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ABSTRACT 

In this study, the numerical solution of second order one dimensional linear 

hyperbolic telegraph equations using crank Nicholson and stable finite difference 

method have been presented. First, the given domain or region is discritized and the 

derivatives of the differential equation were replaced by finite difference 

approximations and then, transformed to system of equations which can be solved by 

matrix inverse method. The stability and consistency of the method are established 

which shows convergence of the method. To validate the applicability of the method,  

model examples have been considered and solved at different mesh sizes.  As it can be 

observed from the numerical results presented in Tables and graphs, the present 

method approximates the exact solution very well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study
 

An equation involving one or more dependent variable and its derivatives with respect 

to one or more independent variables is called Differential Equation (DE). Differential 

equations occur in connection with numerous problems that are encountered in the 

various branches of science and engineering. Some of these are: the problem of 

determining the motion of projectile,  rocket, satellite, or planet, the problem of 

determining  the charge or current in an electric circuit, the problem of the conduction 

of heat in a rod or in a slab, the problem of determining the vibrations of a wire or a 

membrane, the study of the rate of decomposition of a radio-active substances or the 

rate of growth of population, the study of the reaction of chemicals, the problem of the 

determination of the curves that have certain geometric properties (Shepley, 1980). 

Partial differential equation (PDE) is an equation involving one or more derivatives of 

an unknown function, say u, that depend on two or more variables, often time t and one 

or several variables in space. PDEs have an enormous applications compared to 

Ordinary Differential Equations (ODEs), to mention some of these: dynamics, 

electricity, heat transfer, electromagnetic theory, quantum mechanics and so on (Erwin, 

2006).  

Telegraph equations are pairs of coupled, linear differential equations that describe the 

voltage and current on an electrical transmission line with distance and time. The 

telegraph equation is one of the important equations of mathematical physics with 

applications in many different fields such as transmission and propagation of electrical 

signals (Kajiwara et al., 2010), vibration systems, random walk theory and mechanical 

systems (Chakraverty and Behera, 2013), etc. The heat diffusion and wave propagation 

equations are particular cases of the telegraph equation. The telegraph equation is more 

suitable than ordinary diffusion equation in modeling reaction diffusion (Dosti and 

Nazemi, 2012). 

Biologists encounter these equations in the study of pulsate blood flow in arteries and 

in one-dimensional random motion of bugs along a hedge (Eftimie, 2012). Also the 

propagation of acoustic waves in Darcy-type porous media (Heider et al, 2012), and 

parallel floes of viscous Maxwell fluids (Liu et al., 2011) are just some of the 

phenomena modeled by the telegraph equation.  
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Hence, the one dimensional hyperbolic telegraph equation is the significant class of the 

partial differential equations because of its wide range of applications in several fields. 

For instance, the hyperbolic type partial differential equations model atomic physics, 

aerospace, industry, biology and engineering problems such as vibrations of structures, 

beams and buildings (Mirzaee and Bimesl, 2013). One-dimensional hyperbolic 

telegraph equation with constant coefficients, models mixture between diffusion and 

wave propagation by introducing a term that accounts for effects of finite velocity to 

standard heat or mass transport equation. Also, hyperbolic telegraph equation is 

commonly used in signal analysis for transmission and propagation of electrical signals 

and also has applications in other fields (Stutzman and Thiele, 2012). 

Furthermore with the appropriate coefficient and forcing terms, the one-dimensional 

telegraph equation describes a diverse array of physical system: for instance, the 

propagation of voltage and current signals in coaxial transmission lines of negligible 

leakage conductance and/or resistance.  

In recent years, different methods have been applied to find the numerical solution of 

the hyperbolic one dimensional telegraph equation. To mention some: Radial basis 

function approximation (Saadamandi and Dehghan, 2010), Chebyshev Tau method, 

He’s variational iteration method (Dehghan et al., 2011), Laguerre-Legendre spectral 

collocation method (Tatari and Haghighi, 2014), differential quadrature method (Jiwari 

et al., 2012),  differential transform method (Srivastava and Mukesh, 2014), method of 

weighted residuals (Odejide and Binuyo, 2014), Fibonacci polynomials (Kurt  and 

Yalçınbaş, 2016) and meshless local radial point interpolation (Elyas and Hamid, 

2015).  

However, it is necessary to present a more accurate and convergent numerical method 

for the one dimensional linear hyperbolic telegraph equation. The fourth order stable 

central difference method to find the numerical solution for second order self-adjoint 

singularly perturbed ordinary differential equation subject to certain types of boundary 

conditions is presented by (Terefe et al., 2016). Hence, our work is   an extension of the 

method described by (Terefe et al., 2016) together with the Crank Nicholson to find the 

accurate numerical solution of the one dimensional linear hyperbolic telegraph 

equation. 
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1.2 Statement of the problem 

Due to the wide range of the application of the one dimensional linear hyperbolic 

telegraph equation, several numerical methods have been developed. Even though 

many numerical methods were applied to solve these types of equations, still it is 

possible to find a more accurate numerical method than that presented by different 

scholars. Therefore, it is important to describe the more accurate and convergent 

method for the second order one-dimensional linear hyperbolic telegraph equation.    

