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     Abstract 

In this study, Modified Reduced Differential Transform Method (MRDTM) is used to find 

approximate solutions of one dimensional heat-like equation subject to initial condition. The 

MRDTM basically involves the combination of Laplace pade Resummation method and 

RDTM. First theories, their proofs and basic properties of these procedures are given. Three 

test examples are given to demonstrate the validity and usefulness of the under consideration 

method. The result shows that this method is efficient simply applicable and has powerful 

effect on problems of partial differential equations.  

Key words: Modified Reduced Differential Transform Method, Laplace pade Resummation   

                    Method, one dimensional heat-like equation 
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CHAPTER ONE 

Introduction 

1.1 Background of the study 

Most physical phenomena described by functions which depend on two or more independent 

variables can be modeled by partial differential equations (Molabahrami and Khani, 2009).Heat-

like equations are second-order partial differential equations of parabolic type which can be 

found in a wide variety of engineering and scientific applications. 

In recent years, numerous works have focused on the development of more advanced and 

efficient methods for solving heat-like equations such as the Adomian Decomposition Method 

(Wazwaz, 2007), Variational Iteration Method (VIM) (Abbasbandy and Darvishi, 2005), 

Differential Transform Method(Khatereh et al., 2012), and  others . The differential transform 

method (DTM) was first introduced by (Zhou, 1986) to solve initial value problems (IVPs) 

associated with electrical circuit analysis. This method is very effective and powerful for solving 

various kinds of differential equations as two point boundary value problems (Debnath, 

2014).However, the Reduced Differential Transform Method (RDTM) is an iterative procedure 

for obtaining Taylor series solution of differential equation and it will be employed in a 

straightforward manner without any need of linearization or smallness assumptions. Moreover, 

using RDTM, the solution to initial value problems can be expressed as an infinite power series. 

Later, taking advantage of the Resummation methods capabilities the domain of convergence of 

such power series can be extended leading in some cases to the exact solution. But the solution 

obtained from Reduced Differential Transform Method have limited region of convergence (not 

much closer to the exact), even if we take a large number of terms (Brahim et al., 2014). So 

solutions to one dimensional heat-like equation are first obtained in convergent series form using 

RDTM. To improve the solution, we apply Laplace transform on the result obtained from RDTM 

truncated series to increase the degree of the truncated series by one. Then we convert the 

transformed series into a meromorphic function by forming its Pade approximant. Finally, we 

take the inverse Laplace transform of the Pade approximant to obtain the analytical solution. 

Therefore, in this work, relative to those described methods above, a new version of the 

modification referred to as Modified Reduced Differential Transform Method (MRDTM) is used 
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to obtain the better approximate solution of initial value problem of one dimensional heat-like 

equations of the form: 

∂u(x, t)

∂t
− c�

∂�u(x, t)

∂x�
= g(x, t) 

                                Subject to initial condition u(x, 0) = f(x) 

whereu(x, t)  is unknown analytic and continuously differentiable function, g(x.t)  is known 

analytic function and �� is variable coefficient. 

1.2 Statement of the problem 

It is described in the literature that the solution to an initial value problem using reduced 

differential transform method is expressed as an infinite power series. The solution obtained in 

this way has limited region of convergence, even if we take a large number of terms. So as a way 

out of this problem we apply the Laplace pade Resummation on the truncated series obtained 

from RDTM to get better approximate solution to one dimensional heat-like equation. Therefore, 

this study focused on: 

a. Finding the approximate solution of initial value problem of one dimensional heat-like 

equation by using Laplace pade Resummation method. 

b. Demonstrate the validity of the proposed method to the solution of one dimensional heat-

like equation subject to the initial condition by using examples. 

1.3. Objectives of the study 

1.3.1. General objective 

The general objective of this study is to find the solution of one dimensional heat-like equation 

subject to the initial condition by using Modified Reduced Differential Transform Method. 

1.3.2 Specific objective 

The specific objectives of this study are to: 

A. Apply Modified Reduced Differential Transform Method to obtain approximate solution 

of initial value problems of one dimensional heat-like equation. 

B.  Demonstrate the validity of the proposed method by using examples. 
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1.4 Significance of the study 

In this study we used the Modified Reduced Differential Transform Method to find approximate 

solution to one dimensional heat-like equation subject to initial condition. The study is expected 

to have the following importance: 

a. It develops techniques of solving initial value problem of Partial Differential Equation by 

using MRDTM  

b. It develops the skill of conducting mathematical research. 

c. The results obtained in this study may contribute to research activities in this area.  

1.5 Delimitation of the study 

The study is delimited to find approximate solution of one dimensional homogeneous and non-

homogeneous heat-like equation subject to initial condition. The Laplace pade Resummation 

Method is used as a basic tool to find the solution 
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CHAPTER TWO 

Literature review 

  Mathematical approaches to partial differential equations are divided into two methods called 

analytical method which strives to find exact formulae for the dependent variables as a function 

of independent variable and numerical methods which result in approximate value of dependent 

variables (Saravanan and Magesh, 2013). But there are also mathematical approaches which can 

be neither of the two methods. These are semi-analytical and semi-numerical method. Several 

analytical methods were developed for solving partial differential equations, such us the 

Homotopy Perturbation Method (Turgut and Deniz, 2008), Differential Transform Method 

(Zhou, 1986), and Reduced Differential Transform Method (Keskin  and Galip, 2010), and 

others. 

         As the science history in last decades indicated, the nonlinear problems are one of the most 

important phenomena in mathematics, physics and engineering and efficiency of these problems 

show us the importance of obtaining exact or approximate solution which still needs better 

methods (Reza et al., 2013). Researchers used new methods for this requirement such As: 

Homotopy Analysis Method (HAM) (Molabahrami and Khani, 2009) , Variation Iteration 

Method (VIM) (Inc, 2007), etc. One of the well-known models of these problems is heat-like 

equations (Cannon, 1984).This model has essential role in various fields of science and 

engineering which is investigated widely by many researchers.  

