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Abstract 

In this thesis, numerical solution of self-adjoint Boundary value problems has been presented for 

solving second order singularly perturbed problem using Galerkin method. First, for the given 

problem, the residue was computed using appropriate approximated basis function which 

satisfies all the boundary conditions. Then, using the chosen weighting function integrating the 

weighted residue over the domain and the given differential equation is transformed to linear 

systems of algebraic equations. Further, these algebraic equations were to solved by using 

Galerkin method. To validate the applicability of the proposed method, two model examples have 

been considered and solved for different values of perturbation parameter and with different 

order of basis function. Additionally convergence of error bounds has been established for the 

method. As it can be observed from the numerical results presented in Tables and graphs, the 

present method approximates the exact solution very well. Moreover, the present method gives 

better results when the order of basis function is increased than some existing numerical method 

reported in the literature. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study 

Numerical analysis is a branch of mathematics concerned with theoretical foundation of 

numerical algorithms for the solution of problems arising in scientific applications (wasow, 

1992). Further, numerical analysis plays a significant role when difficulties encountered in 

finding the exact solution of an equation using a direct method and when it becomes very 

difficult or impossible to apply analytical methods to find the exact solution. Due to the 

advancement in the field of computational mathematics, numerical methods are most widely 

utilized to solve the equation arising in the field of applied medical science, engineering and 

technology. Science and technology develop many practical problems, such as the mathematical 

boundary layer theory or approximation of solution of various problems described by differential 

equations and almost all physical phenomena in nature are modeled using differential equations, 

and singularly perturbed problems are vital class of these kinds of problems. 

In real life, we often encounter many problems which are described by parameter dependent 

differential equations. The problems in which the highest order derivative term is multiplied by 

small positive parameters are known to be perturbed problems and the parameter is known as the 

perturbation parameter (Vasil’eva, 1976). The behaviors of the solutions of these types of 

differential equations depend on the magnitude of the parameters. The property that its solution 

is an integrating factor of the other is known as adjoint differential equation. A differential 

equation that has the same solution as its adjoint differential equation is called  self-adjoint 

differential equation and if it’s highest order derivative is multiplied by a small positive 

parameter, (0 1)   , which has the form: 

( ) ( ) ( ) ( ) ( )
d d

p x y x q x y x f x
dx dx


 

   
   

is called self-adjoint singular perturbation problem (Byme and Mishra, 2009). 
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Depending on the behavior of solution of the problem in the limiting case when perturbation 

parameter goes to zero, such types of problems can be categorized into two. They are regularly 

perturbed and singularly perturbed problems.  If the solution of the original problem tends to the 

solution of the reduced problem (i.e., the problem which is obtained by putting 0  in the 

original problem) as the perturbation parameter tends to zero, the problem is known as regularly 

perturbed otherwise, it is known as singularly perturbed.  Singularly perturbed problems arise in 

various branches of applied mathematics and physics such as fluid mechanics, quantum 

mechanics, elasticity, plasticity, semiconductor device physics, geophysics, optimal control 

theory, aerodynamics, oceanography, and mathematical models of chemical reactions (Firdous et 

al, 2016) and also in engineering, biology and lubrication theory (Kumar, 2012). 

Classical computational approaches to singularly perturbed problems are known to be inadequate 

as they require extremely large numbers of mesh points to produce satisfactory solutions (Roos 

et al., 1996; Farell et al., 2000). Detailed discussions on the theory of asymptotical and 

numerical solutions of singular perturbation problems have been published (Boglave, 1981), 

(Kadalbajoo and Kumar, 2008), (Mishra et al, 2009), (Gupta and Pankaj, 2011). So, the 

treatment of singularly perturbed problems presents several difficulties that have to be addressed 

to ensure accurate numerical solutions (Roos et al., 1996; Kadalbajoo and Kumar, 2010). 

Classical numerical methods which have been known to be effective for solving most problems 

that arises in application have failed when applied to singular perturbation problems, so most of 

these methods are not effective for solving singular perturbation problems because, as   goes to 

zero, the error in numerical solutions increases and often becomes not comparable in magnitude 

to the exact solutions (Farell et al, 2000). There are so many authors who have worked in the 

field of Self-adjoint singularly perturbed problems, Such as (Boglav, 1981); (Miller, 1979); 

(Mishra, 2009); (Kumar and Kadalbajoo, 2008); (Gupta and Pankaj, 2011)and (Gupta, 2011). A 

finite element method for solving self-adjoint singularly perturbed boundary value problem was 

presented by (Vukoslavcevic and Surla, 1996). Recently, scholars like Terefe et al., (2016)and 

Kalid et al., 2018 present’s fourth order stable central difference method for solving self-adjoint 

singularly perturbed problems, study of self-adjoint singularly perturbed two-point boundary 

value problems using collocation method respectively. Even if those authors that a considerable 

amount of work has been done for the development of numerical methods to solve the singularly 
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perturbed self-adjoint boundary values problem. Solving singularly perturbed problem is not 

simple as the solution of singularly perturbed problem depends on perturbation parameter   and 

mesh size h  (Doolan  et al., 1980).  