Owing to this, the present study attempt to answer the following questions: 

1. How does the present method be described for solving one-dimensional linear 

hyperbolic telegraph equation? 

2. How to establish the stability of the present method? 

3. To what extent the present method approximate the solution? 

4. What is the advantage of the proposed method over the others? 

1.3. Objectives of the study 

1.3.1. General objective 

The general objective of this study is to find the numerical solution of the second order 

one dimensional linear hyperbolic telegraph equation.  

1.3.2 Specific Objectives 

The specific objectives of the present study are to: 

 Describe the method using Crank Nicholson and stable finite difference 

methods for solving second order one dimensional linear hyperbolic telegraph 

equation. 

 Establish the stability of the present method.  

  Investigate the accuracy of the present method. 

 Describe the advantage of the present method over the others.  

1.4. Significance of the Study 

This study may help to find the numerical solution of second order one dimensional 

linear hyperbolic telegraph equations. 
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1.5. Delimitation of the Study 

The present study delimited to the second order one dimensional linear hyperbolic 

telegraph equation, of the form: 

    
2 2

2 2
( , ), 0 , 0

u u u
u f x t x b t T

t t x
 

  
       

  
       (1.1) 

subject to the initial conditions: 

      

0

1

( ,0) ( )

( ,0) ( )

u x f x

u
x f x

t








                  (1.2) 

and with the boundary conditions: 

         
0

1

(0, ) ( )

( , ) ( )

u t g t

u b t g t




                               (1.3) 

where b, T,  and  are given positive real constants, 0 1( ), ( )f x f x and their derivatives 

are continuous functions of x, and 0 1( ), ( )g t g t and their derivatives are continuous 

functions of t. Further, to find the accurate numerical solution and convergent scheme 

for solving Eq. (1.1) with respect to the given conditions in Eqs. (1.2) and (1.3), we 

applied the Crank Nicholson and stable finite difference method. 
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CHAPTER TWO 

LITRATURE REVIEW 

2.1. Partial Differential Equations 

Equations involving one or more partial derivatives of a function of two or more 

independent variables are called Partial differential Equation (PDE). Historically, 

partial differential equations originated from the study of surfaces in geometry and a 

wide variety of problems in mechanics. During the second half of the nineteenth 

century, a large number of famous mathematicians became actively involved in the 

investigation of numerous problems presented by partial differential equations 

(Debnath, 2011). The primary reason for this research was that partial differential 

equations both express many fundamental laws of nature and frequently arise in the 

mathematical analysis of diverse problems in science and engineering.  

The next phase of the development of linear partial differential equations was 

characterized by efforts to develop the general theory and various methods of solution 

of linear equations (Myint and Debnath, 2007). 

Almost all physical phenomena obey mathematical laws that can be formulated by 

differential equations. This striking fact was first discovered by Isaac Newton (1642–

1727) when he formulated the laws of mechanics and applied them to describe the 

motion of the planets. During the three centuries since Newton’s fundamental 

discoveries, many partial differential equations that govern physical, chemical, and 

biological phenomena have been found and successfully solved by numerous methods. 

Partial Differential equations include Euler’s equations for the dynamics of rigid bodies 

and for the motion of an ideal fluid, Lagrange’s equations of motion, Hamilton’s 

equations of motion in analytical mechanics, Fourier’s equation for the diffusion of 

heat, Cauchy’s equation of motion and Navier’s equation of motion in elasticity, the 

Navier–Stokes equations for the motion of viscous fluids, the Cauchy–Riemann 

equations in complex function theory, the Cauchy–Green equations for the static and 

dynamic behavior of elastic solids, Kirchhoff’s equations for electrical circuits, 

Maxwell’s equations for electromagnetic fields, and the Schr¨odinger equation and the 

Dirac equation in quantum mechanics. 

In its early stages of development, the theory of second-order linear partial differential 

equations was concentrated on applications to mechanics and physics. All such 

equations can be classified into three basic categories: the wave equation, the heat 
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equation, and the Laplace equation or potential equation. Thus, a study of these three 

different kinds of equations yields much information about more general second-order 

linear partial differential equations.  

Jean d’Alembert (1717–1783) first derived the one dimensional wave equation for 

vibration of an elastic string and solved this equation in 1746. His solution is now 

known as the d’Alembert solution. The wave equation is one of the oldest equations in 

mathematical physics. Some form of this equation, or its various generalizations, 

almost inevitably arises in any mathematical analysis of phenomena involving the 

propagation of waves in a continuous medium. In fact, the studies of water waves, 

acoustic waves, elastic waves in solids, and electromagnetic waves are all based on this 

equation. A technique known as the method of separation of variables is perhaps one of 

the oldest systematic methods for solving partial differential equations including the 

wave equation (Aubert and Kornprobst, 2006).The wave equation and its methods of 

solution attracted the attention of many famous mathematicians including Leonhard 

Euler (1707–1783), James Bernoulli (1667–1748), Daniel Bernoulli (1700–1782), J.L. 

