0N

kL w  . Since, 0kw  (by assumption), , 0k    and 0.k kA q   

But, this is a contradiction. Hence, 0iw   for all  0,1ix  .  

Theorem 4.2: The finite difference operator NL  in Eq. (4.27) is stable for 

      0,b x c x d x  
 
if iw

 
is any mesh function, then 

  0
0,1

max , max ,
i

i i
x

w C w Lw


 for some 

constant 1.C   

Proof:  

We define two functions, 
  0
0,1

max , max
i

i i i
x

C w Lw w 


  , then similar to Theorem 4.1, we get: 

0 0    and  

  0
0,1

max , max 0,
i

i i i i
x

L Cq w Lw Lw 


    since 0 0i i i ib c d q     and 1.C   

Therefore by Lemma 4.2, we get: 

0 0    for all  0,1 .ix   

  0
0,1

max , max 0.
i

i i i
x

C w Lw w 


     

Thus, 
  0
0,1

max , max .
i

i i
x

w C w Lw


  

This proves the stability of the scheme for the case of boundary layer behaviour. 

Case 2: When   0q x  , i.e.     ( ) 0b x c x d x   , for  0,1x .   

The continuous maximum principle and stability of the solution of Eqs. (4.5) and (4.6) are 

presented as follows for the case of oscillatory behaviour. 

Lemma 4.3: If  0 0y  and   0Ly x  , for all  0,1x , then the solution   0y x   for all 

 0,1x  for Eqs. (4.5) and (4.6).  
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Proof  

Suppose  0,1t , such that  
 

 
0,1

max
x

y t y x


 and   0y t  . Since,  0,1t and is a point of 

maxima, then   0y t   and   0.y t   

Therefore, we have:   

            0,Ly t y t p t y t q t y t     
 
since   0y t  (by assumption) and   0q t  . 

But, this is a contradiction. Then, it follows that   0y t  and therefore,   0y x    for all 

 0,1x . 

Theorem 4.3: If the solution of the problem in Eqs. (4.5) and (4.6) satisfies 

   
 

  0,1
max 0 ,max ,

x
y x k y Ly x


 for some constant 1,k   then the solution is stable. 

Proof: The proof is analogous to Theorem 4.1.  

Hence, the stability of the solutions of the problem in Eqs. (4.5) and (4.6) is proved for the case 

of oscillatory behaviour.  

Now, we present the stability of the discrete problem in Eq. (4.27) for the case of oscillatory 

behaviour.  

Lemma 4. 4: The finite difference operator NL  in Eq. (4.27) satisfies the discrete maximum 

principle, i.e., if iw  is any mesh function such that 0ow  and 0N

iL w  , for all  0,1ix  , then 

0iw   for all  0,1x . 

Proof 

Suppose there exists a positive integer k such that 0kw 
 
and 

0
maxk i

i N
w w

 
 .  

Then, from Eq. (4.27), we have: 

         
1 1

N

k k k k k k kL w E w F w G w     
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 

 

   

2 2 2

12

2 2 2

12

3

2
12 12 3 72

2
12 12 3 72

2
12 6 3 72

k k k k k k
k k k k

k k k k k k
k k k k

k k k k k kk k k k
k

p q p h q p
p q w w

h

p q p h q p
p q w w

h

hp p q p p qp hp hq h q
p q

h

 

  

 

  

  





     
           

     

     
           

     

   
         1 1k k k k kw w A w 

   
   

   

 

For sufficiently small h  and for suitable value of kp , we obtain:

 

0N

kL w  . Since, 0kw 
 
(by assumption), , 0k    and 0.k kA q   

But, this is a contradiction. Hence, 0iw   for all  0,1ix  .  

Theorem 4.4: The finite difference operator NL  in Eq. (4.27) is stable for 

      0,b x c x d x  
 

  . . 0 ,i e q x 
 

if iw
 

is any mesh function, then 

  0
0,1

max , max ,
i

i i
x

w k w Lw


 for some constant 1.k   

Proof: The proof is similar to Theorem 4. 2. 

This proves the stability of the scheme for the case of oscillatory behaviour. 
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4.2.2. Convergence Analysis  

Writing the tri-diagonal system (4.27) in matrix vector form, we get: 

AY D          (4.28) 

where    , , 1,2, ..., -1i jA m i j N   is a tri-diagonal matrix of order  N-1 from Eq. (4.27). 