Due to this, numerical treatment of singularly perturbed boundary values problems needs 

improvement. Therefore, we present a numerical method which is independent of h or mesh size 

and relatively more accurate than other methods presented in the literature for solving self-

adjoint singularly perturbed boundary values problems for small values of perturbation 

parameter .  Convergence of the Galerkin method was presented. 

1.2. Objectives of the study 

1.2.1. General Objective 

The general objective of this study is to solve singularly perturbed self-adjoint boundary value 

problems using Galerkin method.   

1.2.2. Specific Objectives 

The specific objectives of the present study are: 

 To apply Galerkin method for solving   singularly perturbed self-adjoint boundary 

value problems. 

 To investigate the accuracy of the present method. 

 To establish convergence of the proposed method. 

1.3. Significance of the Study 

The outcomes of this study may help to introduce the application of numerical methods in 

solving problems arising in different field of studies and serve as reference material for scholars’ 

who works on this area. 
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1.4. Delimitation of the Study 

Singularly perturbed problems arise in verity of mathematical models in engineering and 

physical system. However, this study is delimited to solve singularly perturbed self-adjoint 

boundary value problems of the form: 

( ) ( ) ( ) ( ) ( )     for a
d d

p x y x r x y x z x x b
dx dx


 

     
      

 

subject to the boundary conditions: 

( ) ,       ( )y a y b            

where ( ) 0,   (0 1),p x p      is a small positive perturbation parameter and   are given 

constant and ( ), ( )p x r x and  z x  are assume to be sufficiently smooth functions on domain 

 , .a b  

1.5. Important definition of terms 

For any differential equations of the form:  

,   in .Ay z   

Linearity in A: Let S  be a space containing functions that are admissible over the domain 

( , ). Then,  ,  and  , ,a b S R         we must show that 

( ) ( ) ( ).A A A         

Adjoint of an operator: Let A be a linear differential operator and let   be its domain of 

definition. If 

*( , ) ( , ( , ) ,    )   ,A A A S          

holds, then *A is called the adjoint of A. 
*A is an adjoint operator. 
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Symmetric operator: Let A be a linear operator with its domain of definition ,  then A  is 

symmetric if 

( , ) ( , ),       ,A A S         

If we use the definition of the scalar product, the Symmetry of A  implies: 

( ) ( )  A d A d   
 

     

Self-adjoint operator: If an operator A is linear and symmetric, then it is self-adjoint. Thus, for 

self-adjoint operators we have: 

( ) ( ) ( ),   

( , ) ( , ),       ,   and  , R

A A A

A A S

     

       

  


      
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CHAPTER TWO 

REVIEW RELATED LITERATURE 

2.1. Boundary Value Problem 

A boundary value problem is a problem, typically an ordinary or partial differential equation that 

has values assigned on physical boundary of the domain in which the problem is specified. A 

boundary value problem for a given differential equation consists of finding a solution of the 

given differential equation subject to a given set of boundary conditions. Finding the numerical 

solution of a boundary value problem (BVP) is more difficult than that of the corresponding 

initial values problem. Difficulties in applying the asymptotic expansion outer region, which are 

not routine exercises but it require skill, insight and experimentation. 

2.2. Singularly Perturbed Boundary Values Problems 

The study of many theoretical and applied problems in science and technology leads to boundary 

value problems for singularly perturbed boundary value problems that have a multi scale 

characters. However, most of the problem cannot be completely solved by analytic techniques 

consequently, numerical simulation of fundamental importance in gaining some useful in sights 

on the solutions of the singularly perturbed differential equations (Kadalbajoo and Gupta, 2010) 

These singularly perturbed problems arise in the modeling of varies modern. Complicated 

processes, such as fluid flow at high Reynolds numbers, water quality problems in rivers 

networks, and convective heat transport problem with large peclet number drift diffusion 

equation of semiconductor device modeling, electromagnetic field problem in moving media. 

