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ABSTRACT 

In this thesis, higher order stable central difference scheme with Richardson 

extrapolation method have been presented for solving second order self-adjoint 

singularly perturbed boundary value problems. First, the derivatives of the differential 

equation are transformed into finite difference approximations that make linear system of 

algebraic equations in the form of a three-term recurrence relation. Secondly, applying 

Richardson extrapolation method and then solve by Thomas algorithm. Thirdly, 

investigate the consistency and stability that guarantees convergence of the proposed 

method very well. Then, the applicability of the proposed method is validated by 

implementing it with two model examples and the present method is compared with other 

methods reported in the literature and exact solution. 

Finally, maximum absolute error for each model example was shown both by tables and 

graphs with different perturbation parameters and mesh sizes which shows the 

betterment of the present method.    
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Any differential equation obtained from a given differential equation and having the 

property that its solution is an integrating factor of the other is known as adjoint 

differential equation. If the coefficients 0 1( ), ( )a x a x and 2( )a x in the differential 

equation of the form: 

0 1 2( ) ( ) ( ) ( ) ( ) ( ) 0a x y x a x y x a x y x     

are continuous and 0( ) 0a x  with the given domain, the obtained differential equation  

can be transformed into the equivalent self-adjoint equation of  ( ) ( ) ( ) ( ) 0a x y x b x y x    

for the functions 
2

0

( )

( )( )
a x

dx
a xea x  and 

2

0

( )
( ) ( )

( )

a x
b x a x

a x
 . 

Singularly perturbed differential equation is a differential equation whose highest order 

derivative is multiplied by a small positive parameter. A self-adjoint differential equation, 

whose highest order derivative is multiplied by a small positive parameter, (0 1), 

which has the form:  ( ) ( ) ( ) ( ) ( )a x y x b x y x g x    is called second order self-adjoint 

singular perturbation problem. A singular perturbation problem is a problem containing a 

small positive parameter that cannot be approximated by setting the parameter value to 

zero. 

In singularly perturbed differential problem, small positive parameter affecting the 

highest order derivative(s) of the differential equation which gives rise to large gradients 

in the solution over narrow regions of the domain. The presence of a small perturbation 

parameter in the differential equation typically leads to boundary layers in the solution, 

which makes the convergence analysis very difficult (Suayip and Niyazi, 2013). As 

Miller et. al., (1996), Boundary layer is a region of the independent variable over which 

the dependent variable changes rapidly.  
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Singularly perturbed second order two-point boundary value problem occur very 

frequently in fluid motion, chemical reactor theory, elasticity, diffusion in polymer, 

reaction- diffusion equation, control of chaotic system and so on (Kadalbajoo and Kumar, 

2008). If the order of singularly perturbed differential equations of the reduced problem is 

reduced by one then the problem called as convection-diffusion type and if the order is 

reduced by two it is called reaction-diffusion type. Hence, Second order singularly 

perturbed self-adjoint ordinary differential equations are types of reaction-diffusion 

problem. 

Due to the importance of these problems in real life situations, the need to develop 

numerical methods for approximating its solution is advantageous. But, numerically 

solving the singularly perturbed differential equations depends upon the small positive 

parameters. The solution varies rapidly in some parts of the domain and varies slowly in 

some other parts of the domain because of the existence of boundary layer.  

The solution of second order self-adjoint singularly perturbed two point boundary value 

problem exhibits one or two layers. For solving this problem having two layers, the 

existing numerical methods give good results when the mesh size h is smaller than the 

perturbation parameter   (i.e., h  ). But it is expensive and time consuming process 

(Fasikaet al., 2017). If we take h  , the existing numerical methods produce oscillatory 

solution and pollute the solution in the entire interval, because of boundary layer 

behavior.  As a result, developing numerical methods for solving self-adjoint singular 

perturbation problems yield consideration of the researches.   

Recently, different scholars like Fasika et al., (2016), Fasika et al., (2017) and Feyisa and 

Gemechis, (2017) have developed a higher(fourth, sixth, eighth and tenth) order compact 

finite difference method to solve singularly perturbed reaction diffusion problems. These 

authors’ developed higher order compact finite difference methods, by considering the 

condition for the coefficients of diffusion and reaction terms are constant only. Thus, 

even if their methods produce more accurate numerical solution, it is restricted to treat 

the problems with constant coefficients of diffusion and reaction term. Also, other 

scholar’s, Terefe et. al., (2016) and Yitbarek et .al (2017) have presented fourth and sixth 

order stable central difference method for solving self–adjoint singularly perturbed two – 
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point boundary value problem. As well in all of these currently developed numerical 

methods, the perturbation parameter  is comparable with the mesh size h of the domain.  

The purpose of this study is to formulate fourth order stable central finite difference 

scheme with Richardson extrapolation method which give more accurate results for 

solving second order self-adjoint singularly perturbed two point boundary value 

problems. 

1.2. Objectives of the Study 

1.2.1. General Objective 

The general objective of this study is to formulate higher order stable central difference 

method with Richardson extrapolation for solving second order self-adjoint singularly 

perturbed two point boundary value problems. 

