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Abstract

In this thesis, fitted mesh finite element method has been presented for solving singu-

larly perturbed one dimensional reaction-diffusion equations. First, the given differen-

tial equation is transformed to it’s weak form and using shishkin mesh discretization

technique the given domain is discretized in to a finite number of mesh elements so that

piecewise linear base functions are defined depending on this discretization. Then the

approximate solution on each element is represented by taking the linear combination

of the base functions. Substitution of the approximate solution to the weak form and

applying Galerkin’s method resulted a system of algebraic equations over each element.

The obtained system of equations are then assembled to obtain the global system of

equation and reduced to a nonsingular tridiagonal matrix which can be easily solved by

inverse matrix method. To validate the applicability of the proposed method a model

example is considered and solved for different values of the perturbation parameter and

mesh elements. Numerical experiment is carried out to support the theoretical result

using MATLAB software. The results have been presented in tables interms of max-

imum absolute error and graphs. The present method is ε-uniform and approximates

the exact solution very well.

ix



Chapter 1

Introduction

1.1 Background of the study

Due to the difficulties in finding the exact solution or analytical solution of a

mathematical problems such as, the exact solution of differential equation, the root

of non-linear equation, the evaluation of integration involving complex expression and

etc, leads to the development of numerical analysis. Numerical analysis is a branch of

mathematics that provides tools and methods for solving mathematical problems in a

numerical form (Gautschi, 2011).

Many real life problems are modeled by a parameter dependent differential equa-

tions whose solution behavior depend on the magnitude of the parameter. A differential

equation in which the highest order derivative is multiplied by a small positive parame-

ter ε (0 < ε� 1) is called singularly perturbed differential equation and the parameter

is called the perturbation parameter. A second order singularly perturbed differential

equation is said to be of reaction-diffusion type, if the order of the differential equa-

tion is reduced by two when the perturbation parameter ε is set to zero. That is, a

differential equation of the form: −εu′′(x) + b(x)u(x) = f(x) 0 < x < 1, u(0)=α,
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u(1)=γ, where α, γ are constants, ε such that 0 < ε� 1 is the perturbation parameter,

f(x) and b(x) are sufficiently smooth functions on 0 ≤ x ≤ 1, is called a second order

singularly perturbed differential equation of reaction-diffusion type.

Singular perturbation problem (SPP) arises in the modeling of fluid dynamics, elas-

ticity, quantum mechanics, reaction-diffusion process, chemical-reactor theory, plasma

dynamics, meteorology, diffraction theory, aerodynamics, oceanography, modeling of

semi-conductor, hydrodynamics and many others allied areas (Feyisa and Gemechis,

2017).

The numerical solution of a singularly perturbed differential equation exhibit a

multi-scale character. That is there is(are) a thin layer(s) of the domain where the

solution changes rapidly or jumps suddenly forming a boundary layer(s), while away

from the layer(s) the solution behaves regularly or changes slowly in the outer region.

As a result such problems are called boundary layer problems (Gemechis and Reddy,

2013).

Due to this multi-scale character of the solution, classical numerical methods which

are effective in solving most mathematical problems perform badly when applied to

singular perturbation problems. Since the error estimate for these methods depend

explicitly on the derivatives of the solution and these derivatives are not bounded

as ε → 0 implies that such approximations are meaningless for singularly perturbed

differential equation (Russell, 2016). Moreover, numerical methods that work well for

non-singular perturbation problems generally breakdown and fail to give significant so-

lutions for small values of ε. Finite Element Method (FEM), Finite Difference Method

(FDM), Spline Approximation (SPA) and Finite Volume Methods (FVM) are some

of the classical numerical methods used to solve mathematical problems numerically

(Russell, 2016).

Earlier numerical solutions of singularly perturbed differential equations were ob-
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tained by using a standard finite difference operator on a uniform mesh. In this ap-

proach, as the perturbation parameter decreases in magnitude the mesh is refined

sufficiently to capture the boundary layer(s) or interior of the layer(s). Hence, even

for a problems in one dimension, such methods are inefficient and inaccurate. A nat-

ural question then arises: Is it possible to construct a numerical methods that behave

uniformly well for all values of the singular perturbation parameter ε, no matter how

small the parameter is? (Miller, 2012)

A parameter-uniform or ε− uniform numerical method is defined as follows.

Definition

Consider a family of mathematical problems parameterized by a singular perturbation

parameter ε, where ε lies in the semi-open interval 0 < ε ≤ 1. Assume that each prob-

lem in the family has a unique solution denoted by uε, and that each uε is approximated

by a sequence of numerical solutions {(Uε,Ω
N

)}, where Uε is defined on the mesh Ω
N

and N is a discretization parameter. Then, the numerical solutions Uε are said to be

converge ε-uniformly to the exact solution uε, if there exist a positive integer N0 and

positive numbers C and p, where N0, C and p are all independent of N and ε, such

that, for all N > N0,

sup0<ε≤1 ||Uε − uε||ΩNτ ≤ CN−p

Here p is called the ε-uniform rate of convergence and C is called the ε-uniform error

constant. (Miller, 2012)

In the construction of ε-uniform numerical methods two approaches generally can

be taken. The first of these involves replacing the standard finite difference operator

by a finite difference operator which reflects the singularly perturbed nature of the

differential operator. Such finite difference operators are referred to, in general, as fit-

ted operator finite difference method. In fitted operator method, exponentially fitting
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factor or artificial viscosity will be used to control the rapid growth or decay of the

numerical solution in the boundary layer.

The second successful approach, to the construction of ε-uniform numerical meth-

ods, involves the use of a mesh that is adapted to the singular perturbation. That is a

fitted mesh method uses a non uniform meshes, which is fine or dense in the boundary

layer regions and coarse outside the boundary layer (Miller, 2012) and it is the main

interest of this thesis.

A fitted mesh can be incorporated into both a finite difference and a finite ele-

ment method. The simplest form of fitted mesh is a piecewise uniform mesh with a

specially chosen transition points separating the coarse and fine meshes. These piece-

wise uniform fitted meshes were first introduced by Shishkin and the corresponding

numerical methods were further developed and shown to be ε-uniform in a series of

papers culminating in the book ”Grid approximation of singularly perturbed elliptic

and parabolic equations” (Miller, 2012). The first numerical results using a fitted mesh

method were presented by Shishkin (Miller, 2012). What distinguishes a Shishkin mesh

from any other piecewise uniform mesh is the choice of the so-called transition param-

eter(s), which are the point(s) at which the mesh size changes abruptly (Kopteva and

O’Riordan, 2010).