Multiplying both sides of Eq. (4.27) by  2h  we get: 

     

 
2 2 2 4 22

1

2 42

2 2
6 12 12 72

( ) ( ) ( )
2 2

2 6 12 72

i i i i
i i i i i i

i i i i i i i i i i
i i i i

h p h q h q ph
m p p q

p p q h p p q h q p p qh h
p p q p q

 
  

   



  
          

  

        
              

    

 

     

 
2 2 2 4 22

2 42
2

2 2 2
6 12 12 72

6 12 72

i i i i
i i i i i i

i i i i i i i
i i i

h p h q h q ph
m p p q

p q h p q h q p qh
h q q q

 
  

   

  
         

  

     
          

    

 

     

 
2 2 2 4 22

1

2 4

2 2
6 12 12 72

( ) ( ) ( )
2 2

2 6 12 72

i i i i
i i i i i

i i i i i i i i i
i i i i

h p h q h q ph
m p p q

p p q h p p q h q p p qh h
p p q p q

 
  

   



  
          

  

        
              

      

and  iD d  is a column vector, where, 

 2

1 1 1 0d h H E                  

2 for 2,3,..., 2i id h H i N   

 
 2

1 1 1 0N N Nd h H G       

with a local truncation error:   

              
6

7

15
i

h
T h K O h            (4.29) 

where  
(5) (6)

3 16

i i
i i

p
K y y

 
  . 

We also have 
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         AY T h D            (4.30) 

where  0 1 2, , , ...,
T

NY y y y y  denotes the actual solution  and 

            0 1 2 3, , , ,...,
T

NT h T h T h T h T h T h  is the local truncation error. 

From Eqs. (4.28) and (4.30), we get: 

          A Y Y T h            (4.31)   

Thus we obtain the error equation 

       AE T h           (4.32) 

where   0 1 2, , ,..., .
T

NE Y Y e e e e    

Let iS
 
be the sum of elements of the 

thi  row of A, then we get:                

 

 

2 33
2

4

( )
2 2

2 6 12 12 6 2

for, 1

i i i i i i
i i i i i i

p p q h p p qh
S h h p q p q

O h i

 
 

 

    
                

     

 

 

   2 4 for, 2,3,..., 2i iS h q O h i N      

 

 

2
2

3 4

( )1
2 2

2 6 12 12 12

( )
for, 1
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i i i i i i
i i i i i i

i i i

p p q p p q
S h h p p q q

p p q
h O h i N

 
 

 



    
               

    

  
     

 

   

For sufficiently small h, the matrix A is irreducible and monotone (Gemechis et al., 2017). Then 

it follows that 1A  exists and its elements are non-negative. 

Hence from Eq. (4.32), we get: 

1 ( )E A T h           (4.33) 

and  

1 . ( )E A T h                      (4.34)  

Let ,k im   be the  ,
th

k i  element of  1A . Since , 0,k im    from the theory of matrices we have: 

1

,

1

1
N

k i i

i

m S




 , 1,2, , 1k N          (4.35) 
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Therefore, 

0

1

, 2
1

1 1

1 1

min

N

k i

i i ii N

m
S h B




  

          (4.36) 

where  
0i iB q   

We define 
1

1

,
1 1

1

max
N

k i
k N

i

A m




  


   and 
1 1

( ) max ( )
i N

T h T h
  

  

From Eqs.(4.28), (4.33), (4.34) and (4.36), we get: 

1

,

1

( )
N

i k i i

k

e m T h




 ,  1,2, , 1i N                       (4.37) 

which implies  

          

0 0

6 41

, 21 1
1

max ( )
15 15

N

i k i
i N

k i i

h K h K
e m T h

h B B



  


 
   
 
                                         (4.38) 

where 0i  
is some number between  i and N.  

