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Abstract 

In this thesis, a finite difference method resulting from cubic spline is presented for solving the 

one-dimensional Burgers’ equation. First, the nonlinear Burgers’ equation is transformed to 

one-dimensional heat equation via Cole-Hopf transformation. The stability of the method is well 

established and it is found to be unconditionally stable. The numerical solutions presented in 

tables confirm that the present method approximates the exact solution very well. 

Key words: Burgers’ equation, Cubic spline functions, Cole-Hopf transformation, Reynolds 

number. 
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CHAPTER ONE 

1. Introduction 

1.1. Background of the Study 

Numerical analysis is the area of mathematics and computer science that creates, analyzes, and 

implements algorithms for solving numerically the problems of continuous mathematics. Such 

problems originate generally from real world applications of algebra, geometry and calculus, and 

they involve variables which vary continuously; these problems occur throughout the natural 

sciences, social sciences, engineering, medicine and business.  

During the past half century the growth in power and availability of digital computers has led to 

an increasing use of realistic mathematical models in science and engineering, and numerical 

analysis of increasing sophistication has been needed to solve these more detailed mathematical 

models of the world. The formal academic area of numerical analysis varies from quite 

theoretical mathematical studies to computer science issues (Atkinson and Han, 2001).With the 

growth in importance of using computers to carry out numerical procedures in solving 

mathematical models of the world an area known as scientific computing or computational 

science has taken shape during the 1980s and 1990s. This area looks at the use of numerical 

analysis from a computer science perspective. It is concerned with using the most powerful tools 

of numerical analysis, computer graphics, symbolic  mathematical computations, and graphical 

user interfaces to make it easier for a user to set up, solve and interpret complicated 

mathematical models of the real world. 

Numerical analysis plays a significant role and helps us to find an approximate solution for 

problems which are difficult to solve analytically. One of these methods is finite difference 

method.   Finite difference methods (FDMs) are numerical methods for solving differential 

equations by approximating them with difference equations in which finite differences 

approximate the derivatives(Christianetal,2007). FDMs are thus discretization methods which 

convert a linear (non-linear) ODEs or PDEs into a system of linear (non-linear) equations and 

then be solved by matrix algebra techniques. The reduction of the differential equation to a 

system of algebraic equations makes the problem of finding the solution to a given ODE or PDE 

ideally suited to modern computers, hence the widespread use of FDMs in modern numerical 

analysis. 

https://en.wikipedia.org/wiki/Numerical_methods
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Differential_equations
https://en.wikipedia.org/wiki/Recurrence_relation#Relationship_to_difference_equations_narrowly_defined
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Finite_difference_approximation
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Discretization
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Burgers’ equation 

Burgers’ equation arises in the theory of shock waves, in turbulence problems and in continuous 

stochastic processes. It has a large variety of applications in modeling of water in unsaturated 

soil, gas dynamics, heat conduction, elasticity, statics of flow problems, mixing and turbulent 

diffusion, cosmology, seismology, are the popular ones (Burger,1948). 

Burgers’ equation is an important and simple model in understanding the physical flows. It 

describes various kinds of phenomena such as mathematical model of turbulence and the 

approximate theory of flow through a shock wave travelling in a viscous fluid. This equation 

provides the simplest nonlinear models of turbulence in the phenomena process. The study of the 

general properties of the Burgers’ equation has motivated considerable attention due to its 

applications in the various fields. These equations are decisive in determining the appearance of 

shock waves in the supersonic motion of gas. A study of Burgers’ equation is important since it 

appears in the approximate theory of flow through a shock wave propagating in a viscous fluid 

and in the modeling of turbulence. Burgers’ equation and the Navier‐Stokes equation are similar 

in the form of their nonlinear terms and in the occurrence of higher order derivatives with small 

coefficients. Numerical techniques based on Variation iterative methods (Caldwell, 1985), 

Spectral and finite difference method (Basdevant, 1986), finite difference method (Kutlay et al, 

1999), finite element method (Mittal and Jain, 2012), Homotopy analysis method (Inc, 2008),      

a numerical method based on Crank-Nicolson scheme for Burgers’ equation (Kadalbajoo and 

Awashti,2006) and boundary element method (Bahadır and Sa˘glam, 2005) have been developed 

in the efforts to solve Burgers’ equation numerically. The modified Burgers’ equation (MBE) is 

called the nonlinear advection‐diffusion equation. The MBE has been solved by several 

researchers by analytically and/or numerically (Oruc, 2015). 