 Recently researchers have applied different method successfully to obtain analytic solution. For 

example:  The Homotopy perturbation method(HPM) was applied to both non-linear and linear 

fractional differential equation and it was showed that HPM is an alternative analytical method 

for fractional differential equations(Ablowitz and Clarkson, 1990).The perturbation methods, 

like other nonlinear analytical techniques, have their own limitations. At first, almost all 

perturbation methods are based on the assumption that a small parameter must exist in the 

equation. This so-called small parameter assumption greatly restricts applications of perturbation 

techniques. As is well known, an overwhelming majority of nonlinear problems have no small 

parameters at all. Secondly, the determination of small parameters seems to be a special art 

requiring special techniques. An appropriate choice of small parameters leads to the ideal results, 

but an unsuitable choice may create serious problems. Furthermore, the approximate solutions 

solved by perturbation methods are valid, in most cases, only for the small values of the 
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parameters. It is obvious that all these limitations come from the small parameter assumption 

(Tauseef and Aslam Noor, 2009). Another improved approach for solving initial value problem 

for partial differential equation, known as reduced differential transform method (RDTM) has 

recently been used by (Ayaz, 2004), and developed the reduced differential transform method for 

the fractional differential equations and gives the exact solution for both the linear and nonlinear 

differential equation. The method of separation of variables is also applicable to a large number 

of classical linear homogeneous equations. The choice of the coordinate system in general 

depends on the shape of the boundary condition (Sankara, 2014). The variable coefficient in the 

partial differential equation led to the variable coefficient in the ordinary differential equation 

which results from the separation of variable. Obtaining the general solution of this ordinary 

differential equation can then be formidable task in its own right. But, even if these general 

solutions can be obtained they may involve functions which will lead to further difficulties when 

one attempts to apply certain of supplementary conditions (Shepley, 1984). Therefore, this study 

concentrates on finding the solution of one dimensional heat-like equation using the MRDTM. 
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CHAPTER THREE 

Methodology 

3.1 Study Area and period 

This study is conducted to find approximate solution of one dimensional heat-like equation 

subject to initial conditions from January to September 2017G.C in the department of 

Mathematics, Jimma University. 

3.2 Study design 

The researcher used semi-analytical design to conduct the study. 

3.3 Source of information 

The information that is used to conduct this study is collected from secondary source such as 

reference books, research papers, and internet  

3.4 Mathematical procedure of the study 

In order to achieve the objective of the study, the following procedures are undertaken. 

1. Laplace transform will be applied to the power series solution obtained from RDTM to improve 

the solution (to increase the degree of the truncated series by 1). 

2. The variable  � is replaced by  
�

�
  to simplify the expression in step 1. 

3. Convert the transformed series (in step 2) into a meromorphic function by forming its pade 

approximation of order [  
�

�
  ], where M   and N  are arbitrary chosen constants from the set of 

positive integers. But they should be of smaller values than the order of the power series. In this 

step the pade approximate extends the domain of the truncate series solution to obtain better 

accuracy and convergence. 

4. Then  t is replaced by 
   �  

�
to take the expression (in step 3) back to the original variable. 

5. Finally the inverse Laplace transform of the equation in step 4 will be taken to obtain better 

approximate solution of the problem under consideration.  

3.5 Ethical consideration 
 Ethical consideration was taken care by getting the consent of official concerned body from 

Jimma University. 
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CHAPTER FOUR 

Results and Discussions 

4.1Preliminaries  
4.1.1The basic definitions and theorems of reduced differential transform method are introduced 

as follows (.,Vazquezz-leal,H., and Sarmiento-Reyes, A.,). 

Definition 4.1(Brahim et el., 2014). If a function �(�, �) is analytic and continuously 

differentiable with respect to time and space � in the studied domain, then 

U�(x) =
�

�!
�
���(�,�)

���
�
���

 ,     � = 0,1,2… .                                                                                       (1) 

Definition4.2 (Brahim et el., 2014).The differential inverse function of {��(�)}���
� is defined by: 

�(�, �) = ∑ ��(�)
�
��� ��                                                         (2)   

where  U�(x)  is t-dimensional spectrum function.                    

Then combining equation (1) and (2), we obtain  

�(�, �) = ∑
�

�!

�
��� �

���(�,�)

���
�
���

��                                                                                   (3) 

From the above definition (4.1) and (4.2) the concept of RDTM is obtained from the power 

series expansion. 

Theorem 4.1(Brahim et el., 2014). If �(�, �) =
���(�,�),

���
 then  ��(�) =

���� (�)

���
                         (4) 

Proof: Let ��(�) and ��(�) are the t-dimensional spectrum functions (transformed function) of   

�(�, �) and  �(�, �) respectively. 

We want show that: ��(�) = 
����(�)

���
 

Applying reduced differential operator (RDT) on both sides of equation (4)   

��� [�(�, �)]= ��� �
���(�, �)

���
� 
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Using definition (4.1) ��� [�(�, �)] = 
�

�!
�
���(�,�)

���
� t=0   and 

         ��� �
���(�,�)

���
 � =   

��

���
�

�!
�
���(�,�)

���
� t=0                                                                                                                     (5) 

Substitute (5) into (4), we have  

                
�

�!
�
���(�,�)

���
� =

��

���
�

�!
�
���(�,�)

���
�                                                                                          (6) 

And also by definition 4.1, we have  

�� (�) =
�

�!
�
���(�,�)

���
� t=0 and  ��(�) =

�

�!
�
���(�,�)

���
�t=0                                                                                      (7)  

Substitute (7) in to (6), we obtain  

�(�) =
���� (�)

���
 

Therefore, the theorem is proved. 

Meromorphic function: A simple definition states that the meromorphic function is a function 

�(�) of the form  
�(�)

�(�)
 , where �(�) and  ℎ(�) are entire functions with ℎ(�) ≠  0 (Krantz, 1999). 

4.1.2 Laplace transform  

Definition4.3 :( Shepley, L.R. 1984)  

Let  � be real valued function of the real variable �, defined for � < 0. Let � be a variable that we 

shall assume to be real. The Laplace transform of � is � defined by the integral: 

                                               �(�) = ∫ �����(�)��
�

�
                                    (8) 

For all value of � for which this integral exist. The function � defined by integral (8) is called the 

Laplace transform of the function � . The Laplace transform of �  denoted by � (�) 

and    �(�)  by   � [� (�)]. 
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4.1.2.1 Properties of Laplace transform  ` 

Theorem 4.2: Linearity (Shepley, L.R. 1984). 

