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IX 

Abstract 

The purpose of this study was to find numerical solutions of linear second order ordinary 

differential equations with mixed boundary condition by Galerkin method using Chebyshev 

polynomial as a trial function. The Galerkin method was applied after converting the given linear 

second order ordinary differential equation with mixed boundary condition into equivalent 

boundary value problem by considering a valid assumption for the independent variable and also 

converting mixed boundary condition in to Neumann type. The resulting system of equation was 

solved by direct method.  

In order to check to what extent our method approximates the exact solution, a test example with 

known exact solution was solved and compared with the exact solution graphically as well as 

numerically. 
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                                       CHAPTER ONE 

1. Introduction 

1.1. Background  

The goal of numerical analysis is to find the approximate numerical solution to some real 

physical problems by using different numerical techniques, especially when analytical solutions 

are not available or very difficult to obtain. Since most of mathematical models of physical 

phenomena are expressed in terms of ordinary differential equations, and these equations due to 

their nature and further applications to use computers, it needs to establish appropriate numerical 

methods corresponding to the type of the differential equation and conditions that govern the 

mathematical model of the physical phenomena. The conditions may be specified as an initial 

Value (IVP) or at the boundaries of the system, Boundary Value (BVP) [1]. 

Many problems in engineering and science can be formulated as two-point BVPs, like 

mechanical vibration analysis, vibration of spring, electric circuit analysis and many others. This 

shows that the numerical methods used to approximate the solutions of two-point boundary value 

problems play a vital role in all branches of sciences and engineering [2]. 

  

Among different numerical methods used to approximate two-point boundary value problems in 

terms of differential equations are shooting method, finite difference methods, finite element 

methods (FEM), Variational methods (Weighted residual methods, Ritz method) and others have 

been used to solve the two-point boundary value problems [3]. Both in FEM and Variational 

methods the main attempts were to look an approximation solution in the form of a linear 

combination of suitable approximation function and undetermined coefficients [4]. 

For a vector space of functions V, if S= 
1

( )i i
x




 be basis of V, a set of linearly independent 

functions, any function  f x V could be uniquely written as a linear combination of the basis 

as: 

                                                                  (1.1) 
1

( ) ( )j j

j

f x c x





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The weighted residual methods use a finite number of linearly independent functions 
1

( )
n

i i
x


as 

trial function. 

 Suppose that we seek an approximation of the solution of the differential equation,  

( ) ( ( )) ( ) 0D u L u x f x     , on the boundary ( ) [ , ]B u a b  in the form: 

                                 (1.2) 

where ( )NU x  is the approximate solution, ( )u x  is the exact solution “ L ” is a differential 

operator, “ f ” is a given function, ( ) 'j x s  are finite number of basis functions and  unknown 

coefficients for 1,2,...,j N . 

The residual ( , )jR x c  is defined as: ( , ) ( ( )) ( ( ( )) ( ))j N NR x c D U x L U x f x   .If we determine 

by requiring R to vanish in a “weighted-residual” sense: 

                                                                                   (1.3) 

where are a set of linearly independent functions, called weight functions, which in general 

can be different from the approximation functions , this method is known as the weighted-

residual method. If = , equation (1.3) is known as the Galerkin method. Thus Galerkin 

method is one of the weighted residual methods in which the approximation function is the same 

as the weight function and hence it is also used to find the approximate solution of two-point 

boundary value problems [4]. 

The Galerkin method was invented in 1915 by Russian mathematician Boris Grigoryevich 

Galerkin and the origin of the method is generally associated with a paper published by Galerkin 

in 1915 on the elastic equilibrium of rods and thin plates. He published his finite element method 

in 1915. The use of Galerkin method increased rapidly during the 1950’s when it was used for 

analyzing dynamics of aeronautical structures [1]. Furthermore the Galerkin method 

approximates the solution to the BVP by a linear combination of basis functions determined by 

requiring that the residual be orthogonal to each of the homogeneous basis functions, i.e., those 

0

1

( ) ( ) ( ) ( )
N

N j j

j

u x U x c x x 


  

jc

jc

( ) ( , ) 0  ( 1,2,..., )

b

i j

a

w x R x c dx i N 

( )iw x

( )j x

( )j x ( )iw x
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that vanish on the boundary, and that the boundary conditions are satisfied. The Galerkin method 

can be used to approximate the solution to ordinary differential equations, partial differential 

equations and integral equations [5]. 

 

Many authors have been used the Galerkin method to find approximate solution of ordinary 

differential equations with boundary condition.  Among this, a spline solution of two point 

boundary value problems introduced in [6], a method for solutions of nonlinear second order 

multi-point boundary value problems produced in [7], in [8] linear and non-linear differential 

equations were solved numerically by Galerkin method using a Bernstein polynomials basis, in 

[9] a numerical method is established to solved second order linear boundary value problems 

with Neumann and Cauchy types boundary conditions using Hermite polynomials on [0 1].  

 

In this study we extend the result of M. M. Rahman, M.A. Hossen, M. Nuru Islam and Md. 

Shajib Ali by extending the domain and solving for different types of  boundary conditions to 

find an approximate solution of second order ordinary differential equation with mixed boundary 

condition by Galerkin method. 
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1.2. Statement of the problem 

Mathematical models in terms of ordinary differential equations with boundary conditions are 

common in many fields of science and engineering such as mechanical engineering, 

electrodynamics, physics and others. The increasing of desire for the numerical solutions to 

mathematical problems, which are more difficult or impossible to solve explicitly, has become 

the present day scientific research. Thus, this shows that the importance and application of 

numerical methods to solve problems in real life. The numerical method used to find 

approximate solution of boundary value problems has an impressive importance due to its wide 

applications in scientific and engineering researchers.  

So, among methods used to find approximate solution of ordinary differential equations with 

boundary condition the Galerkin method is one of the weighted residual methods that 

approximate the solution of the BVP by a linear combination of basis functions determined by 

requiring that the residual is orthogonal to each of the homogeneous basis functions.    

Therefore, the presented study answered the following questions: 

 How can we approximate solution of linear second order differential equations with 

mixed boundary condition? 

 To what extent our method approximates the exact solution? 

  How can we extend the result obtained by M. M. Rahman.et.al in [9] into mixed 

boundary case? 

 How to solve examples by using our method with the help of MATLAB software? 

1.3. Objective of the study 

1.3.1. General objective 

The main objective of this study was to obtain numerical solution for linear second order 

ordinary differential equation with mixed boundary condition by Galerkin method. 

1.3.2. Specific objective 

 To determine the approximate solution of linear second order ordinary differential 

equations with mixed boundary condition. 

 To show how the graph of the approximate solution approaches to the graph of the exact 

solution. 
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 To show how to extend the method by M.M.Rahman.et. al. [9] in to mixed BC. 

 To solve examples using the presented method by the help of MATLAB software. 

1.4. Significance of the study 

Since the purpose of this study is to solve ODEs with mixed boundary condition, the result of 

this study will be used to find the approximate solution of ODEs with mixed boundary 

conditions using Galerkin method which avoids the restriction to only Neumann and Cauchy 

boundary condition in [9]. The results obtained in this paper would contribute to research 

activities in this area. Further, collaboration in this research project would be useful for the 

graduate program of the department and enhances the research skill and scientific 

communication of the researcher.  

1.5.  Delimitation of the study 

This study is delimited to numerical solution. The study was also limited to linear second-order 

ordinary differential equations of the form (4.2) using Galerkin Method by taking Chebyshev 

polynomial as trial function. 
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CHAPTER TWO 

2.  Literature review 

In the literature of numerical analysis solving ordinary differential equations with boundary 

conditions, many authors have attempted to obtain higher accuracy rapidly by using a numerous 

methods.  