Even if numerical solution of the Burgers’ equation is well documented in the literature, a 

detailed literature survey indicates that still there exist a need for improving its solution for 

comparative discussion regarding the physical and mathematical significance of this equation. 
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The one-dimensional burgers’ equation is described as follows: 

2

2

( , ) ( , ) ( , )
( , )

u x t u x t u x t
u x t v

t x x

  
 

  
, 0 1,0x t T    .     (1.1) 

Subject to initial condition 

           
   ,0 ,0 1u x g x x    

and boundary conditions        

   10, ( )u t h t  and    21,u t h t , 0 t T  . 

where 
1

Re
v  (Re is Reynolds number) is the positive coefficient of kinematic Viscosity and g, 

1h and 2h are the sufficiently smooth given functions.  

Linearization of one-dimensional Burgers’ equation by Cole-Hopf transformation 

Equation in Eq. (1.1) can be reduced to linear heat equation by the nonlinear transformation .The 

transformation  2 xu v


 


   relates  ,u x t and , Where is a solution of the linear heat 

equation 
2

2
v

t x

  


 
  and u  is the solution of the Burgers’ equation Eq. (1.1).                            

Theorem 1 (Kadalbajoo and Awashti, 2006).In the context with initial and boundary conditions 

of Eq.(1.1), if  ,x t is any solution to the heat equation
2

2
v

t x

  


 
, then the nonlinear 

transformation (Hopf and Cole, 1951) 

              
2 xu v


 


,           (1.2) 

is a solution to Eq. (1.1)        
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From this, the Burgers’ equation  in Eq. (1.1) is transformed to linear heat equation of the form:- 

            

2

2
( , ) ( , ) ,0 1,0x t v x t x t T

t x

  
    

        (1.3)
 

with initial condition 

             

0

0

1
( ,0) exp ( ) ,0 1

2

x

x u d x
v

 
 

    
 

              

and boundary conditions 

              
(0, ) 0 (1, ) , 0x xt t t T             

1.2 Statement of the Problem 

The Burgers’ equation given in Eq. (1.1) is nonlinear and parabolic and one expects to find 

phenomena similar to turbulence. It is a fundamental partial differential equation (PDE) that 

occurs in various fields of applied mathematics such as fluid mechanics, nonlinear acoustic, gas 

dynamics and traffic flow(Burger, 1948).It is a simplified form of Navier stokes equation that 

very well represents their non-linear features. In this equation continuity and pressure 

components of the Navier stoke is omitted. This equation is widely used in many physical 

phenomena. Because of it is widely used, these equations have been studied by many researchers 

and are appropriate context for research activities. 

In literature, many numerical methods have been proposed and implemented for approximating 

solution of the Burgers’ equation. Numerically it has been treated by many researchers. Evans 

and Abdullah, 1948 introduced the Group explicit method in order to solve this equation. These 

methods are semi-explicit and shown to be unconditionally stable and accurate of order 

 
2 t

O t x
x

 
    

 
.It is observed that this methods having severed consistency condition, i.e., 

methods are consistent if and only if 0
t

x





when 0, 0t x    . 

Others have used numerical techniques based on the explicit exponential finite difference method 

was originally developed by (Bhattacharya, 1985), exponential finite difference method for 

solving this equation (Handschuh and Keith, 1992), finite difference (Zhang and Wang, 2012), 

finite element (Mittal and Jain, 2012) and boundary element methods (Bahadır and Sa˘glam, 

2005) in attempting to solve the equation. Kadalbajoo used a parameter uniform implicit 

difference scheme for solving time-dependent Burgers’ equation (Kadalbajoo etal, 2005). 
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Burgers’ equation is solved on the real line with finite element method (Konzena etal, 2016) 

numerical simulations of this method is considered by a sequence of auxiliary spatially 

dimensionless Dirichlet’s problems parameterized by the domain’s semi diameter L. This 

equation is solved by explicit finite difference method and implicit finite difference method 

(Ramlee and Rusli, 2017).In this solution process, the explicit exponential finite difference 

method is used a directly to solve the Burgers’ equation while the implicit exponential finite 

difference method leads to a system of nonlinear equation. A numerical method based on Crank-

Nicolson scheme for solving one-dimensional Burgers’ equation (Kadalbajoo and Awasthi, 

2006) is developed. The method has shown to be unconditionally stable and is second order 

accurate in space and time. This method gives accurate solution for small step sizes ( 0.025h 

and 0.0125h  ).This leads to large system of linear equation which requires large CPU time and 

memory storage. Inan and Ahmet in 2013 also developed implicit and fully implicit exponential 

finite difference-method for solving one-dimensional Burgers’ equation. In this method there is 

restriction in choosing the mesh sizes. One-dimensional nonlinear Burgers’ equation is solved 

using the Adomian decomposition Method (Haghighi and Shojaeifard, 2015). This method 

includes the unknown function ( )U x in which each equation is defined and solved by an infinite 

series of unbounded functions. Velocity parameters u in the direction of the x-axis are examined 

at different times with different Reynolds numbers over a fixed time step. Even though a 

considerable number of numerical techniques have been applied to solve one-dimensional 