If ��and ��are any two constants and ��(�)and ��(�) are the Laplace transform of ��(�)  and 

��(�) respectively, then  �[����(�) + ����(�)]= ���[��(�)]+ �� �[��(�)] 

                                                                           = ����(�) + ����(�)                                      (9) 

Proof 

From definition 4.3, we have:�[����(�) + ����(�)] = ∫ ����
�

�
[���� + ����(�)]�� 

                                                                      =∫ ����
∞

�
����(�)�� + ∫ ����

∞

�
����(�)�� 

                                                                                = �� ∫ ����
∞

�
��(�)�� + �� ∫ ����

∞

�
��(�)�� 

                                                                     = ���[��(�)]+ �� �[��(�)] 

                               =����(�) + ����(�) 

                               =�[����(�) + ����(�)] 

                                                                              =����(�) + �����) 

   Hence    �[����(�) + ����(�)]= ���[��(�)]+ �� �[��(�)]  = ����(�) + ����(�)   

Theorem 4.3: Shifting property (Shepley, L.R. 1984).  

If a function multiplied by   ��� , then transform of the result is obtained by replacing s by 

(� − �) in the transform of the original function.  

That is if   �[�(�)]= �(�) then  �[����(�)]=  �(� − � )     (10) 

                             Proof  

From definition4.3, we have� [���� (�)]= ∫ ��������(�)��
�

�
 

                                 = ∫ ��(���)��(�)��
�

�
 

= �(� − �) 

Hence �[����(�)]=  �(� − �]  
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4.1.2.2 The inverse Laplace transforms (Shefley, L.R. 1984). 

  Definition 4.4: Given a function � (�) , the inverse Laplace transform of �(�) , denoted 

by    ���{�(�)}  ,is that function � whose Laplace transform is �  .That is  �(�) = ���{�(�)}or 

  �{�(�)}= �(�) 

Theorem 4.4(Shefley, L.R. 1984). If  �[�(�)]= �(�), then ���[�(�)����]= ���[�(�)        (11)              

   Proof  

From definition (4.4),  [��(�)]= �(�) and ���[�(�)]= �(�) 

By theorem (4.3)  � [����� (�)]= �(� + �) and    ���[�(� + �)]= �����(�)  

Thus ���[�(� + �)]= �������[�(�)] 

4.1.3 Pade approximate  

Definition 4.5 :(Brezenski, C.1996) 

Given a function � and two integers � ≥ 1 and   � ≥ 1, the Pade approximant of order [
�

�
] is the 

rational function: 

�(�) =
∑ ���

��
���

��∑ ���
��

�� �

=
����������

��⋯ ��� ��

�����������⋯ ��� ��
                                                                               (12) 

This agrees with �(�) to the highest possible order, which amount to 

�(0) = �(0) 

� (́0) = � (́0) 

�´(́0) = �´(́0) 

                                                                            .  .  . 

 ����(0) = ����(0) 

The Pade approximant is unique for given �   and   �, that is the coefficients ��,  ��,  ��, … ,  �� 

and ��,  ��,  �� , … ,  �� can be uniquely determined. It is for reasons of uniqueness that the zero-

th order term at the denominator of �(�) was chosen to be 1, otherwise the numerator and 

denominator of  R(x) would have been unique only up to multiplication by a constant. For a 

fixed value of  � + � , the error is smallest when � = �  or when  � = � + 1 .The Pade 

approximant often gives better approximation of the function than truncating its Taylor series 

http://www.wow.com/wiki/Integer
http://www.wow.com/wiki/Up_to
http://www.wow.com/wiki/Taylor_series
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and it may still work where the Taylor series does not converge. For this reason Pade 

approximants are used extensively in computer calculations. 

Definition 4.6: (Forenberg, B. 1998) 

A Taylor expansion can often be accelerated quite dramatically (or turned from divergent to 

convergent) by being rearranged into a ratio of two such expansion.  

A pade approximation ��
�(�) =

∑ ���
��

���

∑ ����
�
�� �

 

(Normalized  �� = 1) generalizes the Taylor expansion with equally many degrees of freedom. 

  ����(�) = ∑ ���
����

���                                                                (13) 

The two equation being the same in case N=0. The pade coefficients are normally best found 

from a Taylor expansion: c� + c�x+ c�x
� + ....=

����������
��⋯

�����������⋯
multiplying up the denominator 

gives the following equivalent set of coefficient relations.  

�� = �� 

                                                                   �� = �� + ����                                                     (14) 

�� = �� + ���� + ���� 

�� = �� + ���� + ���� + ���� 

                         .  .  . 

�� = �� + ������ +  … …  +  ���� 

                                                                            and 

���� + ⋯ + �������� + ���� = 0 

������ + ⋯ + �������� + ���� = 0 

                                                                      .  .  . 

                                                  ������q� + ⋯ + c� q� + c� �� = 0, 

 

http://www.wow.com/wiki/Convergent_series
http://www.wow.com/wiki/Calculation
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with the �� given, each new line introduces two new unknowns,�� and��. The system would 

appear to be severely underdetermined. However, if we specify the degree of the numerator to be 

M and of the denominator to be N, and of the truncated Taylor expansion to be M+N, there will 

be just as many equations as unknowns (ignoring all terms that are 0(������).We can then 

solve for all the unknown coefficients, as the following example shows: 

Example :(Forenberg , B. 1998). Given  ��(�), determine   ��
�(�). 

In this case � = 3,� = 2, � + � = 5, the system (14) becomes ‘cut off’ as follow. 

��  = �� 

��  = �� + ���� 

��  = �� + ���� + ���� 

��  = �� + ���� + ���� + ���� 

 

 

No more a ś available ⇒  

 

The bottom three equations can be solved for ��, ��, ��  after which the top three explicitly 

give��, ��, ��.The same idea carries through for any values � and �.  

A key usage of pade approximation is to extract the information from power series expansion 

with only a few known terms. Transformation to pade form usually accelerates convergence, and 

often allows good approximations to be found even outside a power series expansion’s radius of 

convergence. 