Hence for a singularly perturbed 1D reaction-diffusion equation having a bound-

ary layers at the end points of its interval, the mesh is constructed in such a way that

the boundary layer regions have more mesh points relative to the region outside the

boundary layers. To do this, two transition points are required and the mesh comprises

three uniform pieces or subintervals. Thus the simplest construction is, to choose a τ

satisfying 0 < τ ≤ 1
4
; and to locate the transition points at τ and 1−τ . Assuming that

N = 2r, with r ≥ 3 , the interval (0, τ) and (1 − τ, 1) are each divided into N
4

equal

mesh elements while the interval (τ, 1− τ) is divided in to N
2

equal mesh elements. If
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τ = 1
4

the mesh becomes uniform. Therefore, the transition parameter τ for this mesh

is defined as:

τ = min{1
4
, 2
√

ε
β

lnN}

The mesh length is also given by

hi = xi − xi−1 =



4τ
N
, 1, ..., N

4

2(1−τ)
N

, N
4

+ 1, ..., 3N
4

4τ
N
, 3N

4
+ 1, ..., N

The resulting piecewise uniform mesh, illustrated in figure below which is taken from

Miller et al.(2012), depends on just one parameter τ and is denoted by ΩN
τ

Figure 1.1: Dual layer Shishkin mesh on 8 mesh element

A variety of numerical methods are available in the literature of the numerical

solution of perturbation and singular perturbation problems of second order ordinary

differential equation (Nayfeh, 2011 and O’Malley, 1991) respectively. Many Scholars

outlined in the literature (Rao and Kumer, 2010; Fasika et al. 2016a, 2016b, 2017;

Kumar and Rao, 2010; Natesan et al., 2007 and Natesan and Bawa, 2007) have devel-

oped a numerical method of different order for the numerical solution of second order

singularly perturbed differential equation of reaction-diffusion type.

In this study, we have constructed fitted mesh finite element method for solving sec-

ond order singularly perturbed two point boundary value problem of reaction-diffusion
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type. The method involves dividing the domain of the solution in to a finite num-

ber of simple sub-domains, called elements and uses variational concepts to construct

an approximate solution over the collection of elements. Because of the generality and

reachness of the ideas underlying the method, it has been used with remarkable success

in solving a wide range of problems in virtually all areas of engineering and mathe-

matical physics. The main reason behind seeking approximate solution on a collection

of sub-domain is, the fact that it is easier to represent a complicated functions as a

collection of simple polynomials (Becker, 1981 and Reddy, 1993).

Analytical solutions are desirable because they are exact and numerical methods

are developed to solve mathematical problems numerically. We take numerical solu-

tion or approximate solution when it is not possible to obtain analytical solution of the

mathematical problem. However, as a mathematicians, we continue obtaining and de-

veloping numerical solutions to mathematical problems despite the analytical solution,

in order to compare the deviation of the numerical solution from the analytical solution

and after, to extend the numerical methods to more complex and larger mathematical

problems in which the analytical solution is not known . Thus the increasing desire for

the numerical solution to mathematical problems has become the present day scientific

research area.

For a singularly perturbed reaction-diffusion problems, most numerical methods

are not parameter-uniform (Russel, 2016). So developing a numerical method whose

convergence doesn’t depend on the perturbation parameter has a great importance

to the scientific research area. Owning to this, this study dealt with formulating a

parameter-uniform numerical method to find a numerical solution of a singularly per-

turbed 1D reaction-diffusion problems.

6



1.2 Objectives

1.2.1 General objective

The general objective of this study is to formulate Fitted Mesh Finite Element Method

for the numerical solution of singularly perturbed reaction-diffusion problems.

1.2.2 Specific objectives

The specific objectives of this study are:

* To construct Finite Element Method on shishkin mesh for the numerical solution

of singularly perturbed reaction-diffusion problems.

* To establish the parameter-uniform convergence of the present method.

1.3 Significance of the study

The result obtained from this study can:

* be used as a reference material for scholars who work on this area.

* help the graduate students to acquire research skills and scientific procedures.

* provide a numerical method for solving singularly perturbed reaction-diffusion

problems.
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1.4 Delimitation of the study

The study is delimited to solve a 1D reaction-diffusion equation of the form

−εu′′(x) + b(x)u(x) = f(x) 0 < x < 1 (1.1)

subjected to the boundary conditions

y(0) = α, y(1) = γ (1.2)

where α and γ are constants, ε such that 0 < ε � 1 is a perturbation parameter and

f(x) and b(x) are sufficiently smooth functions such that b(x) ≥ β > 0 for 0 ≤ x ≤ 1,

where β is a constants.

8



Chapter 2

Review of Related Literature

2.1 Singular Perturbation Theory

Lundwing Prandtl was the first to introduce the concept of boundary layer in 1904

at the Third International Congruence of Mathematics in Heidelberg Germany. His

hypothesis was in the setting of fluid dynamics, fluid adjacent to the boundary sticks

to the edge in a thin boundary layer due to friction but this friction has no effect to

the flow of the fluid on the interior (Russell, 2016).

The term singular perturbation appears to have been first coined by Frendricks and

Wasow in 1946 in their paper ”Singular Perturbation of Nonlinear Oscillation” (Fren-

dricks and Wasow, 1946). Wasow continued to contribute to the area of asymptotic

methods over many years and his book ”Asymptotic expansion for ordinary differen-

tial equation” (Wasow, 1965), attracted much interest in the area of singular perturbed

boundary value problems.

A brief survey for the historical development of perturbation and singular pertur-

bation problems is covered in a recent books by Nayfeh(2011) and O’Malley (1991)

respectively. More precisely, a perturbation problem is a problem that contain a small
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parameter ε, called perturbation parameter. If the solution of the problem can be ap-

proximated by setting the value of the perturbation parameter equals to zero, then the

problem is called regular perturbation problem, otherwise it is called singular perturba-

tion problem. That is, if it is impossible to approximate the solution by an asymptotic

expansion as the perturbation parameter tends to zero, then the problem is called sin-

gular.

Singular perturbed differential equation is a differential equation in which the

highest order derivative term is multiplied by a small positive parameter ε called per-

turbation parameter. Such problems arises in the modeling of fluid dynamics, chemical

reactor theory, nuclear reactor theory, reaction-diffusion process, meteorology, diffrac-

tion theory, semi-conductor devices and etc (Feyisa and Gemechis, 2017).

Whenever such problem arises in the modeling of materials, the material quantity

usually changes rapidly over a very narrow region of the independent variable(s) called

boundary layer(s) (Miller et al., 2012) implying that the problem depends on the per-

turbation parameter in such way that the solution varies rapidly in some part of the

domain and varies slowly in some other part of the domain. So if we apply the classical

numerical methods for solving such types of problems large oscillation may arises and

disrupt the solution in the entire interval due to the rapid change of the solution in a

very narrow region called boundary layer (Feyisa and Gemechis, 2017).

