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Abstract 

In this thesis, fourth order stable central difference method has been presented for solving self-

adjoint singular perturbation problems for small values of perturbation parameter . First, the 

given interval is discritized and the derivative of the given differential equation is replaced by 

the finite difference approximations. Then, the given differential equation is transformed to 

linear system of algebraic equations. Further, these algebraic equations are transformed into a 

three-term recurrence relation, which can easily be solved by using Thomas Algorithm. To 

validate the applicability of the proposed method, four model examples with and without exact 

solution have been considered and solved for different values of perturbation parameter and 

mesh sizes. Both   theoretical error bounds and numerical rate of convergence have been 

established for the method. As it can be observed from the numerical results presented in tables 

compared to the numerical solution by  Kadalbajoo and Kumar [17], Kumar and Kadalbajoo 

[19] and Patidar and Kadalbajoo [29] from literature and graphs, the present method 

approximates the exact solution very well.  
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Chapter One: Introduction 

   1.1. Background of the Study 

Due to the advancement in the field of computational mathematics numerical methods are most 

widely utilized to solve the equation arising in the field of applied medical science, engineering 

and technology. Numerical analysis is the branch of mathematics that deals with the 

computational methods which helps to find approximate solutions for difficult problems such as 

finding the roots of non-linear equations, integration involving complex expressions and solving 

differential equations for which analytical solutions does not exist. The theory of singular 

perturbations has been with us, in one form or other, for a little over a century (although the term 

‘singular perturbation’ dates from the 1940s). The subjects, and the techniques associated with it, 

have evolved over this period as a response to need to find approximate solutions (in an 

analytical form) to complex problems. Numerical analysis plays a significant role when 

difficulties encountered in finding the exact solution of an equation using a direct method and 

when it becomes very difficult to apply theoretical methods to find the exact solution. In real life, 

we often encounter many problems which are described by parameter dependent differential 

equations. The behaviors of the solutions of these types of differential equations depend on the 

magnitude of the parameters. Any differential equation in which the highest order derivative is 

multiplied by a small positive parameter  ( 0   1) is called Singular Perturbation Problem 

(SPP) and the parameter is known as the perturbation parameter. In fact, any differential equation 

whose solution changes rapidly in some parts of the interval/domain is generally known as 

Singular Perturbation Problem and also called Boundary Layer Problem (BLP). A singular 

perturbation problem is best defined as one in which no single asymptotic expansion is uniformly 

valid throughout the interval. Classical numerical methods which have been known to be 

effective for solving most problems that arises in application have failed when applied to 

singular perturbation problems, so most of these methods are not effective for solving singular 

perturbation problems because, as 0 , the error in numerical solutions increases and often 

becomes not comparable in magnitude to the exact solutions Farell et al.[8]. There are so many 

authors who have worked in the field of Self-adjoint SPP. One can refer Boglave [3] ,Niijima 

[26,27], Miller [22] ,Mishra.et.al [24],   Kumar and Kadalbajoo [19],Gupta and Pankaj [14] and 

Gupta.et.al [15] . Patidar [28] was presented a fitted operator finite difference method (FOFDM) 
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that derived via Numerov’s method and shown to be fourth order accurate for moderate value of 

 and second order accurate for very small values of   .  On the other hand, Patidar and 

kadalbajoo [29], exponentially fitted spline approximation method for solving self-adjoint 

singularly perturbed problem and also Vulanovic [46] presented a higher order-uniformly 

convergent method for a non-linear problem and also the defect-correction method has been 

investigated by Frank [10], Frank and Ueberhuber [9] and Stetter [38] to combine the stability of 

the upwind method and the accuracy of central difference method. However, according to segal’s 

[36] report the methods are not useful for  h  because of their slow convergence. Riordan 

and Stynes [33] gave a method using finite elements with uniform mesh. This method is second 

order accurate in L-norm. The numerical results obtained by this method indicate that scheme 

with uniform mesh is not uniformly convergent for sufficiently small value of  and the maximal 

nodal error increases as  decreases. Dekema and Schultz [5] presented higher order methods for 

solving singular perturbation problems. These methods rewrite higher derivatives in Taylor’s 

expansions in terms of first and second derivative term by differentiating their problem. They 

obtained up-to a fourth order method for two dimensional problems. However, these methods 

dealt with problems for only constant coefficients and they also faced instability as   becomes 

very small. Pearson [30], was perhaps the first to solve numerically by taking net adjustments in 

finite difference method. This idea was further developed by Abrahamsson et al.[1] in their study  

of difference methods for a general class of singular perturbation problems. Their aim was to 

devise numerical schemes with constant mesh spacing h  to yield accurate solutions.  

However, they were able to show in general, that the accuracy of the scheme cannot be better 

than  )(ho  . To overcome this drawback, we have presented suitable numerical method that is 

accurate and easy method for solving self-adjoint singularly perturbed two-point boundary value 

problems for small values of perturbation parameter  and also established both theoretical 

errors bound and computational rate of convergence of this method for reasonable step size h. 
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  1.2. Statement of the Problem 

A finite element method for solving self-adjoint singularly perturbed boundary value problem 

was presented by Vukoslavcevic and Surla[45]. It is well-known that standard discretization 

methods for solving self-adjoint singular perturbation problems are unstable and fail to give 

accurate results when the perturbation parameter   is very small. Classical computational 

approaches to singularly perturbed problems are known to be inadequate as they require 

extremely large numbers of mesh points to produce satisfactory computed solutions Farell, et al. 

[8] and Roos, et al. [34]. So, the treatment of singularly perturbed problems presents severe 

difficulties that have to be addressed to ensure accurate numerical solutions Doolan, et al. [6], 

Kadalbajoo, et al. [17] and Roos, et al. [34]. Thus, existing numerical methods produce good 

results only when we take step size h . This is very costly and time consuming process. 