0 

 

0 

 

0 

 

�� + ���� + ���� + ���� 

 

�� + ���� + ���� + ���� 

 

�� + ���� + ���� + ���� 

No more b ´ s 

available  

Past limit 0(�(�����)) 
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4.2 Main results 

Based on the above theorem and definition, the main result of this study will be presented as 

follows. First we consider the following one dimensional heat-like equation written in an 

operator form. 

��(�, �) – ��� �(�, �) = �(�, �)              (15) 

Subject to initial condition   �(�, 0) = �(�)     (16) 

Where  � =
�

��
, �  is linear differential operator,  �(�, �)  is unknown analytic and continuously 

differentiable function, � (�.�) is an inhomogeneous term and  �� is a variable coefficient. 

Here we consider two cases of (15), the homogeneous and non-homogenous. 

CaseI: Let equation (15) is homogeneous, i.e.  ��(�, �) − ��� �(�, �) = 0 

                         ��(�, �) = ��� �(�, �)                                                                 (17) 

Applying RDTM on both sides of (17) and (16), we have 

���  (��(�, �)) =  ���  (��� �(�, �))   

(� + 1)����(�) = �����(�)                                                                           (18)    

�(�, 0) = �(�)                                                                                                    (19) 

Substitute (19) into (18), we have 

                  ��(�) =
�

�!
�(�� �(�)) =

�

�!
��ℎ(� 

                ��(�) = 
�

�!
��(���(�)) =

�

�!
��ℎ(�) 

                 ��(�) = 
�

�!
��(���(�)) =

�

�!
��ℎ(�)                                                                         (20) 

                 ��(�) = 
�

�!
������(�)� =

�

�!
��ℎ(�) 

                                 .  .  .  
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By definition (4.1)  ��(�) = 
�

�!
�
���(�,�)

���
�    =  

�

�!
��ℎ(�) 

Again by definition differential(4.2), the inverse transform of the set of values {U�(x)}���
�  gives 

approximate solution as,  ���(�, �) ≅ ∑ U�(x
�
��� )�� ,                            (21) 

where � is the approximation order of the solution. 

From equation (20) and (21), we have �(�, �) ≅ ∑ U�(x
�
��� )��  

�(�, �) = ���
� + ���

� + ���
� + ���

� + ���
� + ⋯ + ���

� . 

�(�, �) = �(�) + ��ℎ(�)� +
��
2!
ℎ(�)�� +

��
3!
ℎ(�)�� +

��
4!
ℎ(�)�� + ⋯ +

��
�!
ℎ(�)��  

�(�, �) = �(�) + ℎ(�)(��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��)                                        (22) 

Hence (22) is the approximate solution of (17) that obtained from RDTM truncated series. The 

exact solution is   �(�, �) = lim�→� ���(�, �). 

 But it is described in the literature the solutions obtained from the RDTM truncated series may 

have limited regions of convergence, even if we take a large number of terms. Therefore, we 

proposed to apply the Pade approximation technique to this truncated series to increase the 

convergence region (the steps are mentioned in chapter three). First Laplace transform is applied 

to (22). Then, � is substituted by  
�

� 
 and the Pade approximant is applied to the transformed series. 

Finally, �  is substituted by  
�

�
  and the inverse Laplace transform is applied to the resulting 

expression to obtain the solution. 

Apply Laplace transform to    (��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��), we get 

        �[�(�, �) = �[��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��  

       �[�(�, �)]= (
��

��
+

��

��
+

��

��
+

��

��
+ ⋯ +

��

����
), using equation (8)                  (23) 

     From step 2, replacing � by
�

�
, we get   

   �[�(�, �)]= ( ���
� + ���

� + ���
� + ���

� + ⋯ + ���
���)                                                 (24) 
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Based on the definition4.6, all of [
�

�
] pade approximation of (24) with  � ≥ 1 ��� � ≥ 1 , 

where � is the degree of the denominator and � is the degree of the numerator gives: 

�
�

�
� (���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) =
����� � ����

�����
�� …� �� ��

������������ … ��� ��
                     (25) 

where ��=1, and the numerator and denominator polynomials have no common factors (unique). 

Now multiplying both sides of equation (25) by �� + ��� + ���
� +  …  + ���

�  gives the 

following equivalence relation. 

�� = 0 

�� = 0 

 �� = �� 

����� + ���� 

�� = �� + ���� + ���� 

 .  .  . 

�� = ���� + ������ + ⋯ + ���� 

                                                                          and 

0 = �� + ���� + ���� + ⋯ + ���� 

0 = �� + ���� + ���� + ⋯ + ���� 

 . . . 

0 = ������ + �������� +  … …  +   ���� 

 The unknown coefficients �� ,��, �� … .��  and ��, ��, �� … …  �� of the right hand side of 

equation (25) can be determined from the condition that the first(� + � + 1)terms vanish in the 

Taylor series expansion.(i.e. Ignoring all terms that are 0(�(�����)). So now 

let   ��, ��, �� … … .��  be the value of �� ,��, �� ..., �� and ��, ��, ��, ..., �� be the value of 

��, ��, ��, ..., �� respectively     (26) 
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Using definition 4.5, let the degree of the numerator is greater than the degree of the denominator 

by one (i.e.� = � + 1). 

 Substitute (26) into (25) we obtain: 

�
�

�
�(���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) =
�� + ��� + ���

� + ���
� +   …   ���

�

1 + ��� + ���
� + … + ���

�
 

                                              

�
�

�
� (���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) = 
�2�

2+ �3�
3+   …   ���

�

1+�1�+ �2�
2+ … +���

�                          (27) 

In step 4, replacing � by 
�

�
 in the right hand side of (27), we obtain   

�
�

�
�(���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) = 
���

��� + ���
��� +   …   ��

����[�� + ������ + ������ + … + ��]
 

Since  � = � + 1            =
���

� ������
� ���  …  ��

�[�� ����� ������� ���…��� ]
 

�
�

�
� (���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) = 
���

� ������
� ���  …  ��

�[�� � �� ������� ������� ���…��� ]
            (28) 

Decompose the right side of equation (28) into partial fraction reduction, we get 

   [
�

�
] (���

� + ���
����

� + ���
�+ ..+ ���

���) =
��

�
+

��

����
+

��

����
+

��

����
+ ⋯ +

�� ��

���� ��
           (29) 

Where ��, ��, ��, … .   ���� and  ��, �� , ��, …   ����   are arbitrary constants. 

