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ABSTRSCT 

In this thesis, Crank-Nicolson with Hockney's method  is presented for solving Two dimensional 

Heat equation in polar coordinates system. First the given partial differential equation  of two 

dimensional heat equation  in polar coordinates  system is converted into equivalent linear 

equation using Crank-Nicolson approximation .By extending Hockney's method the linear 

equation is reduced in to main and sub diagonal  system which can be solved using  Thomas 

algorithm. To validate the applicability of the proposed method two model examples with exact 

solution have been  solved. The result presented in tables show that Crank-Nicolson with 

Hockney's method is faster than Crank-Nicolson method in computational time. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the study 

The Limitation of analytical method in practical application is led Mathematicians and other 

scientist to evolve numerical methods. It is clear that exact method often fail in drawing 

reasonable inference from a given set of tabulated data or in finding solution for different 

equation. There are many situations where analytical methods unable to produce desirable 

results. Even if analytical solutions are available, these are not amenable to direct numerical 

interpretations (Goyal, 2007). 

Numerical analysis is a branch of mathematics concerned with theoretical foundations of 

numerical algorithms for the solution of problems arising in scientific applications, Wasow, 

(1942). In real life, we often encounter many problems described by second order elliptic, 

parabolic and hyperbolic partial differential equations. A wide variety of parabolic partial 

differential equations are used in engineering and science. Some of the most common ones are 

the diffusion equation and the convection-diffusion equation. The diffusion equation applies to a 

problem in mass diffusion and Heat diffusion (conduction),etc. The convection-diffusion 

equation applies to a problem in which convection occurs in combination with diffusion. For 

example, fluid mechanics and heat transfer. The heat equation is an important parabolic partial 

differential equation which describes the distribution of heat (variation in temperature) in a given 

region over time.  

                Heat equation in polar Coordinates System. 

we want to solve a partial differential equation (PDE) on the domain  whose shape is a 2D disk, 

it is much more convenient to represent the solution in terms of the polar coordinates system than 

in terms of the usual Cartesian coordinate system. In this case we are going to derive Heat 

equation in polar coordinates system in detail. Recall that Heat equation in 2R in terms of the 

usual (i.e. Cartesian) (x, y)coordinates system is;  

                     
2 2

2 2 t xx yy

u u u
u u u

t x y

  
    

  
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The Cartesian coordinates can be represented by the polar coordinates as follows; 

                                
cos

sin

x r

y r









 

lets us first compute the partial derivatives of x, y w. r. t ,r   

                            

cos , sin

sin , cos

x x
r

r

y x
r

r

 


 


 
   


   

 

 

To do so, let's  compute 
u

r




 first .We will use the Chain rule since (x, y) are functions of  ,r   

as shown in the above. 

          cos sin cos sin
u u x u y u u u u

r x r y r x y x y
   

        
     

        
 

Now, let's compute  
2

2
.Noticing that both and arefunctionof ,

u u u
x y

r x y

  

  
  

then  we have, 

2 2 2
2 2

2 2
cos 2cos sin sin

u u u

x x y y
   
  

  
   

 

Similarly, let's compute  

2

2
cos sin sin cos

cos sin sin cos

u u u u u
r r r

x x y y

u u x u y u u x u y
r r r r

x x x y x y x y y y

   
  

   
   

      
    

      

                
         

                
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2
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u u u u x u y u x u y
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   

                   
        
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2 2 2 2

2 2
cos sin ( sin ) cos sin cos ( sin ) cos

u u u u u u
r r r r r r r r

x x x y y x y y
       
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Then the  two dimensional heat equation in polar coordinate system is given by ,

 
2 2

2 2 2

1 1u u u u

t r r r r 

   
  

   
0t  on D, 

 where D is a domain ,we write D in two cases as 

  

  
1 0 1 0 1 0 1

2 0 1

) , : , , 2

) , : ,0 2

a D r R r R

b D r R r R

      

  

       

    
 

U describes the temperature at a given location (r,  ), this function will change over a time as  

        heat spread through space. 

u

t




is  the rate of change of temperature at a point over time. 

u

r




is the first order partial differential derivative of temperature in r direction. 