Lagrange (1736–1813), and Jacques Hadamard (1865–1963).  

Hence, hyperbolic telegraph equation is a significant class of the partial differential 

equation due to its wide range of applications in many areas of science and engineering 

as mentioned in the introduction part.  

2.2 The telegraph equation 

The telegrapher's equations (or just telegraph equations) are a pair of coupled, linear 

differential equations that describe the voltage and current on an electrical transmission 

line with distance and time. The equations come from Oliver Heaviside who in the 

1880s developed the transmission line model. The model demonstrates that the 

electromagnetic waves can be reflected on the wire, and that wave patterns can appear 

along the line. The theory applies to transmission lines of all frequencies including 

high-frequency transmission lines (such as telegraph wires and radio frequency 

conductors), audio frequency (such as telephone lines), low frequency (such as power 

lines) and direct current.  

To deal with such equation, various mathematical methods have been proposed for 

obtaining exact and approximate analytic solutions. For instance, (Dehghan and Shokri, 

2008)  proposed a numerical scheme to solve the one-dimensional hyperbolic telegraph 
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equation using collocation points and approximating the solution using thin plate 

splines radial basis function. (Mohebbi and Dehghan, 2008) combined a high-order 

compact finite difference scheme to approximate the spatial derivative and the 

collocation technique for the time component to numerically solve the one-dimensional 

linear hyperbolic equation. In solving the second-order linear hyperbolic 

equation,(Dehghan and  Lakestani, 2009) used a numerical technique consisting of 

expanding the approximate solution as the elements of Chebyshev cardinal functions. 

(Biazar et al., 2009) applied the variational iteration method to obtain an approximate 

solution of the telegraph equation. (Saadatmandi and Dehghan, 2010) used the 

Chebyshev Tau method in numerically solving the telegraph equation. Solutions of the 

telegraph equation are still an attractive and interesting topic. Due to this, we are 

interested in finding the numerical solution of hyperbolic telegraph equation using 

finite difference method. 

2.3 Routh-Hurwitz stability criterion 

Important criteria that give necessary and sufficient conditions for all of the roots of the 

characteristic polynomial, with real coefficients to lie in the left hand side of the 

complex plane are known as the Routh-Hurwtiz criteria. The name refers to E.J. Routh 

and A.Hurwtiz, who contribute to the formulation of this criterion. In 1875, Routh, a 

British mathematician, developed an algorithm to determine the number of roots that lie 

in the right half of the complex plane (Gantmacher, 1964). In 1985 Hurwtiz, a German 

mathematician verified the determinant criteria for roots to lie in the left half of the 

complex plane.  

This criterion states that if the roots of the characteristic polynomial lie in the left half 

of the complex plane, then any solution to the linear, homogenous differential equation 

converges to zero. 
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CHAPTER THREE 

METHODOLOGY 

3.1. Study site and Time 

This study would be conducted in Jimma University department of Mathematics under 

the numerical Analysis stream from September 2016 G.C to June 2017 G.C. 

conceptually, the study focus on one dimensional linear hyperbolic telegraph equations 

3.2. Study Design 

This study was employed by mixed-design (documentary review design and 

experimental design) on one dimensional  linear hyperbolic telegraph equation type.  

3.3. Source of Information 

The relevant sources of information for this study are Journals, books, published 

articles & related studies from internet and the experimental result was obtained by 

writing MATLAB code. 

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the study follows the following procedures:  

1. Defining the problem, 

2. Discretizing the domain for the defined problem,  

3. Replace the derivatives in the partial differential equation by finite difference 

approximations to obtain the scheme, 

4. The obtained scheme form system of equations that can be solved by matrix 

inverse method, 

5. Writing MATLAB code for the systems obtained and to use matrix inverse 

method. 

6. Demonstrate the validity of the scheme using model examples.  
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CHAPTER FOUR 

DESCRIPTION OF THE METHODS AND RESULTS 

4.1 Description of the method 

Consider the second order one dimensional linear hyperbolic telegraph equation of the 

form: 

      
2 2

2 2
( , ), 0 , 0

u u u
u f x t x b t T

t t x
 

  
       

  
                   (4.1) 

subject to the initial conditions: 

        

   

   

0

1

,0

,0

u x f x

u
x f x

t








                           (4.2) 

and boundary conditions: 

       
   

   

0

1

0,

,

u t g t

u b t g t




                           (4.3) 

where   and   are given positive constants and we assume that 0 ( )f x , 1( ),f x  0 ( )g t  

and 1( )g t  are real continuous functions. 