1.2.2. Specific Objectives 

The specific objectives of this study are: 

1. To formulate forth order stable central difference method for solving second order 

self- adjoint singularly perturbed boundary value problem.  

2. To apply Richardson extrapolation on the formulated fourth order stable central 

finite difference method for obtaining the sixth order convergent scheme. 

3. To establish the stability and convergence of the proposed method. 

1.3. Significance of the Study 

The outcomes of this study may have the following importance: 

 Provide some background information for other researchers who work on this 

area. 

 Introduce the application of numerical methods in different field of studies.  

 Help the graduate students to acquire research skills and scientific procedures. 
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1.4. Delimitation of the Study 

This study delimited to solve second order self-adjoint singularly perturbed boundary 

value problem of the form: 

  ( ) ( ) ( ) ( ) ( ), 0 1a x y x b x y x g x x           (1.1) 

with the boundary conditions: 

(0) and (1)y y           (1.2) 

where  is a parameter that satisfies 0 1  , ,   are given constants and the 

functions ( ), ( ) and ( )a x b x g x are assumed to be sufficiently continuous differentiable 

functions.  
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CHAPTER TWO 

 LITERATURE REVIEW 

2.1. Finite Difference Method 

Most problems cannot be solved analytically, henceforth finding good approximation 

solutions using numerical methods will be very useful. From different classification of 

numerical methods like: finite difference, spectral method, finite element method,  finite 

volume method, and so on; finite difference method seems to be the simplest approach 

for the numerical solution of linear differential equations, (Rooset. al., 2008).Finite 

difference methods are one of the most widely used numerical methods to solve 

differential equations. It proceeds by replacing the derivatives appearing in the 

differential equations by finite difference approximations. The replacement or 

transformation of differential equation into finite difference approximations and 

incorporating the boundary conditions in the difference equations gives a large algebraic 

system of equations to be solved by different possible iterative techniques(Jain et. al., 

2007). Hence, the solution obtained by solving finite difference equations indicates that 

the solution of differential equation at the grid points or discrete solution rather than 

continuous solution, so that finite difference methods are called discretization methods. 

In numerical analysis, Richardson extrapolation is a sequence acceleration method, used 

to improve the rate of convergence of a sequence. The basic idea behind extrapolation is 

that whenever the leading term in the error for an approximation formula is known, we 

can combine two approximations obtained from that formula using different values of the 

parameter mesh size h to obtain a higher-order approximation and the technique is known 

as Richardson extrapolation. 
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2.3. Recent development 

In year 2003, Kadalbajoo and Patidar presented, ‘Spline approximation method for 

solving self-adjoint singular perturbation problems on non-uniform grids’. In this article, 

a numerical method based on cubic spline with adaptive grid was given for the self-

adjoint singularly perturbed two point boundary value problems of the form: 

   ( ) ( ) ( ) ( ) ( ), 0 1Ly a x y x b x y x g x x        

subject to the boundary conditions:  

(0) and (1)y y   . 

where ,  are given constants and   is a small positive parameter. Further, the 

coefficients of diffusion term ( )a x and the coefficient of reaction term ( )b x are smooth 

functions and satisfy the condition ( ) 0, ( ) 0a x a a x   and ( ) 0b x b  . The scheme 

derived in this method is second order accurate and model numerical examples are given 

to support the predicted theory. 

Kailash (2005) offered, ‘High order fitted operator numerical method for self-adjoint 

singular perturbation problems’. Here, authors consider self-adjoint singularly perturbed 

two-point boundary value problems in conservation form. Reducing the original problem 

into the normal form and then using the theory of inverse monotone matrices, a fitted 

operator finite difference method is derived via the standard Numerov’s method. The 

scheme thus derived is higher order accurate for moderate values of the perturbation 

parameter   whereas for very small values of this parameter the method is  -uniformly 

convergent with order two.  

Jean et. al.,(2006), proposed uniformly convergent non-standard finite difference 

methods for self-adjoint singular perturbation problems. Author’s design non-standard 

finite difference schemes for self-adjoint singularly perturbed two-point boundary value 

problems. Essential physical properties (e.g., dissipativity) of the solutions of such 

problems are captured in the schemes by an appropriate ere normalization of the 

denominator of the discrete derivative. The schemes are analyzed for  -uniform 

convergence.  
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Kadalbajoo and Kumar (2010) proposed ‘Variable mesh finite difference method for self- 

adjoint singularly perturbed two-point boundary value problems’. In this article, a 

numerical method based on finite difference method with variable mesh is given for 

solving self-adjoint singularly perturbed two-point boundary value problems. To obtain 

parameter- uniform convergence, a variable mesh is constructed, which is dense in the 

boundary region and coarse in the outer region. The uniform convergence analysis of the 

method discussed. The original problem is reduced to its normal form and the reduced 

problem solved by finite difference method taking variable mesh.  

Aruna and Kanth (2012) suggested, ‘A spline based computational simulations for 

solving self-adjoint singularly perturbed two-point boundary value problems’. They 

proposed a spline based computational simulations for solving self-adjoint singularly 

perturbed two-point boundary value problems. The original problem is reduced to its 

normal form and the reduced boundary value problem is treated by using difference 

approximations via cubic splines in tension. The convergence of the method was 

analyzed.  