2 2

2 2

u u
and

r 

 

 
are second order partial differential derivative of temperature (thermal 

conduction) of temperature in (r,  ) direction respectively. 
 For time dependent problems considerable progress finite difference  method was made during 

the period of  the second world war, when large scale practical applications become possible 

with the aid of computers. Hence, in the recent time, many researchers have been trying to 

develop numerical methods for solving two dimensional parabolic (heat) equations, 
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Daoud(2014),presented additive splitting up scheme to solve multidimensional parabolic 

equation. Xiao-Liang(2010) developed  in his research  the  scheme of Iterative method for 

forward-backward heat equation in two dimension. Jimn Liang Liu (1991)presented  A Galerkin 

method  for forward-backward  heat equation in two dimension. Shan Zhaho (2007) presented A 

matched alternating direction implicitly method  to solve heat equation  with  interface. Shan 

Zhaho (2010) presented A specially second order implicitly method to solve three dimensional 

heat equation.   Jim Do galas .J.R (1955) presented  integration by implicitly method to solve two 

dimensional heat equation and other several attempts have  been made to solve the two 

dimensional heat equation in particular for physical problems that are related directly or 

indirectly to this equation. To get alternative numerical solution, this study presents Crank-

Nicolson  method for solving two dimensional heat equation in polar coordinate system. The 

method of Crank-Nicolson  with Hockney's powerful numerical techniques that has been used to 

obtain highly accurate numerical approximation  of solutions of partial differential equations 

with small computational effort.Even if many Different methods are used by different 

researchers to approximate the solution of Heat equation, in this paper  we  used Crank-Nicolson 

method to  find alternative numerical solution of heat equation in two dimension in polar 

coordinate system. Since no one goes through this   numerical method. . 

1.2 Statement of the problem 

The numerical solution of heat equation in two dimension has an important  applications in many 

fields of science, engineering and Technology. The increasing desire for the numerical solutions 

to mathematical problems, which are more difficult or impossible to solve explicitly, has become 

the present- day scientific research. Thus this shows the importance and application of numerical 

methods to solve problems in real life. The numerical method used to find approximate solution 

of systems of linear equations has an impressive importance due to its wide applications in 

scientific and engineering researchers. Even though many numerical methods were applied to 

solve these type of equations, still it needs treatment to obtain fast and accurate solution for two 

dimensional heat equation in polar coordinates system. So, in this case Crank-Nicolson with 

Hockney's  method is  used to find approximate solution of the two dimensional Heat equations 

in polar coordinate system.  Hence, the present study attempt  to answer the following basic 

questions. 
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 the present method over the  Cranck-Nicolson method. 

1.4. Significance of the Study 

1. The results obtained in this study may help: How do the present method be described for 

Heat Equation?       

2. To what extent the proposed method is efficient?  

3. What is the advantage of the proposed method over Crank-Nicolson ? 

1.3. Objectives of the study  

1.3.1. General Objective 

The general objective is to find the numerical solutions of two dimensional heat equation in polar 

coordinates system when r=0  is in the interior or a boundary point of the domain 

1.3.2. Specific Objectives 

The specific objectives of the present study are: 

 To find the numerical solution of  two dimensional  heat equation in polar coordinates system 

using  Crank-Nicolson with Hockney's method. 

 To investigate the efficiency of the proposed method.  

To describe the advantage of 

 To introduce the application of numerical methods in different field of studies. 

 Serve as a reference material for scholars who works on this area. 

1.5. Delimitation of the Study 

This study is conducted under the stream of numerical analysis and since Heat equation are vast 

topics and have many applications in the real world. However, this study is delimited to the two 

dimensional Heat Equation in polar coordinates system of the form;  

2 2

2 2 2

1 1u u u u

t r r r r 

   
  

   
for 0t  ,on , where D  is a domain i.e.  

  

  
1 0 1 0 1

2 0 1

) , : , ,0 2

) , : ,0 2

a D r R r R

b D r R r R

     

  

      

    
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

   Due to the advancement in the field of computational mathematics numerical methods are 

mostly utilized to solve equations arising in applied science, engineering and technology. 