To describe the scheme, we divide the interval [0, ] and [0, ]b T into N and M equal 

subintervals of mesh length andh k  respectively. Let 0 1 20 , Nx x x x b      

and 0 1 20 Nt t t t T     be the mesh points with 0 0and ,jix x ih t t jk   

for 1,2, ,i N   and 0,1, ,j M  . For the sake of simplicity, we use ( , ) j

i j i
u x t u ,

( , )
n jn

i

i jn n

uu
x t

x x




 
, ( , )

n jn

i

i jn n

uu
x t

t t




 
 and ( , ) j

i j if x t f ( 1n   called n
th

 order 

derivatives). 

Eq. (4.1) can be re-written at discretized points as: 

        
2 2

2 2
( , )

j j j
ji i i

i i j

u u u
u f x t

t t x
 

  
    

  
                             (4.4) 

Assume that ( , )u x t  has continuous higher order partial derivatives on the region

[0, ] [0, ]b T . Using Taylor's series expansion for any point ( , )i ju x t with uniform step 

mesh sizes h and k in the direction of x and for fixed t, we have:  
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2 3 4 52 3 4 5

1 2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uh h h h
u u h

x x x x x


    
      

    
                (4.5)

2 3 4 52 3 4 5

1 2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uh h h h
u u h

x x x x x


    
      

    
                (4.6) 

In the same way, using Taylor's series expansion in the direction of t, for a fixed x, we 

have: 

2 3 4 52 3 4 5
1

2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uk k k k
u u k

t t t t t

     
      

    
                (4.7) 

2 3 4 52 3 4 5
1

2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uk k k k
u u k

t t t t t

     
      

    
                (4.8) 

Adding Eqs. (4.5) with (4.6), Subtracting Eq.(4.8) from Eq.(4.7),and adding  (4.7) with 

(4.8) respectively, gives:  

    

2

1 1
12 2

2j j j j

i i i iu u u u

x h
   

 


                    (4.9) 

    

1 1 32

232 6

j j j j

i i i iu u u uk

t k t


   
  

 
                               (4.10) 

   

2 1 1 42

32 2 4

2

12

j j j j j

i i i i iu u u u uk

t k t


    
  

 
                 (4.11) 

where:  
4 5 62 4 4

1 2 34 5 6
, and

12 120 360

j j j

i i iu u uh k k

x t t
  

    
  

  
                        

From Crank Nicholson finite difference method, we have the following average values 

for 
2

2
and

j
j i

i

u
u

x



  
as:    

    1 11

3

j j j j

i i i iu u u u                      (4.12) 

    
2 2 1 2 2 1

2 2 2 2

1

3

j j j j

i i i iu u u u

x x x x

     
   

    
                 (4.13) 

Now, substituting Eqs. (4.10 - 4.13) into Eq. (4.4) yields:   

     

 

1 1 1 1 3 42 2

2 3 4

2 1 2 2 1
1 1

42 2 2

2
( )

2 6 12

1
( )

3 3

j j j j j j j

i i i i i i i

j j j
j j j ji i i

i i i i

u u u u u u uk k

k k t t

u u u
u u u f

x x x







   

 
 

    
  

 

  
       

  

             (4.14) 

where: 4 3 2      

Differentiating Eq. (4.1) successively with respect to t, and evaluated at ( , )i jx t  we 

obtain:  

  
3 2 2

3 2 2
( )

j j j j
ji i i i

i

u u u u
f

t t t t x t
 

    
    

     
                  (4.15)   
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4 2 2 22 2
2

4 2 2 2 2 2
( ) ( ) ( )

j j j j j
j ji i i i i

i i

u u u u u
f f

t t t t x t x t t
    

       
      

        
        (4.16)   

   

Substituting Eqs. (4.15) and (4.16) into Eq. (4.14), gives: 

 

 
1 1 22

1 1 1 1 2

2 2

2 2 2 1 2 2 12 2 2 2

2 2 2 2 2 2

2 2 2

42

2
( ) ( )

2 3 12

1
( ) ( ) ( )

12 12 12 3

12 12

j j j j
j j j j ji i i i

i i i i i

j j j j j j

i i i i i i

j j j

i i i

u u u uk
u u u u u

k k t

u u u u u uk k k

t t x t x x x x

k k
f f f

t t

 
 

 




 
   

 

  
      



      
     

       

 
   

 

           (4.17) 

where: 4 3 2      

Using the finite difference approximation of Eqs. (4.9 – 4.11), we have: 

   
2

1 1 1 1 1 1

1 1 1 1 52 2

1
( ) ( 2 2 )

2

j
j j j j j ji

i i i i i i

u
u u u u u u

t x kh
     

   


      

 
               (4.18)  

    

22
1 1 1

1 1 12 2 2 2

1 1 1

1 1 1 6

1
( ) ( 2 2 4

2 2 )

j
j j j j ji

i i i i i

j j j j

i i i i

u
u u u u u

t x k h

u u u u 

  

