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Abstracts 

This research dealt with some fixed point results of almost (�, ψ) contractions involving rational 

expressions in the framework of metric spaces endowed with a partial order by extending the 

works of S. Chandok et.al. [8]. Our results extend and improves the results of S. Chandok et.al. 

[8]. The researcher followed analytical design in this research work. Secondary source of data 

such as journal articles and books which are found in different libraries and internet were used 

for the study. The procedures employed for the analysis of this study were techniques used by 

S.Chandok et.al. [8] We provided examples in support of our main findings. This study was 

conducted from October 2014 to June 2015.  

 

Keywords: Partially ordered metric space, fixed point, Rational type contraction, Altering 

distance function, Almost (�, ψ) contraction, partially ordered set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Unit one 

1.  Introduction 

1.1 Background of the study 

  Let � be a nonempty set. A map  �: � ⟶ � is said to a self-map of �. An element � in � is called a 

fixed point of �  if �� = �. Let � be the set of all real numbers then the fixed points of �: � ⟶ � 

defined by �� = �� − 3� + 3 are 1 and 3. 

Let (�, �) be a metric space.  A self-map �: � ⟶ �  is said to be a contraction if there is a real number 

�  ��  [0,1) such that: 

                        �(��, ��) ≤ ��(�, �)  for all �, � in  �.                                                                      (1)  

            In this case � is called a contraction constant.  

A theory of fixed point is one of the most powerful and popular tools of modern mathematics. Its 

use is not only confined to pure and applied mathematics but also it serves as a bridge between 

analysis and topology besides facilitating a very fruit full area of interaction between analysis 

and topology and also to examine the quantitative problems involving certain mappings and 

space structures required in various areas such as:  economics, chemistry, biology, computer 

science, engineering, and others. For more details one can refer [5, 6, 8, 15]. 

The first most significant result of metric fixed point theory was given by the Polish      

mathematician Stefan Banach, in 1922, which is known as Banach contraction principle. The 

famous Banach contraction principle [5] states that if  (�, �) is a complete metric space and   a 

self map �: � ⟶ � is a contraction, then � has a unique fixed point   � in  �. Banach contraction 

principle is one of the cornerstones in the development of nonlinear analysis. [1,5]. 

   There are a number of extensions and generalizations of Banach contraction principle by many 

researchers who have obtained fixed point and common fixed point results in metric spaces, 

cone-metric spaces, partially ordered metric spaces and others spaces. [1 − 18].  

 In 1968, Kannan [19]  introduced a different contraction condition where the map  �: � ⟶ �   

considered need not be continuous. 

Theorem 1.1(Kannan, 1968) [19] Let(�, �) be a complete metric space and T be a self- map of 

on �. .Suppose there exists � ∈ [0,
�

�
 ) such that 

               �(��, ��) ≤ �[�(�, ��) + �(�, ��)] for all �, � �� �,                                       (2) 
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then � has a unique fixed point. 

In 1972, Chatterjea [12]  gave the dual of Kannan fixed point theorem as follows: 

Theorem 1.2 (Chatterjea, 1972) [12] Let (�, �) be a complete metric space and � be a self- 

map on  �. Suppose there exists � ∈ [0,
�

�
 ) such that 

                     �(��, ��) ≤ �[�(�, ��) + �(�, ��)] for all �, � ∈ �.                                     (3) 

 Then � has a unique fixed point. 

 In 1977, Rhoades [28] showed that Banach contraction principle, Kannan.R mapping and 

Chateerijea are independent.  

In 1972, Zamfirescu [33] proved the following fixed point theorem by combining (1), (2) and 

(3) as follows. 

 Theorem 1.3 (Zamfirescu, 1972)[33] Let (�, �) be a complete metric space and �   be a self -

map of �  for which there exist real numbers �, � ��� � satisfying 0 ≤ � < 1, 0 ≤ �, � <
�

�
  such 

that for each pair �, � ∈  � at least one of the following holds: 

                                                (��)  �(��, ��) ≤ ��(�, �) ,  

                                           (��) �(��, ��) ≤ �[�(�, ��) + �(�, ��)]  ,                                   (4) 

                                            ��)  �(��, ��) ≤ �[�(�, ��) + �(�, ��)]   

 then � has a unique fixed point. Therefore Zamfirescu’s theorem [33] is a unification of 

(��)  Banach’s theorem, (��) Kannan’s theorem [19] and (��)   Chatterjea’s theorem [12]. 

Notation: Throughout this paper we denote ℝ � = [0, ∞) (The set of non- negative real  

                 numbers) 

  In [1] weakly contraction mapping is defined as follows: 

Definition 1.4 [1] Let (�, �) be a metric space. A mapping �: � →  � is said to be weakly 

contraction if �(��, ��)  ≤  �(�, �) − �  (�(�, �)), for all �, � ∈  �, where � : ℝ �  → ℝ ,�    is a 

continuous and non-decreasing function with �  (�)  =  0 if and only if  � =  0.                         (5) 

In 1997, Alber and Guerre-Delbariere [1] introduced the concept of weakly contractive maps in a 

complete Hilbert spaces as a generalization of contractive maps and proved that any weakly 

contractive mapping defined on complete Hilbert spaces has a unique fixed point. Rhoades [29] 

extended this concept to the Banach spaces and proved the existence of fixed points of weakly 

contractive maps in the setting of metric space.    
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 One of the generalizations of Banach contraction principle is through the method of altering 

distances between the points with the help of a continuous control function. In 1977 Delbosco 

[14] and Skof [31] initiated the technique of altering distances between the points to establish 

the existence of fixed points simultaneously. The method of altering distances became famous by 

khan, Swaleh and Sessa[20]. Some works in this line of research can be referred in [14,20] and 

reference there in. 

In 2004, Berinde [7] introduced weak contraction maps which are named as almost contractions 

as a generalization of contraction maps and proved fixed point results in complete metric spaces.  

  Definition 1.5: Berinde, 2004 [7] Let (�, �) be a metric space then a map �: � ⟶ � is called 

almost contraction or (�, �) contraction if there exist a constant � ∈  (0, 1) and a constant � ≥ 0 

such that:  

                          �(��, ��) ≤ ��(�, �) + ��(�, ��)   for all �, � ∈  �.                                (6) 

So almost contraction form is a class of generalized contractions that includes several contractive 

mappings like usual contraction, kanan mappings, Zamfirescu mappings etc. For more works on 

almost contraction refer [4,7,22,23]. 

Since the early days of metric fixed point theory, numerous authors attempted to vary the 

contraction conditions by improving the existing contraction conditions and replacing with 

various types of the general conditions. 

For example in 1975, B.K. Dass & S. Gupta [13] extended Banach’s contraction principle 

through rational expression as follows:   

 Theorem 1.6: (Dass and Gupta [13]) Let(�, �) be a complete metric space and �: � ⟶ �  a 

mapping such that there exist �, � ≥ 0 with � + � < 1 satisfying the contraction condition: 

                    �(��, ��) ≤ � �
�(�,��)[�� �(�,��)]

�� �(�,�)
� + ��(�, �)                                                    (7) 

for all �, � ∈ �, Then T has a unique fixed point.  

Since the notion of metric spaces was introduced in 1906 by Maurice Frechet several authors 

worked in metric spaces endowed with partial order. 
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Ran and Reurings [27] extended the Banach contraction principle in partially ordered sets with 

some applications to linear and nonlinear matrix equations. While Nieto and Rodriguez-Lopez 

[25] extended the result of Ran and Reurings [27] and applied their main theorems to obtain a 

unique solution for a first order ordinary differential equation with periodic boundary conditions, 

Hence the Banach’s contraction mapping principle is the most versatile elementary results of 

mathematical analysis which is widely applied in different branches of mathematics and it is 

regarded as the source of metric fixed point theory [1 − 18].  

In 2012, Chandok S. and Kim J.K. [9] proved the following fixed point theorem.  

 Theorem 1.7: (Chandok S. and Kim J.K. [9] ) Let (�, ≼ )  be a partially ordered set and suppose 

that there exist a metric �  on � such that (�, �) is a complete metric space. Suppose that � is a 

continuous self- mapping on �, � is monotone non-decreasing mapping and 

              �(��, ��) ≤ � �
�(�,��)�(�,��)

�(�,�)� �(�,��)� �(�,��)
�+��(�, �) for all �, � ∈ �,                           (8) 

with  � ≽ �  and for some �, � ∈  [0,1) with � + � < 1, if there exists �∘ ∈ � with �∘ ≼ ��∘, 

then �  has a fixed point. 

In 2013 M.Arshad et al. [3] proved some unique fixed point theorems for rational type 

contractions in partially ordered metric spaces and in the year 2013 S. Chandok et al. [10] 

proved some common fixed point results in partially ordered metric paces for generalized 

rational type contraction mappings using auxiliary functions. So the rational type contractions 

have been improved by many researchers in various ways. 

In 2015 S. Chandok et.al [8] proved fixed point result in partially ordered metric spaces with 

rational type contraction using some auxiliary functions. So the researcher motivated to extend 

and improves this work. 

 The purpose of this study was to prove the existence of fixed point results of almost(�, �) 

contractions involving rational expressions in partially ordered metric spaces by extending the 

work`s of S. Chandok et al. [8].  We provided illustrative examples which support the results of 

the study. 
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     1.2 Statements of the Problems 

In this study the researcher concentrated on fixed point results of almost (�, �) contractions 

involving rational expressions in partially ordered metric spaces. 