2.2 Singularly Perturbed Reaction-Diffusion Prob-

lems

Macmullen et al.(2001), constructed a parameter-uniform numerical method for

singularly perturbed reaction-diffusion problems. They shown that a suitably designed

discrete Schwartz method, based on standard finite difference operator with a uniform

10



mesh on each sub-domain gives a numerical approximation which converges in a max-

imum norm to the exact solution uniformly with respect to the singular perturbation

parameter ε.

By revising the existing spline collocation technique, Stojanovic (2002), introduced

a piecewise interpolating polynomials for the driving terms in the numerical solution

of the singularly perturbed reaction-diffusion 1D problems. They obtained an optimal

difference scheme which is second order accurate.

In order to solve a singularly perturbed reaction-diffusion Robin boundary-value

problems, Natesan and Bawa (2007), constructed a numerical method which involves

both the cubic spline and classical finite difference scheme that is a hybrid numerical

scheme. They applied on a piecewise uniform shishkin mesh and obtained almost a

second order convergent scheme.

Rao et al. (2008), presented an exponential B-spline collocation method, which is

a satisfactory ways of solving a self-adjoint singularly perturbed problems of reaction-

diffusion type with Dirichlet boundary conditions. They have shown that the method

is a second order uniform convergence.

Natesan et al. (2007), developed a numerical scheme which is a combination of the

cubic-spline and the classical central difference scheme by applying on an appropriate

piecewise uniform shishkin mesh. They have shown that the developed method is a

second order uniformly convergent at the mesh points. Finally they had constructed

the global solution using cubic splines which is uniformly convergent in the boundary

layer regions.

Kadalbajoo and Arora (2008) developed a B-spline collocation method using ar-

tificial viscosity for a class of singularly perturbed reaction-diffusion equations. They

used the artificial viscosity to capture the exponential features of the exact solution on

a uniform mesh and used the B-spline collection method,which leads to a tridiagonal
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linear system. The method is shown to be uniformly convergent of second order.

Clavero et al. (2009), considered the finite difference hybrid scheme constructed

by Natesan et al (2007), in order to obtain a uniformly convergent global solution and

uniformly convergent normalized flux for self-adjoint singularly perturbed boundary

value problems. The global solution is obtained from the numerical solution at the

mesh point of this scheme, having almost a second order uniform convergence at the

nodal point when it is constructed on a piecewise uniform shishkin mesh. They defined

the solution and the normalized flux on the entire domain, using a classical cubic spline

and proved that the uniform order of convergence of the global solution is the same as

that of the hybrid scheme at the mesh pints

Kumer and Rao (2010), proposed a high order parameter robust finite difference

method by discretizing the problem using a suitable combination of fourth order com-

pact finite difference scheme and central difference scheme on generalized shishkin

mesh. They have obtained almost fourth order uniform convergent method in a maxi-

mum norm.

In order to solve a singularly perturbed two point boundary value problems of

reaction-diffusion type with Dirichlet boundary conditions, Feyisa and Gemechis (2017)

developed an eight order numerical method based on finite difference scheme with uni-

form mesh. Again to solve a singularly perturbed differential equation with dual layer

behavior, Phaneendra et al. (2015), proposed an exponentially fitted arithmetic aver-

age difference scheme by introducing a fitting factor in a three point arithmetic average

discretization for the given problems and the fitting factor is obtained from the asymp-

totic approximation solution of singular perturbations.

To solve a second order singularly perturbed 1D reaction-diffusion problems with

Dirichlet boundary conditions, were proposed a fourth order (Fasika et al., 2016a), six

order (Fasika et al., 2017) and tenth order (Fasika et al., 2016b), compact finite differ-

12



ence methods. The methods are based on a finite difference scheme with uniform mesh.

They have developed the methods by replacing the derivatives of the given differential

equation by a finite difference approximations.

Rao et al. (2010) presented an exponential spline difference scheme based on spline

in tension on a piecewise uniform shishkin mesh for singularly perturbed Dirichlet

boundary value problem of reaction-diffusion type by using exponential spline identity

relation based on second derivative formulation and obtained a second order ε-uniform

convergence method. The method produces an exponential spline function which is

useful to obtain the solution at any point of the interval.

2.3 Finite Element Method

Finite element method and its generalization are the most powerful computer

oriented method ever devised to analyze practical application problems(Becker, 1981).

The method is a numerical method like a finite difference method, but it is more general

and powerful than any numerical methods (Reddy, 1993). In a finite element method

a given domain is viewed as a collection of sub-domains and over each sub-domain the

governing equation is approximated by any of the traditional variational methods, since

it is easy to represent a complicated functions as a collection of simple polynomials

(Becker, 1981 and Reddy, 1993).

2.4 Fitted Mesh Finite Element Method

The construction of ε-uniform numerical methods involves the use of a mesh that

is adapted to the singular perturbation. Such methods are called fitted mesh methods.

That is, a fitted mesh method uses non uniform meshes which is fine or dense in the

boundary layer regions and coarse outside the boundary regions. A fitted mesh can be

incorporated in to both a FDM and FEM. The simplest form of this mesh is a piece-

13



wise uniform mesh with specially chosen transition points separating the coarse and

fine meshes. These piecewise uniform fitted meshes was first introduced by Grigorii

Ivanovich Shishkin and the corresponding Numerical Methods were further developed

in a series of papers culminating in the book ”Grid approximation of singularly per-

turbed elliptic and parabolic equations” by Shishkin (Miller, 2012).

Hence for a singularly perturbed 1D reaction-diffusion equation having boundary

layers at the end points of its interval, the mesh is constructed in such a way that the

boundary layer regions have more mesh points relative to outside these regions. To do

this, two transition points are required and the mesh comprises three uniform pieces

or subintervals. Thus the simplest construction is, to choose a τ satisfying 0 < τ ≤ 1
4
;

and to locate the transition points at τ and 1− τ . Assuming that N = 2r, with r ≥ 3 ,

the interval (0, τ) and (1− τ, 1) are each divided into N
4

equal mesh elements while the

interval (τ, 1− τ) is divided in to N
2

equal mesh elements. If τ = 1
4

the mesh becomes

uniform. Therefore, the transition parameter τ for this mesh is defined as

τ = min{1

4
, 2

√
ε

β
lnN}

The mesh length is also given by

hi = xi − xi−1 =



4τ
N
, 1, ..., N

4

2(1−τ)
N

, N
4

+ 1, ..., 3N
4

4τ
N
, 3N

4
+ 1, ..., N

14



Chapter 3

Methodology

3.1 Study Site and Period

This study is conducted at Jimma University, College of Natural Science, Department

of Mathematics from September 2018 to June 2019.