Khuri and Sayfy (2014), proposed “A patching approach for Self-adjoint singularly 

perturbed second-order two-point boundary value problems. In this article, the basic aim 

was to introduce and describe a patching approach based on a novel combination of the 

variational iterative method and adaptive cubic spline collocation scheme for the solution 

of a class of self-adjoint singularly perturbed second-order two-point boundary value 

problems that model various engineering problems. The domain of the problem was  

decomposed into two subintervals: the variational iterative method is implemented in the 

vicinity of the boundary layer while in the outer region the resulting problem is tackled 

by applying an adaptive cubic spline collocation scheme, which comprises the use of 

mapping/transformation redistribution functions or constructed grading functions.  

Thus, it is necessary to improve the accuracy with higher order of convergence for 

solving second order self-adjoint singularly perturbed boundary value problems which 

involves variable coefficient of reaction and diffusion terms. Furthermore, for self-adjoint 
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singularly perturbed boundary value problems with two boundary layers, it is essential to 

develop numerical method which produces more accurate numerical solution. 
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted at Jimma University under the department of Mathematics from 

October 2018 to June 2019.  

3.2. Study Design 

This study employed mixed-design (documentary review design and numerical 

experimentation design) on second order self-adjoint singularly perturbed boundary value 

problem. 

3.3. Source of Information 

The relevant sources of information for this study are books, published articles and 

related studies from internet and the experimental results obtained by writing MATLAB 

code for the present numerical methods.  

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the study followed the following procedures:  

1. Defining the problem, 

2. Discretizing the solution domain,  

3. Replacing the derivatives in the differential equation by finite difference 

approximations that gives the algebraic system of equations which can be solved 

by Thomas algorithm 

4. Apply Richardson extrapolation method. 

5. Establishing the stability and consistency of the proposed scheme, 

6. Writing MATLAB code for the proposed scheme. 

7. Validate, using numerical examples and results.  
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CHAPTER FOUR 

 DESCRIPTION OF THE METHOD, RESULTS AND DISCUSSION 

4.1 Description of the Method 

Consider the singularly perturbed self-adjoint boundary value problem of the form: 

  ( ) ( ) ( ) ( ) ( ), : (0,1)a x y x b x y x g x x         (4.1)   

subject to the boundary conditions : 

(0)y  and (1)y                    (4.2)  

where is a perturbation parameter that satisfies 0 1  , ,   are given constants and 

the functions ( ) 0, ( ) 0 and ( )a x b x g x  are assumed to be sufficiently continuous 

differentiable functions. 

By product rule of differentiation, Eq. (4.1) can be re-written as: 

 ( ) ( ) ( ) ( ) ( ) ( )y x p x y x q x y x f x           (4.3) 

where
( ) ( )

( ) , ( )
( ) ( )

a x b x
p x q x

a x a x

 
     and   

( )
( )

( )

g x
f x

a x
  

In order to develop the finite difference method for the problem in Eq. (4.3) the interval 

[0,1]  is divided into N equal sub-intervals. For this, we introduce set of grid points

0 ,ix x ih  for 0,1,2,..., ,i N where 
1

h
N

 . For convenience, let us denote ( )i ip x p

( ) , ( ) ,i i i iq x q y x y  ( ) ,...,i iy x y  ( ) ( )( ) ,n n

i iy x y  

Assume that ( )y x has continuous higher order derivatives on [0,1] , using Taylor series 

expansion. To find a description of fourth order stable central difference scheme, we use 

Taylor’s series expansion in order to get central difference formula for 
iy and

iy  as: 
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2 3 4 5 6
(4) (5) (6)

1 ...
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y

            (4.4) 

2 3 4 5 6
(4) (5) (6)

1 ...
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y

            (4.5) 

From Eq. (4.4) and (5.5) we have:- 

 

2 4
(5)1 1

1

2
(4)1 1

22

2 6 120

2

12

i i
i i i

i i i
i i

y y h h
y y y

h

y y y h
y y

h

 

 

     


     






       (4.6)      

where

6
(7) 8

1 ( )
7!

i

h
y O h


     and  

4
(6) 6

2 ( )
360

i

h
y O h


   

Substituting Eq. (4.6) into the discrete form of Eq. (4.3) gives: 

2 42
(4) (5)

1 1 1 1 02
( ) ( 2 )

2 6 12 120i

i i i
i i i i i i i i i i

p p h p hh
q y y y y y y y y y f

h h

 
   

             (4.7) 

where 0 1 2ip     

Differentiating Eq. (4.3) successively and considering at discretized mesh point: 

 1
( )i i i i i i i i iy p y p q y q y f


               (4.8) 

 (4) 1
(2 ) ( 2 )i i i i i i i i i i i iy p y p q y p q y q y f


            

    (4.9) 

   5 (4)1
(3 ) (3 3 ) ( 3 )i i i i i i i i i i i i iy p y p q y p q y p q y qi y f                


  (4.10) 

Using Eq. (4.10), the term which contains 
 5

iy from Eq. (4.7) becomes: 
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4 2 4 (4) (4)
(5) (4)