Among the methods available in the literature concerning their numerical solutions, a spline 

solution of two point boundary value problems introduced. [6], a method for solutions of 

nonlinear second order multi-point boundary value problems produced [7], a linear and non-

linear differential equations were solved numerically by Galerkin method by a Bernstein 

polynomials basis [8],  a numerical method is established to solved second order linear boundary 

value problems with Neumann and Cauchy types boundary conditions using Hermite 

polynomials [9]. That is by converting the given ODE with boundary condition on any arbitrary 

interval [a, b] into equivalent BVP in [0, 1]. A parametric cubic spline solution of two point 

boundary value problems were obtained [10],  a second-order Neumann boundary value problem 

with singular nonlinearity for exact three positive solutions were solved [11], a Numerical 

solution of a singular boundary-value problem in non-Newtonian fluid mechanics were 

established [12], a Fourth Order Boundary Value Problems by Galerkin Method with Cubic B-

splines were solved by considering different cases on the boundary condition [13] and a special 

successive approximations method for solving boundary value problems including ordinary 

differential equations were proposed.[14] 

As clearly explained above, most of the authors have attempted to obtain simple and accurate 

methods by using different polynomials as a trail function such that the polynomial must satisfy 

both the differential equation and the boundary conditions. This study mainly depends on the 

results of [9] in which the trail function was replaced by Chebyshev polynomials and the 

boundary condition is mixed type. The objective of using Chebyshev polynomial is to extend the 

domain from [0, 1] in to [-1, 1]. 
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CHAPTER THREE 

3. METHODOLOGY 

The following methods and materials were used to carry out this study. 

3.1. Study Design, site and period 

This study used documentary review article design assisted by MATLAB. The study was 

conducted in Jimma University, department of mathematics from November 2013 to June 2014. 

3.2. Study area 

The study focused on numerical solution of linear second order ordinary differential equations 

with mixed boundary and Neumann boundary conditions by using Galerkin method. 

3.3. Source of information 

In this study secondary data were used as a source of information. So, the available sources of 

information for this study were books, journals and different related studies from internet 

services. In addition to this, a one week workshop on MATLAB software were designed and 

conducted.  

3.4. Instrumentation and Administration 

Important materials and data for the study were collected by the researcher using documentary 

analysis as an instrument. MATLAB program were coded and used to solve examples in order to 

compare the results obtained by our method with the exact solution. 

3.5. Study procedures 

In order to achieve the objectives of this study we used the standard technique used in [9] to 

extend the boundary conditions into a mixed type boundary condition. In addition to the standard 

technique used in [9], the study used the following mathematical steps. 

 Step 1: We check whether the boundary condition is mixed type or Neumann type. 

 Step 2: If the boundary condition is Neumann type go to step 4 

Step 3: If the boundary condition is mixed type convert the boundary condition in to Neumann  

 



 
 

8 

 type by considering a guess for  y a  by the concept of shooting method assuming that 

the given value for  y b is satisfied.  

Step 4: Convert the given linear second order ordinary differential equation with Neumann     

             boundary condition, whose independent variable is within the interval [a, b];  into   

             equivalent BVP with interval of independent variable [-1, 1]. 

Step 5: Use the technique of Galerkin method to find an approximate solution of the ODE using  

             constant parameters 'ic s  and Chebyshev polynomial as a trial function. 

Step 6: Integrating the first term by parts with in the limit of integration -1 to 1, we get an   

            integral equation.  

Step 7: The integral equation obtained in step 6 contains unknowns  1y  , and  1y , for this 

we substitute values from the Neumann boundary condition with interval of independent  

            variable [-1, 1]. 

Step 8: Upon substitution of these values into the integral equation obtained in step 7 and using  

            the sequence of Chebyshev polynomial, we have a system of equation. 

Step 9: The unknown parameters 'ic s  used in step 5 are determined by solving the system of  

            equation using direct method. 

Step 10: Substituting these values of the parameters, we get the approximate solution of ODE  

             satisfying the Neumann as well as mixed boundary conditions. 

After all these steps, MATLAB software was used to visualize the graphs of the exact solution 

and the approximate solution in the same plane. 

Finally, from the results of the study possible conclusion and recommendation were given. 

3.6. Ethical issues 

To be legal for collecting all the above materials it is important to have a permission letter. So 

the researcher has got a letter of permission from the department of mathematics and the letter 

was used to explain the aim of collecting of those materials. 
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                                                 CHAPTER FOUR 

4. RESULT AND DISCUSSION  

4.1. Preliminaries  

A boundary value problem for a given differential equation consists of finding a solution of the 

given differential equation subject to a given set of boundary conditions. A boundary condition is 

a prescription some combinations of values of the unknown solution and its derivatives at more 

than one point. 

Definition 4.1: Let    ,  I a b   be an interval. Let P , Q , and  :  a,  bR   be 

continuous functions. Consider the linear second order differential equation given by: 

                                 y P x y Q x y f x                                                         (4.1) 

Corresponding to ODE (4.1), there are four important kinds of (linear) boundary conditions. 

They are given by: 

i) Dirichlet or first kind : 1 2( ) ,  ( ) y a y b    

ii) Cauchy or first kind: 2( ) 0,  '( ) y a y b    

iii) Neumann or Second kind : 1 2'( ) ,  '( ) y a y b    

iv) Robin or third or mixed kind : 1 2 1 1 2 2( ) ( ) ,  ( ) ( ) y a y a y b y b            

v) Periodic:- ( ) ( ),  '( )= '( ) y a y b y a y b , where 1 2 1 2 1 2, , , ,  and       are all real 

constants. 

Unlike IVPs, In fact, depending on the specific combination of the ODE and the boundary 

conditions, the BVP may have: 

(i) No solutions,  

(ii) One solution,  

(iii) Finite number of solutions, or  

(iv) Infinitely many solutions. 
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Possibility (iii) can take place only for nonlinear BVPs, while the other three possibilities can 

take place for both linear and nonlinear BVPs. Because of this, programs for solving BVP 

require users to provide a guess for the solution desired. 

The boundary-value problem is said to be homogeneous if both the differential equation and the 

boundary conditions are homogeneous (i.e. ( ) 0 , 1,2i if x i     ). Otherwise the problem is 

nonhomogeneous. 

Definition 4.2: A mixed boundary condition for a differential equation defines a boundary value 

problem in which the solution of the given equation is required to satisfy different boundary 

conditions on disjoint parts of the boundary of the domain where the condition is stated. 

Precisely, in a mixed boundary value problem, the solution is required to satisfy a Dirichlet or a 

Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary. 

 

4.1.1. Chebyshev polynomial 

The polynomials whose properties and applications are discussed in this paper were 'discovered' 

almost a century ago by the Russian mathematician Chebyshev. Their importance for practical 

computation, however, was rediscovered some thirty years ago by C. Lanczos. The coming of 

the digital computer gave further emphasis to this development, and at the present time the 

research literature of numerical mathematics abounds with papers on applications of Chebyshev 

polynomials and the theory and practice of Chebyshev approximation [15]. 

Definition 4.3.The Chebyshev polynomial is a function defined using trigonometric functions  

cos  and sin  for [ 1,1]x  . There are two types of Chebyshev polynomial. 

1. Chebyshev polynomial of first kind with degree n for x ∈ [−1, 1] defined as:  

     cos  nT x n , such that cos   x  , for 1    1x    and  0n   

Thus we have   1  cos  ( cos ),  nT x n x  


1

0 1( ) cos(0) 1  ( ) cos(cos )   T x and T x x x     

From the trigonometric identity, 

   cos cos   2 cos  cos sin  ( )sin( ) sin  ( )sin( )n l n l n n n              



 
 

11 

    cos cos   2 cos  cosn l n l n        

      1 -1  2 -  .n n nT x xT x T x   

Thus using the recursive relation above for n=1, 2… we have a series of Chebyshev polynomial  

1( )  T x x  

2

2( ) 2 -1T x x  

3

3( ) 4 -3T x x x  

4 2

4( ) 8 -8 1T x x x 
 

5 3

5( ) 16 20 5T x x x x     etc. 

We see that the coefficient of  nx  in ( )nT x  1is  2n .  