3.2 Study Design

This study is applied both the documentation review and numerical experimentation

or mixed design

3.3 Source of Information

The relevant source of information for this study were books, published articles on

reputable journals and related study from Internet.
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3.4 Mathematical Procedure

In order to achieve the stated objectives, the study has followed the following mathe-

matical procedures.

1. Defining the problem.

2. Transferring the given differential equation to it’s weak form by using Galerkin

Variational Method.

3. Discretizing the solution domain/generating elements.

4. Constructing a set of linear base functions based on the elements.

5. Representing the approximate solution by a linear combination of the base func-

tions

6. Obtaining a system of equation on each elements.

7. Assembling the obtained system of equations in a tridiagonal form.

8. Writing a code for the obtained method by using MATLAB language.

9. Validating the scheme using numerical examples.

16



Chapter 4

Description of the Method, Result

and Discussion

4.1 Description of the Method

Consider the following singularly perturbed reaction-diffusion equation of the form:

−εu′′(x) + b(x)u(x) = f(x), 0 < x < 1 (4.1)

subjected to the boundary conditions

u(0) = α and u(1) = γ (4.2)

where 0 < ε� 1, α and γ are a given constants, f(x) and b(x) are sufficiently smooth

functions such that b(x) ≥ β > 0 for 0 ≤ x ≤ 1, where β is a constants.

Let H1
0 =The set of all functions whose order 1 or less is square integrable over Ω = [0, 1]

and vanishes at the end point of the domain.

That is, if v(x) ∈ H1
0 (0, 1), ∀x ∈ (0, 1).

17



Then

i .
∫ 1

0
(v′2 + v2) dx <∞

ii . v(0) = v(1) = 0.

Now multiplying both sides of eqn(4.1) by v(x) ∈ H1
0 , gives

−εu′′(x)v(x) + b(x)u(x)v(x) = f(x)v(x) (4.3)

Taking the integral of both sides of eqn(4.3), results

∫ 1

0

[−εu′′(x)v(x) + b(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx (4.4)

Applying integration by part on the first term of eqn(4.4), gives

−εu′(x)v(x)|10 +

∫ 1

0

εu′(x)v′(x) dx+

∫ 1

0

b(x)u(x)v(x) dx =

∫ 1

0

f(x)v(x) dx (4.5)

But −εu′(x)v(x)|10 = 0 since v(0) = v(1) = 0

Hence, it follows that

∫ 1

0

εu′(x)v′(x) dx+

∫ 1

0

b(x)u(x)v(x) dx =

∫ 1

0

f(x)v(x) dx (4.6)

⇒
∫ 1

0

[εu′(x)v′(x) + b(x)u(x)v(x)] dx =

∫ 1

0

f(x)v(x) dx (4.7)

Now we can rewrite eqn(4.7) as:

B(u, v) = L(v) (4.8)
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so that B(u, v) is a bilinear function in u and v and L(v) is a linear function in v.

Now eqn(4.8) is called weak form of of eqn(4.1).

Next, we discretized the domain as follows. Applying shishkin mesh discretization

technique we can choose a transition point τ such that, τ = min{1
4
, 2
√

ε
β

lnN}. Then

the whole domain is discretized in to three piecewise uniform sub-intervals of the form

(0, τ), (τ, 1 − τ) and (1 − τ, 1). The sub-intervals (0, τ) and (1 − τ, 1) are subdivided

into N
4

elements and the sub-interval (τ, 1− τ) is again subdivide into N
2

elements.

Now, let N be the number of mesh elements. Then we can define the mesh elements

as:

ΩN = {0 = x1 < x2 < x3 < ... < xN+1 = 1}

with hi = xi+1 − xi, where i = 1, 2, 3, ..., N

Depending on the above discretization, it is possible to construct a set of piecewise

linear basis function of the form:

φ1 =


x2−x
h1

if x1 < x < x2

0 otherwise

φi(x) =



x−xi−1

hi−1
if xi−1 < x < xi

xi+1−x
hi

if xi < x < xi+1 for i = 2, 3, 4, ..., N

0 otherwise

φN+1 =


x−xN
hN

if xN < x < xN+1

0 otherwise

which are often called the hat functions.
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Figure 4.1: Diagram of a mesh and hat basis functions. (Fig. from Zhilin et al. (2018))

Now let us consider a typical element Ωe in the finite element mesh with end points

se1 and se2. Thus our variational form over each element is of the form:

∫ se2

se1

[εue′(x)v′(x) + b(x)ue(x)v(x)] dx =

∫ se2

se1

f(x)v(x) dx (4.9)

Representing the approximate solution or the numerical solution by the linear combi-

nation of the basis function on each element,

ueN(x) =
Ne∑
j=1

cejφ
e
j(x) (4.10)

where the coefficients cej are unknowns to be determined, Ne is the number of nodes in

Ωe and φej(x)′s are the basis function for this element.

Differentiating eqn(4.10) gives

ue′N(x) =
Ne∑
j=1

cejφ
e′
j(x) (4.11)

Plugging the approximate solution eqn(4.10) and its derivative eqn(4.11) for the exact

solution in eqn(4.9), results

∫ se2

se1

[ε
Ne∑
j=1

cejφ
e′
j(x)v′(x) + b(x)

Ne∑
j=1

cejφ
e
j(x)v(x)] dx =

∫ se2

se1

f(x)v(x) dx (4.12)

20



Rearranging eqn(4.12) gives

∫ se2

se1

[
Ne∑
j=1

(εφe′j(x)v′(x) + b(x)φej(x)v(x)cej)] dx =

∫ se2

se1

f(x)v(x) dx (4.13)

Applying Galerkin method, we can choose v(x) = φi(x), for i = 1, 2 , where φi is

a piecewise linear base functions.

Thus

∫ se2

se1

Ne∑
j=1

(εφe′j(x)φe′i(x) + b(x)φej(x)φei (x)cej) dx =

∫ se2

se1

f(x)φei (x) dx (4.14)

⇒
Ne∑
j=1

[

∫ se2

se1

εφe′j(x)φe′i(x) + b(x)φej(x)φei (x)] dxcej =

∫ se2

se1

f(x)φei (x) dx (4.15)

We can rewrite eqn(4.15) as:

Ne∑
j=1

keijc
e
j = f ei for i = 1, 2 (4.16)

where

kij =

∫ se2

se1

εφe′j(x)φe′i(x) + b(x)φej(x)φei (x) dx called the stiffness matrix and

fi =

∫ se2

se1

f(x)φei (x) dx called the load vector.

Since our base functions are linear, each element has two nodes and therefore, we

have two equations per element of the following form.

ke11c
e
1 + ke12c

e
2 = f e1

ke21c
e
1 + ke22c

e
2 = f e2

(4.17)
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Here the subscripts 1 and 2 are labels of the endpoint nodes on a typical element Ωe.