Burgers’ equation; still there is an attempt to improve the accuracy and efficiency of one-

dimensional Burgers’ equation. Hence the aim of this thesis is to construct accurate and efficient 

numerical method for one-dimensional Burgers’ equation.  
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1.3 Objective of the Study 

1.3.1 General Objective 

The aim of this study is to formulate finite difference method for solving one-dimensional 

Burgers’ equation.  

1.3.2 Specific Objectives 

The specific objectives of the study are: 

 To apply the finite difference method resulting from the cubic spline to solve one- 

dimensional Burgers’ equation; 

 To establish the stability of the present method; 

 To compare the advantage of the present method over other existing methods in the 

literature. 

1.4 Significance of the study 

This study provides back ground information for other researchers who want to work on similar 

and/or related areas. 

1.5. Delimitation of the Study 

This thesis is delimited to the numerical solution of the one-dimensional Burgers’ equation: 

             

2

2

( , ) ( , ) ( , )
( , )

u x t u x t u x t
u x t v

t x x

  
 

  
, 0 1,0x t T    . 

Subject to initial condition 

              
   ,0 ,0 1u x g x x    

and boundary conditions            

                 10, ( )u t h t  and    21,u t h t , 0 t T   

 using the finite difference method resulting from cubic spline. 
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CHAPTER TWO 

2. Review Literature 

2.1. One-dimensional Burgers’ Equation 

The history of Burgers' equation dates back to 1915 when (Bateman, 1915) derived it in a 

physical context. One of the most interesting solutions of Burgers' equations in a series form is 

due to (Fay, 1923) when it was derived in the acoustic framework. In 1940, Burgers gave special 

solutions to it and emphasized its importance and (Burgers, 1948) concluded its form as a model 

in the theory of turbulence. In connection with Burgers' equation had discovered that the Burgers' 

equation can be transformed to the linear heat equation which was published by Cole. This 

transformation at about the same time was discovered independently by (Blackstock, 1950) and 

from which it is known as Cole -Hopf transformation (Cole and Hopf, 1951). The Fay series was 

rediscovered by Hopf a quasi-linear parabolic equation occurring in aerodynamics Quart (Hopf, 

1950) as an approximate solution of the Burgers' equation for a sinusoidal initial condition. Then 

independently (Lighthil, 1956) and Black stock employed Burgers' equations in studying the 

propagation of the one-dimensional acoustic signals of finite amplitude. (Lagerstrom, 1969) used 

the equation in the discussions of shock structure in Navier. Burgers’ equations can be treated as 

a qualitatively correct approximation of the Navier-Stocks equations. That means it can be 

considered as a simplified form of the Navier-Stock equation. The characteristics feature of 

Burgers’ equation is the combination of two terms 
2

2

u
v

x




(diffusion term) and 

u
u

x




(convection 

term), which gives rise to the appearance of dissipation layers. The one-dimensional Burgers’ 

equation has received an enormous amount of attention since the studies by J.M. Burgers’ in the 

1940’s, principally as a model problem of the interaction between nonlinear and dissipative 

phenomena. The Burgers’ equation is nonlinear and one expects to find Phenomena similar to 

turbulence.  

However, as it has been shown by Cole the homogeneous Burgers’ equation lacks the most 

important property attributed to turbulence: The solutions do not exhibit chaotic features like 

sensitivity with respect to initial conditions. This can explicitly be shown using the Cole-Hopf 

transformation which transforms Burgers’ equation into a linear parabolic equation. From the 

numerical point of view, this is of importance since it allows one to compare numerically 
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obtained solutions of the nonlinear equation with the exact one. This comparison is important to 

investigate the quality of the applied numerical scheme. 

The method to solve one-dimensional Burgers’ equation represented by the boundary and initial 

conditions (Malek and Mansi, 2000).Then the solution to solve the analytic is must close form by 

specific choice of boundary condition. 

According to (Whitham, 1927) one-dimensional Burgers’ equation is the simple combining with 

nonlinear and diffusive effect. Burgers’ equation is originally proposed by simplifying model of 

turbulence which is exhibit by Navier-Stokes equations. The behavior of turbulence the Burgers’ 

equation sometimes dubbed turbulence. Kaneda and Ishihara (2006) said that it is phenomena 

exhibited by solutions to particular partial differential equations that are Navier-Stokes 

equations. 