      This study answered the following questions: 

1. How can we prove the existence of fixed points of almost (�, �) contractions 

involving rational expressions in partially ordered metric spaces?  

2. What additional conditions are required to obtain a unique fixed point for almost  

(�, �) Contractions involving rational expressions in partially ordered metric spaces? 

3. How can the researcher support the results by providing applicable example? 

       1.3 Objectives of the study 

1.3.1General Objective of the study 

The main objectives of this study was to establish some fixed point results of almost (�, �) 

contractions involving rational expressions in partially ordered metric spaces by extending the 

work`s of S. chandok et.al. [8]. 

     1.3.2 Specific objectives 

The specific objectives of this study are: 

1. To prove the existence of fixed point results of almost (�, �) contractions involving 

rational expressions in partially ordered metric spaces. 

2. To discuss additional conditions required to obtain a unique fixed point for almost  

(�, �) Contractions involving rational expression in partially ordered metric spaces.  

3. To provide examples in the support of the result of the study.  

1.4 Significance of the study 

   The study would have the following importance:  

1. The results obtained in this study may contribute to research activities in this area.  

2. It may help the researcher to develop scientific research writing skills and scientific 

communication in Mathematics. 
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1.5 Delimitation of the study 

This study was delimited to prove the existence of fixed point results of almost (�, �) 

contractions involving rational expressions in partially ordered metric spaces. 
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Unit 2 

2. Literature Review 

Fixed point theory is one of the famous and traditional theories in mathematics and has a broad 

set of applications. The applications of fixed point theory are very important in diverse 

disciplines of mathematics .It can be applied for solving various problems, for instance, 

equilibrium problems, variation problems, and optimization problems. In 1922, Stefan Banach 

[5] stated his celebrated theorem on the existence and uniqueness of fixed point of contraction of 

selfmaps defined on complete metric spaces for the first time, which is known as the Banach 

contraction mapping principle. 

The Banach’s contraction mapping principle is one of the cornerstones in the development of 

fixed point theory. In particular, this principle is used to demonstrate the existence and 

uniqueness of a solution of differential equations, integral equations, functional equations, partial 

differential equations and others. Due to the importance, generalizations of Banach’s contraction 

mapping principle have been investigated heavily by many authors. Consequently, a number of 

generalizations of this celebrated principle have appeared in the literature (��� [5,6, 25]). 

Since then many researchers have obtained fixed point and common fixed point results in metric 

spaces, cone metric spaces, partially ordered metric spaces and other spaces. 

In the theory of fixed point, contraction is one of the main tools to prove the existence and 

uniqueness of a fixed point. Banach’s contraction principle, which gives an answer on the 

existence and uniqueness of a solution of an operator equation,�� = � is the most widely used 

fixed point theorem in all of analysis. This principle is constructive in nature and is one of the 

most useful tools in the study of nonlinear equations. There have been a number of 

generalizations of metric spaces such as, cone metric spaces, cone b metric spaces, partially 

ordered metric spaces and other spaces[8, 24 − 33].      

Alber and Guerre-Delbariere [1] introduce the concept of weakly contractive maps in a complete 

Hilbert spaces as a generalization of contraction maps. Rhoades [29] extended this concept to the 

Banach spaces and proved the existence of fixed points of weakly contractive maps in the setting 

of metric space.  
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One of the generalizations of Banach contraction principle is through the method of altering 

distances between the points with the help of a continuous control function. In 1977, Delbosco 

[14] and Skof [31] initiated the technique of altering distances between the points to establish 

the existence of fixed points simultaneously and the method of altering distances become famous 

by khan, Swaleh and Sessa [20], �ome works in this line of research can be referred in [14,20]. 

In 2004, Berinde [7] introduced weak contraction maps which are named as almost contractions 

as a generalization of contraction maps and proved fixed point results in complete metric spaces 

and almost contractions are defined as follows: 

Let  (�, �) be a metric space. Then a self map �: � → � is called almost contraction or (�, �) − 

contraction (weak contraction) if there exists a constant � ∈ (0, 1) and a constant � ≥ 0 such 

that:                    �(��, ��) ≤ ��(�, �) + ��(�, ��)     for all �, � ∈  � .                     (9)                                   

So almost contraction form is a class of generalized contractions that includes several contractive 

mappings like the usual contraction, kanan mappings etc. For more works on almost contraction 

refer [4,7,22,23]. Since the early days of metric fixed point theory, numerous authors attempted 

to vary the contraction conditions by improving the existing contraction conditions and replacing 

with various types of the general conditions. 

For example in 1975, Dass & Gupta [13] extend Banach’s contraction principle through rational 

expression as follows.   

Let  (�, �) be a complete metric space and  �: � → �  a mapping such that there exist �, � ≥ 0 

with � + � < 1 satisfying; 

                     �(��, ��) ≤ � �
�(�,��)[�� �(�,��)]

�� �(�,�)
�+��(�, �) for all �, � ∈ �                        (10) 

 then T has a unique fixed point.  

Hence the Banach’s contraction mapping principle is the most versatile elementary results of 

mathematical analysis which is widely applied in different branches of mathematics and is 

regarded   as the source of metric fixed point theory [1 − 17]. 

In recent times, fixed point theory has developed rapidly in   partially ordered metric spaces, that 

is, metric spaces endowed with a partial ordering. The triple (�, �, ≼ ) is called partially ordered 

metric spaces if(�, ≼ )  is a partially ordered set and  (�, �) is a metric space. [6, 4]  
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Application of fixed point results in partially ordered metric spaces was made subsequently, for 

example, by Ran and   Reurings [27] in solving matrix equations and by Nieto and Rodriguez-

Lopez [25] to obtain solutions of certain partial differential equations with periodic boundary 

conditions. 

In 2012 Chandok and Kim [9] proved the following fixed point theorem.  

Let (�, ≼ )  be a partially ordered set and suppose that there exist a metric �  on � such that 

(�, �) is a complete metric space. Suppose that � is a continuous self mapping on �, � is 

monotone non decreasing mapping and 

              �(��, ��) ≤ � �
�(�,��)�(�,��)

�(�,�)� �(�,��)� �(�,��)
�+��(�, �) for all �, � ∈ � such that              (11)                         

� ≽ � and for some �, � ∈  [0,1) with � + � < 1, if there exists �∘ ∈ �  with �∘ ≼ ��∘ ,then �  

has a fixed point.  

Recently, many researchers have obtained fixed point and common fixed point results in partially 

ordered metric spaces. In 2013 M.Arshad et al. [3] proved some unique fixed point theorems for 

rational type contractions in partially ordered metric spaces and in the year 2013 S.chandok et 

al. [11] proved  some common fixed point results in partially ordered metric paces  for 

generalized rational type contraction mappings. In 2015, Sumit chandok [8] proved fixed point 

results in partially ordered metric spaces involving rational type expressions using some 

auxiliary functions.  
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                                                          Unit 3 

3. Methodology 

   3.1 Study site and period 

This study was conducted from October 2014 G.C to June 2015 G.C. in Jimma University under 

Mathematics Department. 

   3.2 Study Design 

In order to achieve the objectives of the study, Analytical design method was used. 

   3.3 Source of information 

This study mostly depended on document materials, so the available source of information for 

the study were Books, Journals, different study related to the topic and internet services. So, the 

researcher collected different documents that were listed which support the study and discussed 

about the collected materials and other activities with advisor. 

   3.4 Procedure of the study 

The procedure the researcher followed for analysis were the standard technique used by S. 

Chandok et al. [8] 

    3.5 Ethical issue 

The researcher has taken a cooperation request letter from Mathematics Department of Jimma 

University to get consent from the institute(s) where Books, Journals, internet and other related 

materials were available for this study to collect related information. Moreover; kept rules and 

regulations of the institute(s) from where the researcher got these materials. 
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                                                          Unit 4 

                                    4. Discussion and Result 

   4.1 Preliminaries 

Definition.4.1.1 Let X be a non-empty set and  �: � ×  � ⟶ ℝ �   be a mapping satisfying the 

following conditions for all �, �, � ∈ �: 

i. �(�, �) ≥ 0 ���  �(�, �) = 0 ifand only � = �; 

ii. �(�, �) = �(�, �),  (symmetry); 

iii. �(�, �) ≤ �(�, �) + �(�, �) (Triangular inequality),  

then � is called a metric on  �. Then  the pair (�, �) is called a metric space. 

Example.1 Let � = ℝ  (the set of real numbers) define �: � ×  � ⟶ ℝ �   by �(�, �) = |� − �|, 

for all �, � ∈ �then clearly the pair (�, �) is a metric space. 

Example.2. For any set X, Define �: � ×  � ⟶ ℝ �   by (�, �) = �
0  �� � = �
1  �� � ≠ �

� . Then the pair 

(�, �)  is a metric space and we call this metric discrete metric. 

Definition.4.1.2 A partially ordered set (poset) is a system  (�, ≼ ) where � is non-empty set and 

≼  is a binary relation of � satisfying for all �, �, � ∈ �: 

i. � ≼ �  (reflexivity); 

ii. �� � ≼ � ��� � ≼ �  �ℎ�� � = �  (anti symmetry); 

iii. �� � ≼ � ��� � ≼  �  �ℎ�� � ≼  �  (transitivity). 