4 4 4

(3 ) (3 3 )
120 120 120 120

( 3 )
120 120 120

i i i i
i i i i i i i i

i i i i
i i i i i

p h p h p h p h
y y p q y p q y

p h p q h p h
p q y y f

  

  

          


     

  (4.11) 

Also, from Eqs. (4.4) and (4.5) we have the central finite difference approximation: 

 1 1
3

2

i i
i

y y
y

h
    and 1 1

42

2i i i
i

y y y
y

h
         (4.12) 

where

2
4

3 ( )
6

i

h
y O h


   and 

2
(4) 4

4 ( )
12

i

h
y O h


   

Substituting Eq. (4.12), into Eq. (4.11) gives: 

4 2 4 4
(5) (4)

2

1 1

3 4 4

1 1 5

(3 )
120 120 120

(3 3 ) ( 2 )
120

( 3 ) ( )
120 120 120

i i i
i i i i i

i
i i i i i

i i i i
i i i i i i

p h p h p h
y y p q y

p h
p q y y y

p h p q h p h
p q y y y f

 




  

 

 

     

 
     

 

 
        

 

  (4.13) 

where  
4 4

5 3 43 (3 3 )
120 120

i i
i i i

p h p h
p q p q  

 
         

Substituting Eq. (4.13) into Eq. (4.7) and by using the approximation in Eq. (4.12) we 

get: 

 

 

2

4 3

1 1

2 2 4

1 12

2 2 4
4

6

3 ( )
120 2 240

(3 3 ) 2 (3 )
120 6 120

12 120 120

i i i i
i i i i i i

i i i
i i i i i i i

i i
i i i

p q h p p h
q y p q y y

h

p p h p h
p q y y y p q y

h

p h p hh
y f f

 



 




 

 

 

   
        

   

   
             

   

 
      

 

 (4.14) 
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where 6 0 5     

Again, using Eq. (4.9), the term which contain (4)

iy  from Eq.(4.14) becomes: 

   

22

2

2

2 4 2 3 4 2 4
4

72

2 2

1 12

2 3 2 4

1 12

12 120 12 12 120120

1
(2 ) ( 2 )

12 120

2
24 240 12 1

i i i i i i
i i i

i
i i i i

i i
i i i i

p h p h p h q h p q hh
y y y

p h
p qi y y y

p h p hh h
p q y y




 





 

 

     
            

    

  
      

  

  
        

  
220

if


 
  

   

(4.15) 

where    
2 22 4 2 4

7 4 32 2
2 2

12 120 12 120

i i
i i i i

p h p hh h
p q p q  

 

   
             

   

 

Substituting Eq.(15) into Eq.(14) gives:- 

   

  

4 2 2 4

2

3 2 3

1 12

2 2 2

1 12 2

2 4

120 12 120

3 ( ) 2 ( )
2 240 24 240

1
(3 3 ) ( ) 2 2

120 12 120

12 12

i i i i i
i i

i i i
i i i i i i

i i
i i i i i i i

i i

p q h q h p q h
q y

p p h p hh
p q p q y y

h

p h p h
p q p q y y y

h

p h p h

 

 



 

 

 

   
   

 

 
          

 

 
          

 

 

2

2

3 4

82

2 4 4

2

(3 )
0 6 120

12 120 120

i i
i

i i
i i i

p h p h
p qi y

p h p hh
f f f


 

 

 
      

 

 
      

 

  (4.16) 

where 8 6 7     
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For simplicity, let us denote: 

4 2 2 4

2
,

120 12 120

i i i i i
i i

p q h q h p q h
A q

 

  
       

3 2 3

2
3 2

2 240 24 240

i i i
i i i i i

p p h p hh
B p q p q

h  

 
         

 
 

 
2 2 2

2 2

1
(3 3 ) 2

120 12 120

i i
i i i i i

p h p h
C p q p q

h



 

 
        

 
 

2 4 2 3 4

2
(3 )

12 120 6 120

i i i i
i i i

p h p h p h p h
D p q

 
     and

2 2 4 4

212 120 120

i i
i i i

p h p hh
Hh f f f

 

 
      

 

 

Then Eq. (4.16)   re-written as:- 

1 1 1 1 8( ) ( 2 )i i i i i i i i i i i iA y B y y C y y y D y Hh   
           (4.17) 

Also, from Eq. (4.17), the term that contains iy  becomes: 

( )i i i i i i
i i i i i i i i

p D D D q D
D y y p q y y f

   


          

Hence, considering Eq. (4.12) for iy and 
iy we get: 

 1 1 1 1 9( 2 ) ( )
2

i i i i i i
i i i i i i i i i i i

p D D D q D
D y y y y p q y y y f

h


   
   


          

 
(4.18) 

where 9 4 3
i i ip D D

  
 

   

Putting Eq. (4.18) into Eq. (4.17), gives:- 

1 1

1 1 102

( ) ( )
2

( 2 ) ( )

i i i
i i i i i i i

i i i
i i i i i

D q D
A y B p q y y

h

p D D
C y y y Hh i f

h

 


 

 

 

          
   

 
       

 