 

Cole-Hopf transformation is one of the applications that can be used to generalize the nonlinear 

equation (Humi, 2013). Moreover, dimensional convection of steady state represents to 

generalize the Burgers’equation with convective terms. 

 

According to (Kuo and Lee, 2015) to generalize one-dimensional Burgers’ equation with 

nonlinear had been used by the researchers. There are two identical solutions that independently 

by a direct integration method and Bernoulli equation which is the simplest method to do. The 

nonlinear advance toward zero when the exact solution discontinuity and reduce to linearity.  

The derivation of the exact solution will get coefficient of the nonlinear term so that same as 

Burgers’ equation. 

Cole-Hopf method alters to get linear heat equation by non-linear partial differential with some 

domains of initial values. Exact solution for initial and boundary conditions is taken by Adomian 

with putrefaction method. Use to prove the point about the reliability and applied directly for all 

types of differential equation with constant coefficient or variable coefficients. 

 

Furthermore (Malek and Mansi,2000) estimate solution of the one-dimensional Burgers' equation 

which is get by Cole.  Lighthill (1956) and Blackstock (1964) use one-dimensional Burgers’ 

equation to study the dimensional acoustic signals of propagation final amplitude.  
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The equation shock structure in Navier-Stokes fluids on 1958 used by Hyes. Benton found an 

exact solution for one-dimensional Burgers’ equation on 1966.  

On 1970, Riccati solution without using auxiliary conditions use for one-dimensional Burger's 

equation. Painleve property of the partial differential equation from integrability on 1983, while 

for the Backlund transforms and Lux pairs of the Burger's equation as well as KDV equation and 

modified of it by (Malek and Mansi, 2000). 
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CHAPTER THREE 

3. Methodology 

3.1 Study Area and Period 

The study is conducted in Jimma University in 2018 /19Academic year. 

3.2 Study Design 

The Study employed mixed design. That is review of documents and experimental results from 

coding. 

3.3 Source of Information 

Related articles and books were used as a source of information. 

3.4 Mathematical Procedures 

  In order to achieve the above mentioned objectives, the study follows  

1. Describing the problem; 

2. Apply the finite difference method resulting from cubic spline to the transformed Burgers’ 

equation; 

3. Prove the stability of the method for solving the transformed Burgers’equation; 

4. Validate the present method via some numerical examples. 
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CHAPTER FOUR 

4. Description of the Method, Results and Discussion 

4.1. Description of the Method 

Finite difference scheme resulting from cubic spline 

Cubic spline 

Let ( )iS x  be the cubic spline defined in the interval  1,i ix x
and 

( )i iS x y , 0,1, 2,...,i n , ( )iS x , 
' ( )iS x  and 

' ' ( )iS x are continuous in 0 , nx x . 

The governing equation of the cubic spline is determined from the spline second derivatives.  

Hence, we have in  1,i ix x
 

 ' '

1 1

1
( ) ( ) ( )i i i i i

i

S x x x M x x M
h

            (4.1)  

where 1i i ih x x    and
' '( )i i iS x M , for all i.  

Obviously the spline second derivatives are continuous. Integrating Eq. (4.1) twice with respect 

to x, we get the cubic spline S(x) interpolate the function ( )y x  at the knots 0ix x ih 

( 0,1,2,..., )i n  on the interval 1i ix x x    

by the equation (Sastry, 2012). 

   
3 3 2 2

1 1
1 1 1( )

6 6 6 6

i i i i
i i i i i i

x x x x x x x xh h
S x M M y M y M

h h h h

 
  

         
           

           

(4.2) 

Where 
' ' ( )i iM S x  and ( )i iy y x .  

In Eq. (4.2), the spline second derivatives, iM  are still not known. To determine them we use the 

condition of continuity of
'( )S x . Differentiating Eq. (4.2), we get  

   
2 2 2 2

1'

1 1 1

3 31
( )

6 6 6 6

i i i i
i i i i i i

i

x x x x h h
S x M M y M y M

h



  

       
         

        

(4.3) 
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Setting ix x  in the above, we obtain the left hand derivative 

 
2 2

' _

1 1 1 1

1 1 1
( )

2 6 6 6 3

i i i i i
i i i i i i i i i i i

i i i

h h h h h
S x M y M y M y y M M

h h h
   

   
           

   
. (4.4)    

( 1,2,..., )i n . 

To obtain the right hand derivative, we need frist to write down the equation of the cubic spline 

in the sub interval  1,i ix x 
. We do this by setting 1i i   in Eq. (4.2). 