These subscripts are to be relabeled upon assembling the elements so as to coincide

with appropriate nodes 1, 2, 3, ..., N + 1 in the final mesh.

We now assemble the equations describing the entire collection of elements com-

prising our mesh by sweeping through all elements, one at a time and using equa-

tions eqn(4.17) to calculate the contribution of each of them. Since our mesh contain

N elements and N + 1 nodes, we have N + 1 equations in N + 1 degree of free-

dom describing the assembled system of elements. Thus we anticipate calculating an

(N + 1)× (N + 1) stiffness matrix K = [Kij] and an (N + 1)× 1 load vector F = {Fi},

for i, j = 1, 2, 3, ..., N + 1

Thus for Ω1, between nodes 1 and 2, we have

k1
11c1 + k1

12c2 = f 1
1

k1
21c1 + k1

22c2 = f 1
2

(4.18)

Next, we proceed to the second element Ω2. It lies between nodes 2 and 3. Thus using

eqn(4.17), we have

k2
11c2 + k2

12c3 = f 2
1

k2
21c2 + k2

22c3 = f 2
2

(4.19)

Adding eqn(4.18) and eqn(4.19), gives

k1
11c1 + k1

12c2 = f 1
1

k1
21c1 + (k1

22 + k2
11)c2 + k2

12c3 = f 1
2 + f 2

1

k2
21c2 + k2

22c3 = f 2
2

(4.20)
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Similarly for the element Ω3, we have

k3
11c3 + k3

12c4 = f 3
1

k3
21c3 + k3

22c4 = f 3
2

(4.21)

Thus, the system becomes:

k1
11c1 + k1

12c2 = f 1
1

k1
21c1 + (k1

22 + k2
11)c2 + k2

12c3 = f 1
2 + f 2

1

k2
21c2 + (k2

22 + k3
11)c3 + k3

12c4 = f 2
2 + f 3

1

k3
21c3 + k3

22c4 = f 3
2

(4.22)

Continuing this process through the entire system of N elements, we arrive at:

k1
11c1 + k1

12c2 = f 1
1

k1
21c1 + (k1

22 + k2
11)c2 + k2

12c3 = f 1
2 + f 2

1

k2
21c2 + (k2

22 + k3
11)c3 + k3

12c4 = f 2
2 + f 3

1

k3
21c3 + (k3

22 + k4
11)c4 + k4

12c5 = f 3
2 + f 4

1

...

kN−1
21 cN−1 + (kN−1

22 + kN11)cN + kN12cN+1 = fN−1
2 + fN1

kN21cN + kN22cN+1 = fN2

(4.23)
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Then the linear system of equations for the entire mesh is of the form:



K11 K12 0 0 0 . . . 0 0 0

K21 K22 K23 0 0 . . . 0 0 0

0 K32 K33 K34 0 . . . 0 0 0

0 0 K43 K44 K45 . . . 0 0 0

...
...

...
...

... . . .
...

...
...

0 0 0 0 0 . . . KN,N−1 KN,N KN,N+1

0 0 0 0 0 . . . 0 KN+1,N KN+1,N+1





c1

c2

c3

c4

...

cN

cN+1



=



F1

F2

F3

F4

...

FN

FN+1


(4.24)

where

K11 =k1
11, K12 = k1

12

K21 =k1
21, K22 = k1

22 + k2
11, K23 = k2

12

...

KN,N−1 =kN−1
21 , KN,N = kN−1

22 + kN11, KN,N+1 = kN12

KN+1,N =kN21, KN+1,N+1 = kN22 and

F1 =f 1
1 ,

F2 =f 1
2 + f 2

1 ,

F3 =f 2
2 + f 3

1 ,

F4 =f 3
2 + f 4

1 ,

...,

FN =fN−1
2 + fN1 ,

FN+1 =fN2
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Now applying the given Dirichlet boundary conditions gives, uN(0) = α and uN(1) = γ

so that N − 1 unknown nodal values c2, c3, c4,..., cN remain. Then eqn(4.24) reduces

to the N − 1×N − 1 system of equation of the following type.



K22 K23 0 0 . . . 0 0

K32 K33 K34 0 . . . 0 0

0 K43 K44 K45 . . . 0 0

...
...

...
...

... . . .
...

0 0 0 0 . . . KN,N−1 KN,N





c2

c3

c4

...

cN


=



F2 −K21α

F3

F4

...

FN −KN,N+1γ


(4.25)

and the two auxiliary equation corresponding to nodes 1 and N + 1 are:

K11α +K12c2 = F1

KN+1,NcN +KN+1,N+1γ = FN+1

(4.26)

The reduced stiffness matrix in eqn(4.25) is nonsingular, so that it can be solved for

the unknown nodal values c2, c3, c4,..., cN .

4.2 Convergence Analysis of the Scheme

Here, we consider the reaction-diffusion problem in eqn(4.1) with the homogeneous

form of the boundary condition in eqn(4.2). The differential operator for this problem

is given by: Lε = −ε d2

dx2
+ b and it satisfies the following maximum principle.

Lemma 1: Maximum Principle. Assume that ψ(0) ≥ 0 and ψ(1) ≥ 0.

Then, Lεψ(x) ≥ 0, for all x ∈ Ω, implies that ψ(x) ≥ 0,for all x ∈ Ω.

Proof.

Let ψ ∈ C2(Ω) and x∗ be such that ψ(x∗) = minΩ ψ(x). Suppose that ψ(x∗) < 0. It is

clear that x∗ /∈ {0, 1} ⇒ ψ′(x∗) = 0 and ψ′′(x∗) ≥ 0 from elementary calculus.
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consequently,

Lεψ(x∗) = −εψ′′(x∗) + b(x)ψ(x∗) < 0 which is false.

Therefore, it follows that ψ(x∗) ≥ 0 and ψ(x) ≥ 0, for all x ∈ Ω.

The following lemma gives a bound on the solutions of eqn(4.1) with the boundary

condition eqn(4.2) and it’s derivatives.

Lemma 2 Let Ω be the interval (0,1) and u ∈ C2(Ω) be the solution of the problem

in eqn(4.1) with the boundary conditions eqn(4.2). Then for 0 ≤ k ≤ 4, the following

holds.

||uk(x)|| ≤ C(1 + ε−
k
2 )

Proof: We handle the first case when k = 0. Consider the following functions:

ψ±(x) =
1

β
||f ||+ max{|u0|, |u1|} ± u(x)

when x = 0, we have

ψ±(0) =
1

β
||f ||+ max{|u0|, |u1|} ± u(0)

≥ 1

β
||f ||, since max{|u0|, |u1|} ≥ u(0)

≥ 0

Similarly

ψ±(1) =
1

β
||f ||+ max{|u0|, ||u1|} ± u(1)

≥ 1

β
||f ||, since max{|u0|, |u1|} ≥ u(1)

≥ 0
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Now

Lεψ
±(x) = −ε(ψ±(x))′′ + b(x)ψ±(x)

= ∓(εu′′(x)) +
b

β
||f ||+ bmax{|u0|, |u1|} ± bu(x).