  

  

  


    

 

          

           (4.19) 

Where:   
42

5 4
( )

12

j

iuh

t x


 


 
   and  

42 2

6 2 4
( )

12

j

iuh

t x


 


 
                                                                                                                                                                                                                                                                                                             

Putting Eqs. (4.18) and (4.19) into Eq. (4.17) and using the central finite difference 

approximation for
2 2

2 2
, and

j j j

i i iu u u

t t x

  

  
, we obtain: 

1 1
1 1 1 1 1 1

12 2

2
1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 12

2 1
( ) ( ) ( 2

2 3 3

( )
2 2 ) ( 2 )

12

( ) ( 2
24 24

j j j
j j j j j j ji i i

i i i i i i i

j j j j j j j j j j

i i i i i i i i i i

j j j j j

i i i i i

u u u
u u u u u u u

k k h

u u u u u u u u u u

k k
u u u u u

h

 

 

 

 
     



     

    

    

 

 
      


         

     1 1 1

1 1

1 1 1 1 1 1

1 1 1 1 1 12

2 2 2

72

2 )

1
( 2 2 4 2 2 )

12

12 12

j j j

i i i

j j j j j j j j j

i i i i i i i i i

j j j

i i i

u u u

u u u u u u u u u
h

k k
f f f

t t




  

 

     

     

  

        

 
   

 

             (4.20) 

where: 

6 5 4 32
4

7 6 5 4 3

4 4 42 2 2
2

4 2 4 4

1 ( )
( )
360 120 144 72

1
( ( ) ( )) ( )

144 36

j j j j

i i i i

j j j

i i i

u u u u
k

t t t t

u u uh k
h

t x t x x

   


   
   

   

   
  

    
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Rearranging Eq. (4.20), we get the recurrence relation:  

2
1 1 1

1 12 2 2 2 2

2
1

1 1 12 2 2 2 2 2

2
1 1

12 2 2

10 1 5 5 10
( )

24 2 12 6 12 24 12 24

1 2 1 1 10 1 5
( ) (

6 6 3 6 6 24 2 12

5 10
)

6 12 24 12 24

j j j

i i i

j j j j

i i i i

j j j

i i i

k k k k
u u u

h k k h h h

k
u u u u

h k h h h k k

k k k
u u f

h h h

      

    

   

  

 



  

 



 
        

 
         


     

2 2 2

212 12

j j j

i i i

k k
f f T

t t

  
  

 

    (4.21)   

where: 
7

j

iT   

This can be re-written as: 

1 1 1 1 1 1

1 1 1 1 1 1

j j j j j j j j j j j

i i i i i i i i i i iAu Bu Au Cu Du Cu Eu Fu Eu H T     

                        (4.22) 

      for 1,2,3,..., 1i N   and   0,1,2,..., 1j M                                                                                                                                                               

where: 
2

10

24

k
A

h


  ,    

2

2 2 2

1 5 5
,

2 12 6 12 24 12

k k
B

k k h h

    
            

2

1

6
C

h
 , 

2

2 2

2 1

6 3 6
D

k h

 
    ,  

2

10
,

24

k
E

h


   

2

2 2 2

1 5 5

2 12 6 12 24 12

k k
F

k k h h

    
        

  and 
 

2 2 2

212 12

j j j j

i i i i

k k
H f f f

t t

  
  

 
 

But, for 0j  , from Eq. (4.22), we get: 

  1 1 1 0 0 0 1 1 1 0

1 1 1 1 1 1i i i i i i i i i iAu Bu Au Cu Du Cu Eu Fu Eu H  

                             (4.23) 

Using the initial condition given in Eq. (4.2) and the relations with Eq. (4.10) at 0j 

we have: 

      
1 1

( ,0)
2

i iu uu
x

t k





                  (4.24) 

From Eq. (4.24), we get the value for 1 1 1

1 1, andi i iu u u  

  , and then putting these values 

into Eq. (4.23) and then, rearranging, yields: 

  

1 1 1

1 1

0 0 0
0 0 0 01 1

1 1

( ) ( ) ( )

2 ( )

i i i

i i i
i i i i

A E u B F u A E u

u u u
Cu Du Cu k E F E H

t t t

 

 
 

    

  
      

  

              (4.25) 

    for 1,2,3,..., 1i N   

Hence, Eqs. (4.22) and (4.25) gives system of equations which can be solved by matrix 

inverse method.  
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To solve the obtained system of equations using matrix inverse method, we considered 

the schemes given in Eqs. (4.22) and (4.25) which can be written as a matrix vector 

form: 

      1j jM x r                      (4.26) 

where: [ ]ijM m
 
a square matrix of order ( 1) ( 1)N N   , with

1jx 
 and jr are column 

matrices and it can be expressed for both cases as: 

Case-I: using Eq. (4.25), for 0, 1, 2, . . . , 1j i N   , we have: 