Schultz and Joshua [37], presented stable higher order central difference methods for differential 

equations with small coefficients for second order terms and the idea was further developed by 

Tilak [40] ,who was proved that the stability of three-points in  higher order stable central 

difference methods were  -independent. Their aim was to devise numerical schemes with 

constant mesh spacing h  to yield accurate solutions.  However, they were able to show in 

general, that the accuracy of the scheme cannot be better than )( 2ho . 

Hence, this research aims to present suitable numerical method (i.e. method which is more 

efficient and requires simpler computational techniques) which can work with a reasonable step 

size h .  

Owing to this, the present study attempts to answer the following questions: 

 How does the fourth order stable central difference method can be described for solving 

self-adjoint singularly perturbed problems? 

 To what extent the present method approximate the exact solution? 

 To what extent the proposed method converges? 

  1.3. Objectives of the Study 

    1.3.1 General Objective 

The general objective of this study is to present numerical method which is simple, efficient and 

easily adaptable for solving self-adjoint singularly perturbed problems. 
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    1.3.2 Specific Objectives 

The specific objectives of the present study are: 

 To describe fourth order stable central difference method for solving self-adjoint 

singularly perturbed problems. 

 To compare the numerical solutions obtained by the present method with the exact 

solution. 

 To establish the stability and convergence of the proposed method. 

  1.4. Significance of the Study 

  The result obtained in this research may: 

 Serve as a reference material for scholars who works on this area. 

 Give an idea about the application of numerical methods in different field of studies. 

 Help the graduate students to acquire research skills and scientific procedures. 

 1.5. Delimitation of the Study 

The singular perturbation problems are perhaps the most important differential equations in all 

applied mathematics that contribute for the advantage of science and technology. Though 

singular perturbation problems are vast topics and have many applications in the real world, this 

study was delimited to a class of self-adjoint singularly perturbed equation of the form:  

                    );()()()')(( xfxyxqyxp 
  

10  x           (1.1) 

  with the Dirichlet boundary conditions,    

                       ,)0( y )1(y             (1.2) 

  where, )10(  is a small parameter;   ,  are given constants and )(xp , )(xq  and 

)(xf are assumed to be sufficiently continuous differentiable functions. Further, the study was 

delimited to fourth order stable central difference method though there are varieties of methods 

for solving the problem under the study.  
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 1.6 Definition of Terms 

  Definition 1.1: Boundary value problem is a problem, typically an ODE or a PDE, which has 

values assigned on the physical boundary of the domain in which the problem is                        

specified, is called a boundary value problem (BVP). 

  Definition 1.2: Any differential equation (DE) obtained from a given DE and having property 

that solution is an integrating factor of the other is known as adjoint DE. 

  Definition 1.3: Any DE that has the same solution as its adjoint DE is known as Self-Adjoint 

DE and if it’s highest order derivative is multiplied by a small positive parameter  , 0   1

and which has the form )()())(( xfyxqyxp   is called second order self-adjoint SPP 

Byme [4] and Mishra.et.al[23] . 
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Chapter Two: Review of Related Literature 

  2.1. Singular Perturbation Theory 

The term singular perturbation was first introduced by Friedrichs, et al. [11]. An excellent survey 

of the historical development of singular perturbations is found in a recent book by O’Malley [21] 

and Vasil'eva [43]. Other historical surveys concerning the research activity in singular 

perturbation theory at Moscow State University and elsewhere are found in Vasileva, et al. [44], 

and [42]. In recent decades this is a field of increasing interest to applied mathematicians and 

numerical analysts in view of the challenges the problems there in pose to the researchers. In 

Mathematics, more precisely in perturbation theory, a singular perturbation problem is a problem 

containing a small parameter that cannot be approximated by setting the parameter value to zero. 

This is in contrast to regular perturbation problems, for which an approximation can be obtained 

by simply setting the small parameter to zero.  More precisely, the solution cannot be uniformly 

approximated by an asymptotic expansion as 0 . Here   is the small parameter of the 

problem. Next we will focus on some methods used to solve self-adjoint singular perturbation 

problems. 

  2.2 An Initial Value Technique 

Here self-adjoint singularly perturbed two-point  boundary value problem of the form 

  )()()(')( xfxyxqyxpLy 


  , 10  x is considered with the Dirichlet boundary 

conditions ,)0( y )1(y   where, )10(  is a small parameter;  and  are given 

constants )(xp , )(xq  and )(xf  are assumed to be sufficiently continuous differentiable 

functions. yL
 
admits maximum principle   Protter and Weinberger[32]. This problem depends on 

a small positive parameter in such a way that the solution varies rapidly in some parts and varies 

slowly in some other parts. Mishra .K, et.al [23] have studied an initial value technique for self-

adjoint singular perturbation boundary value problems. Natesan and Ramanujam [25] have 

studied initial-value technique for singularly perturbed boundary-value problems for second-order 

ordinary differential equations arising in chemical reactor theory .The required approximate 

solution is obtained by combining solutions of two terminal-value problems and one initial- value 

problem which are obtained from the original boundary-value problem through asymptotic 

expansion procedures. Error estimates for approximate solutions of this method are not 
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satisfactory. 

   2.3 Singular Perturbation Methods 

The methods used to tackle problems in this field are many. Let us see two methodologies for 

investigating solutions to singularly perturbed differential equations. The choice of technique to 

be applied depends on the form of the problem and also on the desired properties to be studied. 

The more basic of these include the method of matched asymptotic expansions, and the method 

of multiple scales Roos.et.al [34], Keller [18] and Miller [22]. 

2.3.1. Boundary Layers and Matched Asymptotic Expansions 

Singularly perturbed differential equations can yield solutions containing regions of rapid 

variation. The regions, which may be apparent in the solution or in its derivatives, are called 

‘layers’ and often appear at the boundary of the domain. Constructing a solution to a differential 

equation or system involves several steps: identifying the locations of layers (boundary or 

internal), deriving asymptotic approximations to the solution in the different regions 

(corresponding to different distinguished limits in the equations), and ultimately, forming a 

uniformly valid solution over the entire domain. Solutions obtained for the layers (singular 

distinguished limits) are usually termed as inner solutions while the slowly varying solutions for 

the regular distinguished limits are referred to as outer solutions. The uniformly valid solution 

can be constructed through asymptotic matching of the inner and an outer solution, which relies 

on the fundamental assumption that the different solution forms overlap at on some identifiable 

region. 