Numerical analysis is brunch of mathematics concerned with theoretical foundation of numerical 

algorithms for solutions of problems arising in scientific applications and that deals with the 

computational methods which help to find approximate solutions for difficult problems such  as 

finding the roots of non-linear equations, integrations involving complex expressions and solving 

differential equations for which analytical solution does not exist.  

2.1  Finite Difference Method 

The Finite Difference theory for general initial value problems and parabolic problems then had 

an intense period of development during 1950s and 1960s when the concept of stability was 

explored in the lax equivalent theory and the Kreiss matrix lemmas. Independently of the 

engineering applications a numbers of papers appeared within mathematical literature in the mid-

1960s which were concerned with Rayleigh-Ritz procedure with piecewise linear approximating 

functions 

The Finite Difference Method is a numerical Procedure Which solves a Partial Differential 

Equations  by discretizing  the continuous physical domain in to a discrete finite difference grid, 

approximating the individual exact partial derivatives  in the partial differential equation by 

Algebraic Finite Difference Approximations .substituting the Finite  Difference  Approximations  

in to partial differential equation to obtain an algebraic finite difference equation, and solving the 

resulting algebraic finite difference equation for the dependent variable . This Method is used to 

discretizing a parabolic partial equation ,Islam,M.R and Alias,N.(2010).They presented a 

mathematical simulation models using one dimensional parabolic equations.  

2.2  Crank-Nicolson method 

Crank-Nicolson method for solving parabolic partial differential equations was developed by 

John Crank and Phyllis Nicolson in (1947).A practical method for numerical evaluation of  

partial differential equation of Heat conduction way considered. In numerical analysis the Crank-

Nicolson method is a finite difference method used for numerical solving heat equation and 
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similar partial differential equations which is a second- order method in time. according to this 

method the second order partial differential equation  is replaced by average of the central 

difference on the n
th

 and (n+1)
th 

time rows. Crank-Nicolson's main work was on the numerical 

solution of partial differential equations and in particular, the solution of heat  -conduction 

problems.  

2.3  Partial Differential Equation 

A partial differential equation is an equation starting a relationship between a function of two or 

more independent variables and the partial derivatives of this function with respect to these 

independent variables. Rechard Hambeman(1989). These equations arise in all fields of 

engineering and science .Most real physical processes are governed by partial differential 

equations. In many cases, simplifying approximations are made to reduce the governing partial 

differential equation to ordinary differential equations or even to algebraic equations, 

Pinsky.M.(1991). engineers and scientist are more  and more  required to solve the actual partial 

differential equations that govern the physical problem being investigated. This equation 

involves derivatives of unknown functions with respect to several variables. It form the basis of 

many mathematical models of physical, Chemical and Biological  phenomena and  more recently 

the use of partial Differential Equation has spread  in to Economics, financial  forecasting , 

image processing and other fields Rezzola,(2011).To investigate the predictions of partial 

differential equation models of such phenomena  often necessary to approximate their solution 

numerically. Commonly in combination with analytical solutions of the simple special cases 

while in some of recent instance the numerical models play almost independent role. The 

terminology, elliptic, parabolic and hyperbolic chose to classify partial differential  equations 

reflects the analogy between the form of the discriminates 
2 4B AC  which  classify   the linear 

second order partial differential equation given by sections are described by. 

0xx xy yy x yAU BU CU DU EU F       

The type of curve represented by the above  equation depends on the sign of discriminate

2 4B AC .Then if 
2 4 0B AC   then  the  equation is Elliptic partial Differential Equation ,if  

2 4 0B AC   then the equation is parabolic partial Differential Equation and   if 
2 4 0B AC 

then the Equation is hyperbolic partial Differential Equation. 
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The classification of  partial differential equation is  intimately related to the characteristic of the 

partial differential equations. Characteristics are (n-1)-dimensional hyper surface inn-

dimensional hyperspace that have some  feature. The prefix hyper is used to denote spaces of 

more than three dimensionals,that is xyzt spaces, and curves and surfaces within those space .In 

two dimension  spaces, which is the case  considered here, characteristics are path(curved, in 

general) in the solution domain along which information propagates. In other words, information 

propagates throughout the solution domain along  the characteristics paths.Discontinuites in the 

derivatives of the dependent variable(if they exist)also propagate along the  characteristic path. If 

a partial differential equation possesses real characteristics, then information passes along this 

characteristics. if no real characteristics then the information exist then there  is no   preferred 

path of information propagation. consequently, the presence or absence of characteristics  has a 

significant impact on the solution of  partial differential(by both analytical and numerical 

method)   