2. Chebyshev polynomial of second  kind,   nU x of degree n for [ 1,1]x  defined as:  

  
sin ( 1)

   
sin

n

n
U x






  , for 

1cos    =cos ( )x x     

  
sin r cos cos sin

  
sin

r

r
U x

   




  

  1

sin( 2)
  

sin
r

r
U x







  

  1

sin
  

sin
r

r
U x




   

     1 -1  2 -  Ur r rU x xU x x   

Hence ( )nT x is the Chebyshev polynomial of the first kind and ( )rU x  is the Chebyshev 

polynomial of the second kind. 

4.1.2. Properties of Chebyshev polynomials 

Chebyshev polynomial of first kind ( )nT x  satisfies the following properties 

i. The polynomials of even order are obviously even functions of x  and the 

polynomials of odd order are odd functions of x . 
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ii. All ( )nT x have the value unity at 1x  , and at 1x   the value is 1 for even n and 

-1 for odd n .  

iii. The turning points of ( )nT x occur at the zeros of sin  ( ) / sin  n  , that is at the 

1n points 

i

i

n


  , cos( )i

i
x

n


 ,    1,  2,  3,  ... ,i n  and at these points ( ) ( 1)i

n iT x  
 

iv. The turning points are separated by the n zeros, at 1
2

( )i i
n


   ,  

             1
2

cos( )ix i
n


   , 1,  2,  3,  ... ,i n  

The figure 1 below shows the graph of the first seven Chebyshev polynomials for [ 1,1]x  . 

 

From the above graph of Chebyshev polynomials we observe that for [ 1,1]x   the 

corresponding value of the polynomial is also in the range[ 1,1] .  
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4.1.3. Runge-Kutta Method for second order ODE 

Runge-Kutta method is a numerical method used to find approximate solution for initial value 

problems. In order to use Runge-Kutta method to find an approximate solution of second order 

ODE we convert in to a system of two first order ODEs. For two evaluation of f the method is 

given by 

             
1 1 2

1
( )

2
j j jy y hy K K

                                                                       

             
1 1 2

1
( 3 )

2
j j jy y hy K K

h

    

 

where  

2

1 ( , )
2

j j

h
K f x y

 

2

2 1

2 2 4
( , )

2 3 3 9
j j j

h
K f x h y hy K     

4.1.4. Secant Method 

In this method, we approximate the graph of the function ( )y f x  in the neighborhood of the 

root by a straight line (secant) passing through the points  1 1, ( )k kx f x  and  , ( )k kx f x , where 

( )k kf f x  and take the point of intersection of this line with the x-axis as the next iterate. We 

thus obtain       

               

1
1

1

, k=1,2, ...k k
k k k

k k

x x
x x f

f f







 


   Or   

               1 1
1

1

, k=1,2, ...k k k k
k

k k

x f x f
x

f f

 








 

where 1kx  and kx  are two consecutive iterates. In this method, we need two initial 

approximations 0x  and 1x . This method is also called the chord method. The order of the method 

is 1.8. 
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4.2 Mathematical formulation of the method 

We consider a general linear second order differential equation with two type boundary 

conditions 

Type I: 

2
* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
                             (4.2)  

with boundary condition   
1

2

( )

'( )

y a

y b








                                                   (Mixed type)              

Type II: 

2
* * * * *

*2 *
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
                           (4.3) 

 

with boundary condition  
0

1

'( )

'( )  

y a

y b








                                                  (Neumann type)                                         

where * * *( ), ( ), ( )x x x   , *( )g x  are given continuous functions for *a x b   where 0 1 0, ,  

and  1  are given constants and *( )y x  is unknown function or exact solution of the boundary 

value problem which is to be determined. 

 

In a BVP with mixed boundary condition, the solution is required to satisfy a Dirichlet or a 

Neumann boundary condition in a mutually exclusive way on disjoint parts of the boundary.  

 

Suppose that we have a BVP of type II (Neumann type). To use an approximating polynomial 

defined for  [ 1,1]x   , we have to convert the given BVP defined on arbitrary interval [a, b] 

into an equivalent BVP defined on [-1, 1]. So we need an approximating polynomial defined on  

[-1, 1]. Since Chebyshev polynomial is defined on [-1, 1], it is possible to use Chebyshev 

polynomial after converting the BVP defined on arbitrary interval [a, b] into an equivalent BVP 

defined on [-1, 1]. 

 

 

 



 
 

15 

4.1.5. Conversion of the domain of BVP  

In order to use Chebyshev polynomial, we convert the BVP in (4.3) to an equivalent BVP on     

[-1, 1]. The differential equation in (4.3) together with the Neumann boundary condition can be 

converted to an equivalent problem on [-1, 1] by letting 

                         * *,  1 1  
2 2

b a b a
x x for x and a x b

 
         

Then equation (4.2) with boundary condition is equivalent to the BVP given by 

    

2

2
( ) ( ) ( ) ( );    ; -1 1 

d y dy
x x x y g x x

dx dx
      

                                                   (4.4)

 
Subject to the boundary condition, 

                          
0

1

'( 1)

'(1)        

y d

y d

 


                                                                                                                     (4.5) 

*

2

where 

4
( )  since for , 

( ) 2 2 2 2

b a b a b a b a
x x x x

b a
 

    
    

  
2 2

* *2 2 2

2 4
we have,    

( ) ( )

dy dy d y d y
and

dx b a dx dx b a dx
 

 
                                                           (4.6) 

If we equate the D.E in (4.2) with (4.4), we have 

2 2
* * * *

*2 * 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d y dy d y dy
x x x y g x x x x y g x

dx dx dx dx
             

2 2
* * *

2 *2 *
( ) ( ) , ( ) = ( ) , ( ) ( ) 

d y d y dy dy
x x x x x x

dx dx dx dx
        *and ( ) ( ) g x g x                  (4.7)                                                                                                            

Therefore, the DE in (4.3) with Neumann boundary condition is an equivalent BVP with the 

BVP of the DE in (4.4) with the boundary condition in (4.5). 

Up on substitution of (4.6) into (4.7), we get  
 

2 2
* *

2 2 2

4 2
( ) ( ) ,      ( ) = ( ) , 

( ) ( )

d y d y dy dy
x x x x

b a dx dx b a dx dx
   

   

 
* *( ) ( )   and ( ) ( )x y x y g x g x  
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2

4 2
( ) ( ) ,   ( ) ( ) ,

( ) 2 2 ( ) 2 2

b a b a b a b a
x x x x

b a b a
   

   
    

   
 

( )= ( ) and ( )=g( ).
2 2 2 2

b a b a b a b a
x x g x x 

   
 

 
4.1.6. Applying Galerkin method 

 

To apply the technique of Galerkin method to find an approximate solution of (4.2), say  ( )y x  , 

written as a linear combination of base functions and unknown constants. That is; 

                                         0

( ) ( )         
n

i i

i

y x cT x



                                                          (4.8) 

 

where ( )iT x  are piecewise polynomial, namely Chebyshev polynomials of degree i and ic 's are 

unknown parameters, to be determined.

 
Now applying Galerkin method with the basis function ( )iT x  

We get 

       

1 12

2

1 1

[ ( ) ( ) ( ) ] ( ) ( ) ( )  j j

d y dy
x x x y T x dx g x T x dx

dx dx
  

 

                                   (4.9) 

Integrating the first term by parts on the left hand side of (4.9), that is 

1 2 2

2 2

1

1 2

2

1

( ) ( ) ,   ( ) ( ) and 

( ) ( )  and 

( )

j j

j

d y d y
T x x dx u T x x dv dx

dx dx

d dy
du T x x dx v

dx dx

d y
x dx uv vdu

dx

 









 

    

  



 

  

1

1

1

1

                        = ( ) ( ) | ( ) ( )   j j

dy dy d
T x x T x x dx

dx dx dx
 



   
                                                (4.10)

 

Upon substitution of (4.10) into (4.9), we get 

 
1

-1

1

-1

[- ( ) ( ) ( ) ( ) ( ) ( ) ( )]

     ( ) ( ) (-1) '(-1) (-1) - (1) '(1) (1)      

j j j

j j j

dy d dy
x T x x T x x y x T x dx

dx dx dx

g x T x dx y T y T

  

 

 

 



                                       (4.11)                                                              
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But from equation (4.8) the approximate solution is given by 

0

( ) ( )
n

i i

i

y x c T x



 

Substituting this into equation (4.11) above we get 

 
1

0 0 0-1

[- ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]
n n n

i i j i i j i i j

i i i

d
cT x x T x x cT x T x x cT x T x dx

dx
  

  

      

 

1

-1

( ) ( ) (-1) (-1) (-1) - (1) (1) (1)j j jg x T x dx u T u T     

 
1

0 -1

[- ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]
n

i i j i j i j

i

d
c T x x T x x T x T x x T x T x dx

dx
  



      

1

-1

( ) ( ) (-1) '(-1) (-1) - (1) '(1) (1)j j jg x T x dx y T y T                                                      (4.12) 

In the left hand side of equation (4.12) above we need to know the values of (-1) y  and   (1)y

which approximately equal to (-1)y  and (1)y respectively, where y is the exact solution of the 

DE in (4.4) with the boundary condition in equation (4.5). 