     (4.19) 



 

15 
 

where 10 8 9      which can be written in terms of each local truncation error 

This can be written in three term recurrence relation as:- 

1 1i i i i i i iE y F y G y H            (4.20) 

where
2

( ),
2

i i i
i i i i i

p D D
E C B p q

h h
    

  2
2i i i i

i i i

D q PD
F A C

h 

  
    

   

2
( )

2

i i i
i i i i i

PD D
G C B p q

h h 
     and ( ) i

i i

D
H Hh i f


   

4.2. Richardson extrapolation 

The basic idea behind extrapolation is that whenever the leading term in the error for an 

approximation formula is known, we can combine two approximations obtained from that 

formula using different values of the parameter mesh sizes h and 0.5h to obtain a higher-

order approximation and the technique is known as Richardson extrapolation. This 

procedure is a convergence acceleration technique which consists of considering a linear 

combination of two computed approximations of a solution (on two nested meshes). The 

linear combination turns out to be a better approximation. 

Since from the beginning at Eq. (4.6), we know that the truncation error of the formulated 

method is 4( )hO . Hence, we have  

  4( )i N hy x Y C          (4.21) 

where ( ) andi Ny x Y are exact and approximate solutions respectively, C is constant 

independent of mesh sizes h. 

Let 2N  be the mesh obtained by bisecting each mesh interval in N and denote the 

approximation of the solution on 2N by 2NY . Consider Eq. (4.21) works for any 0h  , 

which implies: 

  4( ) ,N N
i N ih Ry x Y C x                      (4.22) 
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So that, it works for any 0
2

h
  yields: 

 
4

2 2
2

2
( ) ,N N

i N i
h

Ry x Y C x
 

 
 

 
    

 
     (4.23) 

where the remainders, NR  and 2NR  are  6( )hO . A combination of inequalities in Eqs. 

(4.22) and (4.23) leads to   6
215 ( ) 16 ( ),i N N hy x Y Y O   which suggests that 

    2

1
16

15

ext
N N NY Y Y          (4.24)  

is also an approximation of ( )iy x . Using this approximation to evaluate the truncation 

error, we obtain: 

    6( )
ext

i N hy x Y C                   (4.25) 

Now, using these two different solutions which are obtained by the same scheme given 

by Eq. (4.20), we get another third solution in terms of the two by Eq. (4.25). This is 

Richardson extrapolation method for the fourth order finite difference scheme only to 

accelerate the rate of convergence to sixth order. 

4.3. Consistency of the method 

When a finite difference method is used to solve a differential equation, it is important to 

know how accurate the resulting approximate solution is compared to the true solution.  

Local truncation errors refer to the differences between the original differential equation 

and its finite difference approximations at grid points. Local truncation errors measure 

how well a finite difference discretization approximates the differential equation (Zhilinet 

al., 2018). In our case, the last truncation error in Eq. (4.19) is: 

10 8 9   
 

But, form Eqs. (4.16) and (4.18), we have 8 6 7    and 9 4 3
i i ip D D

  
 

  ,  So that: 

10 6 7 4 3
i i ip D D

       
 

 

00 4 351 7 , Because of Eq.(4.14)i i ip D D
   

 
     
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Also, from Eqs. (4.13) and (4.15), we have: 

 

   
2 2

4 4

5 3 4

2 4 2 4

7 4 32 2

3 (3 3 )
120 120

2 2
12 120 12 120

i i
i i i

i i
i i i i

p h p h
p q p q

p h p hh h
p q p q

       

   
             

   

  
 

  
 

 

Hence, the truncation errors re-written as: 

 

   
2 2

4 4

10 0 3 4 4 3

2 4 2 4

4 32 2

3 (3 3 )
120 120

2 2
12 120 12 120

i i i i i
i i i

i i
i i i i

p h p h p D D
p q p q

p h p hh h
p q p q

         

   
             

   

     
   

 
 

 

   

 

2

2

2 4 4

10 0 32

2 4 4

42

2 3
12 120 120

2 (3 3 )
12 120 120

i i i
i i i i

i i i i
i i i

D p h p hh
p q p q

p D p h p hh
p q p q

  
             

  

  
           

  

  
  


  

   (4.26) 

Again, from Eqs. (4.6), (4.7) and (4.12), we have the value of: 

0 1 2ip    ,      

6
(7)

1
7!

i

h
y


 , 

4
(6)

2
360

i

h
y


 ,  

2

3
6

i

h
y


  and 

2
(4)

4
12

i

h
y    

which also re-written as: 

4 6
(6) (7)

0

2 2
(4)

3 4

360 5040

and
6 12

i i i

i i

h h
y p y

h h
y y


  


   



 

 
      (4.27)

 

Substituting Eq. (4.27) into Eq. (4.26), yields: 

   

 

2

2

4 6
(6) (7)

10

2 4 42

2

2 4 42
(4)

2

360 5040

2 3
6 12 120 120

2 (3 3 )
12 12 120 120

i i i

i i i
i i i i i

i i i i
i i i i

h h
y p y

D p h p hh h
y p q p q

p D p h p hh h
y p q p q

 

  
             

  

  
           

  

 