 Example 

 (1) If � is any set (� (�), ⊆ ) is a partially ordered set. Where �(�)= the power set of   �.  

                          

  (2) On the set on natural numbers  � , define  � ≼ � if �  divides � then (� , ≼ ) is a                 

                 Partially ordered set.                                       

Definition 4.1.3 Let � is a non-empty set. Then (�, �, ≼ ) is called partially ordered metric 

spaces if:  

i.  (�, �) is a metric space and  

ii. (�, ≼ ) ��  a partially ordered set. 

Definition 4.1.4 [8, 4] Let (�, ≼ ) be a partially ordered set and �: � →  � is a self- mapping, we 

say � is monotone non-decreasing with respect to ≼  if for  �, � ∈  � , � ≼  � ⟹  �� ≼  �� . 
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Definition: 4.1.5 [6] Let (X, ≼ ) be a partially ordered set and �, � ∈  � then � and � are said to 

be comparable elements of X if     � ≼ � �� � ≼ �. 

Definition 4.1.6 [8]: A function � : ℝ �  → ℝ �  is called an altering distance function if : 

i. �  is non-decreasing, continuous and 

ii.  � (�) = 0 if and only if �= 0. 

Notation: 

We denote:   � =  {�: ℝ �  → ℝ ,�   such that  � is continuous, non-decreasing and  

                                                           �(�) =   �  if and only if t=0}. 

          � =  {�: ℝ �  → ℝ � ,  such that for any sequence {��} in ℝ �  with 

                                                                                     ��  → �, (�> 0) ,  lim 0nx  }. 

Theorem 4.1.7 [8] Let  (�, ≼ ) be a partially ordered set and suppose that there exists a metric � 

on � such that (�, �) is a complete metric space. Let �: � ⟶ � be a continuous and non 

decreasing mapping. Suppose that there exist � ∈ Φ , � ∈ Ψ   such that 

            ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�                                           

 for all �, � ∈ � with � ≼ � where         

         � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
,

�(�,��)[�� �(�,��)]

�� �(�,�)
, �(�, �)� and 

         � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
, �(�, �)� .  

 If there exists  �° ∈ � with �° ≼ ��° ,   then �  has a fixed point in �. 

Theorem 4.1.8 [8] Let (�, ≼ ) be a partially ordered set and suppose that there exists a metric 

� on X such that(�, �) is a complete metric space. Assume that if  {�� } a non-decreasing 

sequence in X such that  �� ⟶  �, then �� ≼  �, for all � ∈ � . Let �: � → � be a nondecreasing 

mapping suppose that there exist � ∈ Φ , � ∈ Ψ  such that 

                               ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�                                           

 for all �, � ∈ � with � ≼ � where         

                            � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
,

�(�,��)[�� �(�,��)]

�� �(�,�)
, �(�, �)� and 

                            � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
, �(�, �)� .  

 If there exists  �° ∈ � with �° ≼ ��° ,   then �  has a fixed point  �. 
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Theorem 4.1.9 [8] In addition to the hypotheses of Theorem 4.1.7 or Theorem 4.1.8 suppose that 

for every �, � ∈ �, there exists � ∈ � such that    � ≼ � ��� � ≼ �. Then T has a unique fixed 

point in  �. 

Definition 4.1.10 Let (X, ≼ ) be a partially ordered set. Suppose that there exist a metric d on X 

such that (�, �) is a metric space. Let �: � → � be a self-map of X. If there exist functions 

� ∈ � , � ∈ �  and a constant  � ≥ 0  such that  

                             ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                      

  for all �, � ∈ � with  � ≼ � 

              Where:    � (�, �) = ��� �
�(�,��)[�� �(�,��)]

�� �(�,�)
,

�(�,��)[�� �(�,�� )]

�� �(�,�)
, �(�, �)�  

                                � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
, �(�, �)� and 

                              � (�, �) = ��� �
�(�,��)�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
� . 

Then we say that T satisfies almost (�, �) contraction condition involving rational expression. 
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                                                          4.2 Main Result 
Theorem: 4.2.1 Let (X, ≼ ) be a partially ordered set. Suppose that there exist a metric d on X 

such that (�, �) is a complete metric space. Let �: � → � be a continuous and non decreasing 

mapping. Assume that there exist functions � ∈ � , � ∈ �  and a constant L≥ 0  such that  

                             ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                     (4.2.1.1) 

  for all �, � ∈ � with  � ≼ � 

              where:    � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
,

�(�,��)[�� �(�,��)]

�� �(�,�)
, �(�, �)�  

                                  � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
, �(�, �)� and 

                              � (�, �) = ��� �
�(�,��)�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
� . 

    If there exists �° ∈ � with �° ≼ ��°   then �  has a fixed point. 

Proof: Let �° ∈ �.  If ��° = �°, then  �°  is a fixed point of   �. 

Suppose that �° ≼ ��°, constructing a sequence {�� }  in �, such that 

                           ��� � = ���   for every � ≥ 0.                                                       (4.2.1.2) 

Since  � is non-decreasing mapping and �° ≼ ��°  we have: 

 �° ≼ ��° = �� ≼ ��� = ��  ≼ ��� = �� … ≼ ���� � = �� ≼ ��� = ��� � ≼ ⋯  

  Hence   ��  ≼  ��� �   for each� = 0, 1, 2,….,  then we have  

                     �∘ ≼ �� ≼ �� ≼ �� ≼ ⋯ ≼ ��� � ≼ �� ≼ ��� � ≼ ⋯                                         (4.2.1.3) 

Now, if there exists  �° ≥ 1 such that ��°
=��°� �then from (4.2.1.2)  

We have  ��°
= ��°� � = ���°

, hence  ��°
 is a fixed point of   �. 

We now suppose �� ≠ ��� � for each  � = 0,1,2 … . Then �(��� �,  �� ) ≠ 0  for all � ≥ 0 and  

 Let �� = �(��� �, �� ), ∀� ≥ 0.  

  Since��� � ≼ �� , ∀� ≥ 1, from (4.2.1.1) and (4.2.1.3) we have: 

 ���(�� , ��� �)� = ���(���� �, � �� )� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                  (4.2.1.4) 

                ≤ � ���� �
�(�� ,��� )�1+ d(�� � �,T��−1)�

1+ �(��−1,��)
,

�(�� ,��� � �)�1+ d(�� � �,T�� )�

1+ �(��−1,��)
, �(��−1, ��)�� 

     −ψ ���� �
�(�� , ��� )�1 + d���� �,T��−1��

1 + �(��−1, ��)
, �(��−1, ��)�� 

                                  +  �(��� �
�(��−1,T�� )�(��,T��−1)

1+ �(��−1,��)
,

�(��−1,T�� � �)�(��,T��)

1+ �(��−1,��)
�)    
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  =  � ���� �
�(�� , ��� �)�1 + d���� �,����

1 + �(��−1, ��)
,
�(�� , �� )�1 + d���� �,��� ���

1 + �(��−1, ��)
, �(��−1, ��)��

 

 

                            −ψ ���� �
�(�� ,�� � �)�1+ d��� � �,����

1+ �(��−1,��)
, �(��−1, ��)�� 

                               +  �(��� �
�(��−1,�� � �)�(��,�� )

1+ �(��−1,��)
,

�(��−1,�� )�(��,��+ 1)

1+ �(��−1,��)
�)                       

   =  �(��� {�(�� , ��� �), 0, �(��−1, ��)})� � (��� {�(�� ,�� � �),�(��−1,��)}) 

                                    +  �(��� �0,
�(��−1,�� )�(��,��+ 1)

1+ �(��−1,��)
�) 

               =  �(��� {�(�� , ��� �), 0, �(��−1, ��)}) − �(��� {�(�� , ��� �), �(��−1, ��)}) + �(0) 

               =  �(��� {�(�� , ��� �), �(��−1, ��)}) − �(��� {�(�� , ��� �), �(��−1, ��)} 

 This gives: �(�� ) = ���(��� �, �� )� ≤ �(��� {�� , ��� �}) − �(��� {�� , ��� �})        (4.2.1.5) 

Where ��� � =  �(��−1, ��).   

Now,  if   ��� {��, ��−1}= ��   then from (4.2.1.5 we have   

                              �(�� ) ≤ �(�� ) − �(�� ). 

It follows that �(�� ) ≤ 0 ,  which is a contradiction to the definition of  �. So the 

maximum, ��� {�� , ��� �}  is  ��� �. Thus  �� ≤  ��� �  for each n=1, 2, 3, and hence   {�� } is a   

non-increasing sequence of positive real numbers. Thus from the inequality (4.2.1.5) we have  

                  �(�� ) ≤ �(��� �) − �(��� �).                                                             (4.2.1.6) 

Now, since {�� }  is a non-increasing sequence of positive real numbers which is bounded below, 

there exist � ≥ 0 such that, 

                                     �� = �(��� �, �� ) → � as n→ ∞  .                                                      (4.2.1.7)  

 We want to show that  (i) α = 0. 

Suppose � > 0, and then taking the limit supremum in both sides of (4.2.1.6) and using the 

continuity of � and the property of  � we have:   

                 lim   ��(�� )� ≤    lim   (�(��� �)) +  lim (−�(��� �))  

 which gives  �(�) ≤ �(�) − lim  ��(��� �)�, (Where lim (−�(��� �))  = − lim  (�(��� �)). 