2.4  Heat  Equation 

The Heat equation is fundamental in diverse scientific  fields . Jean Baptiste Fourier(1768-1830) 

was first  formulate the transient of Heat conduction described  by partial differential equation 

and presented as a subscript to the institute of France in 1807.At the time this manuscript was 

prepared ,thermodynamics ,potential theory and differential equations were all in the initial stage 

of  their formulation. By Fourier's law ,the flow rate of heat energy through the surface is 

proportional to the negative temperature gradient across the surface. Cannon(1984) first derived 

heat equation  from Fourier's Law and conservation of energy. The  diffusion equation is the 

more general of  the heat equation arises in connection with the study of chemical diffusion and 

other related processes.  

The Heat equation is parabolic partial differential equation that describes the distribution of heat 

(variance in temperature) in a given  region over time. One of the interesting properties of Heat 

equation is the maximum principle which says that the maximum value temperature at the given 

location ( u) is either in time than the region of  concern or an edge of the region of the concern, 

This is essentially saying that temperature comes either from some sources or from earlier in 

time because heat permeates but is not created from nothingness. This is  a properties of 

parabolic differential equation.  It predicts that if a hot body is placed in a cylinder of cold water 
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,the temperature of the body will decrease ,and eventually (after infinite time, and subjected to no 

external heat source)the temperature  in the cylinder will equalized. In other hand if the 

temperature is constant no heat energy flow,  if there are temperature difference, the heat energy 

flow from hotter region to the cold region, the greater  temperature difference(for the same 

material ), the greater is the flow of heat energy, the flow of heat energy will vary for different 

material even with the same temperature, Dassio.G and  Fokas,A.(2008).In many engineering 

applications finding the solution of  various heat conduction problems is fundamental 

importance, Example including heat exchanger, mathematical finance, in particular after 

transforming the Black-scholes equations in to heat equation, and various Chemical and 

Biological systems, including  diffusion and transportation problems.Thus,due to its importance, 

many different numerical techniques have been developed for calculation heat flow.Many 

researchers have been trying to develop numerical methods for Solving Heat equation..For 

example,  Borjin,M.U and Mbow.C.(1999).developed  Numerical analysis  of combined 

radiation and unsteady natural convection with Horizontal annular space .for Heat and fluid flow 

Fukagata.K and  Kasagi.N (2003)presented ,Highly energy- conservation finite Difference 

method   to solve heat equation in the cylindrical coordinate system, Jinn-Liangliu.(1991)found 

numerical  solution by  Using A Galerkin Method for a forward-backward two dimensional heat  

equation,  Lyengar S.R.K ,and Manor .R(1988)where developed, High-Order Difference Method 

to solve Heat Equation  in polar and cylindrical coordinates, Verzicco.R and Orland.P.(1996)  

were presented, A finite Difference  scheme for the three-dimensional heat flows  in cylindrical 

coordinates , Zhihan Wel .(2007),was used Second order alternating direction implicitly  Method 

for  solving the  three dimensional parabolic(heat) interface problems. In mathematics it is  

parabolic partial differential equation . In statistics, the Heat equation is connected with the study 

of Brownian motion. It applies to problems in mass diffusion ,heat diffusion (i.e. 

conduction),neutron diffusion ,electron static, in viscid incompressible fluid flow etc.. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Study Site 

This study is conducted in Jimma University under the department of Mathematics from 

September 2010 E. to  November 2011 E.C. Conceptually, the study focus on  Crank-Nicolson 

with Hockney's Method for solving Two Dimensional Heat Equations in  Polar coordinates 

system  

3.2. Study Design 

This study  employed mixed-design (documentary review design and experimental design) on 

Numerical solution of the two dimension Heat equation in polar coordinate system. 