Finally, applying the inverse Laplace transform to Pade approximants (29), we obtain 

���[
��
�
+

��
� + ��

+
��

� + ��
+

��
� + ��

+ ..+
����
�+ ����

]= (�� + ���
���� + ���

����+ ..+�����
�� ���) 

Therefore, the approximate solution of (15) is given by: 

�(�, �) = �(�) + ℎ(�)( �� + ���
���� + ���

���� + ⋯ + �����
�� ��� )  

Case II: let equation (15) is non-homogeneous 

��(�, �) − ����(�, �) = �(�, �)        (30) 

Subject to the initial condition  �(�, 0) = �(�) ,                                 (31) 
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where  � =
�

��
, �  is linear differential operator,  �(�, �)  is unknown analytic and continuously 

differentiable function, � (�.�) is an non-homogeneous term and �� is a variable coefficient. 

Applying both side RDTM in (30) & (31), we have  

���  (��(�, �)) =  ���  (��� �(�, �)) +  ���  (�(�, �) 

                               (� + 1)����(�) = ����� (�) + ��(�)               (32) 

                                               ��(�) = �(�),                                                            (33) 

Substitute (33) into (32), we obtain the following  ��(�)values successively: 

                              ��(�) =
�

�!
[����(�) + ��(�)]= ���(�) 

                              ��(�) =
�

�!
�����(�) +

�

�!
�����(�) +

�

�!
��(�)                                         (34) 

                                         =
�

�!
�� ����(�) + ��

�

�
��(�) +

�

��
��(�)� = ���(�) 

                             ��(�) =
� 

�!
�� ����(�) + ��

�

�
��(�) + ��

�

��
��(�) +

�

��
��(�)� = ���(�)       

                         .  .  . . 

                              �� (�) =
�

�!
�
���(�,�)

���
�  = ���(�), 

 where �(�)  is analytic function. 

The differential inverse transform of set of values {U�(x)}���
�  gives the approximation solution 

as, ���(�, �) = ∑ U�(x
�
��� )��                    (35) 

 where n is approximation order of the solution.                                 

 From equation (34) and (35), we have 

                     �(�, �) ≅ ∑ U�(x
�
��� )��  

                               = ���
� + ���

� + ���
� + ���

� + ���
� + ⋯ ���

�  

                              = �(�) + ���(�) � +
��

�
�(�)�� +

��

�
�(�)�� +

��

��
�(�)�� + ⋯ +

��

�!
�(�)��  
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                               = �(�) + �(�)(��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��)                         (36) 

Hence (36) is the approximate solution of (30) that obtained from RDTM truncated series. The 

exact solution is �(�, �) = lim�→� ���(�, �) 

 By the same reason given in case I, we have to follow the next steps. 

Applying Laplace transform to(��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��), we get  

   �[�(�, �)]= �[��� +
��

�
�� +

��

�
�� +

��

��
�� + ⋯ +

��

�!
��] 

�[�(�, �)]= (
��

��
+

��

��
+

��

��
+

��

��
+ ⋯ +

��

����
) using equation (8)                                                (37) 

In step 2, replacing � by 
�

�
 , we get   

�[�(�, �)]= (���
� + ���

� + ���
� + ���

� + ⋯ + ���
���)         (38) 

Based on definition4.6, all of [
�

�
] pade approximation of (38) with  � ≥ 1 ��� � ≥ 1, where � 

is the degree of the denominator and � is the degree of the numerator gives: 

�
�

�
� (���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) =
����������

�����
��…��� ��

������������…��� ��
                        (39) 

where�� = 1, and the numerator and denominator polynomials have no common factors. 

Now multiplying both sides of equations (39) by 1 + ��� + ���
� + … + ���

�  gives the 

following equivalence relation: 

�� = 0 

�� = 0 

 �� = �� + �� 

�� = �� + ���� + �� 

�� = �� + ���� + ���� + �� 

�� =  �� + ���� + ���� + ���� + �� 

      .  .  . 
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�� = ���� + ������ + ⋯ + ���� 

                                                                      and 

0 = �� + ���� + ���� + ⋯ + ���� 

0 = �� + ���� + ���� + ⋯ + ���� 

 .  .  . 

0 = ������ + �������� +  … …  +   ���� 

 Now let  ��, ��, �� … … .��  be the value of�� ,��, �� ..., �� and ��, ��, ��, ..., ��be the value of 

��, ��, ��, ..., �� respectively.                                                                                             (40) 

As explained in homogenous case for the constants p’s and q’s and then using definition4.5 for 

the degree of the numerator and denominator and further substituting (40) into (39), we obtain  

�
�

�
� (���

� + ���
� + ���

� + ���
�+ ..+���

���) =
���

�����
��  …   �� �

�

���������
��…��� �

�
                 (41) 

In step 4, replacing � by 
�

�
  in the right hand side of (41), we have 

�
�

�
� (���

� + ���
� + ���

� + ���
� + ⋯ + ���

���) =
���

� ������
� ���  …  ��

�� �� [�� ����� ������� ���…��� ]
                                                                      

                                                                             =
���

� ������
� ���  …  ��

�[�� ��� ������� ������� ���…��� ]
 

[
�

�
] (���

� + ���
� + ���

� + ���
�+ ..+ ���

���) =
���

� ������
� ���  …� ��

�(�� ��� ������� ������� ���…��� )
                 (42) 

Decompose the right side of (42) into partial fraction reduction, we get 

�
�

�
� (���

� + ���
����

� + ���
�+ ..+ ���

���) =
��

�
+

��

����
+

��

����
+

��

����
+ ⋯ +

�� ��

���� ��
             (43) 

Where ℎ�, ℎ�, ℎ�, … .   ℎ��� and  ��, �� , ��, …   ����   are arbitrary constants 

Finally, applying the inverse Laplace transform to Pade approximants (43), we obtain 

��� �
ℎ�
�
+

ℎ�
� + ��

+
ℎ�

� + ��
+

ℎ�
� + ��

+ ..+
ℎ���

�� + ���
�= ℎ� + ℎ��

���� + ℎ��
����+ ..+ℎ����

�� ���) 
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Therefore, the better approximate solution of (30) is given by: 

�(�, �) = �(�) + �(�)( ℎ� + ℎ��
���� + ℎ��

���� + ⋯ + ℎ����
�� ��� ). 