Therefore,   4 .E O h  

Hence our method gives a fourth order convergence for uniform mesh. 
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4.3. Numerical Examples 

To demonstrate the applicability of the method, three model examples having constant and 

variable coefficients with left-end and right-end boundary layers have been carried out. The 

exact solution of singularly perturbed differential-difference equation of Eqs. (4.1) and (4.2), 

with constant coefficients is given by:  

  1 2

1 2

3

m x m x f
y x c e c e

c
  

        
(4.39) 

where  

    
2

3

1

4

2

a b d a b d c
m

    



       
  

    
2

3

2

4

2

a b d a b d c
m

    



       
      

3c b c d   , 

  
 

  
 

2 1

1 2 1 2

3 3 3 3

1 2

3 3

,

m m

m m m m

f c e f c f c e f c
c c

c e e c e e

          
 

 
 

For the variable coefficients, the maximum absolute errors are computed using double mesh 

principle given by: 

2max , 1,2,..., 1
h

h

h i i
i

z y y i N           (4.40) 

where, h

iy
 

is the numerical solution on the mesh  
1

1

N

ix


 at the nodal point ix
 

and 

0 , 1,2,..., 1ix x ih i N   
 
and 2

h

iy  is the numerical solution on a mesh, obtained by bisecting 

the original mesh with N number of mesh intervals, (Doolan et al.,1980).   

Example 4.1: Consider the singularly perturbed differential-difference equation with right end 

boundary layer (Swamy et al., 2016)       

( ) ( ) 2 ( ) ( ) 2 ( ) 0y x y x y x y x y x           

subject to the interval and boundary conditions, 

( ) 1, 0, (1) 1, 1 .y x x y x           
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The maximum absolute errors are presented in Tables 4.1 and 4.4 for different values of

and .   The graph of the computed solution for 0.1   and different values of and   is 

also given in Figure 4.1. 

Example 4.2: Consider the singularly perturbed differential-difference equation with left end 

boundary layer (Swamy et al., 2016)    

( ) 0.5 ( ) 3 ( ) 2 ( ) 2 ( ) 1y x y x y x y x y x           

subject to the interval and boundary conditions, 

( ) 1, 0, (1) 0, 1 .y x x y x          

 The maximum absolute errors are presented in Tables 4.2 and 4.4 for different values of

and .   The graph of the computed solution for 0.1   and different values of and   is also 

given in Figure 4.2.  

Example 4.3: Consider the singularly perturbed differential-difference equation with right end 

boundary layer (Gemechis and Reddy, 2012)  

    
2 2( ) 1 ( ) ( ) ( ) 1 ( ) 1x xy x e y x xy x x y x e y x             

subject to the interval and boundary conditions, 

( ) 1, 0, (1) 1, 1 .y x x y x          

The maximum absolute errors are presented in Table 4.3 and 4.4 for different values of and .   

The graph of the computed solution for 0.1   and different values of  and   is also given in 

Figure 4.3. 
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4.4. Numerical Results  

Table 4.1: Maximum Absolute errors of Example 4.1 for different values of  δ, η and ε = 0.1. 

   
N  

      8       32      128       512 

Fitted FD (Present Method)                                          0.5    

              

0.00  4.3229e-03 1.5775e-05 6.1456e-08 2.4006e-10 

0.05  3.8440e-03 1.3769e-05 5.4036e-08 2.1092e-10 

0.09  3.4760e-03 1.2460e-05 4.8494e-08 1.8940e-10 

Swamy et al., (2016)    

0.00  0.031377538 0.001800241 0.000112071 7.0036e−06 

0.05  0.029748010 0.001700026 0.000105418 6.5860e−06 

0.09  0.028294285 0.001611053 9.9793e−05 6.2344e−06 

Fitted FD (Present Method)                                           0.5   

                                            

0.00  3.3862e-03 1.2139e-05 4.7199e-08 1.8429e-10 

0.05  3.8440e-03 1.3769e-05 5.4036e-08 2.1092e-10 

0.09  4.2256e-03 1.5339e-05 5.9891e-08 2.3403e-10 

Swamy et al., (2016)    

0.00  0.027910529 0.001587651 9.8361e−05 6.1442e−06 

0.05  0.029748010 0.001700026 0.000105418 6.5860e−06 

0.09  0.031068500 0.001781207 0.000110800 6.9223e−06 

     

Table 4.2: Maximum Absolute errors Example 4.2 for different values of δ, η and ε = 0.1. 