Spline approximation method for numerical solutions of singulary perturbed two-point boundary 

value problems have been studied by various researchers. Uzelac and Surla (2003) constructed a 

uniformly accurate scheme using collocation with classical quadratic polynomial splines on 

Shishkin meshes. Stojanovic (2006) introduced the spline collocation method for singular 

perturbation problem using piecewise quadratic interpolating polynomials as an approximate. 

Sakai and Usmani (1986) gave a concept of B-spline in terms of hyperbolic and trigonometric 

splines which are different from earlier ones.  
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It is proved that the hyperbolic and trigonometric B-splines are characterized by a convolution of 

some special exponential functions and a characteristic function on the interval [0,1].  Again 

Sakai and Usmani (1989), considered an application of simple exponential splines to the 

numerical solution of singular perturbation problem. They found that computational effort 

involved in their collocation method was less than that required for other exponential type 

splines. Kadalbajoo and Patidar (2002) derived uniformly convergent schemes of order two for 

these problems using splines in tension and splines in compression. (Kadalbajoo and Aggarwal 

,2005) gave the B-spline collocation method of order two with Shishkin mesh for self-adjoint 

singularly perturbed two-point boundary value problem. 

2.3. Finite Element Method 

The fundamental idea of the finite element method is to discretize the domain into several sub 

domains, or finite elements.  These elements can be irregular and possess different properties so 

that they form a basis to discretize complex structures, or structures with mixed material 

properties.  Further, they can accurately model the domain boundary regardless of its shape.     

The modern use of finite elements started in the field of structural engineering.  The advent of jet 

engine in the 1940 and the resulting changes in aircraft speeds had led to the change from 

upswept to swept wind designs.  The first attempt was by (Hrennikoff, 1941) who developed 

analogy between actual discrete elements and the corresponding portions of a continuous solid, 

and it was adapted to aircraft structural design.  Based on displacement assumptions, (Turner et 

al., 1956) introduced the element stiffness matrix for a triangular element, and together with the 

direct stiffness method, described the method for assembling the elements. Finite element 

method is mostly computed by different method such as, variational method, weighted residual 

method etc. 

2.4. Method of Weighted Residuals 

 Prior to development of the Finite Element Method, there existed an approximation technique 

for solving differential equations called the Method of Weighted Residuals (MWR). The 

weighted-residual method is the generalization of the Ritz method in that the weight function can 

be chosen from an independent set of functions, and it requires only the weighted integral form 
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to determine the parameters (Reddy.J.N., 2006). In applied mathematics, methods of weighted 

residuals are methods for solving differential equations. The solutions of these differential 

equations are assumed to be well approximated by a finite sum of test functions i . In such cases, 

the selected method of weighted residuals is used to find the coefficient value of each 

corresponding test function. The resulting coefficients are made to minimize the error between 

the linear combination of test functions, and actual solution, in a chosen norm. The Weighted 

residual method is illustrated on a simple one-dimensional problem. First the problem is given a 

general mathematical form that is relevant for any differential equation.  It is assumed that a 

problem is governed by the differential equation. This method will be presented as an 

introduction, before using a particular subclass of MWR, the Galerkin Method of Weighted 

Residuals, to derive the element equations for the finite element method. Galerkin methods 

provide a fairly general framework for the numerical solution of differential equations within the 

context of the weighted-residual formalization (Carey and Oden, 1983). 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Differential_equation


9 | P a g e  

 

CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period 

This study was conducted at Jimma University department of Mathematics from September 2017 

to September 2018 G.C. Conceptually, the study focus on numerical solution of singularly 

perturbed self-adjoint boundary values problems.  

3.2. Study Design 

The study employed mixed-design (document review design and experimental design). 

3.3. Source of Information 

The relevant sources of information for this study were books, published articles and related 

studies from internets and experimental results obtained by writing MATLAB code. 

3.4. Mathematical Procedures 

In one’s study, it is crucial to know where to go, how to go and what procedures to follow to 

achieve the target. Hence, in order to achieve the stated objectives, the following procedures 

were followed: 

1. Define the problem. 

2. Choose the approximation basis function which satisfies all the boundary conditions. 

3. Compute the residual. 

4. Choose the appropriate weighted function and integrate the weighted residual over domain 

and get the system of equations. 

5. Establish the convergence of the method. 

6. Writing MATLAB code for the scheme.  

7. Validate the scheme by using numerical examples. 

8. Present the numerical result in different forms. 
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CHAPTER FOUR 

DESCRIPTION OF THE METHOD, RESULTS AND DISCUSSION 

4.1. Description of the method 

Consider the following self-adjoint singularly perturbed equation of the form: 

( )
( ) ( ) ( ) ( )

d dy x
p x r x y x z x

dx dx


 
   

 
for a x b      (4.1) 

subject to the boundary conditions: for  

( ) ,       ( )y a y b          (4.2) 

where   (0 1),   is a small positive perturbation parameter,   and  zp x r x x( ), ( ) ( )  are assumed 

to be sufficiently smooth known functions on (a, b) ,  and   are known parameters. 