  

  

   (4.28)
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From Eq. (4.16), we have: 

2 4 3 4

2

2 3 2
2

2

(3 )
12 120 120

(3 )
12 120 120

i i i
i i

i i i
i

p h p h p h
D p qi

p p h p h
h p qi

    

 
     

 

 

 

     
(4.29) 

Considering Eq. (4.29) into Eq. (4.28), we get: 

   

 

2 3 2 2 2 24

10 2 3 2

2 2 2 4 2 2 2 24
(4)

2 3 2

1
(3 ) 2 3

6 12 120 120 12 120 120

1
(3 ) 2 (3 3 )

12 12 120 120 12 120 120

i i i i i
i i i i i i

i i i i i
i i i i i

p p h p h p h p hh
y p qi p q p q

p p h p h p h p hh
y p qi p q p q

  
               

  

  
            

 


    

    

4 6
(6) (7)

360 5040
i i i

h h
y p y


 



 

This can be rearranged as: 

   

 

2 3 2 2 2 2
4

10 2 3 2

2 2 2 4 2 2 2 2
(4)

2 3 2

1 1
(3 ) 2 3

6 12 120 120 12 120 120

1 1
(3 ) 2 (3 3

12 12 120 120 12 120 120

i i i i i
i i i i i i

i i i i i
i i i i i

p p h p h p h p h
h y p qi p q p q

p p h p h p h p h
y p qi p q p q

  
               

   

 
            

 


    

    

2
(6) (7)

)

360 5040

i
i i

p h
y y

 
 
 


  





This can be written as:
 

4TE Ch         (4.30) 

where 10TE   and 

   

 

2 3 2 2 2 2

2 3 2

2 2 2 4 2 2 2 2
(4)

2 3 2

1 1
(3 ) 2 3

6 12 120 120 12 120 120

1 1
(3 ) 2 (3 3 )

12 12 120 120 12 120 120

i i i i i
i i i i i i

i i i i i
i i i i i

p p h p h p h p h
C y p qi p q p q

p p h p h p h p h
y p qi p q p q

  
               

  

  
             

  

    

    

2
(6) (7)

360 5040

i
i i

p h
y y 


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In general, the local truncation error is then defined as NTE y Y  , where y is the exact 

solution and nY is the approximate solution. If , 0phTE C p  , then we say that the 

numerical method is thp  order accurate. Hence, from Eq. (4.30) the value of 4p  . 

Thus, the developed scheme without applying Richardson extrapolation is 4
th

 order 

accurate or order of convergence is
4( )O h .  

Definition 4.1: A finite difference scheme is called consistent if the limit of truncation 

error TE is equal to zero as the mesh size h goes to zero (Zhilinet al., 2018).  

Now, by this definition the consistency of the proposed method which is given in Eq. 

(4.20) with the local truncation error in Eqs. (4.25) and (4.30) satisfied as: 

 4 6

0 0 0
lim lim lim 0
h h h

TE Ch Ch
  

  
 

Thus, the proposed method is consistent. 

4.4. Stability of the method 

Consider the developed scheme in Eq. (4.20) which is given by: 

1 1i i i i i i iE y F y G y H      

But, the coefficients , andi i iE F G  given in terms of , , andi i i iA B C D with its values 

stated in Eq. (4.17). If we multiply both sides of Eq. (4.17) by 
2h and consider the limit as

0h , we get: 

  0i i iA B D   and iC         (4.31)  

Using the values in Eq. (4.31), the coefficients , andi i iE F G in Eq. (4.20) becomes: 

  and 2i i iE G F          (4.32) 

Now, after rearranging both Eqs. (4.31) and (4.32), Consider the developed scheme in 

Eq. (4.20), which can be written as: 
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MY H         (4.33) 

where the matrices: 

1 1

2 2 2

3 3

2

2 2 2

1 1

0 0 2 0 0

0 2 0

0 0 0 0 2 0 0

0 0 0 0 0 0

0 0 2

0 0 0 0 0 0 2

N

N N N

N N

F G

E F G

E F
M

G

E F G

E F



  

 

     
   
    
   
     

    
    

       
   

     

 

1

2

2

1

N

N

y

y

Y

y

y





 
 
 
 

  
 
 
 
 

2 1 0

2 2

2 2

2 1

and

N

N N

h H y

h H

H

h H

h H y





  
 
 
 

  
 
 
 

  

 

Here, M  is a tri-diagonal matrix. M is irreducible if its co-diagonals contain non-zero 

elements only. The co-diagonal contains ,i iE G . It is easily seen that, for sufficiently 

small h ( . . 0)i e h  ,  0 and 0i iE G  , 1, 2, , 1i N   .  

Hence, M  is irreducible. Again one can observe that, 0 and 0i iE G  and in each 

row of M , the sum of the two off-diagonal elements less than or equal to the modulus of 

the diagonal element (i.e. i i iF E G  ). This proves the diagonal dominant of M . 

Under these conditions the Thomas algorithm is stable for sufficiently small h, 

(Kadalbajoo and Reddy, 1986).  