 
4.1.7. The resulting system of equation 

Now we have the values of ( 1)y   and  (1)y   from the boundary condition. After substituting 

these values into (4.12), we get a system of n n  equations to solve the parameters ic 's  thus 

equation (4.12) in matrix form becomes: 

                            

                                                                                                                 (4.13)                                                                                                  

Where (1) (2) (3) (1) (2) and ij ij ij ij i i iK k k k F f f     such that 

 
1

(1)

1

[- ( ) ( ) ( )ij i j

d
k T x x T x dx

dx




       
1

(2)

1

( ) ( ) ( )ij i jk x T x T x dx


   

                  
1

(3)

1

( ) ( ) ( )ij i jk x T x T x dx


          
1

(1)

-1

( ) ( )i jf g x T x dx   

1

   
n

i ij i

i

c K F



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(2) (-1) (-1) (-1) - (1) (1) (1)i j jf y T y T    

 

Now, the unknown parameters ic 's are determined by solving the system of equation in (4.13) by 

direct method and substituting these values into (4.8), we get the approximate solution ( )y x of 

the DE in (4.4) satisfying the given boundary conditions in (4.5). 

Suppose we have a BVP of type I. In this case it is impossible to use the above method directly; 

since ( )y a is not given and hence instead we convert the BVP in to type II. In order to convert 

from type (II) to type (I) we use different numerical methods.  

We consider solving the following boundary-value problem: 

     

2

2
( ) ( ) ( ) ( ) ;     

d y dy
x x x y g x a x b

dx dx
                                (4.14)  

with boundary condition   
1

2

( )

'( )

y a

y b








                                                                          (Mixed type)              

The idea of shooting method for (4.14) is to solve for ( )y a  hoping that 2( )y b   .In order to find

( )y a  such that 2( )y b   , we guess ( )y a z   and solve for ( )y b  using Runge-Kutta method 

for second order ODE,  After we get a value using the guess we denote this approximate solution 

zy  and hope 2( )zy b   . If not, we use another guess for ( )y a , and try to solve using the Runge-

Kutta method. This process is repeated and can be done systematically until this choice satisfy

( )y b .  

To do this, let us follow the steps below. 

Step1:- select 0z  so that 2( )zy b   , let 2( ) ( )zz y b   . The guess for 0z   

Step 2:- Now the objective is simply to solve for ( ) 0z  , hence secant method can be used. 

Step 3:- How to compute z 

Suppose we have solutions 
0
( )zy b and

1
( )zy b  obtained from guesses 0z and 1z  respectively. 

Step 4:- Now we use secant method to find 2z  given by; 
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                          1

1
1 , k=1,2, ...

k

k k

k k
k k z

z z

z z
z z y

y y






 


 

 Following this sequence of iteration we reach at z such that  

 

Thus, we have a Neumann type boundary condition for the DE in (4.14) given by 

                                                  2

( )

( )

y a z

y b 

 

 
                                                                  (4.15) 

Now to solve the DE with boundary condition in (4.15) it is convenient to use the (4.12). 

4.1.8. Numerical illustration of the method 

In order to show the importance and applicability of the method, we need to take problems and 

solve using this method. After obtaining the approximate solution we compare the result with the 

exact solution. We have solved one second order boundary value problems whose exact solution 

is known.  

Problem 1: Consider the linear boundary value problem 

2
2

2
;   0 10 xd y

y x e x
dx

    , subject to the boundary condition (0) 0.2678y   ,  (10) 0y                              

 Whose exact solution is:-

(10) (10) 2 ( )11/ 5000 ( )(349 (10) 22500) / (10) / 3839 / 5000 ( ) 1/ 2( 1) xy sin x sin e cos e cos x x e                                                                                                                                  

 

Solution: - The above problem is a mixed boundary condition or (type II); to apply the above 

method we need to convert the given boundary condition in to Neumann boundary condition. 

Now we have a guess depending on the value of (10) 0y  , let (0) 1 y   be the first guess and 

hoping that (10) 0y  .The next step is using Rugekutta method for second order differential 

equation, where ( ) ( , , )y x f x y y  . But for this problem, ( ) ( , )y x f x y  since f   is independent 

of y  

0 0x   , and 10endx  if we take step size h=0.5, 0( ) -0.2678  0 0.2678y y x for x y        

0( ) 1  0 1y x for x y         

( ) ( )zy b y b 
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1 1 2

1
( )

2
j j jy y hy K K

     

1 1 2

1
( 3 )

2
j j jy y hy K K

h

      

2

1 ( , )
2

j j

h
K f x y  

2

2 1

2 2 4
( , )   0,1,2...20

2 3 3 9
j j j

h
K f x h y hy K for j      

We get the result in table 4.1 for the first iteration, where in the 
thi  step

ix x , ( )iy y x and 

( )iy y x 
 

Referring to table 4.1 in the next page, now we have 0.5818zy  . But, (10) (10)zy y  , so 

that we need to guess another value for (0)y . Let (0)y =1 hoping that (10) 0y  . Using Runge-

Kutta method for 0x   to 10x   and taking 0.5h  , ( ) -0.2678  0y y x for x   and 

( ) 1  0y y x for x    we get the following result for the second iteration, where in the 
thi  step

ix x , ( )iy y x and ( )iy y x 
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Table 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     1
st
  iteration 

 

x 

 

y 

 

y’ 

 

0.00 

 

0.2670  

 

1.0000  

 

0.50 

 

0.6741  

 

0.7212  

 

1.00 

 

0.8563  

 

0.1822  

 

1.50 

 

0.7336  

 

0.4641  

 

2.00 

 

0.3198  

 

1.0127  

 

2.50 

 

0.2808  

 

1.2968  

 

3.00 

 

0.9088  

 

1.2345  

 

3.50 

 

1.3967  

 

0.8435  

 

4.00 

 

1.6149  

 

0.2289  

 

4.50 

 

1.5043  

 

0.4500  

 

5.00 

 

1.0893  

 

1.0227  

 

5.50 

 

0.4691  

 

1.3505  

 

6.00 

 

0.2095  

 

1.3596  

 

6.50 

 

0.7891  

 

1.0566  

 

7.00 

 

1.1407  

 

0.5233  

 

7.50 

 

1.1939  

 

0.1056  

 

8.00 

 

0.9514  

 

0.6776  

 

8.50 

 

0.4858  

 

1.0594  

 

9.00 

 

0.0803  

 

1.1685  

 

9.50 

 

0.6059 
 

0.9909 

 

10.00 

 

0.9659 
 

0.5818 
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Table 4.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     2
nd

  iteration 

 

x 

 

y 

 

y’ 

 

0.00 

 

-0.2678 

 

1.0000 

 

0.50 

  

0.2445 

 

1.0344 

 

1.00 

 

0.7231 

 

0.9181 

 

1.50 

 

1.1004 

 

0.6723 

 

2.00 

 

1.3183 

 

0.3161 

 

2.50 

 

1.3383  

 

-0.1000  

 

3.00 

 

1.1561 

 