We find an approximate solution over the entire domain ( , )a b   in the form  

0

1

N

N j j

j

y c x x 


  ( ) ( )

       

(4.3) 

where jc are constant unknwon parameter to be determined and ( )
j

x and 0
( )x are basis 

functions chosen such that  the specified boundary conditions of the problem are satisfied by the 

N  parameter approximate solution N
y . The particular form in Eq.(4.3) has two parts, one 

containing the unknowns 
1

N

j j

j

c 


  that is termed the homogeneous part and the other is the non-

homogeneous part 0
 that has the main purpose of satisfying the specified boundary conditions of 

the problem. 

To apply the method, we choose the approximation basis function which satisfies the Eq. (4.2). 

For a choice of algebraic polynomials: 

We assume 0( )x c dx   and the two conditions on 0 to determine the constant c and d we obtain 
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                                    0 ( ) ( )a c d a c ad       
 

                                    
0 ( ) ( )b c d b d

b a


 
   





  

                                     
0 )( () c dx ad xx x a

b a
d

 


 
      



   

Therefore, 

0( ) ( )x x a
b a

 
 

 
   

 
       (4.4) 

Similarly, choose j  which satisfies the boundary conditions in homogeneous form. Since there 

are two homogeneous conditions, we must assume at least a three parameter polynomial to 

obtain a nonzero function.  

Let us assume   2

1 x m nx ex     

Using the conditions on 1( )x we obtain:  

  2

1

20 ( ) ( ) 0a m n a e a m an ea      
 

  2

1 0 ( ) ( ) 0 ( )b m n b e b n e b a       
 

  2 2 2

1 [( )[( ) ( )]]x m nx ex an ea nx ex e x a b a x a              
 

The constant e can be set equalto unity because it will be absorbed in to the parameter notation 1c .
  

 1 [( )[( ) ( )]]x x a b a x a             (4.5) 

For 2 ( )x we can assume one of the forms: 

3

2( )x m nx tx    or
2 3

2( )x m ex tx   
 
 

with 0t  ; 2 ( )x does not contain all-order terms in either case, but the approximate solution is 

complete because { 1 2,  } contains all terms up to degree three. 

Using conditions like 1  for 
2 3

2( )x m ex tx    we obtain:  
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22

2

33( ) 0 ( ) ( ) 0 m ea ta m e aa t a        
 

 

3 3
2 3

2 2 2
( ) 0 ( ) ( ) 0b m e b t

b a
e t

b a
b

 
         

 
 

Now,
2 2 2 3 3 2 3 3 2 2

2 3

2 2 2

[ ( ) ( )] [( ) ( )]
( )

a a b a b a x b a x b a
x m ex tx t

b a


       
      

 
 

The constant t can be set equalto unity because it will be absorbed in to the parameter notation 2c . 

Therefore, 

  
2 2 2 3 3 2 3 3 2 2

2 2 2

[ ( ) ( )] [( ) ( )]
( )

a a b a b a x b a x b a
x

b a


       
  

 
 (4.6) 

In the same way, choose 3( )x  which satisfies all the boundary conditions in homogeneous form  

For 3( )x  we can assume one of the forms: 

4

3( )x m nx gx    or 2 4

3( )x m ex gx    or
3 4

3( )x m tx gx    .
 

Using the conditions on 1( )x  and 2 ( )x for 
3 4

3( )x m tx gx    , we obtain; 

33 4

3

4( ) 0 0a m ta ga m ta ga         

4

3

4 4

3 3

3( ) 0 0b m tb gb t
b a

g
b a


 

   


  


 


  

Now,   
4 4 4 4

3 4 3 4 3 4

3 3 3 3 3
( )

b a b a
x m tx gx a g ga gx gx

b a b a


     
                

 

3 3 3 4 4 3 4 4 3 3

3 3 3

[ ( ) ( )] [( ) ( )]
( )

a a b a b a x b a x b a
x g

b a


       
   

 
 

The constant g can be set equalto unity because it will be absorbed in to the parameter notation 3c

Therefore, for the third choice 3( )x we obtain; 

3 3 3 4 4 3 4 4 3 3

3 3 3

[ ( ) ( )] [( ) ( )]
( )                                             (4.7)

a a b a b a x b a x b a
x

b a


       
   