  This implies that   lim ( �(��� �)) ≤ 0,  a contradiction to the property of  � unless � = 0. 

So  �� = �(��� �, �� ) → 0  ��  � → ∞     .  

Therefore, we have  

  lim�→ � �(��� �, �� ) = 0.                                                                                                 (4.2.1.8)   
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 (ii) Now we need to show that {��} is a Cauchy sequence in X. 

Suppose {��} is not a Cauchy sequence in X. Then there exists an � > 0, such that for which we 

can find two sequences of positive integers  ��� (�)� ��� ���(�)�  such that for all positive 

integers � with 

                  �(�) > � (�) > �,    �(�� (�), ��(�)) ≥ � .                                                     (4.2.1.9) 

Assuming   �(�) is the smallest integer we get 

                �(�) > � (�) > �, ���� (�), ��(�)� ≥ � and                                                      (4.2.1.10) 

                  ���� (�), ��(�)� �� < �.                                                                                       (4.2.1.11) 

Now by the triangle inequality and using (4.2.1.9) and (4.2.1.11) we have 

                � ≤ �(�� (�), ��(�)) ≤ �(�� (�), ��(�)� �) + �(��(�)� �, ��(�))) 

                                                < � +  �(��(�)� �, ��(�))). 

Using (4.2.1.8) and letting � → ∞ , �� ℎ��� 

                   lim�→ � �(�� (�), ��(�)) = �,                                                                          (4.2.1.12) 

 From the triangular inequality, the method we have 

 �(�� (�), ��(�)) ≤ �(�� (�), �� (�)� �) + ���� (�)� �, ��(�)� ��+ �(��(�)� �, ��(�)))   and 

 ���� (�)� �, ��(�)� �� ≤ � ��� (�)� �, �� (�) + ���� (�), ��(�)�+ ����(�), ��(�)� ���.         (4.2.1.13)  

Using (4.2.1.8), (4.2.1.12) and letting k→∞ in (4.2.1.13) we get 

                       lim�→ � ���� (�)� �, ��(�)� �� = �                                                                (4.2.1.14) 

Similarly:       lim�→ � ���� (�), ��(�)� �� = �                                                                      

           and      lim�→ � ���� (�)� �, ��(�)� = � .                                                                  (4.2.1.15) 

Now, we have, 

� ����� (�), ��(�)�� = ���(��� (�)� �, ���(�)� �)�     

                                     ≤ ��� (�� (�)� �, ��(�)� �)�− ��� (�� (�)� �, ��(�)� �)�    

                             + � � ��� (�)� �, ��(�)� ��                                                                        (4.2.1.16) 

Where � � = � (�� (�)� �, ��(�)� �) 

          = ��� �
���� (�)� �,��� (�)� ����� ���� (�)� �,��� (�)� ���

�� �(�� (�)� �,�� (�)� �)
,

���� (�)� �,��� (�)� ����� ���� (�)� �,��� (�)� ���

�� �(�� (�)� �,�� (�)� �)
, �(�� (�)� �, ��(�)� �)� 

         = ��� �
����(�)−1,��(�)��1+ ���� (�)−1,�� (�)��

1+ �(�� (�)−1,��(�)−1)
,

����(�)−1,�� (�)��1+ ���� (�)−1,��(�)��

1+ �(�� (�)−1,��(�)−1)
, �(�� (�)−1, ��(�)−1)�    (4.2.1.17)                                                                                                                               

Letting � → ∞  in (4.2.1.17) and using (4.2.1.8),( 4.2.1.14), (4.2.1.15), we have: 
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              lim�→ � � � = ���  {0, �, �}= �.                                                                       (4.2.1.18) 

 Similarly: �� = � ��� (�)� �, ��(�)� �� 

                       = ��� �
����(�)−1,���(�)−1��1+ ���� (�)−1,��� (�)−1��

1+ �(�� (�)−1,��(�)−1)
, �(�� (�)−1, ��(�)−1)� 

                       = ��� �
����(�)−1,��(�)��1+ ���� (�)−1,�� (�)��

1+ �(�� (�)−1,��(�)−1)
, �(�� (�)−1, ��(�)−1)� .                            (4.2.1.19)          

Letting � → ∞  in (4.2.1.19) and using   (4.2.1.8) and (4.2.1.15) ,we get 

                   lim�→ � �� = ���  {0, �}= �.                                                                        (4.2.1.20) 

And let   � � =   � ��� (�)� �, ��(�)� �� 

                     =  ��� �
���� (�)� �,��� (�)� ���(�� (�)� �,��� (�)� �)

�� ���� (�)� �,�� (�)� ��
,

���� (�)� �,��� (�)� ���(,�� (�)� �,��� (�)� �)

�� ���� (�)� �,�� (�)� ��
� 

                      =  ��� �
���� (�)� �,�� (�)��(�� (�)� �,�� (�))

�� ���� (�)� �,�� (�)� ��
,

���� (�)� �,�� (�)��(,�� (�)� �,�� (�))

�� ���� (�)� �,�� (�)� ��
. �       (4.2.1.21) 

   Letting K→∞ in (4.2.1.21) and using (4.2.1.8), (4.2.1.12),(4.2.1.14) and (4.2.1.15) we have:   

            lim
�→ �

� ��� (�)� �, ��(�)� �� = ��� �
��

�� �
, 0� = 0.                                                     (4.2.1.22)                                                                                                                   

 Using (4.2.1.18), (4.2.1.20) and (4.2.1.22) in (4.2.1.16) we have  

  � ����� (�), ��(�)�� = ���(��� (�)� �, ���(�)� �)� 

                                      ≤ �(� �) − �(��) + � min(� �).                                                  (4.2.1.23)                                               

Now by taking the limit supremum of both sides of (4.2.1.23) and using (4.2.1.12), (4.2.1.18), 

(4.2.1.20) and (4.2.1.22) and by the  continuity of �  and property of ψ, we get  

  �(�) ≤ �(�) + lim �− �(��)�.   

This implies that  

   �(�) ≤ �(�) − lim  �(�� ). 

That is lim �(��) ≤ 0.   

But this is a contradiction to the property of ψ.  Hence {�� }  is a Cauchy sequence in a complete 

metric space �. So, there exists � ∈ � such that 

                            lim�→ � �� = �                                                                                   (4.2.1.24) 

And by the continuity of  �,   � = lim�→ � ��� � = lim�→ � ��� = �(lim�→ � (�� )) = ��.  

Thus,  � is a fixed point of   �. 
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Remark 1.  By choosing L=0 in Theorem 4.2.1 we get Theorem 4.1.7 as a corollary to Theorem 

4.2.1.  

 The following is an example in support of Theorem 4.2.1. 

 Example 4.2.1.1 Let � = {1, 2, 3, 4, 5} with the usual metric �(�, �) = |� − �|  for all �, � ∈ �. 

We define a partial order on  X  by ≼ : = {(1,1), (2,2), (3,3), (4,4), (5,5), (3,4), (3,5), (4,5)}.   

Then (�, ≼ )  is a partially ordered set.  

We define  �: � → �  by   T=�  �  �
  �  �

  �
�

 �  
�

�
�
�.  T  is clearly continuous. 

We show that  �   is non-decreasing. 

 Since   1 ≼ 1 ⟹ 1 = T(1) ≼ 1 = T(1); 

             2 ≼ 2 ⟹ 1 = T(2) ≼ 1 = T(2); 

             3 ≼ 3 ⟹ 2 = T(3) ≼ 2 = T(3); 

             4 ≼ 4 ⟹ 2 = T(4) ≼ 2 = T(4);  

             5 ≼ 5 ⟹ 2 = T(5) ≼ 2 = T(5); 

             3 ≼ 4 ⟹ 2 = T(3) ≼ 2 = T(4); 

             3 ≼ 5 ⟹ 2 = T(3) ≼ 2 = T(5); 

             4 ≼ 5 ⟹ 2 = T(4) ≼ 2 = T(5) .     

  Thus T is a non-decreasing mapping. 

Now we verify the inequality (4.2.1.1) with � = 1,  �, �: ℝ �  → ℝ �    de�ined  by  

  �(�) =
��

��
 ,  �(�) =

�

�
  then clearly  � ∈ � , � ∈ � . .   

We note that the case � = �  follows trivially, so let   �, � ∈ � such that � ≼ � and � ≠ �. 

We consider the following three cases: 

Case I: Let us take      � = 3 ��� � = 5  then we have  �(3) = 2 , �(5) = 2 

1. �(��, ��) = ���(3), �(5)� = �(2,2) = 0 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                    = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(3,5)� 

                    = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(3,5)� 

                    = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |3 − 5|� 

                   = ��� �
(�)(�)

�
,

(�)(�)

�
, 2� = ��� {2,2,2}=  2.    
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  3. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)�. 

                    = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(3,5)� 

                    = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(3,5)� 

                   = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |3 − 5|� 

                   = ��� �
(�)(�)

�
, 2�  =��� {2,2}= 2.    

  4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                    = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    =  ��� �
(�)(�)

�
,

(�)(�)

�
�=  ��� {1,1 }= 1. 

So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

��
(0) ≤

�

��
(2) −

�

�
(2) + 1(1) 

                           0 ≤
�

��
−

�

�
+ 1           

                         0 ≤
� �

��
+ 1 

                        0 ≤
��

��
. 