-0.4984  

 

3.50 

 

0.8081  

 

-0.7958  

 

4.00 

 

0.3664  

 

-0.9276  

 

4.50 

 

-0.0772  
 

-0.8663  

 

5.00 

 

-0.4321 

 

-0.6297  

 

5.50 

 

-0.6297  

 

-0.2761 

 

6.00 

 

-0.6397  
 

0.1101 

 

6.50 

 

-0.4754  
 

0.4395  

 

7.00 

 

-0.1892  
 

0.6393 

 

7.50 

 

0.1407  

 

0.6697  

 

8.00 

 

0.4302  

 

0.5327  

 

8.50 

 

   0.6095  

 

0.2697  

 

9.00 

 

0.6385  
 

-0.0497  

 

9.50 

 

0.5154  

 

-0.3458  

 

10.00 

 

0.2754  

 

-0.5480  
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We have
1 1(10) 0.5480  1zy where z    . Now we have 

0z and 
1z  to find 

2z  

1

1 0

1 0
2 1

1 ( 1)
1 ( 0.5480) 0.0299

0.5480 0.5818
z

z z

z z
z z y

y y

  
     

  
 

Using
2 0.0299z   applying Runge-Kutta method where h=0.5, ( ) -0.2678  0y y x for x  

and ( ) 0.0299  0y y x for x    we get the following result for the 3
rd

 iteration. 

Table 4.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     3rd   iteration 

 

x 

 

y 

 

y’ 

 

0.00 

 

-0.2678  

 

0.0299  

 

0.50 

 

-0.2014  

 

0.1830  

 

1.00 

 

-0.0432  

 

0.3847  

 

1.50 

 

0.2108  

 

0.5717  

 

2.00 

 

0.5239  

 

0.6543  

 

2.50 

 

0.8256  

 

0.5778  

 

3.00 

 

1.0365  

 

0.3422  

 

3.50 

 

1.0939  

 

-0.0008  

 

4.00 

 

0.9722  

 

-0.3669  

 

4.50 

 

0.6899  

 

-0.6647  

 

5.00 

 

0.3058  

 

-0.8206  

 

5.50 

 

-0.0970  

 

-0.7975  

 

6.00 

 

-0.4313  

 

-0.6029  

 

6.50 

 

-0.6278  

 

-0.2861 

 

7.00 

 

-0.6510  

 

0.0755  

 

7.50 

 

-0.5068  

 

0.3963  

 

8.00 

 

-0.2399  

 

0.6032  

 

8.50 

 

0.0784  

 

0.6530  

 

9.00 

 

0.3680  

 

0.5413  

 

9.50 

 

0.5596  

 

0.3025  

 

10.00 

 

0.6105  

 

-0.0002  
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 Now calculate the next guess 

     
2

2 1

2 1
3 2

0.0299 1
0.0299 (0.0299) 0.031

0.0002 0.5480
z

z z

z z
z z y

y y

 
    

  
 

Applying Runge-Kutta method for 0.031y   we have the following result for the 4
th

 iteration. 

Table 4.4  

 
 

 

 
 

 

      4
th

 iteration 

 
x 

 
y 

 
y’ 

 

0.00 

 

-0.2670  

 

0.0301  

 

0.50 

 

-0.2006  

 

0.1828  

 

1.00 

 

-0.0427  

 

0.3842  

 

1.50 

 

0.2110  

 

0.5710  

 

2.00 

 

0.5237  

 

0.6536  

 

2.50 

 

0.8252  

 

0.5772  

 

3.00 

 

1.0358  

 

 0.3419  

 

3.50 

 

1.0933  

 

-0.0007  

 

4.0  

 

0.9716  

 

-0.3665  

 

4.50 

 

0.6897  

 

-0.6642  

 

5.00 

 

0.3058  

 

-0.8200  

 

5.50 

 

-0.0967  

 

-0.7969  

 

6.00 

 

-0.4308  

 

-0.6026  

 

6.50 

 

-0.6272  

 

-0.2861 

 

7.00 

 

-0.6504  

 

0.0753  

 

7.50 

 

-0.5064  

 

0.3959  

 

8.00 

 

-0.2398  

 

0.6027  

 

8.50 

 

0.0782  

 

0.6524  

 

9.00 

 

0.3676  

 

0.5409  

 

9.50 

 

0.5591  

 

0.3024  

 

10 

 

0.6101  

 

0.0000  
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As we have seen from table 4.4 above the guess for (0) 0.030y   . Thus, we have a Neumann 

boundary value problem given by 

2
2

2
;   0 10 xd y

y x e x
dx

   
 

(0) 0.030y  , and (10) 0y 
 

The next step is converting the BVP into equivalent BVP defined for 1 1x    by letting  

( ) ( )
5 5

2 2

b a b a
x x x

 
    , since 0a  and 10b  .  

The equivalent BVP for the above problem on 1 1x    becomes, 

                          
2

2 5 5

2

1
5 5

25

xd y
y x e

dx

 
   , for  1 1x                                              

with boundary condition                                                                                            (4.1.1) 

                                
'( 1) 0.030

'(1) 0

y

y

 


 

Now, suppose that y  be the approximate solution of (4.1.1), given by a linear combination of 

constants 'ic s  and an approximating polynomial, called Chebyshev polynomial, thus we have, 

1

( )
n

i i

i

y c T x


                                                                                                      (4.1.2) 

Upon substitution of y , the approximate solution, into the differential equation in (4.1.1) we get 

an equation called residue given by: 

 

   
2

2 5 5

2

1
( , ) 5 5 0

25

x

i

d y
R x c y x e

dx

 
     , for  1 1x                           (4.1.3) 

Applying Galerkin method we get; 

1

1

( , ) ( ) 0i jR c x T x dx


  
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   
1 2

2 5 5

2

1

1
[ 5 5 ] ( ) 0
25

x

j

d y
y x e T x dx

dx

 



      

   
1 1

2 5 5

1 1

1
[ '' ( ) ( )] 5 5 ( )
25

x

j j jy T x yT x dx x e T x dx
 

 

                                  (4.1.4) 

Using integration by parts to simplify the first term in the right hand side, we let 

( )  ( )  j ju T x du T x dx    and ( )     ( )dv y x dx v y x    , hence we get 

1 1

1

1

1 1

1 1
( ) ( ) ( ) | ( )

25 25
j j jy T x dx y x T x y T x dx

 

 
    

 
   

Therefore equation (4.1.4) becomes  

   
1 1 1

2 5 51

1

1 1 1

1 1
( ) ' '( ) '( ) ( ) | 5 5 ( )

25 25

x

j j j jyT x dx y T x dx y x T x x e T x dx
 



  

                         (4.1.5) 

Substituting the approximate solution 
1

( )
n

i i

i

y c T x


   into (4.1.5) we obtain, 

   
1 1 1

2 5 51

1

1 1 1 1

1 1
( ) ( ) '( ) '( ) '( ) ( ) | 5 5 ( )

25 25

n
x

i i j i j j j

i

c T x T x dx T x T x dx y x T x x e T x dx
 



   

 
     

 
     

   

1 1

1 1 1

1
2 5 5

1

1 1 1
( ) ( ) ( ) ( ) ( 1) ( 1) (1) (1)

25 25 25

5 5 ( )

n

i i j i j j j

i

x

j

c T x T x dx T x T x dx y T y T

x e T x dx

  

 



 
        

 

 

  


                       

(4.1.6) 

Now, using the given boundary condition in to (4.1.6), we get 

   
1 1 1

2 5 5

1 1 1 1

1 1
( ) ( ) ( ) ( ) 5 5 ( ) (0.030) ( 1)

25 25

n
x

i i j i j j j

i

c T x T x dx T x T x dx x e T x dx T
 

   

 
      

 
   

    

                                                                                                                                                 (4.1.7) 

For equation (4.1.7) we have a system of equation given by: 

                            

                                                                           (4.1.8) 

                                                                                                                                                                                  

(1) (2) (1) (2)where     and ij ij ij i i iK k k F f f   

 

1

   
n

i ij i

i

c K F



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1

(1)

1

1

(2)

1

such that   ( ) ( )

1
                  ( ) ( )

25

ij i j

ij i j

k T x T x dx

k T x T x dx







  





 

                           (1) 1
(0.030) ( 1)

25
i jf T   

                             
1

2 5 5(2)

1

 5 5 ( )
x

i jf x e T x dx
 



 
 

 

 

In order to find the value of 'ic s  we take n  trial functions defined for  1,1x  , as mentioned 

earlier we use Chebyshev polynomials as trial function. For 6n  , we get: 

 

2

3

4 2

5 3

6 4 2

2 1

4 3
'

8 8 1

16 20 5

32 48 18 1

x

x

x x
T

x x

x x x

x x x

 
 


 
 

  
  

  
 

   

 , where 1 2 3 4 5 6[          ]T T T T T T T  and 'T  is the transpose of T. 