 
   (4.7) 
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In generally, follow as a chosen above
 1 , 2 and 3 for, ( 1,2..., )j N  j is given as follows             

   1 ( )[( ) ( )]x x a b a x a      
 

2 2 2 3 3 2 3 3 2 2

2 2 2

[ ( ) ( )] [( ) ( )]
( )

a a b a b a x b a x b a
x

b a


       
  

 
 

3 3 3 4 4 3 4 4 3 3

3 3 3

1 1 1 1

[ ( ) ( )] [( ) ( )]
( )

                                                     

[ ( ) ( )] [( ) ( )]
( )

N N N N N N N N N N

N N N

a a b a b a x b a x b a
x

b a

a a b a b a x b a x b a
x

b a




   

       
   

 

       
   

 

  

for N is a positive integer. 

We choose a set of basis functions{ ,  1,2,..., },j j N  and make an approximation of the form 

of  Eq. (4.3)
0

1

N

N j j

j

y c x x 


  ( ) ( )

       

The basis functions can be polynomials functions, trigonometric functions or other functions. But 

in our case the basis functions are polynomial because polynomial functions are continuous, 

easily differentiable,integrable and suitable for programming. 

Weighted integral method (WIM) is a class of method used to obtain the approximate solution 

to the differential equations of the form 

 ,   in .Ay z          (4.8) 

To apply the WRM, we can approximate ( )y x of the differential equation in Eq. (4.8) in to ( )Ny x . 

When ( )Ny x  is substituted into Eq. (4.8), it is unlikely that the equation is satisfied. 

( ) 0NAy x z 
 

( )NR Ay x z  
       (4.9)

  

where R is residual. 
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Multiply Eq. (4.9) by an arbitrary weighted function ( )w x and integrating over the domain to 

force this integral to vanish over the given domain to obtain the unknown parameters: 

( ) ( ) 0w x R x d


         (4.10) 

In the weighted residual method, the unknown parameters 'sjc are determine by minimize the 

residual R  in some special cases. Different methods of minimizing the residual yield different 

approximate solutions. 

When the weight functions are chosen to be the basis functions themselves, then it is known as 

Galerkin method. We set 

  
,   i( ) ( ) 1,2,...,i ix Nw x 

      
(4.11) 

The unknown coefficients in the approximate solution are determined by setting the integral over 

  of the weighted residual to zero. 

For one-dimensional problem in the interval ( , ),a b  this procedure will result: 

( ) ( ) ( ) ( ) 0,  ( i 1,2,..., )

b b

i i

a a

x R x dx w x R x dx N      

The present method considers result in a system of equations of the form: 

0

1

( [ ]) 0
N

i j j

j

A c A z dx  


    

0[ ]j i j ic A dx z A d   
 

     

DC B         (4.12) 

where ,ij i jD A dx 


   0 ,i iB z A dx 


  D is matrices and a column vector .B  
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4.2. Convergence of the method 

Consider the following self-adjoint singularly perturbed equation of the form: 

       

( )
( ) ( ) ( ) ( )

d dy x
p x r x y x z x

dx dx


 
   

   

for a x b       

subject to the boundary conditions: 

( ) ,       ( )y a y b    

The weak form of the above problem is: 

( )
( ( ) ) ( ) ( ) ( )                            

b

a

b b

a a

d dy x
p x dx wr x y x dx wz x dx

dx dx
w 
 
 
 
       (4.13) 

By using integration by part 

  

( )
( ( ) )

b
b

a

b

a a

d dy x dy dw dy
p x dx p dx pw

dx dx dx dx dx
w   

 
   
 
 
  

    (4.14) 

Now substituting Eq. (4.14) in to Eq. (4.13) we get

( )
( ( ) ) ( ) ( ) ( )  ( ) ( )

b b

a a

b

aa

b
d dy x dy dw

p x dx wr x y x dx wz x dx p wr x y x dx
dx dx dx d

w
x

 
 

     
 

 
 
 

  
  

  

( )  

b
b

a a

dy
wz x dx pw

dx

 

  
 


 

Since the give boundary condition Dirichlet boundary condition assume that ( ) ( ) 0y a y b  . 