Case II. Let  � = 3 ��� � = 4 then  �(3) = 2 and �(4) = 2. 

1. �(��, ��) = ���(3), �(4)� = �(2,2) = 0. 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                  = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(3,4)� 

                  = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(3,4)� 

                 = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |3 − 4|� 

                 = ��� �
(�)(�)

�
,

(�)(�)

�
, 1� = ��� {2,2,1}= 2.   

3.   � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 
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                = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(3,4)� 

                = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(3,4)� 

                = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |3 − 4|� 

                = ��� �
(�)(�)

�
, 1�    

                 =��� {2,1} =2. 

 4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                   = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
�=  ��� {1,1 }= 1. 

So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                   0 ≤
�

��
(2) −

�

�
(2) + 1(1) 

                    0 ≤ −
�

��
+ 1           

             This gives    0 ≤  
��

��
. 

Case III: Let  � = 4 ��� � = 5 then  �(4) = 2 and �(5) = 2 

1. �(��, ��) = ���(4), �(5)� = �(2,2) = 0. 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                     = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,5)� 

                     = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,5)� 

                     = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |4,5|� 

                     = ��� �
(�)(�)

�
,

(�)(�)

�
, 1�    

                      =��� �
�

�
,

�

�
, 1�= 

�

�
. 
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3.  � (�, �)  = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                  = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,5)� 

                  = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,5)� 

                 = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |4,5|� 

                  = ��� �
(�)(�)

�
, 1�   = 

�

�
. 

       4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                   = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�(�,�)�(�,�)

�� �(�,�)
,

�(�,�)�(�,�)

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
�= 3 

 So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   

 becomes:   
�

��
(0) ≤

�

��
�

�

�
� −

�

�
�

�

�
� + 1(3) 

                           0 ≤
��

��
−

�

�
+ 3 

                        0 ≤  −
�

��
+ 3                   

                        0 ≤
��

��
. 

From the Cases (I) - (III) considered above  � satisfies the inequality (4.2.1.1) and hence � 

satisfies all the hypotheses of the Theorem 4.2.1 for the � and �  chosen in example 4.2.1.1 

and � has a fixed point �∘ = 1.If we choose L=0 in the inequality (4.2.1.1), from examples 

4.2.1.1 in Cases (I-III) we observe    that the inequality (4.2.1.1) fails to hold. This indicates 

the importance of L in Theorem 4.2.1. 
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The following is also an example in support of Theorem 4.2.1. 

Example 4.2.1.2 Let � = {2, 3, 4, 5, 6} be endowed with the usual metric �(�, �) = |� − �|  for 

all �, � ∈ �, and we define the partial order as follows 

     ≼ :={(2,2), (3,3), (4,4), (5,5), (6,6), (4,5), (4,6), (5,6)} then (�, ≼ )  is a partially ordered set.. 

Now we define the mapping �: � → �  by   T=��
�

  �
�

 �  
�

�
�

  �
  �

� clearly T is continuous.  

Since    2 ≼ 2 ⟹ 2 = T(2) ≼ 2 = T(2);  

             3 ≼ 3 ⟹ 2 = T(3) ≼ 2 = T(3); 

             4 ≼ 4 ⟹ 3 = T(4) ≼ 3 = T(4); 

             5 ≼ 5 ⟹ 3 = T(5) ≼ 3 = T(5); 

             6 ≼ 6 ⟹ 3 = T(6) ≼ 3 = T(6);  

             4 ≼ 5 ⟹ 3 = T(4) ≼ 3 = T(5); 

             4 ≼ 6 ⟹ 3 = T(4) ≼ 3 = T(6); 

             5 ≼ 6 ⟹ 3 = T(5) ≼ 3 = T(6); 

 Thus T is non-decreasing mapping. 

 Now we verify the inequality (4.2.1.1) with � =
�

�
,  �, �: ℝ �  → ℝ �    de�ined  by  

  �(�) =
�

�
  , � (�) =

�

�
,  then clearly  � ∈ � , � ∈ � . 

 We note that the case � = �  follows trivially, so let   �, � ∈ � such that � ≼ � and � ≠ �. 

We also consider the following three cases: 

Case I: Let us take      � = 4 ��� � = 5  then 

 1. �(��, ��) = ���(4), �(5)� = �(3,3) = 0 

        2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

              = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,5)� 

               = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,5)� 

                = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |4 − 5|� 

                = ��� �
(�)(�)

�
,

(�)(�)

�
, 1�    

                =��� {2,2,1}= 2. 
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3. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                   = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,5)� 

                   = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,5)� 

                   = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |4 − 5|� 

                  = ��� �
(�)(�)

�
, 1� = ��� {2,1}= 2.    

4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                   = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
�= ��� {1,1}= 1. 

 So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
(2) −

�

�
(2) +

�

�
(1) 

                       0 ≤
�

�
− 1 +

�

�
 

                     0 ≤ 0. 

Case II Let   � = 4 ��� � = 6 then 

1. �(��, ��) = ���(4), �(6)� = �(3,3) = 0. 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

              = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,6)� 

               = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,6)� 

                = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |4 − 6|� 

                 = ��� �
(�)(�)

�
,

(�)(�)

�
, 2�    

                 =��� {2,2,2}= 2. 
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3.  � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

              = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(4,6)� 

              = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(4,6)� 

              = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |4 − 6|� 

              = ��� �
(�)(�)

�
, 2� = ��� {2,2}= 2.    

  4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

             = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

            = �  �� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

             = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

             = ��� �
(�)(�)

�
,

(�)(�)

�
� =  ��� {1,1}= 1. 

 So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
(2) −

�

�
(2) +

�

�
(1) 

                 ⟹ 0 ≤
�

�
− 1 +

�

�
 

                ⟹ 0 ≤ 0. 

 Case III: Let  � = 5 ��� � = 6 then 

1. �(��, ��) = ���(5), �(6)� = �(3,3) = 0 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                    = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,6)� 

                    = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,6)� 

                    = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |5 − 6|� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
, 1�    

                     =��� �
�

�
,

�

�
, 1� =

�

�
.  
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3.  � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                  = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,6)� 

                  = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,6)� 

                 = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |5 − 6|� 

                  = ��� �
(�)(�)

�
, 1� = ��� �

�

�
, 1� =

�

�
.    

   4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                   = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
�=  ��� {3,3}= 3. 

 So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
�

�

�
� −

�

�
�

�

�
� +

�

�
(3) 

                      0 ≤ −
�

�
+

�

�
 

                      0 ≤
�

�
. 

From the Cases (I) - (III) considered above  � satisfies the inequality (4.2.1.1) and hence � 

satisfies all the hypotheses of the Theorem 4.2.1 for the � and �  chosen in example 4.2.1.2 and 

� has a fixed point �∘ = 2. If we choose L=0 in the inequality (4.2.1.1), from examples 4.2.1.1 in 

Cases (I-III) we observe    that the inequality (4.2.1.1) fails to hold. This indicates the importance 

of  L in Theorem 4.2.1. 
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In the following, we prove fixed point results by relaxing the continuity assumption of � in 

Theorem 4 .2.1. 

Theorem 4.2.2: Let (X, ≼ ) be a partially ordered set. Suppose that there exists a metric d on X 

such that (�, �) is a complete metric space. Assume that if {�� } is a non-decreasing sequence in 

X such that �� ⟶ x, then  �� ≼ �   for all n ∈ N. Let :T X X be a non- decreasing mapping. 

Assume that there exist functions � ∈ � , � ∈ �  and a constant � ≥ 0  such that  

                             ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                     (4.2.2.1) 

  for all �, � ∈ � with  � ≼ � 

              where:    � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
,

�(�,��)[�� �(�,��)]

�� �(�,�)
, �(�, �)�  

                                � (�, �) = ��� �
�(�,�� )[�� �(�,��)]

�� �(�,�)
, �(�, �)� and 

                              � (�, �) = ��� �
�(�,��)�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
� . 

    If there exists �° ∈ � with �° ≼ ��°   then �  has a fixed point. 

   Proof:  Let {�� }  be a sequence in �. As in the proof of Theorem 4.2.1 we have for some  �° ∈ � 

with �° ≼ ��°   and 

    �° ≼ ��° 
= �� ≼ ��� = ��  ≼ ��� = �� ≼ ⋯ ≼ ���� � = �� ≼ ��� = ��� � ≼ ⋯  

        ⟹  �∘ ≼ �� ≼ �� ≼ �� ≼ ⋯ ��� � ≼ �� ≼ ��� � ≼ ⋯                                              (4.2.2.2) 

 Thus, {�� }  is a non-decreasing sequence and converges to  �, then �� ≼ � , ��� ��� � � � . 

 Now we show that  � = ��.                                                                                                         (4.2.2.3) 

Suppose that � ≠ ��. Then   �(�, ��) > 0.  