2.3.2. Multiple Scales Analysis for Long-Time Dynamics 

For finite, bounded times, solutions can be asymptotically approximated by application of the 

regular expansion, with the leading order solution. However, at large times, the naive regular 

expansion breaks-down due to the appearance of secular terms (terms which grow with time). 

This failure of the inner and outer expansion can be traced to the fact that the limits do not 

commute and which indicates that the expansion is not uniformly valid in time. 
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 2.4. Numerical versus Analytical Methods 

Suppose we have a differential equation and we want to find a solution of the differential 

equation. The best is when we can find out the exact solution using calculus, trigonometry and 

other techniques. The techniques used for calculating the exact solution are known as analytic 

methods because we used the analysis to figure it out. Analytical solution is continuous. The 

exact solution is also referred to as a closed form solution or analytical solution. But this tends to 

work only for simple differential equations with simple coefficients, but for higher order or non-

linear differential equations with complex coefficient, it becomes very difficult to find exact 

solution. Therefore, we need numerical methods for solving these equations. In this thesis, fourth 

order stable central difference method has been presented for solving self adjoint singular 

perturbation problems. 

   2.5. Finite Difference Methods 

The finite difference methods are always a convenient choice for solving boundary value 

problems because of their simplicity. Finite difference methods are one of the most widely used 

numerical schemes to solve differential equations. In finite difference methods, derivatives 

appearing in the differential equations are replaced by finite difference approximations obtained 

by Taylor series expansions at the grid points. This gives a large algebraic system of equations to 

be solved by any iterative methods in place of the differential equation to give the solution value 

at the grid points and hence the solution is obtained at grid points. Some of the finite difference 

methods include forward difference method, backward difference method, central difference 

method, etc. The general concepts of finite difference methods in details such as stability, 

convergence conditions, etc have been presented in literature for solving differential equations. 

The challenge in analyzing finite difference methods for new classes of problems is often to find 

an appropriate definition of stability that allow one to prove convergence and to estimate the 

error in approximation. The finite-difference method as cited by Vasil’eva [41] and Prandtl  [31] 

is widely used by the scientific community for the numerical solution of reaction–diffusion 

equations; however, there are comparatively few studies that give stability and convergence 

results see Beckett, et al. [2], Hoff [16], Gartland  [12], Lubuma and  Patidar[20] and 

Vukoslavcevic and Surla[45]. For a unified treatment of how and when the finite-difference 

method for reaction–diffusion equations breaks down see Stuart [39], Elliott, et al. [7], and Ruuth 

[35].  
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Chapter Three: Methodology 

This chapter consists of the following methods and materials that were used to carry out the 

study.  

3.1. Study Area and Period 

The study was conducted at Jimma University, which is Ethiopia’s first innovative community 

based education institution of higher learning, department of Mathematics from September 2014 

to September 2015. Conceptually, the study has been focused on numerical method particularly 

on fourth order stable central difference method for solving self-adjoint singularly perturbed two 

point boundary value problems with Dirichlet boundary conditions.  

3.2. Study Design 

This study was employed documentary review design and experimental design on self-adjoint 

singularly perturbed two-point boundary value problems. 

  3.3. Source of Information 

The relevant sources of information for this study were books, published articles & related 

studies from internet and the numerical results obtained by writing MATLAB code for the 

present numerical method.  

3.4. Study Procedures 

In order to achieve the stated objectives, the study has been followed the following steps: 

1. Defining the problem.  

 2. Discretizing the given interval. 

3. Replacing differential equation by finite difference approximations. 

 4. Obtaining the tri-diagonal system (TDS) which can be easily solved by Thomas Algorithm. 

 5. Writing MATLAB code for the tri-diagonal system obtained. 

  6. Validating the schemes using numerical examples.  

3.5. Ethical Considerations 

To be legal for collecting all the above materials it is important to have a permission letter. So, a 

letter of permission was taken from Research and Postgraduate studies of the College of Natural 

Science so as to make easy the collection of materials.  
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Chapter Four:  Description of the Method, Results and Discussion 

  4.1 Description of the method 

In this section, the description of fourth order stable central difference method (SCD4) and its 

stability and convergence analysis have been given. To describe the scheme, we divide the 

interval [0 1] into N  equal subintervals with uniform step length h . Let 1,...,,0 10  Nxxx  be 

the mesh points, then we have ihxxi  0
, Ni ....,,2,1,0  Denote ,)( ii axa 

  ii bxb )(
   

ii cxc )( ii fxf )(  and ii yxy )( .  

 From Eq. (1.1) we have:    

);()()()')(( iiiii xfxyxqyxp  for  Nix ,....2,1,0,10   

with boundary condition :  

 00 x  and  1Nx              )0( oxy   and  )1( Nxy  

 which can be rewritten in the form:     

)()()( iiiiii xcyxbyxay          (4.1) 

  where, ,
)(

)(
)(

i

i

ii
xp

xp
xaa




)(

)(
)(

i

i

ii
xp

xq
xbb


  and 

)(

)(
)(

i

i

ii
xp

xf
xcc


                             

 To find a description of fourth order stable central difference scheme, we use Taylor’s series   

expansion in-order to get central difference formula for iy  and iy . Assume that iy  has 

continuous fourth derivatives in the interval [0 1]. 