Therefore 0

b

a

dy
pw

dx

 

 
 

 

( ) ( ) ( )  

b b

a a

dy dw
p wr x y x dx wz x dx

dx dx

 

   
 
   

    ( , ) ( )B y w l w 
       (4.15) 
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The quadratic functional of the Eq. (4.15) is: 

   
1

( ) ( , ) ( )
2

I y B y y l y  , sin     ce y w then      

    
1

  
2

b b

a a

dy dy
p yry dx yzdx

dx dx

 

   
 

   

    

2

21

2

b b

a a

dy
p y r dx yzdx

dx

  

       
   

   

2

21
( ) 2

2

b

a

dy
I y p y r yz dx

dx

  

       
      (4.16) 

Similarly,  

2

21
( ) 2

2

b

N
N N N

a

dy
I y p y r y z dx

dx

  

       


     

(4.17) 

Now   

2 2

2 21 1
( ) ( ) 2 2

2 2

b b

N
N N N

a a

dy dy
I y I y p y r y z dx p y r yz dx

dx dx
 

       
                        

   

   

2 2

2 21
2 2

2

b

N
N N

a

dy dy
p y r y z p y r yz dx

dx dx
 
    

              
  

    
2 2

2 21

2

b b

N
N N

a a

dy dy
p p y r y r dx z y y dx

dx dx
 
    

              
   (4.18) 

since
( )

( ) ( ) ( ) ( )
d dy x

z x p x r x y x
dx dx


 

   
         

  ( ) ( )

b b

N N

a a

d dy
z y y dx p ry y y dx

dx dx


 
     

 
       
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  ( ) ( ) ( )

bb

N N N

a a

dy d dy
p y y ry y y dx p y y

dx dx dx
 
   

        
   
     (4.19) 

Substitute Eq. (4.19) in to Eq. (4.18) we get: 

  

2 2

2 21

2

( ) ( ) ( )

b

N
N

a

bb

N N N

a a

dy dy
p p y r y r dx

dx dx

dy d dy
p y y ry y y dx p y y

dx dx dx

 

 

    
          

   
        

   





 

2 2 2

2 2 21 1 1 1

2 2 2 2

b

N N
N N

a

dy dy dy dy dy
p p y r y r p p ry ryy dx

dx dx dx dx dx
   

      
                    
  

2 2

2 21 1 1 1

2 2 2 2

b

N N
N N

a

dy dy dy dy
p p y r y r p ryy dx

dx dx dx dx
  

    
              
  

 
2 2

2 21
2 2

2

b

N N
N N

a

dy dy dy dy
p p p r y yy y dx

dx dx dx dx
  
    

              
   

 
2

21 1
0

2 2

b

N
N

a

dy dy
p r y y dx

dx dx


  
         
      

  
( ) ( ) 0NI y I y    ,  

( ) ( )NI y I y 
        (4.20) 

Therefore,  convergence of energy of the approximate solution to the exact solution is from the 

above and the exact solution minimizes the energy.The data of the problem is sefficiently 

contineues,diffireantiable and integrable.This guarantees convergence of the method.  
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4.3. Numerical Examples 

To demonstrate the applicability of the methods, two model self-adjoint singularly perturbed 

problems have been considered. These examples have been chosen because they have been 

widely discussed in the literature and their exact solutions were available for comparison. 

Example 1: Consider the singularly perturbed problem: 

2 2((1 ) ) (1 ) ( ),    0 1     with    (0) (1) 0x y y x x y f x x y y           
 

2 2

1

2 2

where   ( ) 1 (1 ) [ (2 3 1) (2 (2 (1 ) 1)]

                       [ (2 1) (2 (2 1)]

x

x

z x x x e x x x x x

e x x x x





 

 

 
 
 

 
 
 

         

    

 

The exact solution is given by: 

1

( , ) 1 ( 1)

x x

y x x e xe 

    
   

      
 

The numerical solutions in terms of maximum absolute errors are given in Tables 4.1-4.2 and 

figures 4.1– 4.2. 

Example 2: Consider the singularly perturbed problem: 

  

2(1 ) ( ),    0 1     with    (0) (1) 0y x x y f x x y y         
 

1

2 2 3 2where ( ) 1 (2 ) (2 (1 ) )

x x

z x x x x x e x x e  

    
   
             

The exact solution is given by: 

1

( , ) 1 ( 1)

x x

y x x e xe 

    
   

      
 

The numerical solutions in terms of maximum absolute errors are given in Tables 4.3-4.5 and 

figures 4.3– 4.4. 
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Table 4.1: Maximum absolute errors of example 1 for different order of base function 

           Order 3                Order 5                        Order 7                                     Order 9    

   2
0                         

8.1767x10
-6                       

1.0615x10
-8                       

2.864x10
-7 

                   8.6945x10
-4

 

   2
-3

    7.0081x10
-4

    7.8164x10
-6      

           5.2035x10
-8

             5.8425x10
-8

 

   2
-5

    7.5765x10
-3

    3.1996x10
-4                      

8.1669x10
-6

             5.4286x10
-7

 