As proved by Smith (1985), the eigenvalues of a tri-diagonal matrix    1 1N N    of 

matrix M are: 

 

2

2 cos , 1,2, . . . , 1

2 2 cos 2 2 cos 2 1 cos

s i i i
s

F E G s N
N

s s s

N N N


    

   
           

 

  (4.34)  
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Also, from trigonometric identity, we have: 21 cos 2sin
2

s s

N N

 
  .  

Hence, the eigenvalues of matrix M re-written as: 

2 22 2sin 4 sin 4
2 2

s

s s

N N

  
       

 
     (4.35) 

Definition4.2: A finite difference method for the BVPs is stable if M is invertible and 

  1M C  ,  00 h h         (4.36) 

where C and 0h are two constants that are independent of h,(Zhilinet al., 2018). 

Since, matrix M is symmetric also its inverse matrix 1M  is symmetric and the 

eigenvalues 1M  is given by
1

s
. Thus, by the definition 4.2, we have: 

 1
1 1

4s

M C   
   

where C is independent of h. Hence, the developed scheme in Eq. (4.20) is stable. 

A consistent and stable finite difference method is convergent by Lax's equivalence 

theorem (Smith 1985). Hence, as we have shown above the proposed method is satisfying 

the criteria for both consistency and stability which are equivalents to convergence of the 

method.  

4.5. Numerical Examples and Results 

In order to test the validity of the proposed method and to demonstrate their convergence 

computationally, we have taken two model examples of singularly perturbed self-adjoint 

second order two point boundary value problems with exact solutions. The maximum 

absolute errors (AE) at the nodal points are given by: 

 
1 1

| | max | ( ) ( ) |ext

i N
i N

AE y x Y
  

   

And the rate of convergence (R) can be calculated by the formula: 

 
   2log log

log 2

ext ext
N NY Y

R


  
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where  ( ) and
ext

i Ny x Y are exact solution and numerical solution respectively, at the 

nodal point ix .And for the rate of convergence NY and 2NY are the numerical solutions 

obtained by the mesh size h  and 
2

h
respectively. 

Example 4.1: Consider the singularly perturbed self-adjoint problem: 

 2 2(1 ) ( ) (1 ) ( ) ( ), 0 1x y x x x y x f x x         

subject to the boundary conditions (0) (1) 0y y  , where  f (x) is chosen such that the 

exact solution is given by: 
(1 )

( ) 1 ( 1)
x x

e ey x x x
 

      

Table 4.1: Comparison of maximum absolute errors for Example 4.1 

  8N   16N   32N   64N   128N   256N   

Present Method   
32
 8.4257e-08 1.3480e-09 2.1109e-11 3.3035e-13 1.2490e-14 7.4385e-15 

52
 8.5202e-07 1.4078e-08 2.2312e-10 3.5109e-12 5.4401e-14 2.3620e-14 

82
 6.6238e-05 1.6978e-06 2.8399e-08 4.5168e-10 7.0878e-12 1.0836e-13 

122
 4.5141e-03 4.1790e-04 2.1462e-05 9.9671e-07 1.8913e-08 3.0955e-10 

Terefeet. al., (2016)    
32
 1.44e-03 3.64E-04 9.06E-05 2.26E-05 5.66E-06 1.41E-06 

52
 3.71E-03 8.57E-04 2.08E-04 5.09E-05 1.26E-05 3.16E-06 

82
 4.63E-03 1.65E-03 2.33E-04 6.09E-05 1.73E-05 4.37E-06 

122
 6.76E-02 3.76E-02 7.40E-03 6.17E-04 3.54E-05 4.74E-06 

 

Table 4.2: Comparison between with and without Richardson methods of maximum 

absolute errors for Example 4.1 

  8N   16N   32N   64N   128N   256N   

With Richardson extrapolation     
32
 8.4257e-08 1.3480e-09 2.1109e-11 3.3035e-13 1.2490e-14 7.4385e-15 

52
 8.5202e-07 1.4078e-08 2.2312e-10 3.5109e-12 5.4401e-14 2.3620e-14 

82
 6.6238e-05 1.6978e-06 2.8399e-08 4.5168e-10 7.0878e-12 1.0836e-13 

122
 4.5141e-03 4.1790e-04 2.1462e-05 9.9671e-07 1.8913e-08 3.0955e-10 

Without Richardson extrapolation      
32
 1.9663e-05 1.2739e-06 8.1142e-08 5.0815e-09 3.1775e-10 1.9855e-11 

52
 1.4465e-04 9.7270e-06 6.1899e-07 3.8861e-08 2.4324e-09 1.5212e-10 

82
 7.1344e-03 5.8790e-04 3.6784e-05 2.3006e-06 1.4381e-07 9.0025e-09 

122
 7.6315e-02 3.7522e-02 7.8643e-03 6.9834e-04 4.4580e-05 2.8040e-06 
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Table 4.3: Comparison of rate of convergence for Example 4.1 

  8N   16N   32N   64N   

With Richardson extrapolation   
52
 5.9194 5.9795 5.9898 6.0121 

82
 5.2859 5.9017 5.9744 5.9938 

122
 3.4332 4.2833 4.4285 5.7197 

Without Richardson extrapolation  
52
 4.0747 4.0277 4.0061 4.0011 

82
 3.6016 3.9980 3.9989 3.9997 

122
 1.0472 2.2541 3.4933 3.9694 

 

Figure 4.1: The behavior of exact and numerical solution for Example 4.1 at 310 

and 100N   

 

Figure 4.2: Point wise absolute errors for Example 4.1 at 122  with different mesh 

size .h  
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Figure 4.3: Point wise absolute errors for Example 4.1 at 32N  and different 

perturbation parameters. 