3.3. Source of Information 

 The relevant sources of information for this study are books, published articles & related studies 

from internet and the experimental result will be obtained by writing MATLAB code.  

3.4. Study Procedures 

In order to achieve the stated objectives, the study is followed the following steps 

1. Defining the problem, 

2. Discretizing the region/ domain 

3. Describing the method used and obtain the scheme. 

4. Reduce the obtained  scheme by extending Hockney's method in to main and sub diagonal 

system which can be solved by appropriate method for solving system of equation.   

5. Writing MATLAB code for the  system obtained, 

6. Validating the schemes by using numerical examples. 
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CHAPTER FOUR 

DESCRPTION OF THE METHOD, RESULTS AND DISCUTION 

4.1. Description of the Method.  

 For 0r      

 Consider  the two dimensional Heat equation in polar coordinates system  of the form 

2 2

2 2 2

1 1u u u u

t r r r r 

   
  

   
0t  ,on D , where D  is the domain i.e.                               (4.1)

  

  
1 0 1 0 1

2 0 1

) , : , ,0 2

) , , 0 2

a D r R r R

b D r R r R

     

  

      

    
 

Assume that there are m points along the  r  direction and n points along the   direction to form 

mesh points and let the step size along the direction of r be r and along the direction of    be

 ,then  

0 0,i jr r i r j       
                                                                                                (4.2)

  

By using Crank-Nicolson scheme, we have the derivative of the given equation is replaced by 

average central difference approximation on n
th

 and(n+1)
th

 times row

2 1 1 1

1, , 1, 1, , 1,

2 2

2 2

2

n n n n n n

i j i j i j i j i j i ju u u u u uu

r r

  

       


   

1 1 12
, 1 , , 1 , 1 , , 1

2 2

2 2

2

n n n n n n

i j i j i j i j i j i ju u u u u uu

 

  

       


 

1 1 1

, , 1, 1, 1, 1,1
,

2 2 2

n n n n n n

i j i j i j i j i j i ju u U U U Uu u
and

t t r r r

  

   
    

   
      

                                                   

(4.3) 

substituting   equation 4.3 in to equation 4.1 we obtain 

1 1 1 1 1 1

, , 1, 1, 1, 1, 1, , 1, 1, , 1,

2

1 1 1

, 1 , , 1 , 1 , , 1

2 2

2 21

2 2 2 2( )

2 21

2 ( )

n n n n n n n n n n n n

i j i j i j i j i j i j i j i j i j i j i j i j

n n n n n n

i j i j i j i j i j i j

U U U U U U u u u u u u

t r r r r

U U U U U U

r 

     

       

  

   

          
              

     
  



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Let, 
2 24 2( ) 2( )

t t t
a b and c

r r 

  
  

  
 

substitute in the above equation ,we get        

 

     

1 1 1 1 1

1, , 1 , 1 , 1, 1,2 2

, , 1 , 1 1,2 2

2
( ) ( 1 2 )

2
(1 2 ) ( ) 0

i

n n n n n n

i j i j i j i j i j i j

i i i i

n n n n

i j i j i j i j

i i i

a c c a a
b U U U b U b U b U

r r r r r

c c a
b U U U b U

r r r

    

    

  

    
               

    

 
        

 

               ( 4.4) 

For 0 intriororboundarypoint in thedomain.r    

Consider two dimensional Heat equation in polar coordinate system of the form of

 
2 2

2 2 2

1 1
for 0

u u u u
t

t r r r r 

   
   

   
on D ,                                                                  (4.5) 

where D is the domain i.e. 

  

  
1 0 1 0 1

2 0 1

) , : , ,0 2

) , ,0 2

a D r R r R

b D r R r R

     

  

      

    
 

Assume that there are m points along r direction and n points along   direction to form mesh 

points and let the step size along the direction of r be           the direction of    be  ,then 

0 0,i jr r i r j       
                                                                                                       (4.6)

 
If r=0 is an interior point or boundary point, the numerical solution of this equation because of 

the factors
1

r
 and 

2

1

r
in the equation needs special attention. So we develop a Crank-Nicolson 

approximation scheme when 0r  and when 0r   is an interior point or a boundary point, we 

take a different approach to use a finite difference approximation scheme. to solve the result 

large algebraic system of linear equations. when 0r   in the equation(4.4),the heat equation is 

singular and to obtain the solution we need a difference  equation  which is valid at this point. 