Now consider                                                                             

 ���(��+ 1, ��)� = ϕ�d(T��, ��)� ≤ ϕ(M n) − ψ (Nn) + �� (�, �)  

where  

       (�)  � � = � (�� , �) 

                 = ��� �
�(�,��)[�� �(�� ,��� )]

�� �(�� ,�)
,

�(�,��� )[�� �(�� ,��)]

�� �(�� ,�)
, �(�� , �)� 

                 = ��� �
�(�,��)[�� �(�� ,�� � �)]

�� �(�� ,�)
,

�(�,�� � � )[�� �(�� ,��)]

�� �(�� ,�)
, �(�� , �)� .                             (4.2.2.4)                         

Letting  � → ∞   in (4.2.2.4) and using the fact that �� → � �� � → ∞ , we have 

            lim�→ � � � = ��� {�(�, ��), 0,0}= �(�, ��) > 0                                                     (4.2.2.5) 

         (��)   �� = � (�� , �)  = ��� �
�(�,��)[1+ �(��,���)]

1+ �(��,�)
, �(��, �)� 
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                              =  ��� �
�(�,��)[1+ �(��,��+ 1)]

1+ �(��,�)
, �(��, �)�                                              (4.2.2.6) 

Letting � → ∞    in (4.2.2.6) and using the fact that �� → � we have, 

        lim�→ � �� = ��� {�(�, ��), 0}= �(�, ��) > 0                                                            (4.2.2.7) 

        (���)   � (�, �) = � (�� , �) = ��� �
�(��,��)�(�,���)

1+ �(��,�)
,

�(��,���)�(�,��)

1+ �(��,�)
�  

                   = ��� �
�(��,��)�(�,��+ 1)

1+ �(��,�)
,

�(��,��+ 1)�(�,��)

1+ �(��,�)
�                                                        (4.2.2.8) 

and letting n→∞  in  (4.2.2.8) we have 

                        = ��� {0,0}= 0.                                                                                          (4.2.2.9) 

Since �� ≼ � for all �, then by using (4.2.2.5) ,( 4.2.2.7) and (4.2.2.9) in (4.2.2.1) 

We have  �(�({��� �, ��}) = ���(��� , ��)� ≤ �(� � ) − �(�� ) + �� (�, �) 

                              ≤ �(� � ) − �(�� ) + ���� �
�(��,��)�(�,��+ 1)

1+ �(��,�)
,

�(��,��+ 1)�(�,��)

1+ �(��,�)
� .                                          

            Thus   �(�(��� �, ��)) = �(�(��� , ��)) ≤ �(� � ) − �(�� ) + ���� {0,0}  

 Hence,      �(�(��� �, ��)) = �(�(��� , ��)) ≤ �(� � ) − �(�� )                                               (4.2.2.10)                                                    

By taking the limit supremum of (4.2.2.10), using (4.2.2.5) and (4.2.2.7) and the property of � and the 

continuity of � we have 

    �(�(�, ��)) ≤ �(�(�, ��)) + lim �−�(�� )�,  

That is,  �(�(�, ��)) ≤ �(�(�, ��)) −   lim (�(�� )) 

This gives   lim (�(�� ) ≤ 0 .  

 But this is a contradiction by (4.2.2.7) and the definition of   �. 

 Hence � = ��  and  � is the fixed point of �. 

Remark 2.  By choosing L=0 in Theorem 4.2.2 we get Theorem 4.1.8 as a corollary to Theorem 

4.2.2.  
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We now illustrate an example in the support of theorem 4.2.2 

Example 4.2.2.1: ��� � =  [0, 2] with the usual metric. 

We define the partial order ˝≼  ˝ on X by 

                               ≼ =  {(�, �): �, � ∈  [0,1), � = �} ∪  {(�, �): �, � ∈  [1,2], � ≤ �}.                                                  

 Then (�, ≼ ) is a partially ordered set.. 

We define �: � ⟶ �  by �� = �

�

�
    �� 0 ≤ � < 1

�

�
  �� 1 ≤ � ≤ 2.

�          

 Also, we define    �, �: ℝ +  → ℝ +
 ��    �(�) =

�2

2,
  ,  �(�) = ��,  then clearly  � ∈ � , � ∈ � .                                                          

  and let  � = 10.    

Now we verify the inequality 4.2.2.1 

Case I: Let �, � ∈  [0,1), �ℎ��  � = � so    �� =
�

�
=     �� 

Then we have 

1.  �(��, ��) = � �
�

�
,

�

�
� = �

�

�
−

�

�
�= 0, Since � = � ∈  [0,1) 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)�  

                                 = ��� �
�(�,

�

�
)��� �(�,

�

�
)�

�� �(�,�)
,

�(�,
�

�
)��� �(�,

�

�
)�

�� �(�,�)
, �(�, �)�    

        = ��� �
���

�

�
���� ���

�

�
��

�� |�� �|
,

���
�

�
���� ���

�

�
��

�� |�� �|
, |� − �|�  Since � = � ∈  [0,1)we have 

         = ��� �
�
��

�
���� �

��

�
��

�� |�� �|
,

�
��

�
���� �

��

�
��

�� |�� �|
, |� − �|� 

         = ��� �
��

�
�1 +

��

�
� ,

��

�
�1 +

��

�
� , 0� 

         = ��� �
��

�
�1 +

��

�
� , 0�  

          =
��

�
�1 +

��

�
�.  

                3. � (�, �) =   ��� �
�(�,��)[1+ �(�,��]

1+ �(�,�)
, �(�, �)� 

                                  =    ��� �
�(�,

�

�
)��� �(�,

�

�
)�

�� �(�,�)
, �(�, �)�     

                                  = ��� �
���

�

�
���� ���

�

�
��

�� |�� �|
, |� − �|� 

        = ��� �
�
��

�
���� �

��

�
��

�� |�� �|
, |� − �|� Since � = � ∈  [0,1)we have 
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        = ��� �
��

�
�1 +

��

�
� , 0� =

��

�
�1 +

��

�
�. 

                4. � (�, �) = ��� �
�(�,��)�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
�  

                    = ��� �
���,

�

3
��(�,

�

3
)

1+ �(�,�)
,

���,
�

3
��(�,

�

3
)

1+ �(�,�)
� 

                     = ��� �
���

�

�
����

�

�
�

�� |�� �|
,

���
�

�
����

�

�
�

�� |�� �|
�           

                     = ��� ��
���

�

�
����

�

�
�

�� |�� �|
,

���
�

�
����

�

�
�

�� |�� �|
��  since � = � ∈ [0,1) 

                    = ��� �
���

�
,

���

�
�=

���

�
. 

Then we have the following 

          ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �) 

                                 0 ≤

���

�
���

��

�
�

���

�
�

�
− �

���

�
�1 +

��

�
+

���

�
�� + �.

���

�
  

                                  0 ≤
�

���

�
���

��

�
�

���

�
�

�
+  �.

���

�
 

                                
���

�
�1 +

��

�
+

���

�
� ≤  2�.

���

�
                                                                                      (1)  

                               Here if  � = 0 , (1) holds clearly. 

If � ≠ 0  , we have  1 +
��

�
+

���

�
≤ 2. �                                                                                                     (2) 

   Since the left hand side of (2) is less than or equal to 
��

�
 for any � ∈ [0,1)  we observe that (2) holds for 

L=10.   

 Case II:  Let �, � ∈ [1,2]  such that  � ≤ �, then we have the following 

     �� =
�

�
 , �� =

�

�
 

  1. �(��, ��) = � �
�

�
,

�

�
� = �

�

�
−

�

�
�= 0. 

  2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                   = ��� �
�(�,

�

�
)��� �(�,

�

�
)�

�� �(�,�)
,

�(�,
�

�
)��� �(�,

�

�
)�

�� �(�,�)
, �(�, �)� 

                  = ��� �
���

�

�
���� ���

�

�
��

�� |�� �|
,

���
�

�
���� ���

�

�
��

�� |�� �|
, |� − �|� 
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                  = ��� �
���

�

�
���� ���

�

�
��

�� |�� �|
, |� − �|� 

                   = ��� �
���

�

�
���� ���

�

�
��

�� �� �
, � − �� 

3. � (�, �) =  ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)�  

                  = ��� �
�(�,

�

�
)��� �(�,

�

�
)�

�� �(�,�)
, �(�, �)�      

           = ��� �
���

�

�
���� ���

�

�
��

�� |�� �|
, |� − �|�  

                       = ��� �
���

�

�
���� ���

�

�
��

�� �� �
, � − ��  Since � ≥ � 

     4. � (�, �)     = ��� �
�(�,�� )�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
� 

                          = ��� �
���,

�

�
����,

�

�
�

�� �(�,�)
,

���,
�

�
����,

�

�
�

�� �(�,�)
� 

                         = ��� �
���

�

�
����

�

�
�

�� |�� �|
,

���
�

�
����

�

�
�

�� |�� �|
� =

���
�

�
����

�

�
�

�� �� �
 

 (a). If   � (�, �) = � − �  

            � (�, �) = � − �   

            � (�, �) =
���

�

�
����

�

�
�

�� �� �
   

Now consider the following: 

    ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                      (3) 

                0 ≤  
(�� �)�

�
− (� − �)� + � �

���
�

�
����

�

�
�

�� �� �
� 

                0 ≤ −
(�� �)�

�
+ � �

���
�

�
����

�

�
�

�� �� �
� 

                    
(�� �)�

�
≤ � �

���
�

�
����

�

�
�

�� �� �
�                                                                 (4) 

                               ≤ 2. � �� −
�

�
� �� −

�

�
� . 