   
   

3 3 2 2
1 1 1

1 1 1 1 1

1

1
( )

6 6 6 6

i i i i
i i i i i i i i i

i

x x x x h h
S x M M y M x x y M x x

h

  
    



      
           

       

(4.5)   

where 1 1i i ih x x   . 

Differentiating Eq. (4.5) and setting ix x , we obtain the right hand derivative at ix x , 

 ' 1 1
1 1 1

1

1
( )

3 6

i i
i i i i i i

i

h h
S x y y M M

h

  
  



    ,  0,1,..., 1i n  .    (4.6) 

Equality of Eq. (4.4) and Eq. (4.6) produces the recurrence relation  

  1 1 1
1 1 1

1

1

6 3 6

i i i i i i
i i i i i

i i

h h y y y y
M h h M M

h h

  
  



 
     , ( 1,2,..., 1)i n 

   
(4.7) 

For equal intervals, we have 1i ih h h   and Eq. (4.7) simplified to 

 1 1 1 12

6
4 2 ,( 1,2,..., 1)i i i i i iM M M y y y i n

h
               (4.8) 
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Now, consider the one-dimensional Burgers’ equation in Eq. (1.1) which is transformed to the 

heat equation in Eq. (1.3)  

                

2

2
v

t x

  


           
(4.9a)  

with initial condition 

                  
   0

0

1
,0 exp

2

x

x u d
v

 
 

   
 

 , 0 1x  and     (4.9b) 

and boundary conditions 

                  
   0, 0 1, , 0x xt t t   

       
(4.9c) 

Let the time derivative 
t




 is replaced by forward finite difference approximation 

, 1 ,i j i j

k

  
 

and the space derivative 
2

2x




by a cubic spline ( )S x , then a suitable approximation to Eq. (4.9) 

due to (Sastry, 2012) is given by: 

 , 1 , , , 1

1
1i j i j i j i jM M

k
    
     

 
(4.10) 

0,1,2,..., ; 1,2,...i n j  , where 
' ' ( )j

i i iM S x .         

Analogous with equation Eq. (4.8) the following relation holds:  

1, , 1, 1, , 1,2

6
4 2i j i j i j i j i j i jM M M

h
     
        , and (4.11) 

1, 1 , 1 1, 1 1, 1 , 1 1, 12

6
4 2i j i j i j i j i j i jM M M

h
           
        (4.12) 
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Substituting Eq. (4.10) inEq. (4.12) yields the following finite difference scheme (Sastry, 2012). 

     

1 1 1

1 1

1 1

(1 6 ) (4 12 ) (1 6 )

1 6 (1 ) 4 12 (1 ) 1 6 (1 )

j j j

i i i

j j j

i i i

r r r

r r r

  

  

  

 

 

       

           
 

(4.13) 

In general, the finite difference scheme with cubic spline discretization to the linearized heat 

equation in Eq. (4.9a) with Neumann boundary conditions inEq. (4.9c) is given by: 

   1 1

1 1(4 12 ) 2(1 6 ) 4 12 (1 ) 2 1 6 (1 )j j j j

i i i ir r r r    

              , 0i   (4.14a)

     

1 1 1

1 1

1 1

(1 6 ) (4 12 ) (1 6 )

1 6 (1 ) 4 12 (1 ) 1 6 (1 )

j j j

i i i

j j j

i i i

r r r

r r r

  

  

  

 

 

       

           
 , 1(1) 1i N   (4.14b) 

   1 1

1 12(1 6 ) (4 12 ) 2 1 6 (1 ) 4 12 (1 )j j j j

i i i ir r r r    

               , i N  (4.14c) 

Where
2

, 0(1)
kv

r j M
h

  ,  is a free parameter greater than zero and 
j

i  is the discrete 

approximation to ( , )
i jx t at the point ( , ).i jx t  

Finally, the approximate solution to the Burgers’ equation in Eq. (1.1) in terms of the 

approximate solution of heat equation in Eq. (4.9) by using Cole-Hopf transformation in Eq. 

(1.2) is given by:- 

1 1 1 1( 2 )
2

j j j j
j i i i i

i j j

i i

u v v
h h

   
      

      
    

 (4.15) 
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4.2 Stability Analysis 

 To investigate the stability of the approximate solution obtained by the present algorithm, we 

use the matrix form. Here we analyze the stability of the method by choosing the value of  and 

Writing Eq. (4.13) in matrix form. The matrix form of Eq. (4.13) is given as: 

 

1

0

1

1

1

1

1

4 12 2(1 6 )

1 6 4 12 1 6

1 6 4 12 1 6

2(1 6 ) 4 12

(4 12 (1 )) 2 1 6 (1 )

(1 6 (1 )) 4 12 (1 ) 1 6 (1 )