As r  0  ,by L.Hospital rule.
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2 20 0 00

( ) ( )
lim lim lim lim (4.7)

( ) ( ) 2

r r rr
rr

r r rr

u d u u d u U
u and

r d r r d r

  

  

   

  

substituting equation(4.7) in to (4.5) we  get, 

         
2 4t rr rru u u  

                                                                                                                (4.8)
 

By using Crank-Nicolson approximation scheme, we have the derivative of the given equation is 

replaced by average central -difference  approximation on n
th

 and( n+1)
th

 times rows. 

 

1 1 1 1

, , 1, , 1, 1, , 1,

2

2 2
2 2( ) 4 4( )

2

n n n n n n n n

i j i j i j i j i j i j i j i j

t rr

u u u u u u u u
u u

t r

   

        
 

 
 

1, , 1,

2

2

( )

n n n

i j i j i j

rr

u u u
u

r




 
  

                                                                                                         (4.9)

 

1 1

1 1

sin 0, 0

0
2

r

n n

i j i j n n

r i j i j

ce r U

U U
U U U

r

 

 

  


    



 

substituting, the above in to equation (4.9) we get, 

 
1, ,

2
2

n n

i j i j

rr

u u
u

r





 
 
  

 

then equation(4.5) can be written us 

   

1 1 1

, , 1, , 1, , 1, ,

2 2
2 4 2

n n n n n n n n

i j i j i j i j i j i j i j i ju u u u u u u u

t r r


  

  
        
                                                                 (4.10)

 

Now let apply Crank-Nicolson approximation. 

1 1 1

1, 1 1, 1. 1 1, 1 1, 1, 1

1, 2 2

2 2

2( ) 2( )

n n n n n n

i j i j i j i j i j i jn

i j

U U U U U U
U

 

  

         



   
 

 
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1 1 1

, 1 . , 1 , 1 , , 1

, 2 2

2 2

2( ) 2( )

n n n n n n

i j i j i j i j i j i jn

i j

U U U U U U
U

 

  

      
 

                                                                   (4.11) 

then substituting (4.11)in to equation (4.10) and multiplying both sides  by
2

t
we get,

 

 

 

1 1 1

, , 1, , 1, ,2

1 1 1 1 1 1

1, 1 1, 1, 1 1, 1 1, 1, 1 , 1 , , 1 , 1 , , 12 2

4

( )

2 2 2 2
( ) ( )

n n n n n n

i j i j i j i j i j i j

n n n n n n n n n n n n

i j i j i j i j i j i j i j i j i j i j i j i j

t
U U U U U U

r

t
U U U U U U U U U U U U

r 

  

 

     

             


     




          

   

Let 0 02 2 2

4

( ) ( ) ( )

t t
a and b

r r 

 
 

  
 the above equation become, 

 

 

1 1 1

, , 0 1, , 1, ,

1 1 1 1 1 1

0 1, 1 1, 1, 1 1, 1 1, 1, 1 , 1 , , 1 , 1 , , 12 2 2 2

n n n n n n

i j i j i j i j i j i j

n n n n n n n n n n n n

i j i j i j i j i j i j i j i j i j i j i j i j

U U a U U U U

b U U U U U U U U U U U U

  

 

     

             

     

          
 

 

collecting  like terms and rearranging we  obtain                                                                                                                                                                       

       

       

1 1 1 1 1 1

0 0 1, 0 0 0. 0 1, 1 0, 1 0 0, 1 0, 1

0 0 0, 0 0 1, 0 1, 1 1, 1 0 0, 1 0, 1

2 2 1 (4.12)

2 1 2 0

n n n n n n

j j j j j j

n n n n n n

j j j j i j

a b U b a U b U U b U U

b a U a b U b U U b U U

     

   

   

       

         