   2
-7

    4.8755x10
-2

    5.6437x10
-3                       

4.8615x10
-4

             3.0480x10
-5

 

   2
-9

    1.8217x10
-1

    4.9736x10
-2                       

8.9656x10
-3

             1.6241x10
-3

 

   2
-11

    3.9651x10
-1

    1.8364x10
-1                       

4.8905x10
-2

             2.1081x10
-2

 

 

Table 4.2: Maximum absolute errors for example 1for 16n   (using ninth order base function) 

      Present  method                        Terefe et al.,2016     

    2
-4

        5.9456x10
-8

    5.85x10
-4 

    2
-5

        5.4286x10
-7

  8.57x10
-4 

    2
-6

        2.5381x10
-6  

   9.58x10
-4 

    2
-7

        3.0480x10
-5

     1.29x10
-3

 

    2
-8

        2.6089x10
-4  

   1.65x10
-3 

    2
-12

        4.3854x10
-2

     3.76x10
-2 

    

Table 4.3: Maximum absolute errors of example 2 for different order of base function 

            Order 3                Order 5                        Order 7                                     Order 9    

   2
-2                       

1.7321x10
-4                      

9.7792x10
-7                       

3.4644x10
-9 

                 3.1349x10
-7

 

   2
-4

    2.4999x10
-3

    5.4650x10
-5      

           7.1434x10
-7

             5.9456x10
-8

 

   2
-6

    1.9313x10
-2

    1.4944x10
-3                      

7.3215x10
-5

             2.5381x10
-6

 

   2
-8

    1.0077x10
-1

    1.7969x10
-2                       

2.4117x10
-3

             2.6089x10
-4

 

   2
-10

    2.8574x10
-1

    1.0700x10
-1                      

2.3994x10
-2

             7.1512x10
-3

 

   2
-12

    4.9550x10
-1

    2.6125x10
-1                       

8.6681x10
-2

             4.3854x10
-2
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Table 4.4: Maximum absolute errors for example 2 for 16n   (using ninth order base function) 

               Present method                                                              Terefe et al., 2016     

      1/8                 5.9456x10
-8

                                           1.424x10
-6

  

      1/16                  5.9456x10
-8

                                           4.148x10
-6

  

      1/32                  5.4286x10
-7

                                           9.622x10
-6

  

      1/64                  2.5381x10
-6

                                           3.074x10
-4

  

1/128                  3.0480x10
-6

                                           1.301x10
-4

  

1/256                  2.6089x10
-4

                                           5.910x10
-4

  

 

Table 4.5: Maximum absolute errors for example 2 for 32n   (using ninth order base function) 

                   Present method                                         Khalid et al., 2018  

        1                                    8.36x10
-7                                                                    

3.92x10
-9

 

      1/10                         7.9975x10
-8

        8.86x10
-7

 
 

  1/100                     1.2940x10
-5

                        1.77x10
-5

  

        1/1000                     6.8420x10
-3

                        4.05x10
-4
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Figure 4.1: Numerical solution of Example 1 when
112   and 32.n   

 

Figure 4.2: Numerical solution of Example 1 when
1 1 1 1
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Figure 4.3: Numerical solution of Example 2 with 
122   and 32.n   

 

Figure 4.4: Numerical solution of Example 2 when
1 1 1 1
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4.4. Discussion 

In this thesis, numerical solution of self–adjoint problems using Galerkin method have been 

presented for solving singularly perturbed second order boundary value problems. The numerical 

results have been presented in Tables 4.1 – 4.5 for different order of the basis of the polynomial 

and different values of perturbation parameter 𝜀. The results obtained by the present method have 

been compared with the numerical results obtained by Terefe Asrat et al., 2016 and Kalid et al., 

2018 from literature. As it can be observed from the tables that the methods presented in this 

thesis approximates the exact solution better than the methods proposed by Terefe Asrat et al., 

2016 and and Kalid et al., 2018. Similarly, the figures (fig. 4.1– 4.4) shows that as the order of 

the basis function increases, the proposed method approximates the exact solution very well 

independent of h  which makes the present method different from other existing methods. 

Moreover, all the maximum absolute errors decrease rapidly as the order of the basis function 

increases. Finally, the theoretical error bounds have been established for Galerkin methods in 

energy norm. 
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

The Galerkin method is developed for the approximate solution of a second order singularly 

perturbed self-adjoint boundary value problems with Dirichlet boundary conditions. The method 

has been proved to be first order convergent in energy norm. Two examples are considered for 

numerical illustration of the method. Our numerical result is better than other method proposed 

Terefe Asrat et al., 2016 and Kalid et al., 2018 from literature. As the order increase the 

numerical solution approach to the exact solution and as paraturbation parameter is very small 

numerical soluton is far from the exact solution. In concise manner, the present methods are 

conceptually simple, easy to use and readily adaptable for computer implementation for solving 

singularly perturbed self-adjoint boundary value problems. 