Since the left hand side of (4) is at most  
�

�
 for any �, � ∈ [1,2]  with � ≤ � it is clear that (4) holds 

for L= 10.  
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  (b) .If   � (�, �) =
���

�

�
���� ���

�

�
��

�� �� �
 

              � (�, �)   =
���

�

�
���� ���

�

�
��

�� �� �
 

                � (�, �) =
���

�

�
����

�

�
�

�� �� �
 

We have the following 

                  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)  

                 0 ≤ �
���

�

�
���� ���

�

�
��

�(�� �� �)� �

�

− �
���

�

�
���� ���

�

�
��

�� �� �
�

�

+ � �
���

�

�
����

�

�
�

�� �� �
� 

                   0 ≤ − �
���

�

�
���� ���

�

�
��

�(�� �� �)�
�

�

+ � �
���

�

�
����

�

�
�

�� �� �
�  

                       �
���

�

�
���� ���

�

�
��

�(�� �� �)�
�

�

≤  � �
���

�

�
����

�

�
�

�� �� �
� 

                         
���

�

�
���� ���

�

�
��

�

�(�� �� �)
≤ � �� −

�

�
�.                                                         (6)   

Here also, (6) holds with L= 10.                                                          

 From the Cases (I) - (II) considered above  � satisfies the inequality (4.2.2.1) for the � and �  

chosen in example 4.2.2.1 and hence � satisfies all the hypotheses of the Theorem 4.2.2 and � 

has a fixed point �∘ = 0. If we choose L=0 in the inequality (4.2.2.1), from examples 4.2.2.1 in 

Cases (I-II) we observe that the inequality (4.2.2.1) fails to hold. This indicates the importance of 

L in Theorem 4.2.2. 

The following is also an example in support of Theorem 4.2.2. 

Example 4.2.2.2:��� � =  [0, 2] with the usual metric. 

We define the partial order ˝≼  ˝ on X by 

           ≼ =  {(�, �): �, � ∈  [0,1), � = �} ∪  {(�, �): �, � ∈  [1,2], � ≤ �}.  

�ℎ�� (�, ≼ ) is a partially ordered set. 

Let �: � ⟶ �  be defined by �� = �
0    �� 0 ≤ � < 1
1  �� 1 ≤ � ≤ 2

� 

 �, �: ℝ �  → ℝ � �� ������� ��:    �(�) = 2�,  �(�) = 2�, 

  then clearly  � ∈ � , � ∈ � . ��� ���  � = 1, 

Now we verify the inequality 4.2.2.1 
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 Case I: Let �, � ∈  [0,1) then    �� = 0  

                                      �� = 0   then we have 

        1.  �(��, ��) = �(0,0) = |0 − 0|= 0.  

     . 2 . � (�, �) = ��� �
�(�,��)[1+ �(�,��]

1+ �(�,�)
,

�(�,��)[1+ �(�,��]

1+ �(�,�)
, �(�, �)� 

                           = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(�, �)�    

                           = ��� �
|�|[�� |�|]

�� |�� �|
,

|�|[�� |�|]

�� |�� �|
, |� − �|�  since � = � ∈  [0.1) 

  = ��� {�(1 + �), �(1 + �), 0} 

  =��� {�� + �, �� + �, 0} 

   = �� + �. 

       .3.  � (�, �) = ��� �
�(�,0)[1+ �(�,0)]

1+ �(�,�)
, �(�, �)� 

                             = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(�, �)�                    

                                 = ��� �
|�|[�� |�|]

�� |�� �|
, |� − �|�  since � = � ∈  [0.1)      

                                 = ��� {�(1 + �), 0} 

    =��� {�� + �, 0} 

     =�� + �. 

      4. � (�, �)     = ��� �
�(�,��)�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
�  

             = ��� �
�(�,0)�(�,0)

1+ �(�,�)
,

�(�,0)�(�,0)

1+ �(�,�)
� 

             = ��� �
|�||�|

�� |�� �|
,

|�||�|

�� |�� �|
�           

              = ��� ��
|�||�|

�� |�� �|
,

|�||�|

�� |�� �|
��  since � = � ∈ [0,1) 

              = ��� {��, ��} 

               =��. 

     1. Suppose:        � (�, �) = �� + � 

                   � (�, �) = �� + � 

                    � (�, �) = �� 

   Then we have the following. 

                        ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �) 

                            �(0) ≤ 2(�� + �) − 2(�� + �) + �� 

                             0≤ �.�                              
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This is true for all � ∈ � =  [0,1) 

   Case II:  Let �, � ∈ [1,2] then we have the following 

                          �� = 1,�� = 1 

         1.  �(��, ��) = �(1,1) = |1 − 1|= 0.    

         2 . � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                    = ��� �
�(�,�)[�� �(�,�]

�� �(�,�)
,

�(�,�)[�� �(�,�]

�� �(�,�)
, �(�, �)� 

                    = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |� − �|�. 

        3. � (�, �) =  ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                     = ��� �
�(�,�)[�� �(�,�]

�� �(�,�)
, �(�, �)� 

                            = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |� − �|�. 

        4.  � (�, �)  = ��� �
�(�,�� )�(�,��)

�� �(�,�)
,

�(�,��)�(�,��)

�� �(�,�)
� 

                              = ��� �
�(�,�)�(�,�)

�� �(�,�)
,

�(�,�)�(�,�)

�� �(�,�)
� 

                             =��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
�. 

Now consider the following: 

    1. Suppose: � (�, �) =
|�� �|[�� |�� �|]

�� |�� �|
 

                        � (�, �) =
|�� �|[�� |�� �|]

�� |�� �|
 

                        � (�, �) =
|�� �||�� �|

�� |�� �|
 

      Then we have the following 

               ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)                      (1) 

                (1)(0) ≤ (2) �
|�� �|[�� |�� �|]

�� |�� �|
� -2�

|�� �|[�� |�� �|]

�� |�� �|
�+1 �

|�� �||�� �|

�� |�� �|
� 

                        0 ≤ �
|�� �||�� �|

�� |�� �|
�. 

      This holds for any  � ≼ � ���ℎ �ℎ�� �, � ∈ [1,2]. 

2. Suppose:  � (�, �) = |� − �| 

               � (�, �) =   |� − �| 
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                               � (�, �) =
|�� �||�� �|

�� |�� �|
 

So, consider the following 

                  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)  

                   0 ≤  2(|� − �|) − 2(|� − �|) + � �
|�� �||�� �|

�� |�� �|
�  

                   0 ≤ � �
|�� �||�� �|

�� |�� �|
�. . 

This holds for any �, � ∈ [1,2]  such that   � ≤ �. 

 From the Cases (I) - (II) considered above  � satisfies the inequality (4.2.2.1) and hence � 

satisfies all the hypotheses of the Theorem 4.2.2 and � has two fixed points  �∘ = 0 ��� �∘ = 1.  

 

The following is a theorem to demonstrate the uniqueness of fixed point for the mapping T. 

Theorem 4.2.3 In addition to the hypotheses of Theorem 4.2.1 or Theorem 4.2.2 suppose that for 

every �, � � �, there exists � ∈ � such that  � ≼ � ��� � ≼ �. Then T has a unique fixed point.   

Proof:  Following from theorem 4.2.1 the sets of fixed points of � is non- empty. Now we shall 

show that if � and   � are two distinct fixed points of T, that is,  

                         if � = ��  and � = �� , then  � = � .                                            (4.2..3.1) 

Assume that   there exist �° ∈ � such that �° ≼ � and �° ≼ �, then as in the proof of Theorem 

4.2.1, we define the sequence {�� }  such that: 

                       ��� � = ��� = ��� ��°,   � = 1,2, …                                                      (4.2.3.2) 

Monotoncity of � implies �� �° = �� ≼ � = �� �  and �� �° = �� ≼ � = �� �   

If there exist a positive integer m such that � = �� , then � = ��  = ��� =  ��� � for all 

� ≥ � , then �� → � as � → ∞ . 

Now suppose that  � ≠ ��   for all � ≥ 0, so �� ≼ � for all � ≥ 0, then �(�� , �) ≠ 0 for all 

� ≥ 0. 

Let �� = �(�� , �) for all � ≥ 0. As �� ≼ � for all � ≥ 0, by applying the inequality  (4.2.1.1)  

we have  

 �(�(��� �, � ) ) = �(�(��� , �� ) )    

                                                                                                                                   

  ≤ � ���� �
�(�,��)[�� �(�� ,��� )]

�� �(�� ,� )
,

�(�,��� )[�� �(�� ,��)]

�� �(�� ,� )
, �(�� , �) ��                   (4.2.3.3)                           
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      −� � ���� �
�(�,��)[�� �(�� ,��� )]

�� �(�� ,� )
, �(�� , �) ��� + ���� �

�(�� ,��)�(�,��� )

�� �(�� ,� )
,

�(�� ,��� )�(�,��)

�� �(�� ,� )
� 

=  � ����� �
�(�,�)[�� �(�� ,�� � �)]

�� �(�� ,� )
,

�(�,�� � �)[�� �(�� ,�)]

�� �(�� ,�)
, �(�� , �) ��� 

   −� ����� �
�(�,�)[�� �(�� ,�� � �)]

�� �(�� ,� )
, �(�� , �) ��� + ���� �

�(�� ,�)�(�,�� � �)

�� �(�� ,�)
,

�(�� ,�� � �)�(�,�)

�� �(�� ,� )
� 

= ��(��� {0, �(�, ��� �), �(�� , �) })�– ��(��� {0, �(�� , �) })�+  ���� �
�(�� ,�)�(�,�� � �)

�� �(�� ,� )
, 0�   

= ��(��� {�(�, ��� �), �(�� , �) })�– �{�(�� , �) }      

 Let      �(�, ��� �) = ��� � ��� �(�� , �) = ��  

Then �(��� �) ≤ �(��� {��� �, �� }) − �(�� )                                                                (4.2.3.4) 

 If  ��� � > ��   then from (4.2.3.4) we have    

�(��� �) ≤ �(��� �) − �(�� ) that is �(�� ) ≤ 0, which is a contradiction to the definition of �. 