 

1 0

1 1

1 0

2 2

1 0

1 0

2 2

1 0

1 1

0 0 ... 0

0 ... 0

0
, and

0 0

N N

N N

B F A E u

A E B F A E u

A E B F A E
M x r

A E B F A E u

A E B F u









 

 

     
    

       
      

      
    
      
    

            

where:  For 1,i   

             
 

0 0 0
0 0 0 0 0 10 1 2
1 2 1 0 02 ( ) ( )i

u u u
Cu Du Cu k E F E H A E u

t t t


  
        

  
,   

For 2, 3, . . . , 2,i N     
0 0 0

0 0 0 0 01 1
1 1 2 ( )i i i

i i i i i

u u u
Cu Du Cu k E F E H

t t t
  

 

  
      

  
   

and  for  1,i N   

        

0 0 0
0 0 0 0 0 12 1

1 1 2 12 ( ) ( )N N N
N N N N N N

u u u
Cu Du Cu k E F E H A E u

t t t
  

   

  
        

  
     

   

Case-II: using Eq. (4.22), for 1, 2, . . . 1j M   and 1, 2, . . . , 1i N  , we have: 

1

1 1

1

2 2

1

1

2 2

1

1 1

0 0 ... 0

0 ... 0

0
, and

0 0

j j

j j

j j

j j

N N

j j

N N

B A u

A B A u

A B A
M x r

A B A u

A B u

















 



 

    
    
    
    

      
    
    
    
        

  

where: 1 1 1 1

1 0 1 2 2 1 0 1 0

j j j j j j j j jCu Du Cu Eu Fu Eu H Au            ,  for 1i   

        1 1 1

1 1 1 1

j j j j j j j j

i i i i i i i iCu Du Cu Eu Fu Eu H   

          ,  for 2, 3, . . . , 2i N   

       1 1 1 1

1 2 1 1 2 1

j j j j j j j j j

N N N N N N N N NCu Du Cu Eu Fu Eu H Au    

             ,  for 1i N   
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Definition 4.1: As Farid, (1995), A square matrix [ ]ijM m  is said to be strictly 

diagonally dominant if for every row, the magnitude of the diagonal entry in a row is 

larger than the sum of the magnitude of all the other (non-diagonal) entries in that row, 

that is:  

          
ii ij

j i

m m


  for all 1 1i N                

where  ijm  denotes the entry in the 
thi  row and thj  column. 

Theorem 4.1:(Levy Desplanques Theorm). If the matrix [ ]ijM m  is strictly 

diagonally dominant matrix, then M is invertible. (Horn & Johnson, 1985).  

 

Proof:  

Suppose det( ) 0M  , then for some non-zero vector 1 2 3( , , ,..., ) ,t

nu u u u u 0Mu




Now, let k be the index where for all 1,2,3,...,k iu u i N 
 

form the 
thk row of

0Mu


 , we obtain:       

,1 1 ,2 2 , 1 1 , , 1 1 , 2 2 ,

,1 1 ,2 2 , 1 1 , 1 1 , 2 2 , ,

... ... ... 0

... ... ... 0

k k k k k k k k k k k k k k k n n

k k k k k k k k k k k k n n k k k

m u m u m u m u m u m u m u

m u m u m u m u m u m u m u

     

     

         

         
Hence, 

, , , , ( )k k k k i i k i i k i k k k

i k i k i k

m u m u m u m u u r M
  

         

where ,( )k k i

i k

r M m


  which is the contradiction with the fact that 
, ( )k k km r M . 

Hence det( ) 0M  implying that the matrix A is nonsingular (invertible). 

Now, from the system of equation given in the form of Eq. (4.26), we can show that the 

following conditions for both cases: 

For the case 0j  , 

 
2

2 2 2

2 5 5 5
,

6 3 6 6
B F A E

k h h

 
          which implies B F A E  

 

     for  1 and 1.i i N    

2

2 2 2

2 5 5 5
2 .

6 3 6 3
B F A E

k h h

 
          Thus, 2B F A E  

 

    for 2, 3, . . . , 2i N  . 
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For the case 1, 2, . . .j   

 
2

2 2 2

1 5 10 10

2 12 12 24 12 24

k k k
B A

k k h h

      
         which implies B A  

for 1 and 1.i i N    

2

2 2 2

1 5 10 10
2 ,

2 12 12 24 12 12

k k k
B A

k k h h

      
        

 

which shows that 2B A , for 2, 3, . . . , 2i N   

Thus, by definition 4.1 M is strictly diagonally dominant matrix. Therefore, by theorem 

4.1, matrix M is invertible.  

4.2 Stability Analysis 

Definition 4.2: A Finite Difference Approximation is said to be stable if the errors 

(truncation, round off, etc) decay as the computation proceeds from one marching step 

to the next. 

In this section, the Von Neumann stability technique is applied to investigate the 

stability of the proposed method. Such an approach has been used by many researchers 

like (Rashidinia et.al, 2013) and (Shokofeh and Rashidinia, 2016).  