 

1

(1)

1

2/3 0 2 / 5 0 2 / 21 0

0 14 /15 0 38 /105 0 26 / 315

2 / 5 0 34 / 35 0 22 / 63 0
( ) ( )

0 38 /105 0 62 / 63 0 34 / 99

2 / 21 0 22 / 63 0 98 / 99 0

0 26 / 315 0 34 / 99 0 142 /143

ij i jk T x T x dx


  
 

 
 
  

   
  

  
 

  

  
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1

(2)

1

   2/25        0     2/25         0       2/25          0

     0      32/75     0       128/375     0       288/875

  2/25         0    138/125    0    142/175       01
= ( ) ( )  

    25
ij i jk T x T x dx



     0    128/375   0   5632/2625    0    3968/2625

  2/25         0    142/175    0   1126/315      0

     0    288/875    0  3968/2625   0    52064/9625

 
 
 
 
 
 
 
 
  

 

To find the value of the coefficient matrix in equation (4.1.8) we use  

                                                  
(1) (2)

ij ij ijK k k   

So, when we express the coefficient matrix 
,i jK  and the unknown coefficient 'ic s  in a system of 

equation in matrix form, we get: 

 (1) (2)

ij ij ijK k k                    

44/75 0 12 / 25 0 92 / 525 0

0 38 / 75 0 1846 / 2625 0 3242 / 7875

12 / 25 0 116 / 875 0 1828 / 1575 0
 

0 1846 / 2625 0 9146 / 7875 0 160694 / 86625

92 / 525 0 1828 / 1575 0 8956 / 3465 0

0 3242 / 7875 0 160694 / 86625 0 552582 / 125125

  
 

  
   
 

   
  

    

1

2

3

4

5

6

[ ]i

c

c

c
f

c

c

c

 
 
 
 

 
 
 
 
            (4.1.9)

 

Where if  is 6 1 a column vector given by:- 

            

(-10)

(-10)

(-10)

(-10)

(-10)

(-10)

             - 4 / 25 - 756 / 25

          - 22 /125 - 6658 /125

          28 /125 -14708 /125
    

        - 38 / 625 -189682 / 625

      28 / 3125 - 2774708 / 3125

 2818 /15625 - 45459898 /15625

i

e

e

e
f

e

e

e








 
 
 
 
 
 
 
 



                                         

Now we have a 6 6 coefficient matrix which is symmetric, 6 1  unknown column vector that 

represent 'ic s   and 6 1  column vector that represents if . So we have six equations with six 

unknowns. When we use  
1

,i i j ic K f


   to solve (4.1.9), we get: 

1  = 0.361550c  

 
2 = -0.002596c  

3 0.939452c   
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4 0.360917c   

5 0.449830c    

6 0.192200c    

Now we can express the approximate solution as a linear combination of constants 'ic s  and an 

approximating polynomial. So when we substitute 'ic s and Chebyshev polynomials for n=6 we 

get: 

2 3 4 2

5 3 6 4 2

0.002596(2 1) 0.939452(4 3 ) 0.360917(8 8 1)

      0.449830(16 20 5 ) 0.192200(32 48

0.3615

18 1

50

)

x x x x x x

x

y

x x x x x

      

      


 

When we draw the graph of the exact and approximate solution to look the convergence the 

approximate solution to the graph of the exact solution we get the following graph between-1&1. 

 

Fig 4.2  
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Fig 4.2 The graph of exact and approximate solution for n=4 and n=6 

 

 

Exact solution

Approximate solution n=6

	Approximate solution for n=4
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The above graph shows that the graph of the approximate solution approaches the graph of the 

exact solution for the differential equation with boundary condition in problem 1. 

When we consider n=8, then the approximate solution and the Chebyshev polynomials are given 

by: 

                                                    

8

1

( )i i

i

y c T x



                                                              

(4.1.10) 

 

  

7

2

3

4 2

5 3

2 4 6 8

5 3

6 4 2

64 112 56 7

1 32 1

2 1

4 3

8 8 1
'   

16 20 5

32 48 18 1

60 256 128

x x x x

x

x

x x

x

x

x
T

x x x

x x x

x x x

 
 


 
 
 

  
  
 

   
 


  

   


  

 , where 1 2 3 4 5 6 7 8[            ]T T T T T T T T T  and 'T  is the 

transpose of T.  

Using Matlab code on Appendix we have  

(1)

        2/3         0      -2/5         0     -2/21         0             -2/45          0

         0     14/15         0   -38/105         0   -26/315           0     -134/3465

      -2/5    

K  =  ij

     0     34/35         0    -22/63     0          -38/495            0]

         0   -38/105         0     62/63         0    -34/99         0     -158/2145

     -2/21         0    -22/63         0     98/99         0     -146/429           0

         0   -26/315         0    -34/99         0   142/143         0          -22/65

     -2/45         0   -38/495       0    -146/429       0        194/195         0

         0 -134/3465       0   -158/2145         0    -22/65        0     254/255

 
 
 
 
 
 
 
 
 
 
 
  
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(2)

              2/25             0                2/25                 0                2/25                0             2/25                      0

                0            32/75       

  K  =  ij

         0          128/375                   0          288/875                0            512/1575

             2/25                0          138/125                0          142/175                0          286/375                     0

                0          128/375                0        5632/2625                0        3968/2625                0        120832/86625

             2/25                0          142/175                0         1126/315                0        6086/2475                   0

                0          288/875                0        3968/2625                0       52064/9625                0      1376768/375375

             2/25                0          286/375                0        6086/2475                0   1232966/160875                0

                0         512/1575                0     120832/86625             0   1376768/375375         0        11657216/1126125

 
 
 
 
 
 
 
 
 
 
 
  

 

(-10)

(-10)

(-10)

(-10)

(-10)

            - 4 / 25 - 756 / 25

              - 22 /125 - 6658 /125

              28 /125 -14708 /125

            - 38 / 625 -189682 / 625
 =  

          28 / 3125 - 2774708 / 3125

     2818 /15625 - 4545

i

e

e

e

e
f

e

(-10)

(-10)

(-10)

9898 /15625

   35404 / 78125 -827348644 / 78125

 151442 / 78125 - 3321109962 / 78125

e

e

e

 
 
 
 
 
 
 
 
 
 
 
 
  

 

 

Thus the unknown parameters 'ic s  are 

1 0.375249c   

2 0.069868c    

3  =0.959056c  

4= 0.286293c  

5 0.454061c    

6 = 0.117209c  

7 0.005079c    

8 0.299613c    

Now substituting the unknown parameters and eight Chebyshev polynomials in to (4.1.10) we 

obtain, 
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2 3 4 2

5 3 6 4 2

7 5 3 2 4 6 8

0.375249 0.069868(2 1) 0.959056(4 3 ) 0.286293(8 8 1)

0.454061(16 20 5 ) 0.117209(32 48 18 1)

0.005079(64 112 56 7 ) 0.299613(1 32 160 256 128 )

y x x x x x x

x x x x x x

x x x x x x x x

       

      

        

 

Fig 4.1The graph of the exact solution and approximate solution for n=6 and n=8   

 

From the graph above the approximate solution approaches the graph of the exact solution when 

the number of the trial functions increases from 6 to 8.   