    )(
!6!5!4

'''
!3

''
!2

' 7)6(
6

)5(
5

)4(
432

1 hOy
h

y
h

y
h

y
h

y
h

hyyy iiiiiiii 
    (4.2) 

   )(
!6!5!4

'''
!3

''
!2

' 7)6(
6

)5(
5

)4(
432

1 hOy
h

y
h

y
h

y
h

y
h

hyyy iiiiiiii 
              (4.3)  

  Then, subtracting  Eq. (4.3) from Eq. (4.2)  we get: 

         
 

)(
!5

2
'''

62
' 6

)5(42
11

hO
yh

y
h

h

yy
y i

i

ii

i 





      (4.4) 

  Thus, the central difference approximation for the first derivative of 
i

y  is given by: 
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1

2
11

'''
62

' 





i

ii

i y
h

h

yy
y         (4.5) 

where , )(0
120

6

)5(4

1 h
yh i   

Similarly, adding Eqs. (4.2) and (4.3), we obtain central difference approximation for the second 

derivative of 
iy
 
as:

    
 

2

)4(
2

2

11

12

2
'' 






i

iii

i y
h

h

yyy
y               (4.6)  

where,  )(0
360

6)6(
4

2 hy
h

i            

Substituting  Eqs. (4.5)  and  (4.6) into Eq. (4.1) at ixx  ,
 
we obtain  

  
 

iiiii
i

iii
i cy

h
ya

h
y

h

a

h
y

h
by

h

a

h



























  3

4
22

12212 1262

12

2

1
     (4.7) 

where, 
)6(

4)5(4

213
360120

i
i

ii y
hyh

aa    

Differentiating Eq. (4.1)   successively, we obtain 

  iiiiiiiii cybybayay 
         (4.8)

                

                                and     

   
        iiiiiiiiiiiiiiiiiii ccaybabybabaaaybaay  22

24
             (4.9) 

 Substituting Eqs. (4.8)  and (4.9) into Eq. (4.7) we obtain:  

   

 
1212

2
12

2
122

1

12

2

2

1

22

3

2

2
2

12

2

212

iii

iiiiiiii

iiiii

i

iiiiii

i

chcah
cybabaaa

h

ybaa
h

y
h

a

h
ybab

h
b

h
y

h

a

h

































 



   (4.10) 
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Approximating the converted error term, which has a stabilizing effect, in Eq. (4.10)  and by 

using the central difference formulas given in Eqs. (4.5) and (4.6) for iy  and iy  we obtain:

   

   

   

   

4

22

1

2

2

2
2

2

1

2

2

1212

2
24

2
12

1

2

1

2
6

1

12

2

2
24

2
12

1

2

1











































iii
i

iiiiiiiiii
i

iiiiiiii

iiiiiiiiii
i

chcah
c

ybabaaa
h

baa
h

a

h

ybaabab
h

b
h

ybabaaa
h

baa
h

a

h

 (4.11) 

  where, 4  is local truncation error of  SCD4  and  given by: 

    )6(
4)5(4)4(4

2
4

4
360120144

2
72

2 i
i

i
i

iii
i

iiiiii y
hyh

a
yh

baa
yh

bbaaaa 


        (4.12) 

    where, )( 4

123 hOai  
 

Rearranging Eq. (4.11), we have the following three term recurrence relation of the form: 

    iiiiiii HyGyFyE   11          (4.13)
  
  

where, 

     
   iiiiiiiii

i
i babaaa

h
baa

h

a

h
E  2

24
2

12

1

2

1 2

2
 

    
   iiiiiiii bab

h
baa

h
bF 

12
2

6

12 2
2

2     
     

   iiiiiiiii
i

i babaaa
h

baa
h

a

h
G  2

24
2

12

1

2

1 2

2
 

     
 iiiii cca

h
cH 

12

2

,                 for 1,...3,2,1  Ni      

 Eq. (4.13) gives N by N tri-diagonal systems, which can easily be solved by Thomas       

Algorithm.  
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4.2 Stability and Convergence Analysis 

Remark: Here we shall use the definition of the stability of the difference operator given in 

keller [18]. 

 Definition: The linear difference operator  (.)hL  is stable if for sufficiently small h  , there 

exists a constant k , independent of  h  , such that   

  
NjLk

Ni

ihNoj ,....2,1,0,max),max(
11













  for any mesh function,   0j
N

j . 

 Theorem 

 Under the assumption  )( ixb  >0, for  is constant, 02
2

 iii baa  and  

             

 
  iiiii

iii

babaa

baa
h






2

22
min

2

 , for .1...3,2,1  Ni  

 The difference operator defined on Eq. (4.13) is stable with  











1
,1maxk     

 Proof:  Let (.)hL
 
denote the difference operator on left   hand side of Eq. (4.13) and 

i   be any 

mesh function satisfying:
 

iih HL )(              (4.14) 

  If max i  
occurs for i=0 or i=N, then the definition holds, since  1k  .  

So, assume that max i  occurs for 1,...3,2,1  Ni  

  Under the given assumption:  

iiiii GEFGE  ,0,0  and  ii GE   

  This implies that the tri-diagonal system in Eq.(4.13) is diagonally dominant and its solution 

exists , is unique Greenspan and Casulli [13].Then by rearranging the difference Eq.(4.13)  and 

using the non-negativity of the coefficients, we have: 

iiiiiii HGEF   11          

 


    ihiiiiii LGEF    11        (4.15)   

     since )( ixb   is a constant, by assumption 0)( 
ixb .Thus, we have : 
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   iiii baa
h

F 2
6

12 2

2

 
        (4.16) 

   Now using the fact,  iiiii baa
h

GE  2
6

12 2

2
  and  Eqs. (4.15) and (4.16), we get, 

 

 
1111

11

2

2

maxmax

2
6

12

















Nk

kh

Nk

kii

ihiiiiiiii

LGE

LGEbaa
h




        (4.17) 

 Since the inequalities in Eq. (4.17) holds for every i , it follows  that  

        
1111

2

211

2

2
maxmax2

6

12
2

6

12























Nk

kh

Nk

kiiii
Ni

iii Lbaa
h

xmabaa
h

  ,  

 this implies that: 

1111

maxmax



Nk

kh

Ni

i L   

 Hence, 

  









 11

0

1111

max,max
1

max
1

max
Nk

khN

Nk

kh

Ni

i LL 





  

    Therefore,  









 11

0 max,max
Nk

kkNi Lk   

  Hence, (.)hL is stable and this implies that the solution to the system of the difference equation 

Eq.(4.13) are uniformly bounded ,independent of mesh size h  and the parameter  .Hence, 

the  scheme is stable for all step size h . 