We assume that the solution of Eq. (4.22) at the grid point ( , )ih jk  is given by: 

          j j ip

iu e                                                                             (4.27) 

where 1p    ,   is the real number and   is the complex number. 

Now, putting Eq. (4.27) into the homogenous part of Eq. (4.22), gives: 

1 ( 1) 1 1 ( 1)

( 1) 1 ( 1) 1 1 ( 1)

j i p j ip j i p

j i p j ip j ip j i p j ip j i p

A e B e A e

C e D e C e E e F e E e

  

     

  

     

    

     

 

     
 

This implies: 

1 1( ) ( ) ( ) 0j ip p p j ip p p j ip p pe Ae B Ae e Ce D Ce e Ee F Ee                        

Since, the value of 1p   , cos sinpe p     and cos sin ,pe p     the above 

equation can be written as:  

 1 1(2 cos ) ( 2 cos ) ( 2 cos ) 0j ip j ip j ipe A B e C D e E F                          (4.28) 

Dividing both sides Eq. (4.28) by 1 ,j ipe    we obtain: 

  2(2 cos ) ( 2 cos ) ( 2 cos ) 0A B C D E F                             (4.29) 

Since, 2cos 1 2sin ( )
2


   , Eq. (4.29) written in the form of: 

    2 0P Q R                        (4.30) 
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where: 
22 4 sin ( )

2
P A B A


        

       22 4 sin ( )
2

Q C D C


       and 
22 4 sin ( )

2
R E F E


     

Using Routh-Hurwitz criterion and the transformation 
1

1

z

z






into Eq. (4.30), we 

have: 

  

2
1 1

0
1 1

z z
P Q R

z z

    
     

    
, which can be reduced to: 

  2( ) 2( ) ( ) 0P Q R z P R z P Q R                             (4.31) 

The necessary and sufficient condition for 1,  from Eq. (4.31) is: 

 0P Q R   ,    0P R    and 0P Q R   .               (4.32) 

From Eq. (4.30), we have: 

 

2
2

2 2

2 2

2 2

8 2 4
sin

3 2 3

1 4
( sin ( ) ) and sin ( )
3 2 12 2

P Q R
h k

k k
P R P Q R

h k h

  

  
 

 
     

 

       

             (4.33) 

Since, and   are positive real constants and from Eq. (4.33), it is clearly observed 

that the inequality of Eq. (4.32) are satisfied for any values of . Thus, our method is 

stable for the one dimensional hyperbolic telegraph equation.  

4.3 Consistency 

Definition4.2: (Vladimir, 2011). Given a partial differential equation p f   and its 

finite difference approximation , ,x tp f    is said to be consistent with the partial 

differential equation if for sufficiently differentiable ( , )x t  

                     , 0 as and 0x tp p x t        

Remark: As stated and proved in (Lax and Richtmyer, 1956), for a linear partial 

differential equation, consistency and stability of its finite difference approximation is 

equivalent to convergence, 

                     consistency + stability   convergence  

Now, expand Eq. (4.4) in Taylor series and replace the derivatives involving x and t for 

the relation:  

     
2 2

2 2

j j j
j ji i i

i i

u u u
u f

t t x
 

  
   

  
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and then we drive a local truncation error. The principal part of the local truncation 

error of the proposed method using Eqs. (4.9 - 4.13) for the one dimensional linear 

hyperbolic telegraph equation is: 

   

6 5 4 32
4

6 5 4 3

4 4 42 2 2
2

4 2 4 4

1 ( )
( )
360 120 144 72

1
( ( ) ( )) ( )

144 36

j j j j
j i i i i

i

j j j

i i i

u u u u
T k

t t t t

u u uh k
h

t x t x x

      
   

   

   
  

    

                         (4.34) 

Thus, the right hand side of eq.(4.34) vanishes as 0 and 0h k   and implies 

0T  . Hence, the scheme is consistent with the order of 4 2 2 2( )O k h k h  . Therefore, 

the scheme is convergent. 

4.4 Numerical Examples and Results 

To demonstrate the applicability of the method, two model examples of the one -

dimensional linear hyperbolic telegraph  equations have been considered and solved. 

For each positive integers N and M, the pointwise absolute errors ( erE ) and Maximum 

absolute errors ( absmE ) are obtained by the formula, ( , ) ( , ) ( , )er e NE i j u i j u i j   and 

0 , ,
max ( , )abs er
i j N M

mE E i j
 

  for 1,2,3,...,i N and 0,1,2,...,j M , where  

( , ) and ( , )E Nu i j u i j are the exact and computed approximate solution of the given 

problem respectively, at the nodal point (i, j).  

Also the Root Mean Square (RMS) errors is approximated by the formula,     

2( )E N

error

u u
RMS

n





 where n is the number of partition of the interval. 