Remark: Here we observe that the solution obtained in case I & case II are in a convergent 

function form than the solution obtained from RDTM. Hence the approximate solution obtained 

after the application of Laplace Pade Resummation Method is better than the solution obtained 

from RDTM. 

Test problems  

In this section, we will demonstrate the effectiveness and accuracy of the MRDTM described in 

the previous sections on one dimensional heat-like equation subject to initial condition using the 

following three examples. 

Example 1: Now consider the one dimensional initial value problem which describes the 

homogeneous heat-like equation. 

                               
��(�,�)

��
=

��

�

���(�,�)

���
       (44) 

With the initial condition          �(�, 0) = ��                            (45)  

Taking the reduced differential transform of (44) and (45), we have 

         (� + 1)����(�) =
��

�

���� (�)

���
                                      (46) 

  

      ��(�) = ���(�)                   (47) 

                Where �(�) = �
1, �� � = 0
0, �� � ≠ 0

      

Now, substitute (47) into (46), we obtain the following  ��(�)values successively: 

��(�) = ��,   ��(�) =
��

2
, ��(�) =

��

6
, ��(�) =

��

24
, ��(�) = 

��

120
, 

��(�) =
��

���
, … , ��(�) =

��

�!
        (48) 

    

 

Then using (21) and (48), we get approximate solution of (44). 

Let the order of approximation (n) =6, then we have  
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                        �(�, �) ≅ ∑ ��
�
��� (�)��  

 

= ���
� + ���

� + ���
� + ���

� + ���
� + ���

� + ���
� 

  

                               = �� + ��� +
�

�
���� +

�

�
���� +

�

��
���� +

�

���
���� +

�

���
���� 

 

                             = ��(1 + � +
�

�
�� +

�

�
�� +

�

��
�� +

�

���
�� +

�

���
��)       (49) 

Hence (49) is the approximate solution of (44) that obtained from RDTM truncated series. By the 

same reason given in case I above, we have to follow the next steps. 

We apply Laplace transforms to   (1 + � +
�

�
�� +

�

�
�� +

�

��
�� +

�

���
�� +

�

���
��), we get  

 

 � [�(�, �)] = (  
�

�
 +  

�

��
 +

�

��
 +

�

��
 +

�

��
 +

�

��
 +

�

��
   )   Using equation (8)    

For simplicity, replacing � by 
�

�
 , we get   

                � [�(�, �)]= (  � + �� + �� + �� + �� + �� + ��   )                  (50)  

All of the [
 �

� 
] pade approximate of (50) with  � ≥ 1, � ≥ 1  and � + � ≤ 7 where the degree 

of the numerator is 4 and the degree of the denominator is 3 gives: 

 

         [  
�

�
  ]( � + �� + �� + �� + �� + �� + ��  ) =

����������
�����

����
�

���������������
 (51)  

Using (14) and (51), we have  

�� =  0,    ��  =  1,     �� =  1, �� =  1,     ��  = 1,    �� = 1,     ��  =  1,     ��  =  1 

�� = �� = 0 

 

�� = c� +  c�b� = 1 

 

                                      �� = c� +  c�b� +  c�b� = b�  

 

                                               �� = c� +  c�b� + c�b� +  c�b� = 1 +  b� + b� 
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�� = c� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  b� 

 

0 = c� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  b� 

 

0 = c� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  b� 

0 = c� +  c�b� + c�b� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� + b� +  b� 

 

   Solving this, we have:  

��  =  1, �� = �� = ��  = ��  = ��  =  0  and  ��  = −1       (52) 

Substitute (52) into (51), we obtain: 

  � 
�

�
 � (� + �� + �� + �� + �� + �� + ��) =

�

���
                                                           (53) 

 In step 4, replacing  � by 
�

�
 in the right hand side of (53), we get: 

�
�

�
� (� + �� + �� + �� + �� + �� + ��) = 

�

���
                                                          (54) 

Finally, applying the inverse Laplace transform to the right hand side of Pade approximants (54), 

we obtain:  [ 
�

�
 ](� + �� + �� + �� + �� + �� + ��) = �� 

Therefore, the approximate solution of (44) is given by �(�, �) = ���� which in this case is an 

exact solution (Gupta, V. G., and Gupta, S., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Table1. Comparison between the solutions obtained from RDTM and MRDTM of one 

dimensional homogenous heat-like equation 
��(�,�)

��
=

��

�

���(�,�)

���
 

t x RDTM MRDTM 

Exact solution 
�(�, �) = ���� 
(Gupta  & 

Gupta, 2011) 

1 

1 2.71805… 2.71828… � = 2.71828…  

2 10.87222… 10.87312… 4� = 10.87312…  

3 24.4625… 24.4645…. 9� = 24.4645…. 

4 43.4888… 43.4925… 16� = 43.4925…  

5 67.9513… 67.9570… 25� = 67.9570…  

2 

1 7.35555.. 7.3890… �� = 7.3890…  

2 29.4222… 29.5556… 4�� =  29.5556…  

3 66.2000… 66.5015… 9�� = 66.5015…  

4 117.6888… 118.2248… 16�� = 118.2248…  

5 183.8888… 184.7264… 25�� = 184.7264…  

3 

1 19.4125… 20.0855… �� =  20.0855…  

2 77.6500… 80.34214… 4�� = 80.34214…  

3 174.7125.. 180.7698… 9�� = 180.7698…  

4 310.6000… 321.3685… 16�� = 321.3685…  

5 485.3125… 502.1384… 25�� = 502.1384…  

From table 1, we observe that the solution obtained from MRDTM is better than the solution 

obtained from RDTM and fits with the exact solution. 

Example2: Consider the one dimensional initial value problem which describes the non-

homogeneous heat like equation. 