1 6 (1 ) 4 12 (1 ) 1 6 (1

j

j

j

N

j

N

r r

r r r

r r r

r r

r r

r r r

r r r

 

  

  

 

 

  

 











    
  

     
  
  

     
        

   

     



     

   

  

 

0

1

1

(4.16)

)

2 1 6 (1 ) 4 12 (1 )

j

j

j

N

j

N
r r



 


   
   

   
   
   

   
         



 

Factorization of LHS of (4.16) gives, 

 

1

0

1

1

1

1

1

1 0 0 0 2 2

0 1 0 0 1 2 1

6 1 6

0 0 1 0 1 2 1

0 0 0 1 2 2

j

j

j

N

j

N

r











     
    

     
     
    

     
          





      





  

This factorization can be written as; 

   1

1 16 1 6 j

N NI r T 

   
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Again factorization of RHS of (4.16) gives, 

 

0

1

1

1 0 0 0 2 2

0 1 0 0 1 2 1

6 1 6 (1 )

0 0 1 0 1 2 1

0 0 0 1 2 2

j

j

j

N

j

N

r 



     
    

     
      
    

     
          





      





  

This factorization also can be written as; 

  1 16 1 6 (1 ) j

N NI r T    
 

From both factorizations, we obtained the same tri-diagonal matrix of the form: 

1

2 2

1 2 1

1 2 1

2 2

NT A

 
 

 
  
 

 
  

  
 

Hence, the above system can be written as:
 

   16 1 6 6 1 6 (1 )j jI r A I r A                (4.17)  

where 1NA T   is a matrix of order 1N  and 

( , 1)m m j j    is component vector given by

0,

1,

1,

,

m

m

m

N m

N m













 
 
 
 
 
 
 
 

  

with I is identity matrix of order N+1 and 
2

kv
r

h
 is the mesh ratio. 

We can write Eq. (4.16) in the form of,    
11 6 (1 6 ) 6 (1 6 (1 ))j jI r A I r A   
        
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We introduce a diagonal matrix

2

1

1

2

D

 
 
 
 
 
 
 
 

 . 

In such a way that A is similar to a symmetric matrix  1A D AD . (Kadalbajoo and Awashti, 

2006) 

       Let    
1

6 (1 6 ) 6 (1 6 (1 ))C I r A I r A 


       

    

   

   

 

11 1

11 1

1
1 1

1

6 (1 6 ) 6 (1 6 (1 ))

6 (1 6 ) 6 (1 6 (1 ))

6 (1 6 ) 6 (1 6 (1 ) )

6 (1 6 ) 6 (1 6 (1 ))

C D CD D I r A I r A D

D I r A D D I r A D

D I r A D D I r A D

I r A I r A

 

 

 

 

 

 


 



      

          

           

        
   

 

But  1

6 (1 6 ) ) 6 (1 6 (1 ))I r A and I r A 


       
      are symmetric and commute and so C is 

symmetric. Therefore, C is similar to a symmetric matrix C . 

Since the Eigen values of the real and symmetric matrix are equal to its 2-norm which is the 

same as its spectral radius. So we use this to show the stability of the method by showing the 

spectral radius of the matrix C is less than or equal to one. i.e. 

( ) 1C  . (4.18)  

The spectral radius of the matrix C is given by ( ) max iC  , where ( 0,1,..., )i i N  are the 

Eigen values of the matrix   
1

6 (1 6 ) 6 (1 6 (1 ))I r A I r A 


     . 

The values of 
,

i s  are given by 
 
 

6 (1 6 (1 ))

6 (1 6 )

i

i

i

r

r

 


 

  


 
 (4.19)  

where ( 0,1,..., )i i N  are the Eigen values of the matrix A. 
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The Eigen values i of the matrix A are given by: 

( ) 0Det A I  . (4.20)  

Simplifying Eq. (4.20), we get  2

1( 2) 4 ( ) 0N      

 2

1( 2) 4 ( ) 0N       (4.21) 

Where ( )N  is the determinant of the matrix

(2 ) 1

1 (2 ) 1

1 (2 ) 1

1 (2 )









  
 

  
 
 

  
   

  

which is   2

1

1 4cos
2( 1)

N
N

i

i

N






 
  

 


   

(4.22) 

Using Eq. (4.22) in Eq. (4.21) gives;  
1

1 2 21 (( 2) 4) (4cos ) 0
2

N
N

i

i

N


 




      

1
2

1

( 4) (4cos ) 0
2

N

i

i

N


  





    

 This gives
20 4 4cos , 0,1,2,..., .