Example 1: Consider the telegraphic equation of the form: 

         

2 2

2 2 2

2 2
(2 2 )( ) 2t tu u u

u t t x x e t e
t t x

   
       

  
 

subject to the initial conditions: ( ,0) 0u x  ,   ( ,0) 0
u

x
t





   for  0 1x   

and   the  boundary conditions:  (0, ) 0, (1, ) 0, 0u t u t t    

The exact solution is given by 
2 2( , ) ( ) tu x t x x t e   
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Table 1: Pointwise absolute and root mean square errors for Example 1 at 0.01t   

x  

                               Absolute errors 

Present method Odejide  and Binuyo, (2014) 

0.00 0.0000 0.0000 

0.25 1.2454e-09 3.6735633e-07 

0.50 1.6758e-09 4.8980846e-07 

0.75 1.2454e-09 3.6735635e-07 

1.00 0.0000 0.0000 

RMS 2.6832e-09 3.193160467e-07 

Table 2:  Pointwise and Maximum absolute errors for example 1, in the region

( , ) [0,1] [0,1]x t    

i
x  

i
t  0.25h k   0.125h k 

 

0.0625h k   

0.25 0.25 5.0503e-04 9.8387e-05 2.0727e-05 

 0.5 8.9854e-04 3.1433e-04 7.9327e-05 

 0.75 1.8188e-03 4.8147e-04 1.2420e-04 

0.5 0.25 9.5221e-04 2.5029e-04 6.5151e-05 

 0.5 7.7531e-04 3.2036e-04 9.5877e-05 

 0.75 2.4344e-03 8.1746e-04 2.1688e-04 

Max. Abs. errors 2.4344e-03 8.1746e-04 2.1688e-04 

                         
Figure 1: Comparison of exact and numerical solutions for Example 1 at 

( , ) [0,1] [0, 0.1]x t   with  0.05 and 0.025h k 
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Figure 2: The physical behavior of Example 1 at different mesh sizes. 

Example 2: Consider the telegraphic equation of the form:  

    

2 2

2 2 2 3 2

2 2
20 25 (6 60 )( (1 ) ) (12 12 2)

u u u
u t t x x t x x

t t x

  
        

  
 

subject to the conditions:     

( ,0) 0

( ,0) 0 ; 0 1, and 0

(0, ) 0 (1, )

t

u x

u x x t

u t u t




   
  

 

The exact solution is given by 
3 2 2( , ) (1 )u x t t x x   

Table 3: Pointwise, maximum absolute and root mean square errors for Example 2 
Points                      Pointwise errors 

( , )
i j

x t  0.2h k   0.1h k   0.05h k   

(0.2, 0.2)  5.4350e-05 1.2885e-05 3.9343e-06 

(0.4, 0.4)  4.2612e-04 1.1950e-04 3.2055e-05 

(0.6, 0.6)  8.4846e-04 2.3539e-04 6.1170e-05 

(0.8, 0.8)  3.0432e-04 7.8122e-05 1.9923e-05 

Max. Absolute errors 1.6476e-03 4.9860e-04 1.2690e-04 

RMS 1.5581e-03 6.7579e-04 2.5208e-04 
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Figure 3:  Absolute pointwise errors decreases as the number of mesh sizes decreases.  

 

 

  Figure 4: The physical behavior of Example 2 at different mesh sizes. 
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CHAPTER FIVE 

DISCUSSION, CONCLUSION AND SCOPE FOR THE FUTURE WORK 

5.1 Discussion and Conclusion 

In this study, Crank Nicholson and fourth order stable finite difference method to 

obtain the scheme for solving one-dimensional linear hyperbolic telegraph equation 

were used. First, the given domain or region is discritized and the derivatives of the 

partial differential equation are replaced by finite difference approximations and then, 

transformed to system of equations which can be solved by matrix inverse method. The 

stability and consistency of the method is well established. To validate the applicability 

of the method, model examples have been considered and solved at different mesh sizes 

of h and k.   

As it can be observed from the numerical results presented in Tables (1), (2) and (4) 

and graph (Figs. 1), the present method approximates the exact solution very well. 

Tables (2) and (3) show that as the values of h and k decreases, the accuracy of the 

method increases. Fig. 3 shows as the values of mesh sizes decrease, the pointwise 

absolute error also decreases. Also, results obtained by the presented method have been 

compared and shows betterment from the numerical result obtained by Odejide and 

Binuyo, (2014).  

Therefore, the present scheme that obtained from the finite difference methods is more 

accurate and convergent method for solving one-dimensional linear hyperbolic 

telegraph equation. 

5.2 Scope for the Future Work 

In this study, the numerical solution for one dimensional linear hyperbolic telegraph 

equation based on Crank Nicholson and fourth order stable finite difference method, 

which give the more accurate numerical solution and convergent scheme. Hence, using 

those methods (Crank Nicholson and six order stable finite difference methods) can be 

obtaining another scheme. 
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