  Corollary: Under the conditions for the above theorem, the error  iii yxye  )(  , between the 

solution )(xy of the continuous problem and the solution iy of the discrete problem with the    

boundary condition satisfies the estimate: 

11

max



Ni

ii ke            (4.18) 

  where, 4  in Eq.(4.12)  denoted by i  which is the truncation error given by: 
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   


























































 










360
max

120
max

144
2max

72
2max

)6(4)5(4

)4(4

2

4

1111

1111

i

xxx

i

i
xxx

i

iii
xxx

i

iiiiii
xxx

i

yhyh
a

yh
baa

yh
bbaaaa

iiii

iiii



       

  

Proof: Under the given condition error ie   satisfies:   

    iiihih yxyLxeL  )()(   for,   1,...3,2,1  Ni and  .00  Nee  

Then, from the above theorem stability of  (.)hL  implies that  

 
11

max)(



Ni

iiii keyxy            (4.19) 

 Hence, the estimate in Eq. (4.18) establishes the convergence of the scheme for fixed values of 

the perturbation parameter . 

4.3. Thomas Algorithm 

The tri-diagonal matrix algorithm, also known as Thomas Algorithm, is a specific form of Gauss 

elimination that can be used to solve tri-diagonal system of equations /three-term recurrence 

relation. The Thomas Algorithm is based on the Gauss elimination procedure and consists of two 

parts: a forward elimination phase and a backward substitution phase. Our goal is to find 

unknown vector iy . A brief description for solving the tri-diagonal system which is called 

Thomas Algorithm is presented as follows. 

 Consider the scheme (4.13): 

,11 iiiiiii HyGyFyE    
Ni ....,,2,1

                (4.20)
 

 subject to the boundary conditions, 

 )0(0 yy
          (4.21) 

  )1(yyN
          (4.22) 

 assume that the solution to Eq.(1.1) be: 

     ,1 iiii TyWy     1,2...,,1,  NNi         (4.23) 

 where, )( ii xWW  and )( ii xTT  which are to be determined. 

 Solving  Eq. (4.23) at ,1 ixx we have 
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111   iiii TyWy                   (4.24) 

 Now by substituting Eq. (4.24) into Eq. (4.20) yields 

1

1

1

1 





 







iii

iii

i

iii

i
i

WEF

TEH
y

WEF

G
y        (4.25) 

 Then comparing Eq. (4.23) with Eq. (4.25) we get the recurrence relations: 

1


iii

i
i

WEF

G
W           (4.26) 

1

1










iii

iii

i
WEF

TEH
T           (4.27) 

  To solve these recurrence relations for 1,...,3,2,1  Ni  we need the initial conditions for 
0

W  

and 
0

T . For this, we take .)0(
0100

TyWyy   Choose, 0
0
W , then the value of 

 )0(
0

yT . With these initial values, we compute 
i

W  and 
i

T  for 1,...,2,1  Ni  from 

Eq. (4.26) and Eq. (4.27) in forward process, and then we obtain 
i

y  in the backward process 

from Eq. (4.22) and Eq. (4.23). 

  4.4 Numerical Examples 

To demonstrate the applicability of the method, we have solved four examples: a non-

homogeneous SPP and a SPP with variable coefficients. For each ε and N, the maximum 

absolute errors at nodal points are approximated by the formula, ii yxyE  )(max , for

Ni ,...2,1,0 and where, )( ixy   and  iy  are the exact and computed solution of the given problem 

and nodal point ix .   

    Example 4.1: 

                    )(xfyy  ,         

 with boundary condition,      0)1()0(  yy  

 where , )(xf is chosen such that the exact solution of the problem is given by:  

               xeexexxy

x

22)exp()(

1

1 






















 







 

  

 The numerical (solution in terms of maximum absolute errors ( E )) is given in table 4.1.  
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   Example 4.2: 

                 )(1 2 xfyxxy   

  with boundary condition, 0)1()0(  yy  

  where ,         







 







 


  

xx

exxexxxxxf 2

1

322 )1(221)(  

 The exact solution is given by:  

                        







 








 

 

xx

xeexxy

1

11)(  

 The numerical (solution in terms of maximum absolute errors ( E )) is given in table 4.2. 

  Example 4.3: 

                       )(11 22 xfyxxyx 

 ,     

  with boundary condition,                ;0)1()0(  yy  

 where , )(xf is chosen such that the exact solution of the problem is given by:  

                    







 







 

 

1

11)(

xx

exexxy   

  The numerical (solution in terms of maximum absolute errors ( E )) is given in table 4.3. 

  Example 4.4: 

       2+1/2-x1+3x-3x4
)3(

cos
1

22

3

2 











 y

x

x
yx

 

   with boundary condition,  1)0( y ,   0)1( y  

 The exact solution for this problem is not available. The numerical solution for this problem is 

obtained by using the Double-Mesh Principle [6]. 

 The numerical (solution in terms of maximum absolute errors ( E )) is given in table 4.4. 
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 4.5 Numerical Results 