2

i
or or i N

N


         

Now, Substituting 0, 4     and 
24cos , 0,1,2,...,

2

i
i N

N


    in equation Eq. (4.19) we 

get: 

1. when 0   

 
 

6 (1 6 (1 ))0 6 0
1

6 (1 6 )0 6 0
i

r

r






   
  

  
 

For this case it is true that ( ) 1C   
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2. When 4    

 
 

 
 

   6 (1 6 (1 ))( 4) 6 4 24 (1 ) 2 24 24 2 24 24
1

6 (1 6 )( 4) 6 4 24 2 24 2 24
i

r r r r r r

r r r r

   


   

           
    

       
 

Because, (2 24 ) (2 24 24 )r r r      holds  

3. When
24cos , 0,1,2,..., .

2
i

i
i N

N


     

Again since 
20 cos 1

2

i

N


   , the Eigen values of the matrix A lies between 0  and 4  

 i.e. 4 0   , also for this case it is true that ( ) max 1.iC    

Therefore, the method is unconditionally stable. 
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4.3. Numerical Results 

Here, two model examples have been considered to confirm the applicability of the present 

method for solving one-dimensional Burgers’ equation. 

Example 1 (Kadalbajoo, 2006) 

Consider Burgers’ equation in Eq. (1.1)  

with initial condition 

            ( ,0) sin( ), 0 1u x x x    

and homogeneous boundary conditions 

            (0, ) (1, ) 0,0u t u t t T     

 By Hopf-Cole transformation, ( , ) 2 xu x t v



  . 

Burgers’ equation is transformed to the heat equation of the form 

        

2

2
,0 1, 0v x t

t x

  
   

 
 

with initial condition 

              
 

1
( ,0) exp 1 cos( ) , 0 1

2
x x x

v
 



 
    

 
 

and boundary conditions 

               
(0, ) (1, ) 0, 0x xt t t T      
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Table1. Comparison of the Numerical solution with the exact solution of Example 1at space 

points for T = 0.01,v= 10 and 0.0001t   

 Computed solution for different values of N   

x Our 

Method 

N=10 

2   

Kadal 

Bajoo 

N=10 

 

Our 

Method 

N=20 

0.225 
 

Kadal 

bajoo 

N=20 

 

Our 

Method 

N=40 

0.376   

Kadal 

bajoo 

N=40 

Our 

Method 

N=80 

0.5   

Kadal 

bajoo 

N=80 

Exact 

Solution 

0.1 0.11458 0.11365 0.11466 0.11437 0.12481 0.11455 0.11570 0.11460 0.11461 

0.2 0.21811 0.21634 0.21825 0.21771 0.23742 0.21805 0.22024 0.21813 0.21816 

0.3 0.30054 0.29810 0.30074 0.29999 0.31648 0.30046 0.30347 0.30057 0.30062 

0.4 0.35382 0.35093 0.35405 0.35316 0.35941 0.35371 0.35726 0.35385 0.35390 

0.5 0.37262 0.36957 0.37286 0.37192 0.37097 0.37250 0.37625 0.37264 0.37270 

0.6 0.35494 0.35204 0.35518 0.35427 0.34503 0.35483 0.35840 0.35497 0.35502 

0.7 0.30237 0.29989 0.30258 0.30179 0.28728 0.30227 0.30531 0.30238 0.30243 

0.8 0.21993 0.21813 0.22009 0.21951 0.21139 0.21986 0.22208 0.21994 0.21997 

0.9 0.11571 0.11476 0.11579 0.11549 0.11582 0.11567 0.11684 0.11572 0.11573 
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Table2. Comparison of the Numerical solution with the exact solution of Example 1 at 

space points for T = 0.1, v= 1 and 0.001t   

 Computed solution for different values of N  

X Our 

Method 

N=10 

2   

Kadal 

bajoo 

N=10 

 

Our 

Method 

N=20 

0.225 

 

Kadal 

bajoo 

N=20 

Our 

Method 

N=40 

0.39   

Kadal 

bajoo 

N=40 

Our 

Method 

N=80 

0.42 
 

Kadal 

bajoo 

N=80 

Exact 

Solution 

0.1 0.10948 0.10863 0.10958 0.10931 0.11020 0.10948 0.10989 0.10952 0.10954 

0.2 0.20970 0.20805 0.20990 0.20936 0.21110 0.20968 0.21316 0.20976 0.20979 

0.3 0.29106 0.28947 0.29209 0.29129 0.29382 0.29174 0.29493 0.29186 0.29190 

0.4 0.34697 0.34502 0.34822 0.34720 0.35032 0.34774 0.35219 0.34788 0.34792 

0.5 0.37062 0.36847 0.37198 0.37080 0.37420 0.37138 0.37369 0.37153 0.37158 

0.6 0.35817 0.35603 0.35951 0.35829 0.36175 0.35886 0.36170 0.35900 0.35905 

0.7 0.30919 0.30729 0.31038 0.30925 0.31243 0.30974 0.31355 0.30986 0.30991 

0.8 0.22732 0.22589 0.22820 0.22734 0.22969 0.22734 0.22834 0.22779 0.22782 

0.9 0.12043 0.11966 0.12090 0.12043 0.12161 0.12043 0.12302 0.12067 0.12069 
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Example 2(Kadalbajoo, 2006) 