= ±f(x) +
b

β
||f ||+ bmax{|u0|, |u1|}

≥ bmax{|u0|, |u1|}, since
b

β
||f || ≥ f(x)

≥ 0

Applying the maximum principle, it follows that ψ±(x) ≥ 0, for all x ∈ Ω.

Therefore:

|u(x)| ≤ 1

β
||f ||+ max{|u0|, |u1|}, for all x ∈ Ω.

We now handle the case when k = 1. Let x ∈ Ω and construct an associated neighbor-

hood Nx = (p, p+
√
ε), such that x ∈ Nx and Nx ⊂ Ω.

Then by mean value theorem, for some q ∈ Nx,

u′(q) =
u(p+

√
ε)− u(p)√
ε

|u′(q)| = |u(p+
√
ε)− u(p)|√
ε

≤ 1√
ε
{|u(p+

√
ε)|+ |u(p)|}

≤ 1√
ε
{||u||+ ||u||}

≤ 2√
ε
||u||

which can be rewritten as

|u′(q)| ≤ 2ε
−1
2 ||u|| ≤ Cε

−1
2
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but ∫ x

p

u′′(z)dz = u′(x)− u′(p)

u′(x) = u′(p) +

∫ x

p

u′′(z)dz

= u′(p) +

∫ x

p

(
bu(x)− f

ε
)(z)dz

hence,

|u′(x)| ≤ 2√
ε
||u||+ |

∫ x

p

(
bu(x)− f

ε
)(z)dz|

|u′(x)| ≤ 2√
ε
||u||+ |(bu(x)− f

ε
)(ξ)|

∫ x

p

dz, ξ ∈ (p, x)

≤ 2√
ε
||u||+ 1

ε
(||b||||u||+ ||f ||)

√
ε

≤ 2√
ε
||u||+ 1√

ε
(||b||||u||+ ||f ||)

≤ 1√
ε

(2||u||+ ||b||||u||+ ||f ||) = Cε
−1
2

Therefore,

|u′(x)| ≤ C(1 + ε
−1
2 )

The bounds on |u(k)| for = 2, 3, 4 is obtained from the differential equation and the

bounds on u, u′.

In the proof of error estimates, sharper bounds on the solution and its derivatives are

required. To find these, the solution u is decomposed in to a regular component v and

a singular component w as follows.

u = v + w
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Here let v = v0 +εv1, where v0 is the solution of the reduced problem, w is the solution

of the homogeneous problem

Lεw = 0, w(0) = u0 − v0(0), w(1) = u1 − v0(1)

consequently, v1 satisfies the following.

Lεv1 = v′′0 , v1(0) = 0, v1 = 0

since,

v1 = ε−1(v − v0) = ε−1(u− w − v0)

implies

Lεv1 = ε−1(Lεu− Lεw − Lεv0)

= ε−1(Lεu− Lεv0)

= ε−1(f − Lεv0)

= ε−1(f − (−εv′′0 + bv0))

= ε−1(εv′′0 + (f − bv0)) = v′′0

hence,

Lεv1 = v′′0
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Now

v1 = ε−1(u− v0 − w)

v1(x) = ε−1(u(x)− v0(x)− w(x))

v1(0) = ε−1(u(0)− v0(0)− w(0))

= ε−1((u(0)− v0(0))− w(0))

= 0

Similarly,

v1(1) = ε−1(u(1)− v0(1)− w(1))

v1(1) = ε−1(u(1)− v0(1)− w(1))

= ε−1((u(1)− v0(1))− w(1))

= 0

Thus, because of the bound on v′′0 , v1 is the solution of a problem similar to eqn(4.1).

This implies that, for 0 ≤ k ≤ 4,

|v(k)
1 (x)| ≤ C(1 + ε

−k
2 )

The singular component w of the solution is also bounded as shown below. Decompose

the singular component into left layer and right layer as:

w = wL + wR
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where the boundary layer functions, wL and wR are defined as the solution of the

problems.

LεwL = 0, wL(0) = w(0), wL(1) = 0

LεwR = 0, wR(0) = 0, wR(1) = w(1)

Now define the functions,

ψ±(x) = Ce−x
√

β
ε ± wL(x)

where the constant C is chosen sufficiently large that the inequalities ψ±(0) ≥ 0,

ψ±(1) ≥ 0 holds.

Thus,

Lεψ
±(x) = −ε(ψ±(x))′′ + b(x)ψ±(x)

= −ε[Cβ
ε
e−x
√

β
ε ± w′′L(x)] + b(x)[Ce−x

√
β
ε ± wL(x)]

= (b(x)− β)Ce−x
√

β
ε ± (−εw′′L(x) + b(x)wL(x))

= (b(x)− β)Ce−x
√

β
ε ≥ 0

≥ 0

which gives, ψ±(x) ≥ 0 by maximum principle.

So, it follows that

|wL(x)| ≤ Ce−x
√

β
ε , for all, x ∈ Ω

Using similar procedure for the right boundary layer, gives

|wR(x)| ≤ Ce−(1−x)
√

β
ε , for all, x ∈ Ω
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which implies that the boundary layer solution is bounded. To bound the first deriva-

tive w′L, we use the same technique as in the proof of lemma 2. For each x ∈ Nx =

(y, y +
√
ε), such that |w′L(y)| ≤ 2ε

−1
2 ||wL||Nx

Hence,

w′L(x) = w′L(y) +

∫ x

y

w′′L(m)dm

= w′L(y) + ε−1

∫ x

y

(−bwL)(m)dm

|w′L(x)| ≤ ||w′L(y)||Nx + ε−1||bwL||Nx
∫ x

y

dm

≤ 2ε
−1
2 ||wL||Nx + ε

−1
2 ||bwL||Nx

≤ Cε
−1
2 ||wL||Nx

but ||wL||Nx = supx∈Nx |wL(x)| ≤ Ce−y
√

β
ε , because wL is monotonically decreasing.

||wL||Nx ≤ Ce−y
√

β
ε = Ce(x−y)