  Table 4.1: Maximum Absolute Error ( E ) of Example 4.1 

   100N  500N  1000N  1500N  

Our Method 

2
-4

 2.0028E-09 3.2068E-12 2.2249E-13 1.3678E-13 

2
-6

 3.1415E-08 5.0189E-11 3.1462E-12 6.1062E-13 

2
-8

 5.0141E-07 8.0365E-10 5.0230E-11 9.9172E-12 

2-
10

 7.9979E-06 1.2853E-08 8.0358E-10 1.5874E-10 

2
-12

 1.2252E-04 2.0554E-07 1.2853E-08 2.5393E-09 

2
-14

 1.8953E-04 3.2823E-06 2.0554E-07 4.0615E-08 

2
-16

 1.6249E-03 5.2132E-05 3.2823E-06 6.4929E-07 

Kadalbajoo and Kumar [17]  using variable mesh 

2
-4

 2.380E-05 9.440E-07 2.360E-07 1.0500E-07 

2
-6

 5.310E-05 2.100E-06 5.260E-07 2.3400E-07 

2
-8

 1.070E-04 4.260E-06 1.060E-06 4.7300E-07 

2-
10

 2.150E-04 8.530E-06 2.130E-06 9.4800E-07 

2
-12

 4.310E-04 1.710E-05 4.260E-06 1.9000E-06 

2
-14

 8.610E-04 3.410E-05 8.530E-06 3.7900E-06 

2
-16

 1.700E-03 6.820E-05 1.710E-05 7.5800E-06 

Kadalbajoo and Kumar [17]  using  Uniform mesh   

2
-4

 2.480E-05 9.900E-07 2.480E-07 1.1000E-07 

2
-6

 9.810E-05 3.930E-06 9.820E-07 4.3600E-07 

2
-8

 3.910E-04 1.570E-05 3.920E-06 1.7400E-06 

2-
10

 1.600E-03 6.270E-05 1.570E-05 6.9800E-06 

2
-12

 5.900E-03 2.510E-04 6.270E-05 2.7900E-05 

2
-14

 2.150E-02 9.980E-04 2.510E-04 1.1200E-04 

2
-16

 4.120E-02 3.900E-03 9.980E-04 4.4500E-04 

    

 

 



 

19 

 

  Table 4.2: Maximum Absolute Error ( E ) of Example 4.2. 

   16N  32N  64N  128N  256N        512N  

Our Method  

1/8 0.1424E-05  0.8806E-07 0.5486E-08 0.3429E-09 0.2141E-10 0.1325E-11 

1/16 0.4148E-05 0.2577E-06 0.1617E-07 0.1017E-08 0.6322E-10 0.3933E-11 

1/32 0.9622E-05 0.5962E-06 0.3721E-07 0.2324E-08 0.10452E-09 0.9143E-11 

1/64 0.3074E-04 0.1927E-05 0.1207E-06 0.7502E-08 0.2443E-08 0.2930E-10 

1/128 0.1301E-03 0.8424E-05 0.5255E-06 0.3280E-07 0.2053E-08 0.1283E-09 

1/256 0.5910E-03 0.3704E-04 0.2319E-05 0.1450E-06 0.9072E-08 0.5671E-09 

1/512 0.1331E-02 0.1444E-03 0.9916E-05 0.6241E-06 0.3905E-07 0.2443E-08 

1/1024 0.1521E-02  0.6190E-03 0.4110E-04 0.2633E-05 0.1640E-06 0.1030E-07 

Patidar and Kadalbajoo [29]  using fitting factor  

1/8 0.320E-03 0.800E-04 0.200E-04 0.500E-05 0.120E-05 0.310E-06 

1/16 0.350E-03 0.860E-04 0.210E-04 0.530E-05 0.130E-05 0.330E-06 

1/32 0.400E-03 0.990E-04 0.250E-04 0.620E-05 0.150E-05 0.390E-06 

1/64 0.530E-03 0.130E-03 0.330E-04 0.820E-05 0.210E-05 0.510E-06 

1/128 0.830E-03 0.190E-03 0.460E-04 0.120E-04 0.290E-05 0.720E-06 

1/256 0.130E-02 0.260E-03 0.660E-04 0.160E-04 0.410E-05 0.100E-05 

1/512 0.180E-02 0.420E-03 0.950E-04 0.230E-04 0.580E-05 0.140E-05 

1/1024 0.250E-02 0.620E-03 0.130E-03 0.330E-04 0.810E-05 0.200E-05 

 Patidar and Kadalbajoo [29]  without using fitting factor  

1/8 0.150E-02 0.360E-03 0.910E-04 0.230E-04 0.57E-05 0.140E-05 

1/16 0.200E-02 0.490E-03 0.120E-03 0.310E-04 0.77E-05 0.190E-05 

1/32 0.290E-02 0.730E-03 0.180E-03 0.450E-04 0.11E-04 0.280E-05 

1/64 0.510E-02 0.130E-02 0.310E-03 0.780E-04 0.20E-04 0.490E-05 

1/128 0.950E-02 0.230E-02 0.580E-03 0.150E-03 0.36E-04 0.910E-05 

1/256 0.190E-01 0.450E-02 0.110E-02 0.280E-03 0.69E-04 0.170E-04 

1/512 0.380E-01 0.850E-02 0.210E-02 0.530E-03 0.13E-03 0.330E-04 

1/1024 0.670E-01 0.180E-01 0.420E-02 0.100E-02 0.26E-03 0.640E-04 
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  Table 4.3: Maximum Absolute Error ( E ) of Example 4.3.  

     8N  16N  32N  64N  128N        256N  512N  

2
-3

 1.44E-03 3.64E-04 9.06E-05  2.26E-05 5.66E-06 1.41E-06 3.53E-07 

2
-4

 2.95E-03 5.85E-04 1.46E-04  3.67E-05 9.17E-06 2.29E-06 5.73E-07 

2
-5

 3.71E-03 8.57E-04 2.08E-04  5.09E-05 1.26E-05 3.16E-06 7.89E-07 

2
-6

 3.12E-03 9.58E-04 2.12E-04  6.44E-05 1.51E-05 3.70E-06 9.45E-07 

2
-7

 2.81E-03 1.29E-03 2.23E-04  6.92E-05 1.65E-05 4.17E-06 1.03E-06 

2
-8

 4.63E-03 1.65E-03 2.33E-04  6.09E-05 1.73E-05 4.37E-06 1.08E-06 

2
-12

 6.76E-02 3.76E-02 7.40E-03  6.17E-04 3.54E-05 4.74E-06 1.21E-06 
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  Table 4.4: Maximum Absolute Error ( E ) of Example 4.4       