So �� > ��� � ��� {�� } is a decreasing sequence, then from (4.2.3.4)  

We have �(��� �) ≤ �(�� ) − �(�� )                                                                               (4.2.3.5)                                 

 Since {�� }  is a decreasing sequence of positive real numbers which is bounded below, there 

exist   � ≥ 0 such that  �� = �(�� , � ) → � as � → ∞ .                                                     (4.2.3.6) 

Similarly as shown in the proof of theorem 4.2.1 we can show that   � = 0, then we have 

     �� = �(�� , � ) → 0 as  → ∞  .                                                                                       (4.2.3.7) 

 Then    �� → � as  � → ∞ .                                                                                                (4.2.3.8)                                                                    

Similarly:  �� → � as � → ∞ . 

Finally, the uniqueness of the limit implies � = �. 

               Thus  �  has a unique fixed point. 

  Remark 3. By choosing L=0 in Theorem 4.2.3 we get Theorem 4.1.9 as a corollary to Theorem 

4.2.3.  

The following is an example in the support of Theorem 4.2.3. 

 Example 4.2.3.1 Let � = {3,4,5,6,7} be endowed with the usual metric �(�, �) = |� − �|  for 

all �, � ∈ �, and We define a partial order on X  as follows. 

 ≼ :={(3,3), (4,4), (5,5), (6,6), (7,7), (5,6), (5,7), (6,7)} then (�, ≼ )  is a partially ordered set.  

Now we define the mapping �: � → �  by  T=��
�

  �
�

 �  
�

�
�

  �
  �

�, Clearly T is continuous. 

Since    3 ≼ 3 ⟹ 3 = T(3) ≼ 3 = T(3); 

             4 ≼ 4 ⟹ 3 = T(4) ≼ 3 = T(4); 
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              5 ≼ 5 ⟹ 4 = T(5) ≼ 4 = T(5); 

              6 ≼ 6 ⟹ 4 = T(6) ≼ 4 = T(6); 

              7 ≼ 7 ⟹ 4 = T(7) ≼ 4 = T(7); 

              5 ≼ 6 ⟹ 4 = T(5) ≼ 4 = T(6); 

              5 ≼ 7 ⟹ 4 = T(5) ≼ 4 = T(7); 

              6 ≼ 7 ⟹ 4 = T(6) ≼ 4 = T(7); 

    Thus T is non-decreasing mapping. 

By defining the functions �, �: ℝ �  → ℝ �     by:  �(�) =
�

�
,     �(�) =

�

�
 , and Let L= 1. 

then clearly  � ∈ � , � ∈ � .  

 We note that the case � = �  follows trivially, so let   �, � ∈ � such that � ≼ � and � ≠ �. 

We also consider the following three cases to verify the inequality (4.2.3.1) 

Case I: Let us take  � = 5 ��� � = 6  then 

  1. �(��, ��) = ���(5), �(6)� = �(4,4) = 0. 

 2.     � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

              = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,6)� 

              = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,6)� 

              = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |5 − 6|� 

              = ��� �
(�)(�)

�
,

(�)(�)

�
, 1�    

              = ��� {2,2,1}= 2. 

3. � (�, �)   = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)�. 

            = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,6)� 

            = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,6)� 

            = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |5 − 6|� 

            = ��� �
(�)(�)

�
, 1�    

            =��� {2,1}= 2.    

4.� (�, �)   = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 
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            = ��� �
�(�,�(�))�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

           = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

            = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

            = ��� �
(�)(�)

�
,

(�)(�)

�
� 

            = ��� {1,1}= 1. 

So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
(2) −

�

�
(2) + 1(1) 

                        0 ≤ −
�

�
+ 1 

                       0 ≤
�

�
. 

Case II Let   � = 5 ��� � = 7 then 

1. �(��, ��) = ���(5), �(7)� = �(4,4) = 0. 

2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                           = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,7)� 

                   = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,7)� 

                   = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |5 − 7|� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
, 2�    

                    = ��� {2,2,2}= 2. 

3.  � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                 = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(5,7)� 

                 = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(5,7)� 

                 = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |5 − 7|� 

                 = ��� �
(�)(�)

�
, 2�    

                =��� {2,2}= 2. 

     4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 
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                   = ��� �
�(�,�(�)�(�,�(�))

�� �(�,�)
,

�(�,�(�))�(�,�(�))

�� �(�,�)
� 

                 = ��� �
�(�,�)�(�,�))

�� �(�,�)
,

�(�,�))�(�,�))

�� �(�,�)
� 

                   = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                   = ��� �
(�)(�)

�
,

(�)(�)

�
� 

                   = ��� {1,1}= 1.  

So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
(2) −

�

�
(2) + 1(1) 

                        0 ≤ −
�

�
+ 1 

                      0 ≤
�

�
. 

 Case III: Let  � = 6 ��� � = 7 then 

1. �(��, ��) = ���(6), �(7)� = �(4,4) = 0. 

2. 2. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
,

�(�,��)[�� �(�,�� ]

�� �(�,�)
, �(�, �)� 

                        = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
,

���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(6,7)� 

                 = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
,

�(�,�)[�� �(�,�)]

�� �(�,�)
, �(6,7)� 

                 = ��� �
|�� �|[�� |�� �|]

�� |�� �|
,

|�� �|[�� |�� �|]

�� |�� �|
, |6 − 7|� 

                 = ��� �
(�)(�)

�
,

(�)(�)

�
, 1�    

                 = ��� �
�

�
,

�

�
, 1� =

�

�
. 

3. � (�, �) = ��� �
�(�,��)[�� �(�,��]

�� �(�,�)
, �(�, �)� 

                = ��� �
���,�(�)�[�� �(�,�(�)]

�� �(�,�)
, �(6,7)� 

                  = ��� �
�(�,�)[�� �(�,�)]

�� �(�,�)
, �(6,7)� 

                  = ��� �
|�� �|[�� |�� �|]

�� |�� �|
, |6 − 7|� 

                  = ��� �
(�)(�)

�
, 1�    

                  =��� �
�

�
, 1� =

�

�
. 
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        4.� (�, �) = ��� �
�(�,��)�(�,��)

1+ �(�,�)
,

�(�,��)�(�,��)

1+ �(�,�)
� 

                    = ��� �
�((�,�(�))�(�,�(�))

�� �(�,�)
,

�((�,�(�))�(�,�(�))

�� �(�,�)
� 

                  = ��� �
�((�,�)�(�,�))

�� �(�,�)
,

�(�,�)�(�,�))

�� �(�,�)
� 

                    = ��� �
|�� �||�� �|

�� |�� �|
,

|�� �||�� �|

�� |�� �|
� 

                    = ��� �
(�)(�)

�
,

(�)(�)

�
�= ��� {3,3}= 3. 

So  ���(��, ��)� ≤ ��� (�, �)�− ��� (�, �)�+ �� (�, �)   becomes 

                 
�

�
(0) ≤

�

�
�

�

�
� −

�

�
�

�

�
� + 1(3) 

                        0 ≤ −
�

�
+ 3 

                       0 ≤
��

�
. 

  From the Cases (I) - (III) considered above  � satisfies the inequality (4.2.3.1) for the � and �  

chosen in example 4.2.3.1 and hence � satisfies all the hypotheses of the Theorem 4.2.3 and � 

has a unique fixed point �∘ = 3. If we choose L=0 in the inequality (4.2.3.1), from examples 

4.2.3.1 in Cases (I-III) we observe that the inequality (4.2.3.1) fails to hold. This indicates the 

importance of L in Theorem 4.2.3. 
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                                                Unit 5 

5. Conclusion and future scope 

                5.1 Conclusion 
In this Thesis, we proved two fixed point theorems namely Theorem 4.2.1 and Theorem 4.2.2 on 

the existence of fixed points for almost (�, �) contractions involving rational expressions in 

partially ordered metric space. By imposing additional conditions we also proved uniqueness of 

fixed points of almost (�, �)-contractions involving rational expressions in partially ordered 

metric space. 

1. By Remark 1 and Examples (4.2.1.1), we conclude that Theorem 4.2.1 is more 

general than Theorem 4.1.7. 

2. By Remark 2 and Examples (4.2.2.1), we conclude that Theorem 4.2.2 is more 

general than Theorem 4.1.8. 

Our result extends and improves the results of S.Chandok, B.S.Choudhury and N.Metiya [8]. 

                5.2 Future scopes 
The existence of fixed point of almost (�, �)-contractions involving rational expressions in 

partially ordered metric space is new area of study. Recently there are a number of published 

research papers related to this area of study. So the student researcher recommends the upcoming 

post graduate students of the department and other researchers who are interested to do their 

research work in this area of study. 
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