��(�,�)

��
=

��

�

���(�,�)

���
+

��

�
   (55)            

With the initial condition    �(�, 0) =
��

�
                                                                            (56)  

Taking the reduced differential transform of (55) and (56), we have 

(� + 1)����(�) =
��

�

���� (�)

���
+

�

�
���(�), Where �(�) �

1, �� � = 0
0, �� � ≠ 0

                                   (57) 

��(�) =
��

�
�(�)  (58) 

Plunging (58) into (57), we have: 

��(�) = ��, ��(�) =
1

2
��, ��(�) =

1

6
��, ��(�) =

1

24
�� 

     ��(�) =
�

���
�� , ��(�) =

�

���
��, … , ��(�) =

��

�!
                                                 (59) 
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Then using (35) and (59), we get an approximate solution of (55) 

Let the order of approximation (n) =6 

                            �(�, �) ≅ ∑ ��
�
��� (�)��  

                                       = ���
� + ���

� + ���
� + ���

� + ���
� + ���

� + ���
� 

  

                                    =
�

�
�� + ��� +

�

�
���� +

�

�
���� +

�

��
���� +

�

���
���� +

�

���
���� 

                                   = ��(
�

�
+ � +

�

�
�� +

�

�
�� +

�

��
�� +

�

���
�� +

�

���
��)   (60) 

Hence (60) is the approximate solution of (55) that obtained from (RDTM) truncated series. By 

the same reason given in case I above, we have to follow the next steps. 

We apply Laplace transforms to(
�

�
+ � +

�

�
�� +

�

�
�� +

�

��
�� +

�

���
�� +

�

���
��), we get 

        � [�(�, �)]= (
�

��
 +  

�

��
 +

�

��
 +

�

��
 +

�

��
 +

�

��
 +

�

��
 )  Using equation (8)   

For simplicity, replacing �  by  
�

�
 , we get  

� [�(�, �)]= (
�

�
� + �� + �� + �� + �� + �� + ��)                                 (61)  

All of the [  
�

�
  ]pade approximation of (61) with � ≥ 1 and � ≥ 1 and � + � ≤ 7 where the 

degree of the numerator is 4 and the degree of the denominator is 3gives: 

 [  
�

�
  ](

�

�
� + �� + �� + �� + �� + �� + ��)  =

����������
�����

����
�

���������������
 (62) 

Using (14) and (62), we have: 

�� =  0,    ��  =
1

2
,     ��  =  1, ��  =  1,     ��  = 1,    �� = 1,     �� =  1,     ��  =  1 

�� = c�  = 0 

�� = c� +  c�b� =
1

2
 

                                                        �� = c� +  c�b� +  c�b� = 1 +
�

�
b�  

                                                  �� = c� +  c�b� +  c�b� +  c�b� = 1 + b� +  
�

�
b� 

                                    �� = c� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  
�

�
b� 

                                0 = c� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  b� 

                          0  = �� +  ���� +  ���� +  ���� +  ���� +  ���� +  ���� = 1 +  �� +  �� +  �� 

                      0 = �� +  ���� +  ���� +  ���� +  ���� +  ���� + �������� = 1 +  �� +  �� +  �� 
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   Solving this we have �� =
�

�
, �� =

�

�
 , �� = −1, �� = �� = �� = �� = �� = 0       (63) 

Substitute (63) into (62), we obtain: 

[
�

�
] (

�

�
� + �� +  ��  + ��  + �� + ��  + ��) =  

1
2
( �+ �2)

1− �
                                                     (64) 

In step2, replacing  � by 
�

�
 in the right hand side of (64), we get: 

 [ 
�

�
 ] (� + �� +  �� + ��  + �� + ��  + ��) = 

���

��(���)
                  (65) 

Decompose the right side of (65) in to partial fraction reduction, we obtain  

 [ 
�

�
 ] (� + �� +  ��  + ��  + �� + ��  + ��) =

�

�
(

�

���
−

�

�
)          (66) 

Finally, applying the inverse Laplace transform to the right hand side of Pade approximant (66), 

we obtain: [ 
�

�
 ] (� + �� +  ��  + �� + �� + ��  + ��) = �� −

�

�
 

Therefore, the approximate solution of (55) is given by �(�, �) = ��(�� −
�

�
)                          (67) 

Substituting (67) into (55), we conclude that the approximate solution coincides with the exact 

one (Ahmed, 2014) 

 

Table2. Compression between the solutions obtained from RDTM and MRDTM of one 

dimensional non-homogenous heat-like equation 
��(�,�)

��
=

��

�

���(�,�)

���
+

��

�
 

 

 

 

 
          

 

� � RDTM MRDTM �(�, �) = ��(�� − 0.5) 

Exact solution 

(Ahmed,  2014) 

1 

1 2.21805… 2.21828… � − 0.5 = 2.71828…  

2 8.8722.… 8.8731… 4(� − 0.5) = 8.8731…  

3 19.9625… 19.9645…. 9(� − 0.5) = 19.9645… . 

4 35.4888… 35.4924… 16(� − 0.5) = 35.4924…  

5 55.4512… 55.4570… 25(� − 0.5) = 55.4570…  

  

2 

1 6.8555.. 6.8890… �� − 0.5 = 6.8890…  

2 27.4220… 27.5562… 4(�� − 0.5) = 27.5562 …  

3 61.6995… 62.0001… 9(�� − 0.5) = 62.0001… …  

4 109.6880… 110.2248… 16(�� − 0.5) = 110.2248…  

5 171.3875… 172.2264… 25(�� − 0.5) = 172.2264…  

3 

1 18.9125… 19.5855… �� − 0.5 = 19.5855… . 

2 75.6500… 78.3421… 4(�� − 0.5) = 78.3421…  

3 170.2125.. 176.2698… 9(�� − 0.5) = 176.2698…  

4 302.6000… 313.3685… 16(�� − 0.5) = 313.3685…  

5 472.8125… 489.6384… 25(�� − 0.5) = 489.6384…  
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From table2, we observe that the solution obtained from MRDTM is better than the solution 

obtained from RDTM and fits with the exact solution. 

Example3: Consider another one dimensional initial value problem which describes the non-

homogeneous heat like equation. 