   32N  64N  128N  256N  512N        1024N  

Our Method  

2
-2

 3.7103E-08 2.3160E-09 1.4471E-10 9.0275E-12 6.7535E-13 8.0491E-14 

2
-4

 2.7916E-07 1.7470E-08 1.0916E-09 6.8258E-11 4.9849E-12 4.9531E-12 

2
-6

 2.8983E-06 1.8098E-07 1.1309E-08 7.0665E-10 4.6779E-11 7.6206E-12 

2
-8

 2.8429E-05 1.7762E-06 1.1100E-07 6.9378E-09 4.3499E-10 2.8159E-11 

2
-10

 2.2479E-04 1.4080E-05 8.7980E-07 5.4984E-08 3.4341E-09 2.2168E-10 

2
-12

 3.1128E-03 1.9481E-04 1.2190E-05 7.6239E-07 4.7650E-08 2.9734E-09 

2
-14

 5.0533E-02 3.3041E-03 2.0803E-04 1.3042E-05 8.1533E-07 5.0976E-08 

2
-16

 1.7521E-01 3.3893E-02 3.5055E-03 2.2167E-04 1.3873E-05 8.6815E-07 

Kadalbajoo and Kumar  [19]  using fitting factor  

2
-2

 1.310E-03 3.280E-04 8.210E-05 2.050E-05 5.130E-06 1.280E-06 

2
-4

 4.930E-03 1.230E-03 3.080E-04 7.710E-05 1.930E-05 4.820E-06 

2
-6

 1.600E-02 4.000E-03 1.000E-03 2.500E-04 6.260E-05 1.560E-05 

2
-8

 3.710E-02 9.270E-03 2.320E-03 5.790E-04 1.450E-04 3.620E-05 

2
-10

 6.190E-02 1.540E-02 3.860E-03 9.650E-04 2.410E-04 6.030E-05 

2
-12

 9.390E-02 2.340E-02 5.830E-03 1.460E-03 3.640E-04 9.100E-05 

2
-14

 1.340E-01 3.290E-02 8.150E-03 2.030E-03 5.080E-04 1.270E-04 

2
-16

 1.900E-01 4.310E-02 1.050E-02 2.600E-03 6.500E-04 1.620E-04 
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The computational rate of convergence can also be obtained by using the double mesh principle 

Doolan.et.al [6], defined below. Let        

    ,max 2/h

i

h

i
i

h yyZ   1...,,2,1  Ni   

  where 
h

iy  is the numerical solution on the mesh 
1

1}{ N

ix at the nodal point 
i

x and

,0 ihxxi 
 1,...,2,1  Ni   and where 2/h

i
y  is the numerical solution at the nodal point 

i
x on the mesh 

12

1}{ N

ix
 
where, .12,...,2,1,2/0  Niihxxi  

 In the same way one can define 2/hZ  by replacing  h  by 2/h  and 1N  by  12 N  , that is, 

 4/2/

2/ max h

i

h

i
i

h yyZ  ,  for .12...,,2,1  Ni  

 The computed rate of convergence is defined as: 

           Rate= log (
2

2/hh ZZ 
) 

Also maximum absolute error based on the double-mesh principle Doolan.et.al [6] is given by: 

N

i

N

i
i

yyE
2

2max   , for .,...2,1,0 Ni   and  
2/h

iy  denotes the values of iy for mesh length

2/h . 

Tables 4.5, 4.6 and 4.7 show that the sample examples of rate of convergence for examples 4.1, 

4.2 and 4.4 respectively. 

Table 4.5: Rate of convergence of Example 4.1 

  h  2/h  hZ  4/h  2/hZ  Rate  

2
-4

 1/100 1/200 1.877660E-09 1/400 1.173327E-10 4.00006 

 1/200 1/400 1.173327E-10 1/800 7.318690E-12 4.00008 

 1/400 1/800 7.318690E-12 1/1600 4.35097E-13 4.00010 

2
-8

 1/100 1/200 4.700047E-07 1/400 1.83953E-09 3.999227 

 1/200 1/400 2.940009E-08 1/800 1.14926E-10 3.998824 

 1/400 1/800 1.839530E-09 1/1600 1.14926E-10 4.000056 

2
-12

 1/100 1/200 1.145221E-04 1/400 7.49654E-06 3.933614 

 1/200 1/400 7.496540E-06 1/800 4.70000E-07 3.995819 

 1/400 1/800 4.700000E-07 1/1600 2.93981E-08 3.999216 
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 Table 4.6: Rate of convergence of Example 4.2 

  h  2/h  hZ  4/h  2/hZ  Rate 

1/16 
1/16 

1/32 

1/32 

1/64 

3.9350E-06 

2.4357E-07 

1/64 

1/128 

2.4357E-07 

1.5185E-08 

4.00019 

4.00036 

 1/64 1/128 1.5185E-08 1/256 9.4847E-10 4.00009 

 1/128 1/256 9.4847E-10 1/512 5.9290E-11 3.99988 

1/32 
1/16 

1/32 

1/32 

1/64 

9.0256E-06 

5.5941E-07 

1/64 

1/128 

5.5941E-07 

3.4888E-08 

4.00012 

4.00031 

 1/64 1/128 3.4888E-08 1/256 2.1795E-09 4.00007 

 1/128 1/256 2.1795E-09 1/512 1.3614E-10 4.00009 

1/128 1/16 1/32 1.2249E-04 1/64 7.8992E-06 3.95647 

 1/32 1/64 7.8992E-06 1/128 4.9271E-07 4.00029 

 1/64 1/128 4.9271E-07 1/256 3.0786E-08 4.00004 

 1/128 1/256 3.0786E-08 1/512 1.9253E-09 3.99911 

1/512 1/16 1/32 2.1873E-03 1/64 1.3947E-04 3.97111 

 1/32 1/64 1.3947E-04 1/128 9.3471E-06 3.89931 

 1/64 1/128 9.3471E-06 1/256 5.8546E-07 3.99691 

 1/128 1/256 5.8546E-07 1/512 3.6610E-08 3.99931 
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 Table 4.7: Rate of convergence of Example 4.4 