Now we can also compare by calculating the absolute error which is given by  

                    exact approxerror y y 
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The graph of the exact and approximate soulution for n=6 and n=8

 

 

Exact solution

Approximate solution for n=6

Approximate solution for n=8
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Table4. 5 computed the absolute error for problem 1 when n=6 and n=8 

     

     x 

Exact 

solution 

Approximate 

solution for n=6 

Approximate 

solution for 

n=8 

Absolute 

error for 

n=6 

Absolute 

error for n=8 

-1.0 -0.2670 -0.8745 -0.4640 0.6074 0.1969 

-0.9 -0.2305 -0.9073 -0.4970 0.6768 0.2664 

-0.8 -0.0994 -0.6369 -0.4619 0.5375 0.3625 

-0.7 0.1443 -0.1813 -0.2646 0.3256 0.2089 

-0.6 0.4736 0.3385 0.0794 0.1350 0.0942 

-0.5 0.8180 0.8124 0.4890 0.3057 0.0291 

-0.4 1.0871 1.1515 0.8573 0.0644 0.0298 

-0.3 1.1994 1.2961 1.0859 0.0967 0.0136 

-0.2 1.1087 1.2205 1.1089 0.1118 0.0001 

-0.1 0.8185 0.9337 0.9077 0.1153 0.0892 

0.0 0.3832 0.4786 0.5149 0.0954 0.0317 

0.1 -0.1045 -0.0735 0.0075 0.0310 0.0120 

0.2 -0.5361 -0.6303 -0.5083 0.0942 0.0277 

0.3 -0.8144 -1.0896 -0.9190 0.2752 0.1046 

0.4 -0.8776 -1.3536 -1.1289 0.4760 0.2513 

0.5 -0.7149 -1.3457 -1.0847 0.6308 0.3698 

0.6 -0.3695 -1.0312 -0.7942 0.6617 0.4247 

0.7 0.0717 -0.4403 -0.3329 0.5120 0.4046 

0.8 0.4990 0.3050 0.1671 0.4194 0.3319 

0.9 0.8066 0.9616 0.5557 0.3155 0.2509 

1.0 0.9184 1.1323 0.7374 0.2139 0.1810 

 

 

If we take n=10, the graph of the corresponding approximate solution together with the graph of 

the approximate solution for n=6 and n=8 in the same plane with the exact solution is shown 

below. 
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As we increase the number of Chebyshev polynomial the corresponding approximate solution of 

the differential equation with mixed boundary condition in problem 1 approaches the graph of 

the exact solution. 

4.3   Discussion 

In this paper, Galerkin method has been used to approximate the solution of linear second order 

ordinary differential equations with mixed and Neumann boundary conditions. Chebyshev 

polynomial of first kind has been used as trial function. When we convert the boundary condition 

from type (I) to type (II) we use Runge-Kutta method to find the correct value of the derivative 

of y at the initial point. By looking at the graph of the approximate solution for n=6, n=8 and 

n=10 and Table 1, we observe that as we increase the number of approximating polynomial the 

graph approaches the exact solution very well.  

It is observed that the approximate results converge monotonically to the exact solutions. We 

also notice that the approximate solutions coincide with the exact solutions as the number of trial 

function increases. It also observed that the accuracy of the method increases as the number of 

trial function increases. We realize that this method can be applied to solve other linear 

differential equations for the desired accuracy.  In doing this we have met our objectives. 
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Fig 4.4  The graph of the exact and approximate solution for n=6,8 and 10
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                                 CHAPTER FIVE 

5. CONCLUSION AND FUTURE SCOPE 

We can conclude that by applying Galerkin method, we can find the solutions of ODE with 

mixed type boundaries. And the method has shown results that converge to the exact solution by 

increasing the number of approximate solution; and also using small step size h  while 

converting the BVP from Mixed type to Neumann boundary condition, increases the accuracy of 

the approximate solution 

5.1. Future Scope 

This study was concentrated on numerical solution of linear second order differential equations 

with mixed boundary condition, by Galerkin method taking Chebyshev polynomial as a trial 

function. But it is also possible to use other polynomials instead of Chebyshev. We can also use 

this method for non- linear problems. In order to fill the Gap in terms of accuracy it is important 

to analyze the error of the method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

36 

Appendix 

Appendix 1 MATLAB code to find the approximate solution of problem 1 for n=6  
Syms x 
T1=x; 
T2=2*x^2-1; 
T3=4*x^3-3*x; 
T4=8*x^4-8*x^2+1; 
T5=16*x^5-20*x^3+5*x; 
T6=32*x^6-48*x^4+18*x^2-1; 
T=[T1,T2,T3,T4,T5,T6]; 
TrT=transpose(T); 
DrT=diff(T,x); 
DrTrT=diff(TrT,x); 
%%%%%%%%%%%%%%%%%%%%%%%% 
k1T=TrT*T; 
k2T=DrTrT*DrT; 
f1=(5*x+5)^2*exp(-5*x-5)*TrT; 
%k3T=TrT*T; 
K1=int(k1T,x,-1,1); 
K2=(1/25)*int(k2T,x,-1,1); 
F1=int(f1,x,-1,1); 
KK=K1-K2; 
c1=inv(KK)*F1; 
yp=T*c1; 
display(yp); 
display(K2); 
display(KK); 
display(T); 

display(yp); 

 

Appendix 2 MATLAB code to find the approximate solution of problem 1 for n=8 
syms x 
T1=x; 
T2=2*x^2-1; 
T3=4*x^3-3*x; 
T4=8*x^4-8*x^2+1; 
T5=16*x^5-20*x^3+5*x; 
T6=32*x^6-48*x^4+18*x^2-1; 
T7=64*x^7-112*x^5+56*x^3-7*x; 
T8=1-32*x^2+160*x^4-256*x^6+128*x^8; 

%%%%%%%%%%%%%%%%%%%%%%%%% 
T=[T1,T2,T3,T4,T5,T6,T7,T8]; 
TrT=transpose(T); 
DrT=diff(T,x); 
DrTrT=diff(TrT,x); 
%%%%%%%%%%%%%%%%%%%%%%%% 
k1T=TrT*T; 
k2T=DrTrT*DrT; 
f1=(5*x+5)^2*exp(-5*x-5)*TrT; 
%k3T=TrT*T; 
K1=int(k1T,x,-1,1); 
K2=(1/25)*int(k2T,x,-1,1); 
F1=int(f1,x,-1,1); 
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KK=K1-K2; 
c1=inv(KK)*F1; 
yp=T*c1; 
display(yp); 
display(K2); 
display(KK); 
display(T); 

display(yp); 

 

Appendix 3 MATLAB code to draw the graph of problem 1for n=6 
x=-1:0.001:1; 

y=-1/2.*sin(5.*x+5)-

1/2.*cos(5.*x+5)*(cos(10)*exp(10)+99)/sin(10)/exp(10)+1/2*(5.*x+6).^2.*exp(-

5.*x-5); 

yp =x*(121427607/404224000+21968890839/12632000*exp(-10))+(2.*x.^2-1)*(-

162049455981/81093058048000-1045327369091481/1267079032000*exp(-

10))+(4.*x.^3-3.*x)*(139968927/161689600+12729265479/5052800*exp(-

10))+(8.*x.^4-8.*x.^2+1)*(17673544966077/50683161280000-

996957348232923/791924395000*exp(-10))+(16.*x.^5-20.*x.^3+5.*x)*(-

331179849/808448000-22879853073/25264000*exp(-10))+(32.*x.^6-

48.*x.^4+18.*x.^2-1)*(-

76562160473799/405465290240000+8011204251751701/6335395160000*exp(-10)); 

plot(x,y,'r') 

hold on 

plot(x,yp,’g’) 

 