√
β
ε e−x
√

β
ε

= Ce
√
ε√
ε

√
β
e−x
√

β
ε , since x− y ≤

√
ε

= Ce−x
√

β
ε

Therefore,

|w′L(x)| ≤ Cε
−1
2 e−x

√
β
ε

Lemma 3 The solution u of eqn(4.1) with the boundary conditions eqn(4.2) has the

form

u = v + wL + wR

where, for 0 ≤ k ≤ 4, the regular component, v satisfies,

|v(k)(x)| ≤ C(1 + ε
−(k−2)

2 ), for all x ∈ Ω
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and the singular components wL and wR satisfy,

|wkL(x)| ≤ Cε
−k
2 e−x

√
β
ε , for all , x ∈ Ω

|wkR(x)| ≤ Cε
−k
2 e−(1−x)

√
β
ε , for all , x ∈ Ω

Proof: Noting that v = v0 + εv1, from the above lemma, we have

|vk0(x)| ≤ C

|vk1(x)| ≤ C(1 + ε
−k
2 ), for all, x ∈ Ω

so that the regular component v satisfies,

|vk(x)| ≤ C(1 + ε
−(k−2)

2 ), for all, x ∈ Ω

The bounds on wL and wR is also given by the above lemma. To obtain the bounds

for higher derivatives we simply differentiate it as follows.

|wL(x)| ≤ Ce−x
√

β
ε

|w′L(x)| ≤ Cε
−1
2 e−x

√
β
ε

|w′′L(x)| ≤ Cε−1e−x
√

β
ε

and so does for k = 3, 4

The same procedure is used for right side singular component as follows.

|wR(x)| ≤ Ce−(1−x)
√

β
ε

|w′R(x)| ≤ Cε
−1
2 e−(1−x)

√
β
ε

|w′′R(x)| ≤ Cε−1e−x
√

β
ε
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and so does for k = 3, 4

The next theorem gives an ε-uniform estimates of u− u in the maximum norm, where

u is the numerical solution of the problem eqn(4.1) with the homogeneous form of the

boundary condition eqn(4.2).

Theorem let u be the numerical solution of the problem in eqn(4.1) on the fitted mesh

ΩN
τ . Then

sup
0<ε≤1

||u− u||
Ω
N ≤ CN−2(lnN)2

where C is a constant independent of ε.

Proof:

The estimate is obtained separately on each element Ωi = (xi−1, xi). Note that for any

function g on Ωi, g = gi−1ϕi−1 + giϕi, so that on Ωi we have

|g(x)| ≤ max
Ωi
|g(x)|

by appropriate Taylor expansion we have

|g(x)− g(x)| ≤ Ch2
i max

Ωi
|g′′(x)| (4.27)

From eqn(4.27) and lemma 2, on Ωi

|u(x)− u(x)| ≤ Ch2
i max

Ωi
|u′′(x)|

≤ Ch2
i

(
1 + ε−1

)
≤ Ch2

i

ε

(4.28)
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Also, using lemma 3, it follows that

|u(x)− u(x)| = |v(x) + wR(x) + wL(x)− v(x)− wR(x)− wL(x)|

≤ |v(x)− v(x)|+ |wL(x)− wL(x)|+ |wR(x)− wR(x)|

≤ Ch2
i max

Ωi
|v′′(x)|+ 2 max

Ωi
|wL(x)|+ 2 max

Ωi
|wR(x)|

≤ C
[
h2
i + e−x

√
β
ε + e−(1−x)

√
β
ε

]

|u(x)− u(x)| ≤ C
[
h2
i + e−x

√
β
ε + e−(1−x)

√
β
ε

]
(4.29)

Now, the argument depends on the layer resolving parameter τ = min{1
4
, 2
√

ε
β

lnN}.

That is, whether τ = 1
4

or τ = 2
√

ε
β

lnN ,

In the first case, we have 1
4
≤ 2
√

ε
β

lnN which implies 1
ε
≤ C

β
(lnN)2.

Here since the mesh is uniform, we have hi = N−1 implying that h2
i = N−2

Thus using eqn(4.28), it follows that

|u(x)− u(x)| ≤ Ch2
i

ε
≤ CN−2(lnN)2

In the second case, we have 1
4
≥ 2
√

ε
β

lnN , which implies 1
ε
≥ C

β
(lnN)2.

And we consider the cases for the layer regions and the outer layer region.

Case 1: For the layer regions

That is, if 1 ≤ i ≤ N
4

and 3N
4

+ 1 ≤ i ≤ N , then

hi =
4τ

N
= 4N−1

√
ε

β
(lnN) Hence,

h2
i

ε
= CN−2(lnN)2

Now using eqn(4.28), it follows that

|u(x)− u(x)| ≤ CN−2(lnN)2
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Case 2: For the outer layer region

If i satisfies N
4

+ 1 ≤ i ≤ 3N
4

, then τ ≤ 1− xi, so that

e−(1−xi)
√

β
ε ≤ N−2

Similarly

e−xi
√

β
ε ≤ N−2, since τ ≤ xi

Which implies that

|u(x)− u(x)| ≤ C
[
h2
i + e−xi

√
β
ε + e−(1−xi)

√
β
ε

]
≤ CN−2

Then combining the outer layer , left layer and right layer bounds, eqn(4.29) becomes

|u(x)− u(x)| ≤ CN−2 + CN−2(lnN)2 + CN−2(lnN)2 ≤ CN−2(lnN)2

Therefore,

sup
0<ε≤1

||u− u||
Ω
N ≤ CN−2(lnN)2
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4.3 Numerical Example

To confirm the established theoretical results in this study, we have performed an

experiment using the proposed numerical scheme on the problem of the form given in

eqn(4.1) - eqn(4.2)

Example : Consider the singularly perturbed problem.

−εu′′(x) + u(x) = 1 + 2
√
ε
[
e

(−x√
ε

)
+ e

(x−1√
ε

)
]

subjected to the boundary conditions

u(0) = 0, u(1) = 0

its exact solution is given by

u(x) = 1− xe(x−1√
ε

) − (1− x)e
(−x√

ε
)

The numerical solution for the given example is expressed interms of maximum abso-

lute error and it is obtained by:

EN = max
1≤i≤N

|uNi − uNi |

Similarlly, the ε-uniform error estimate is obtained by:

EN
ε = sup

0<ε<<1
|EN |
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Table 4.1: Maximum absolute error EN for different values of ε and N using uniform mesh.
ε N=16 N=32 N=64 N=128 N=256 N=512 N=1024