  h  2/h  hZ  4/h  2/hZ  Rate 

2
-2

 1/32 1/64 3.4787E-08 1/128 2.1713E-09 4.00019 

 1/64 1/128 2.1713E-09 1/256 1.3568E-10 4.0002 

 1/128 1/256 1.3568E-10 1/512 8.3521E-12 4.00029 

 1/256 1/512 8.3521E-12 1/1024 5.9486E-13 3.81125 

2
-4

 1/32 1/64 2.6169E-07 1/128 1.6378E-08 3.99870 

 1/64 1/128 1.6378E-08 1/256 1.0233E-09 4.00041 

 1/128 1/256 1.0233E-09 1/512 6.3273E-11 4.00016 

2
-8

 1/32 1/64 2.6653E-05 1/128 1.6652E-06 4.00054 

 1/64 1/128 1.6652E-06 1/256 1.0406E-07 4.00023 

 1/128 1/256 1.0406E-07 1/512 6.5028E-09 4.00021 

 1/256 1/512 6.5028E-09 1/1024 4.0683E-10 3.99862 

2
-10

 1/32 1/64 2.1071E-04 1/128 1.3200E-05 3.99663 

 1/64 1/128 1.3200E-05 1/256 8.2482E-07 4.00031 

 1/128 1/256 8.2482E-07 1/512 5.1550E-08 4.00002 

 1/256 1/512 5.1550E-08 1/1024 3.2124E-09 4.00043 

2
-12

 1/32 1/64 0.0029000 1/128 1.8262E-04 3.99812 

 1/64 1/128 1.8262E-04 1/256 1.1428E-05 3.99812 

 1/128 1/256 1.1428E-05 1/512 7.1474E-07 3.99901 

 1/256 1/512 7.1474E-07 1/1024 4.4677E-08 3.99984 

2
-14

 1/32 1/64 0.0472000 1/128 0.0031000 3.93121 

 1/64 1/128 0.0031000 1/256 1.9499E-04 3.98910 

 1/128 1/256 1.9499E-04 1/512 1.2227E-05 3.99523 

 1/256 1/512 1.2227E-05 1/1024 7.6435E-07 3.99936 
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The following graphs (figure 4.1-4.8) show the numerical solutions obtained by the present 

method for h   

 

Figure 4.1 Numerical solution of Example 4.1 with 01.0  and h=0.01   

 

      Figure 4.2 Numerical solution of Example 4.1 with 001.0  and h=0.01 
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       Figure 4.3: Numerical solution of Example 4.2 with 01.0  and h=0.01 

       

   Figure 4.4: Numerical solution of Example 4.2 with 001.0  and h=0.01 

 

 

 

                                                                                                

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 

YN - Numerical Solution

YE - Exact Solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

 

 

YN - Numerical Solution

YE - Exact Solution



 

27 

 

 

Figure 4.5: Numerical solution of Example 4.3 with 01.0   and h=0.01 

 

Figure 4.6: Numerical solution of Example 4.3 with 001.0   and h=0.01 
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Figure 4.7: Numerical solution of Example 4.4 with 16/1   and 16/1h  

 

Figure 4.8: Numerical solution of Example 4.4 with 32/1   and 16/1h  
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 4.6 Discussion 

In this thesis, fourth order stable central difference method has been presented for solving self-

adjoint singular perturbation problems. First, the given interval is discritized and the derivative 

of the given differential equation is replaced by the finite difference approximations. Then, the 

given differential equation is transformed to linear system of algebraic equations. Further, these 

algebraic equations are transformed into a three-term recurrence relation, which can easily be 

solved by using Thomas Algorithm. The numerical results have been presented in tables 4.1- 4.4 

for different values of the perturbation parameter   and number of mesh points N. The results 

obtained by the present method have been compared with Kadalbajoo and Kumar [17], Kumar 

and Kadalbajoo [19] and Patidar and Kadalbajoo [29] from literature and the results are 

summarized in the tables 4.1, 4.2 and 4.4. The stability and convergence of the method have 

been established.  

It can be observed from the tables that the present method gives better results than the methods 

by Kadalbajoo and Kumar [17], Kumar and Kadalbajoo [19] and Patidar and Kadalbajoo [29].  

Further, it can be observed from the graphs that the present method approximates the exact 

solution very well for h  for which most of the existing methods fails to give good results 

Segal [36]. Moreover, it is significant that all of the maximum errors decrease rapidly as N

increases.  

To further corroborate the applicability of the proposed method, graphs have been plotted for 

Examples 4.1, 4.2, 4.3 and 4.4 for values of  ]1,0[x  versus the numerical solution obtained at 

different values of   for a fixed step size h . Figures 4.1 – 4.8 provide a good agreement of 

results presenting exact as well as numerical solutions, which proves the reliability of the stable 

central difference method. That means the exact solution and numerical solution graphs are 

overlapped.  
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Chapter Five: Conclusion and Scope of Future Work 

   5.1. Conclusion 

Fourth order stable central difference method was proposed to solve self-adjoint singularly 

perturbed problem. This method is conceptually simple, easy to use and readily adaptable for 

computer implementation. This study has been implemented on four linear examples those have 

exact solutions and without exact solutions by taking different small values for the perturbation 

parameter ε and the computational results are presented in the tables. The results observed from 

the tables demonstrate that the present method approximates the exact solution very well. It has 

been shown that stability and convergence of the method were established well. Numerical 

results presented in this thesis show the superiority of the proposed method over some existing 

methods reported in the literature. The existence and uniqueness of the method along with 

stability estimates are discussed. 

It may be noted that computational order of convergence as well as theoretical estimates 

indicates that fourth-order method is a fourth order convergent. In concise manner, the present 

method is conceptually simple, easy to use and readily adaptable for computer implementation 

for solving self-adjoint singularly perturbed two points boundary value problems.  

5.2. Scope for future Work 

In the present thesis, the numerical method based on fourth order stable central difference 

method was constructed for solving self-adjoint singularly perturbed problems. Hence, the 

scheme proposed in this thesis can also be extended to sixth-order and higher- order stable 

central difference methods for solving self-adjoint singularly perturbed problems. And also, this 

thesis considered the uniform mesh length. So, one can extended this to non-uniform mesh 

length.  
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