   
N  

      8       32      128       512 

Fitted FD (Present Method)                                          0.5    

              

0.00  2.9005e-03 1.0342e-05 4.0567e-08 1.5841e-10 

0.05  3.5885e-03 1.2831e-05 4.9745e-08 1.9433e-10 

0.09  4.1815e-03 1.4979e-05 5.8027e-08 2.2664e-10 

Swamy et al., (2016)    

0.00  0.025347510 0.001425327 8.9204e −05 5.5742e −06 

0.05  0.027533826 0.001567710 9.7155e −05 6.0690e −06 

0.09  0.028669770 0.001645550 0.000102186 6.3826e −06 

Fitted FD (Present Method)                                           0.5   

                                            

0.00  1.7013e-03 1.1139e-05 4.3477e-08 1.6984e-10 

0.05  3.5885e-03 1.2831e-05 4.9745e-08 1.9433e-10 

0.09  3.9801e-03 1.4251e-05 5.5183e-08 2.1551e-10 

Swamy et al., (2016)    

0.00  0.026174618 0.001478341 9.2083e −05 5.7527e −06 

0.05  0.027533826 0.001567710 9.7155e −05 6.0690e −06 

0.09  0.028348272 0.001623113 0.00010057 6.2854e −06 
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Table 4.3: Maximum Absolute errors Example 4.3 for different values of δ, η and ε = 0.1. 

   
N  

      8       32      128       512 

                                    0.5    

              

0.00  9.1099e-02 1.1121e-02 6.3825e-04     4.0044e-05 

0.05  9.0471e-02 1.0955e-02 6.3063e-04     3.9502e-05 

0.09  8.9962e-02 1.0822e-02 6.2443e-04     3.9063e-05 

                                   0.5   

                                            

0.00  9.6047e-02 1.1165e-02 6.4582e-04     3.9245e-05 

0.05  9.6212e-02 1.1248e-02 6.4941e-04     3.9502e-05 

0.09  9.6342e-02 1.1313e-02 6.5223e-04     3.9705e-05 

 

Table 4.4: Maximum Absolute errors for different values of ε  and h  for  δ, η = 0.5ε.  

𝜀                       

Example 4.1 

    7.8680e-06 4.8845e-07 3.0476e-08 1.9040e-09 1.1899e-10 

    4.8096e-05 2.9675e-06 1.8546e-07 1.1578e-08 7.2378e-10 

    3.4554e-04 1.9965e-05 1.2232e-06 7.6501e-08 4.7753e-09 

    2.1829e-03 1.5228e-04 8.8556e-06 5.4340e-07 3.3824e-08 

    9.4645e-03 1.0205e-03 7.0761e-05 4.1300e-06 2.5365e-07 

    2.8510e-02 4.4918e-03 4.9169e-04 3.4000e-05 1.9883e-06 

Example 4.2 

    7.8654e-06 8.8695e-07 3.0790e-08 3.4972e-09 1.2029e-10 

    3.6536e-05 2.2720e-06 1.4204e-07 8.8711e-09 5.5450e-10 

    1.8558e-04 1.1830e-05 7.3360e-07 4.5832e-08 2.8636e-09 

    1.2043e-03 6.8432e-05 4.2579e-06 2.6466e-07 1.6561e-08 

    6.7569e-03 4.7969e-04 2.7698e-05 1.6967e-06 1.0622e-07 

    2.8776e-02 2.9911e-03 2.0743e-04 1.2083e-05 7.4178e-07 

Example 4.3 

    8.3545e-03 2.0138e-03 4.9861e-04 1.2495e-04 3.1217e-05 

    1.7199e-02 4.3785e-03 1.0417e-03 2.5713e-04 6.4294e-05 

    2.5179e-02 8.8894e-03 2.2383e-03 5.2902e-04 1.3037e-04 

    3.1540e-02 1.2943e-02 4.5167e-03 1.1313e-03 2.6648e-04 

    4.4783e-02 1.6224e-02 6.5594e-03 2.2763e-03 5.6865e-04 

    7.8783e-02 2.3176e-02 8.2240e-03 3.3015e-03 1.1426e-03 
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The effect of delay and advance parameters on boundary layers  

The following graphs (Figure 4.1-Figure 4.3) show the numerical solution obtained by the 

present method for different values of delay and advance  and  parameters.  

  

Figure 4.1: Numerical solution of Example 4.1 for ε = 0.1 and N = 20. 

  

Figure 4.2: Numerical solution of Example 4.2 for ε = 0.1 and N = 20. 
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Figure 4.3: Numerical solution of Example 4.3 for ε = 0.1 and N = 20. 

The following graphs (Figure 4.4-Figure 4.6) show the pointwise absolute errors obtained by the 

present method for different values of mesh size h .   

 

Figure 4.4: Pointwise absolute errors of Example 4.1 for different value of  h  with ε = 0.1 and 

δ, η = 0.5ε. 
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Figure 4.5: Pointwise absolute errors of Example 4.2 for different value of  h  with ε = 0.1 and 

δ, η = 0.5ε. 