2−2 9.425e-04 2.353e-04 5.879e-05 1.470e-05 3.674e-06 9.185e-07 2.296e-07
2−4 2.240e-03 5.576e-04 1.393e-04 3.480e-05 8.700e-06 2.175e-06 5.438e-07
2−8 2.015e-02 4.664e-03 1.145e-03 2.848e-04 7.113e-05 1.778e-05 4.446e-06
2−12 1.583e-01 6.638e-02 1.770e-02 4.107e-03 1.009e-03 2.511e-04 6.271e-05
2−16 2.593e-01 2.299e-01 1.538e-01 6.425e-02 1.708e-02 3.968e-03 9.749e-04
2−20 2.678e-01 2.658e-01 2.578e-01 2.285e-01 1.526e-01 6.372e-02 1.693e-02
2−25 2.680e-01 2.680e-01 2.677e-01 2.667e-01 2.627e-01 2.471e-01 1.962e-01

EN 2.680e-01 2.680e-01 2.677e-01 2.667e-01 2.627e-01 2.471e-01 1.962e-01

Table 4.2: Maximum absolute error EN for different values of ε and N using shishkin mesh.
ε N=16 N=32 N=64 N=128 N=256 N=512 N=1024

2−2 9.425e-04 2.353e-04 5.879e-05 1.470e-05 3.674e-06 9.185e-07 2.296e-07
2−4 2.240e-03 5.576e-04 1.393e-04 3.480e-05 8.700e-06 2.175e-06 5.438e-07
2−8 2.015e-02 4.664e-03 1.145e-03 2.848e-04 7.113e-05 1.778e-05 4.446e-06
2−12 1.925e-02 6.759e-03 3.375e-03 8.311e-04 2.712e-04 8.576e-05 2.647e-05
2−16 1.859e-02 6.540e-03 3.259e-03 8.028e-04 2.621e-04 8.289e-05 2.558e-05
2−20 1.842e-02 6.486e-03 3.230e-03 7.957e-04 2.599e-04 8.218e-05 2.725e-05
2−25 1.838e-02 6.471e-03 3.222e-03 7.937e-04 2.592e-04 8.198e-05 2.923e-05

EN 2.015e-02 6.759e-03 3.375e-03 8.311e-04 2.712e-04 8.576e-05 2.923e-05

The computed rate of convergence of the developed scheme is obtained by:

RN =
logEN − logE2N

log 2

and the ε-uniform rate of convergence of the developed scheme is obtained by:

RN
ε =

logEN
ε − logεE

2N

log 2

The following table shows the rate of convergence of the present methods for different

values of the mesh element.
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Table 4.3: A Rate of convergence for the developed scheme
ε N=16 N=32 N=64 N=128 N=256 N=512

2−2 2.0020 2.0009 1.9998 2.0004 2.0000 2.0002
2−4 2.0062 2.0010 2.0010 2.0000 2.0000 1.9999
2−8 2.1111 2.0262 2.0073 2.0014 2.0002 1.9997
2−12 1.5100 1.0019 2.0218 1.6157 1.6610 1.6959
2−16 1.5072 1.0049 2.0213 1.6149 1.6608 1.6962
2−20 1.5059 1.0058 2.0212 1.6143 1.6611 1.5925
2−25 1.5061 1.0060 2.0213 1.6145 1.6607 1.4878

RN
ε 1.5759 1.0019 2.0218 1.6157 1.6610 1.5529

(a) (b)

Figure 4.2: The graph of maximum absolute error versus the number of mesh for a uniform
mesh on a and shishkin mesh on b respectively using log-log scale plot.
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(a) (b)

Figure 4.3: Computed solution of example 1 when ε = 2−20, N = 64, using uniform mesh
on (a) and shishkin mesh in (b).

(a) (b)

(c) (d)

Figure 4.4: Computed solution of example 1 when N = 256 and ε = 1, 2−8, 2−16 and 2−25

respectively.
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4.4 Discussion

In this thesis, fitted mesh finite element method is presented for solving singularly

perturbed one dimensional reaction-diffusion problems. First the given differential

equation is transformed to it’s weak form and the given domain is discretized in to a

mesh elements. By defining a linear base functions, the approximate solution is repre-

sented by a linear combination of the base functions and obtained a system of equation

on each element by using Galerkin’s method which is assembled to obtain system of

algebraic equation. The numerical results is presented in tables for different values of

the perturbation parameter ε and different number of mesh elements N .

Table (4.1) and (4.2) indicates the maximum absolute error for the numerical so-

lution of the present method for the given model problem using uniform and shishkin

mesh respectively. As it can be observed from these tables, the present method with

uniform meshes is not convergent because as the perturbation parameter varies the

maximum absolute error also vary so that the method is dependent on the perturba-

tion parameter. Hence, in order to overcome this, we have applied shishkin mesh so

that the mesh is constructed in such way that the boundary layer regions contains more

mesh elements that enables us to capture the layer regions. As a result, the maximum

absolute error is shown to be independent of the effect of the perturbation parameter

ε implying that the method is ε-uniform or uniformly convergent. The result from

the two tables also indicate that, computed result using shishkin mesh shows greater

agreement with the exact solution. Moreover as the mesh number increases the maxi-

mum absolute error decreases along a row which shows the convergence of the present

method.

Figure (4.2) indicates the graph of maximum absolute error versus the number of

meshes for a uniform mesh and shishkin mesh respectively using log log plot. As it can
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be observed from graph (a), whenever the perturbation parameter decreases the graphs

diverges implying that the method is not convergent and the ε-uniform convergence

of the method also deteriorate due to the fact that the layers are not resolved. But

from (b), it can be observed that, as the perturbation parameter decreases the graphs

converges uniformly implying that ε-uniform converges of the method is not deterio-

rated so that the layers are resolved. Figure (4.3) indicates the computed solution with

uniform mesh oscillates in the boundary layer regions. To control this disturbances, we

have used shishkin mesh discretization technique and the results are far better than us-

ing uniform mesh. It is also possible to deduce from figure (4.4) that applying shishkin

mesh discretization technique resolves the oscillation of the numerical solution in the

boundary layers as the perturbation decreases.

Table (4.3) indicates that the the rate of convergence for the present method is

almost second order which is in agreement with the theoretical expectation.
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Chapter 5

Conclusion and Scope of the Future

work

5.1 Conclusion

In this thesis, fitted mesh finite element method is presented for solving singularly

perturbed reaction-diffusion equation. The scheme is shown to be ε-uniform theoret-

ically. The study is implemented on a model example by taking different values for

the perturbation parameter ε and the computational results are presented in a tables

and graphs. The obtained result indicates that the present method is ε-uniform and

approximate the exact solution very well in agreement with the theoretical result. The

result from the rate of convergence indicate the method is almost second-order which

is the theoretical expectation.
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5.2 Scope of the Future work

In the present thesis, the numerical methods based on fitted mesh finite element

method using linear basis functions is constructed for solving singularly perturbed

reaction-diffusion problems. The scheme proposed in this thesis can also be extended to

quadratic basis functions for solving singularly perturbed reaction-diffusion problems.
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