Consider Burgers’ equation inEq. (1.1)  

with initial condition 

                ( ,0) 4 (1 ) ,0 1u x x x x     

and homogeneous boundary condition 

               (0, ) 0 (1, ) ,0u t u t t T     

By Hopf-Cole transformation ( , ) 2 xu x t v



   

Burgers’ equation is transformed to the heat equation of the form 

          

2

2
,0 1, 0v x t

t x

  
   

 
 

with initial condition: 

                     

2 31 4
( ,0) exp 2 ,0 1

2 3
x x x x

v


   
     

  
 

and boundary conditions 

                     
(0, ) (1, ) 0,0x xt t t T    
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Table 3.Comparison of the Numerical solution with the exact solution of Example 2 at space 

points for T = 0.1, v= 1 and 0.001t   

 Computed solution for different values of N  

X Our 

Method 

N=10 

2   

Kadal 

bajoo 

N=10 

Our 

Method 

N=20 

0.30 
 

Kadal 

bajoo 

N=20 

Our 

Method 

N=40 

0.439 
 

Kadal 

bajoo 

N=40 

Our 

Method 

N=80 

0.489 
 

Kadal 

bajoo 

N=80 

Exact 

Solution 

0.1 0.11284 0.11196 0.11302 0.11266 0.11378 0.11283 0.11392 0.11288 0.11289 

0.2 0.21616 0.21447 0.21651 0.21581 0.21791 0.21614 0.21822 0.21622 0.21625 

0.3 0.30086 0.29847 0.30138 0.30034 0.30325 0.30081 0.30373 0.30092 0.30097 

0.4 0.35876 0.35588 0.35943 0.35812 0.36161 0.35867 0.36220 0.35881 0.35886 

0.5 0.38335 0.38022 0.38411 0.38262 0.38640 0.38322 0.38703 0.38337 0.38342 

0.6 0.37063 0.36754 0.37141 0.36988 0.37359 0.37046 0.37419 0.37061 0.37066 

0.7 0.32007 0.31737 0.32078 0.31939 0.32266 0.31990 0.32315 0.32002 0.32007 

0.8 0.23540 0.23338 0.23594 0.23487 0.23733 0.23525 0.23766 0.23534 0.23537 

0.9 0.12474 0.12366 0.12503 0.12445 0.12579 0.12465 0.12594 0.12470 0.12472 

 

4.4. Discussion 

In this section, two model examples are considered and the present method is applied to the 

transformed Burgers’ equation. The solution of the Burgers’ equation was recovered via the 

transformation 2 xu v



  . 

As it can be seen from tables 1, 2 and 3, the solution of the Burgers’ equation better converges to 

the exact solution for the step lengths 0.1h  and 0.05h  than when 0.025h  , and 0.0125.h 

however, the solution obtained by (Kadalbajoo, 2006) better converges to the exact solution if 

the mesh size is refined further. Thus, the present method is more efficient and convergent than 

the method considered by Kadalbajoo (Kadalbajoo, 2006) in that it requires less memory size 

and CPU time to converge to the exact solution. Therefore, the present method is competitive 

enough for solving one-dimensional Burgers’ equation. 
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CHAPTER FIVE 

5. Conclusion and Future work 

5.1. Conclusion 

In this work, finite difference method resulting from cubic spline has been presented to solve 

one-dimensional Burgers’ equation. The stability of the method is well established and is shown 

to be unconditionally stable. 

As the numerical results presented in tables show, the solutions converge to the exact solutions 

for coarser step lengths than finer step lengths. But the solution obtained by Kadalbajoo 

(Kadalbajoo, 2006) converges to the exact solution for finer mesh lengths and requires more 

CPU time and memory size to converge. Hence, the present method is more efficient and 

accurate than the method considered by Kadalbajoo, 2006. 

 

5.2. Future work 

Here, the finite difference method resulting from cubic spline has been presented to solve one-

dimensional Burgers’ equation. The values of  were chosen by trial and error for each step 

lengths restricting the convergence of the method for finer step lengths. Thus, one can calculate 

the optimum value of  so that the convergence is enhanced further. 
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