 

Figure 4.6: Pointwise absolute errors of Example 4.3 for different value of  h  with ε = 0.1 and 

δ, η = 0.5ε. 
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Rate of Convergence  

In some way in Eq. (4.39) one can define 
2

hz  by replacing by and 1 by 2 1, that is
2

hh N N   

2 4

2

max , for i 1,2,...,2 1.h h

h i i
i

z y y N     The computational rate of convergence   is also 

obtained by using the double mesh principle defined as, (Doolan et at., 1980): 

   2log log
.

log 2

h hz z


 
 
 
   

 

Table 4.5: Rate of convergence ρ for different values of  δ  with  ε = 0.1, η = 0.5ε.  

            16          32         64       128 

Example 4.1 

          4.0655      4.0164    4.0041 4.0010 

          4.0566      4.0144    4.0036 4.0009 

          4.0500      4.0126    4.0031 4.0008 

Example 4.2 

          4.0256      4.0064     4.0016  4.0004 

          4.0349      4.0087     4.0022  4.0005 

          4.0435      4.0108     4.0027  4.0007 
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4.5. Discussion 

In this thesis, fitted finite difference method is presented for solving singularly perturbed 

differential-difference equations (SPDDEs) with delay as well as advance parameters. First, 

SPDDEs is converted into an asymptotically equivalent singularly perturbed boundary value 

problem by using the Taylor series expansion for the delay and advance terms. Then, the given 

interval is discretized, and using fitting finite difference approximation the given differential 

equation is transformed into a three-term recurrence relation, which can easily be solved using 

Thomas Algorithm. The stability and convergence of the method have been investigated. The 

numerical results have been presented in Tables (4.1) – (4.4) for different values of the 

perturbation parameter , delay parameter  , advance parameter   and number of mesh points 

N. It can be observed from the Tables that the present method gives better results than some 

reported literatures. 

 

Kadalbajoo and Ramesh, (2007) states that, the accuracy of the problem increases by increasing 

the number of the nodal points. Thus, it can be observed from the Tables that, the maximum 

absolute errors decrease rapidly as N increases, which in turns shows the convergence of 

computed solution. Doolan et al, (1980); Kadalbajoo and Sharma, (2004) states that no good 

result for singularly perturbed boundary value problem when h   . But we get a good result for 

h  , Table (4.4).  

 

To demonstrate the effect of delay and advance parameters on the left and right boundary layer 

of the solution, the graphs for different values of delay parameter   and advance parameter   

are plotted in Figures (4.1) - (4.3); accordingly, depending on the sign of ( )p x  one can see that, 

from Figures (4.1) and (4.3) as   increases the width of the right boundary layer decreases for 

fixed value of   but, as   increases the width of the right boundary layer increases for fixed 

value of   while the width of the left boundary layer decreases when   or   increases Figure 

(4.2). Figures (4.4) – (4.6) shows as a mesh size h  decreases the errors goes to zero.  
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CHAPTER FIVE 

CONCLUSION AND SCOPE OF THE FUTURE WORK 

5.1. Conclusion 

This study is implemented on three model examples by taking different values of perturbation 

parameter, delay parameter and advance parameter, and the computational results are presented 

in the Tables and Figures. One can conclude that, the results observed from the Tables 

demonstrate that the present method approximate the solution very well. A numerical result 

presented in this thesis shows the betterment of the proposed method over some existing methods 

reported in the literature. Furthermore, the stability and convergence of the method is established 

well. The results presented (Table 4.5) confirmed that the computational rate of convergence as 

well as theoretical estimates indicates that the present method is of fourth order convergence.  

The effect of the delay and advance parameters on the solution of singularly perturbed 

differential-difference equation is showed by sketching graphs (Figures 4.1 – 4.3). Furthermore, 

as h  decreases the absolute error also deceases (see Tables (4.1) – (4.4) and Figures (4.4) – 

(4.6)).   

In general, the present method is stable, convergent and more accurate for solving singularly 

perturbed differential-difference equations.   

5.2. Scope of the Future Work  

In this thesis, the numerical method based on fitted finite difference method is introduced for 

solving singularly perturbed differential-difference equations. Hence, the scheme proposed in 

this thesis can also be extended to sixth order and higher order finite difference method for 

solving singularly perturbed differential-difference equations.   
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