��(�,�)

��
=

��

�

���(�,�)

���
+ ��     (68)         

With the initial condition  �(�, 0) = 0          (69)      

Taking the reduced differential transform of (68) and (69), we have 

(� + 1)����(�) =
��

�

���� (�)

���
+ ���(�)                                           (70)   

   ��(�) = 0                                    (71)                                                                           

Substitute (71) into (70), we have: 

��(�) = ��, ��(�) =
1

2
��, ��(�) =

1

6
��, ��(�) =

1

24
�� 

��(�) =
�

���
�� , ��(�) =

�

���
��, … , ��(�) =

��

�!
      (72) 

Then using (35) and (72), we get approximation solution of (68) 

Let the order of approximation (n) =5 

�(�, �) ≅ � ��

�

���

(�)��  

           =���
� + ���

� + ���
� + ���

� + ���
� + ���

� 

  

           = 0 + ��� +
�

�
���� +

�

�
���� +

�

��
���� +

�

���
���� 

          =��(� +
�

�
�� +

�

�
�� +

�

��
�� +

�

���
��)      (73)  

Hence (73) is the approximate solution of (68) that obtained from RDTM truncated series. By the 

same reason given in case I above, we have to follow the next steps. 

Applying Laplace transform to    (� +
�

�
�� +

�

�
�� +

�

��
�� +

�

���
��), we get: 

        � [�(�, �)]= ( 
�

��
 +

�

��
 +

�

��
 +

�

��
 +

�

��
  )   Using equation (8)   

In step 2, replacing � by  
�

�
 , we get  

            � [�(�, �)]= (�� + �� + �� + �� + ��)                                       (74)          
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 All of the [
�

�
]pade approximation of (74) with � ≥ 1 and � ≥ 1  and � + � ≤ 6 where the 

degree of the numerator and the degree of the denominator are equal (i.e., M=N=3) gives: 

 [  
�

�
  ](�� + �� + �� + �� + ��)  =

����������
�����

�

���������������
  (75)  

Using (14) and (75), we have  

�� =  0,    ��  = 0,     ��  =  1, ��  =  1,     ��  = 1,    �� = 1,     �� =  1,      

�� = c�  = 0 

 

�� = c� +  c�b� = 0 

 

�� = c� +  c�b� +  c�b� = 1 

 

�� = c� +  c�b� +  c�b� +  c�b� = 1 + b� 

 

0 = c� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� 

 

0 = c� +  c�b� +  c�b� +  c�b� +  c�b� +  c�b� = 1 +  b� +  b� +  b� 

 

0  = �� +  ���� +  ���� +  ���� +  ���� +  ���� +  ���� = 1 +  �� +  �� +  �� 

   Solving this we have �� = 1 , �� = −1, �� = �� = �� = �� = �� = �� = 0     (76) 

Substitute (76) into (75), we obtain: [
�

�
] (� + �� +  ��  + ��  + �� + ��) =  

�2

1− �
  (77)                             

 In step 4, replacing � by 
�

�
 in the right hand side of (77), we get 

 [ 
�

�
 ] (� + �� +  �� + ��  + �� + �� ) = 

�

�(���)
      (78) 

Decompose the right hand side of (78) in to partial fraction reduction, we obtain  

 [ 
�

�
 ] (� + �� +  ��  + ��  + �� + ��  + ��) =

�

���
−

�

�
                (79) 

Finally, applying the inverse Laplace transform to the right hand side of Pade approximant (79), 

we obtain: �
�

�
� (� + �� +  ��  + �� + �� + ��) = �� − 1                                                            

Therefore, the approximate solution of (67) is given by: �(�, �) = ��(�� − 1)                     (80) 

Substituting (80) into (68), we conclude that the approximate solution coincides with the exact 

one (Ahmed, 2014) 
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Table3.Compression between the solutions obtained from RDTM and MRDTM of one 

dimensional non-homogenous heat-like equation   
��(�,�)

��
=

��

�

���(�,�)

���
+ x� 

� � RDTM MRDTM Exact solution 
�(�, �) = ��(�� − 1) 
(Ahmed, 2014) 

 
1 

1 1.7166… 1.71828… � − 1 = 1.71828…  
2 13.7333… 13.7462… 8(� − 1) = 13.7462…  
3 46.3500.. 46.3936… 27(� − 1) = 46.3936…. 
4 109.8666.. 109.9700.. 64(� − 1) = 109.9700…  
5 214.5833… 214.7852… 125(� − 1) = 214.7852…  

 
2 

1 6.2666… 6.3890… �� − 1 = 6.3890…  

2 50.1333… 51.1124… 8(�� − 1) = 51.1124…  
3 169.20000… 172.5045… 27(�� − 1) = 172.5045… . 
4 401.0666… 408.8995… 64(�� − 1) = 408.8995…  
5 770.8000.. 798.6320… 125(�� − 1) = 798.6320…  

 
3 
 

1 17.4000… 19.0855… �� − 1 = 19.0855…  
2 139.2000.. 152.6842… 8(�� − 1) = 152.6842…  
3 469.8000… 515.3094… 27(�� − 1) = 515.3094…  
4 1113.6000.. 1221.4743.. 64(�� − 1) = 1221.4743…  
5 2175.0000.. 2385.6921.. 125(�� − 1) = 2385.6921…  

      From table3, we observe that the solution obtained from MRDTM is better than the   

      Solution obtained from RDTM and fits with the exact solution. 
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CHAPTER FIVE 

Conclusion and Future scope 

5.1 Conclusion 

In this study, Modified Reduced Differential Transform Method has been applied to construct 

approximated analytical solution of one dimensional heat-like equation with initial condition. 

The MRDTM is the combination of Laplace pade Resummation method and RDTM. Few 

examples are demonstrated to show the validity and effectiveness of the method, also the 

solutions obtained by using RDTM and MRDTM are compared.  Results show that the MRDTM 

gives better approximate solution of the indicated model in a wider domain of convergence than 

the result obtained using RDTM, that means the technique, that we call LPRDTM greatly 

improves RDTM truncated series solution in convergence rate and often leads to the exact 

solution. Finally, we point out that LPRDTM is very powerful and easily applicable 

mathematical tool for PDEs. 

5.2 Future scope 

In this study, Modified Reduced Differential Transform Method (MRDTM) has been applied to 

find better approximate solutions of one dimensional heat-like equation with initial condition. 

Hence further research may be performed to solve two or more dimensional heat-like models. 
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