Example 4.2:  Consider the following self-adjoint singular perturbation problem: 

 
 4

4
( ) ( 1) ( ) ( ), 0 1

1
y x x y x f x x

x
      


 

with boundary conditions (0) 2 and (1) 1y y   , where f(x) is chosen such that the 

exact solution is given by:   

2 1

( 1)

1

3 exp exp

4
( ) cos

1
1 exp

x

x

x
y x

x

   
   

     

 
 

 

 
 
       

 


 

Table 4.4: Comparison of maximum absolute errors for Example 4.2 

N  

0.25
1

N

 
   

 
 

0.5
1

N

 
   

 
 

0.75
1

N

 
   

 
 

1.0
1

N

 
   

 
 

Present Method     

16 1.3049e-06 1.2226e-06 1.2374e-06 1.6007e-06 

32 1.7972e-08 1.7143e-08 2.1783e-08 5.6182e-08 

64 2.6954e-10 2.7457e-10 5.3161e-10 5.7507e-09 

128 4.1296e-12 4.7784e-12 2.1287e-11 5.4866e-10 

256 6.0396e-14 2.8866e-13 1.4388e-12 5.0873e-11 

Yitbariket. al., (2017)     

16 2.9718e-04 
 

4.9658e-04 
 

8.9268e-04  
 

1.7181e-03 

32 2.0905e-05 
 

4.1607e-05 
 

9.0798e-05  
 

2.3653e-04 

64 1.4884e-06 
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256 7.6403e-09 
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Table 4.5: Rate of convergence for Example 4.2 

N  0.25
1

N

 
   

 
 

0.5
1

N

 
   

 
 

0.75
1

N

 
   

 
 

1.0
1

N

 
   

 
 

16 6.1820 6.1562 5.8280 4.8325 

32 6.0591 5.9643 5.3567 3.2883 

64 6.0284 5.8445 4.6423 3.3898 

128 6.0954 4.0491 3.8870 3.4309 

 

Figure 4.4: The physical behavior of solution for Example 4.2 at 31064 andN     

 

4.6. Discussion 

In this study, the higher order stable central difference with Richardson extrapolation 

method is presented for solving singularly perturbed self-adjoint second order boundary 

value problems. Hence, the Richardson extrapolation method accelerates fourth order into 

sixth order convergent; the developed method is higher order stable central difference 

method. The given domain of the problem is discretized, the derivatives of the 

differential equation are replaced by stable central finite difference approximations and 

the scheme is obtained in form of tri-diagonal algebraic system. Since, the developed 

method is fourth order as shown in Eq. (4.30),by applying Richardson extrapolation 

method its order increased to order six (see Eq. (4.25)). Then, the system is solved by 

using Thomas algorithm.  
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The stability and consistency analysis of the obtained scheme have been investigated very 

well to insure the convergence of the method. To validate the applicability of the 

proposed method, model examples are considered and numerical results displayed for 

different values of mesh size   and perturbation parameter  . The numerical results are 

presented in Tables 4.1-4.5 and Figures4.1-4.4. The numerical results obtained by the 

present method have been compared with the numerical results presented by more recent 

authors like, Terefe et. al., (2016) and Yitbarik et. al., (2017); and it is observed that the 

present method gives more accurate results than some findings reported in literatures. 

Moreover, the absolute error decreases rapidly as number of meshes N increases which 

show the convergence of the proposed method. 
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CHAPTER FIVE 

 CONCLUSION AND SCOPE OF THE FUTURE WORK 

5.1. Conclusion 

In this thesis the higher order stable central difference scheme with Richardson 

extrapolation method is developed for solving second order self-adjoint singularly 

perturbed boundary value problems. The stability and convergence analysis is 

investigated and shows that the present method is of sixth order convergent. As the 

formulated scheme is validated by numerical model examples and results, one can realize 

that the maximum absolute error decreases as mesh size h decreases, which in turn shows 

the convergence of the computed solution and the rate of convergence is conformed to 

the theoretical results. Furthermore, the result of the present method is compared with 

previous findings and shows that, it is more accurate than some existing numerical 

methods reported in the literature and approximates the exact solution very well. 

Generally, the present method is consistent, stable, and gives more accurate numerical 

solution for solving second order self-adjoint singularly perturbed boundary value 

problems. 

5.2. Scope for Future Work 

In this study, higher order stable central difference method with Richardson extrapolation 

numerical method has been presented for solving second order self-adjoint singularly 

perturbed boundary value problems. The scheme proposed in this study can also be 

extended to sixth or more order stable central difference method with Richardson 

extrapolation numerical method for solving second order self-adjoint singularly perturbed 

boundary value problems.  
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