Appendix 4 MATLAB code to draw the graph of approximate solution of problem 1 for 

n=6 and n=8 on the same plane 
 x=-1:0.001:1; 

y=-1/2.*sin(5.*x+5)-

1/2.*cos(5.*x+5)*(cos(10)*exp(10)+99)/sin(10)/exp(10)+1/2*(5.*x+6).^2.*exp(-

5.*x-5); 

yp =x*(4567101/12632000+21968890839/12632000*exp(-10))+(2.*x.^2-1)*(-

3289084029/1267079032000-1045327369091481/1267079032000*exp(-10))+(4.*x.^3-

3.*x)*(4746861/5052800+12729265479/5052800*exp(-10))+(8.*x.^4-

8.*x.^2+1)*(285818703093/791924395000-996957348232923/791924395000*exp(-

10))+(16.*x.^5-20.*x.^3+5.*x)*(-11364507/25264000-22879853073/25264000*exp(-

10))+(32.*x.^6-48.*x.^4+18.*x.^2-1)*(-

1217665439991/6335395160000+8011204251751701/6335395160000*exp(-10)); 

plot(x,y,'k') 

hold on 

plot(x,yp,'g') 

yp1 =x*(13541609277/36087040000-130881304554147/36087040000*exp(-

10))+(2.*x.^2-

1)*(29932124086807173/428409627600160000+79689617720948188107/107102406900040

000*exp(-10))+(4.*x.^3-3.*x)*(1430143659/1491200000-

7694658500949/1491200000*exp(10))+(8.*x.^4-

8.*x.^2+1)*(61325250251706441/214204813800080000+12895371037336941153/2677560

1725010000*exp(-10))+(16.*x.^5-

20.*x.^3+5.*x)*(7448057253/16403200000+12332010646683/16403200000*exp(10))+(3

2.*x.^6-48.*x.^4+18.*x.^2-1)*(50213535949362357/428409627600160000-

637481934194670728163/107102406900040000*exp(-10))+(64.*x.^7-

112.*x.^5+56.*x.^3-7.*x)*(-

83309031/16403200000+32633922715641/16403200000*exp(-10))+(1-
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32.*x.^2+160.*x.^4-256.*x.^6+128.*x.^8)*(-

64178452117914849/214204813800080000+187110338546771973333/26775601725010000*

exp(-10)); 

plot(x,yp1,'r') 

 

Appendix 5 MATLAB code to draw the graph of approximate solution of problem 1 for 

n=10 

 

 x=-1:0.001:1; 
y=-1/2.*sin(5.*x+5)-

1/2.*cos(5.*x+5)*(cos(10)*exp(10)+99)/sin(10)/exp(10)+1/2*(5.*x+6).^2.*exp(-

5.*x-5); 

 

yp =x*(4567101/12632000+21968890839/12632000*exp(-10))+(2.*x.^2-1)*(-

3289084029/1267079032000-1045327369091481/1267079032000*exp(-10))+(4.*x.^3-

3.*x)*(4746861/5052800+12729265479/5052800*exp(-10))+(8.*x.^4-

8.*x.^2+1)*(285818703093/791924395000-996957348232923/791924395000*exp(-

10))+(16.*x.^5-20.*x.^3+5.*x)*(-11364507/25264000-22879853073/25264000*exp(-

10))+(32.*x.^6-48.*x.^4+18.*x.^2-1)*(-

1217665439991/6335395160000+8011204251751701/6335395160000*exp(-10)); 

 

yp1 =x*(13541609277/36087040000-130881304554147/36087040000*exp(-

10))+(2.*x.^2-1)*(-

29932124086807173/428409627600160000+79689617720948188107/107102406900040000*

exp(-10))+(4.*x.^3-3.*x)*(1430143659/1491200000-

7694658500949/1491200000*exp(-10))+(8.*x.^4-

8.*x.^2+1)*(61325250251706441/214204813800080000+12895371037336941153/2677560

1725010000*exp(-10))+(16.*x.^5-20.*x.^3+5.*x)*(-

7448057253/16403200000+12332010646683/16403200000*exp(-10))+(32.*x.^6-

48.*x.^4+18.*x.^2-1)*(50213535949362357/428409627600160000-

637481934194670728163/107102406900040000*exp(-10))+(64.*x.^7-

112.*x.^5+56.*x.^3-7.*x)*(-

83309031/16403200000+32633922715641/16403200000*exp(-10))+(1-

32.*x.^2+160.*x.^4-256.*x.^6+128.*x.^8)*(-

64178452117914849/214204813800080000+187110338546771973333/26775601725010000*

exp(-10)); 

 

yp2=x*(5920752912921/151218821120000+559365647026332069/151218821120000*exp(-

10))+(2.*x.^2-1)*(109229386679950601607543/337794642853041664000000-

2672687139418483604054260623/337794642853041664000000*exp(-10))+(4.*x.^3-

3.*x)*(171983258337891/378047052800000+2203443335395701399/378047052800000*ex

p(-10))+(8.*x.^4-

8.*x.^2+1)*(101883690757921575754251/105560825891575520000000-

1526680326957237145620737811/105560825891575520000000*exp(-10))+(16.*x.^5-

20.*x.^3+5.*x)*(-49337162337177/378047052800000-

2381980042838706453/378047052800000*exp(-10))+(32.*x.^6-48.*x.^4+18.*x.^2-

1)*(500644501655173690455927/3377946428530416640000000-

22410985907952604228975756047/3377946428530416640000000*exp(-10))+(64.*x.^7-

112.*x.^5+56.*x.^3-7.*x)*(1164846572033859/1512188211200000-

22549116779516690649/1512188211200000*exp(-10))+(1-32.*x.^2+160.*x.^4-

256.*x.^6+128.*x.^8)*(52537462047139022468229/21112165178315104000000-

1148228118246978676952513469/21112165178315104000000*exp(-10))+(9.*x-

120.*x.^3+432.*x.^5-576.*x.^7+256.*x.^9)*(-

61863589710637/60487528448000+1348442138853559607/60487528448000*exp(-10))+(-

1+50.*x.^2-400.*x.^4+1120.*x.^6-1280.*x.^8+512.*x.^10)*(-
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12738016240579078174378653/3377946428530416640000000+280404576140125177078188

183333/3377946428530416640000000*exp(-10)); 

plot(x,y,'k') 

hold on 

>> plot(x,yp,'r') 

>> plot(x,yp1,'b') 

>> plot(x,yp2,'g') 

>> error1=abs(y-yp); 

>> error2=abs(y-yp1); 

>> error3=abs(y-yp2); 

>> [error1' error2' error3'] 

 

 

 

 

 

Appendix 6 MATLAB code to guess the first derivative of y  at initial point 

function rungekutta2akee 
%***********************Input variables********************************** 
h=input('Enter the step length :'); 
x=input('Enter the initial point :'); 
xf=input('Enter the final point :'); 
y=input('Enter the initial value of y: '); 
y2=input('Enter the guess for the derivative of y at x=0: '); 
%======================================================================== 
n=(xf-x)/h; 
%***************formating the output************************************* 
fprintf('Step 0: x = %6.2f,y = %18.4f, y2 = %18.4f\n', x,y,y2); 
%======================================================================== 
%******************Assigning variables*********************************** 
for i=1:n 
k1 = (h^2/2)*f(x,y,y2); 
k2 = (h^2/2)*f(x+(h/2), y+(h/2)*y2+(1/4)*k1,y2+(k1/h)); 
k3 = (h^2/2)*f(x+(h/2), y+(1/2)*h*y2+(1/4)*k1,y2+(k2/h)); 
k4 = (h^2/2)*f(x+h, y+h*y2+k3,y2+(2/h)*k3); 
y = y + h*y2+(k1+k2+k3+k4)/3; 
y2=y2+(k1+2*k2+2*k3+k4)/(3*h); 
x = x + h; 
%***********************Display the output values************************ 
fprintf('Step %d: x = %6.2f,y = %18.4f, y2 = %18.4f\n', i, x,y,y2); 
end 
%======================================================================== 
%******************* Assigning the right hand side*********************** 
%******************* of the differential equation************************  
function [v] = f(x,y,y2) 
v = -y+x^2*exp(-x); 
end 
%======================================================================== 
end 
%======================================================================== 
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