5.2. Scope for Future Work 

In the present thesis, the numerical methods using Galerkin method with polynomial basis 

function was constructed for solving singularly perturbed second order self-adjoint boundary 

value problems. Hence, the schemes proposed in this thesis can also be extended to higher order 

for singularly perturbed boundary value problems or one can change the basis function in to 

trigonometric, Fourier or other to increase the accuracy. 
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Appendix 

For any differential equations of the form:  

,   in .Ay z   

Linearity in A: Let S  be a space containing functions that are admissible over the domain 

( , ). Then,  ,  and  , ,a b S R         we must show that 

( ) ( ) ( ).A A A         

Proof: We show linearity:  ( ) ( ) ( )A A A         

   ( ) ( ( ) ) ( )
d d

A p x r x
dx dx

    
 

     
 

 

    ( ( ) ) ( ) ( ) ( ( ) ) ( ) ( )
d d d d

p x r x p x r x
dx dx dx dx

   
   

        
   

 

    ( ( ) ) ( ) ( ) ( ( ) ) ( ) ( )
d d d d

p x r x p x r x
dx dx dx dx

     
   

        
   

 

    ( ( ) ) ( ) ( ( ) ) ( )
d d d d

p x r x p x r x
dx dx dx dx

 
     
   

        
   

 

    = ( ) ( )A A     

Hence the operator A  defined by ( ( ) ) ( )
d d

A p x r x
dx dx

   is linear. 

Adjoint of an operator: Let A be a linear differential operator and let   be its domain of 

definition. If 

*( , ) ( , ( , ) ,    )   ,A A A S          

holds, then *A is called the adjoint of A 

Proof. ( ( ) ) ( )
d d

A p x r x
dx dx

    
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   ( , ) ( ( ( ) ) ( ) )

b

a

d d
A p x r x dx

dx dx


        

    
( ( ( ) ) ( ) )

b

a

d d
p x r x dx

dx dx


      

    ( ( ( ) ) ) ( )

b b

a a

d d
p x dx r x dx

dx dx


         (1) 

Using integration by part ( ( ( ) ) )

b

a

d d
p x dx

dx dx


   

let ,     , ( ( ) ),  v= ( )
d d d d

u du dx dv p x p x
dx dx dx dx

  
        

( ( ( ) ) ) ( ) ( )

bb b

a a a

d d d d d
p x dx p x dx p x

dx dx dx dx dx

   
    

 
   

 
    (2) 

Again using integration by part: 

( ) ( ( ) ) ( )

bb b

a a a

d d d d d
p x dx p x dx p x

dx dx dx dx dx

   
    

   
     

   
    (3) 

Substitute Eq.(3) in to Eq.(2) we get:   

( ( ( ) ) ) ( ( ) ) ( ) ( )              (4)

bb b

a a a

d d d d d d
p x dx p x dx p x p x

dx dx dx dx dx dx

   
       

   
       

   
 

 Again substitute Eq.(4) in to Eq.(1) we get: 

  

( ( ) ) ( ) ( ) ( )            

bb

a a

d d d d
p x r x dx p x p x

dx dx dx dx

  
      
   

       
   


 

 
 

* ( , ) ,     ,  ( ) ,A A S       
*  ( ( ) ) ( )

d d
where A p x r x

dx dx
  

( ) ), (( )

b

a

d d
p x pA x

dx dx

 
     

 
 

 
 and

*A A  then 
*A is adjoint of A .
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Here ( , )A  
is called the concomitant, and it is only a symbol that represents the boundary 

terms that are obtained in the process of moving operator A  from   to operator *A  on  . 

Thus, the concomitant is a collection of boundary terms obtained as aconsequence of integration 

by parts. 

Symmetric operator: Let A be a linear operator with its domain of definition ,  then A  is 

symmetric if 

( , ) ( , ),       ,A A S         

If we use the definition of the scalar product, the Symmetry of A  implies: 

( ) ( )  A d A d   
 

     

Symmetric property;  ( , ) ( )

b

a

A A dx      

    ( ( ( ) ) ( ) )

b

a

d d
p x r x dx

dx dx


      

    ( ( ( ) ) ( ) )

b

a

d d
p x r x dx

dx dx


      

    ( )

b

a

A dx    

    ( , )A   

Hence the operator A is symmetric. 
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