 

combining equation (4.4) for r ≠ 0, and equation( 4.12) for r = 0 is  interi pointor boundary pint  

we obtain,  

1 1 1 1 1 1 1

1, 1, , 1 , 1 , 1, 1,2 2

, , 1 , 1 1 1, 1 12 2

1

0 0 1, 0

2
( ) ( ) ( 1 2 ) ( )

2
(1 2 ) ( ) ( ) ( ) 0 (4.13)

( 2 ) (2

n n n n n n n

i j i j i j i j i j i j i j

i i i

n n n n n n n

i j i j i j i j i j i j i j

i i i

n

j

c c a
b U U U U b U U U

r r r

c c a
b U U U b U U U U

r r r

a b U b

      

     

     



        

         

   1 1 1 1 1

0 , 0 1, 1 0, 1 0 0, 1 0, 1

0 0 0, 0 0 1, 0 1, 1 1, 1 0 0, 1 0, 1

1) ( ) ( )

(2 1) ( 2 ) ( ) ( ) 0

n n n n n

O j j j j j

n n n n n n

j j j j j j

a U b U U b U U

b a U a b U b U U b U U

    

   

   








    

         

equation(4.13)can be put in matrix form as follow.
 

AU=B                                                                                                                                          ( 4.14) 
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0 0

... ...

R S

R S

R S
A

R S

 
 
 
 

  
 
 
 
   

(4.15) 

Matrix A has P+1 blocks and each blocks  is order of M by N. 

                         

0

...

B C

C B C

C B C

C B C

C B

R

 
 
 
 

  
 
 
 
   

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(2 1 2 1 2 1 . . . 2 1)

(1 2 1 2 1 2 . . . 1 2 )

B diag b a b a b a b a

C diag b a b a b a b a

        

        
 

0 ( . . . )S diag D D D D where D is  given by
 

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

2

2

2

2

...

2

a b b

b a b b

b a b b
D

b a b b

a a b












 
 
 
 
 
 
 
 
 

 

1 2

2 1 2

2 1 2

2 1 2

2 1

...

R R

R R R

R R R
R

R R R

R R

 
 
 
 

  
 
 
 
  

1 2

2 1 2

2 1 2

2 1 2

2 1

...

S S

S S S

S S S
S

S S S

S S

 
 
 
 

  
 
 
 
      

(4.16) 
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R and S have N blocks and each blocks is order MxM . 

where  

2

2

2

1

2

2

2
1 2

2
1 2

2
1 2

2
1 2

... ... ...

2
1 2

i

i

i

i

i

c
b b

r

c
b b b

r

c
b b b

rS

c
b b b

r

c
b b

r

 
   
 
 

   
 
 

   
  
 

   
 
 
 
   
  

2

2

2

1

2

2

2
1 2

2
1 2

2
1 2

2
1 2

... ...

2
1 2

i

i

i

i

i

c
b b

r

c
b b b

r

c
b b b

rR

c
b b b

r

c
b b

r

 
  

 
 

  
 
 

  
  
 

  
 
 
 
  
 
 

2

2

22 2

2

...

i

i

i

i

c

r

c

r

c
R S

r

c

r

 
 
 
 
 
 
 

   
 
 
 
 
 
 
  

  (4.17) 
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Where 1 1R and S  are square matrixes of order M and 2 2R and S are diagonal matrix of order M. 

   1 2 1 1 2 1... ...
TT

P P p pU U U U U and B B B B B    

where 1 2 3 ...
T

n n n n N nU U U U U and    1 2 3 ...
T

j n j n j n j n m j nU U U U U     

   1 2 3 1 2 3... ...
T T

n n n n N n j n jn jn jn m j nB d d d d and d d d d d   

where  n=1 2 3 . . .p. U is the known column vector such that each i j nd  represents known 

boundary values of U. 

Thus equation(4.16) can be written as 

1 10 0

2 2

3 3

4 4... ...

... ...

p P

U BR S

U BR S

U BR S

U B

R S

U B

    
    
    
    

    
    
    
    

        

(4.18) 

Equation (4.18) again can be written as 

                          

0 1 0 2 1

2 3 2

3 4 3

1

. . .

p p p

R U S U B

RU SU B

RU SU B

RU SU B

 

 

 

 
 

(4.19) 

We obtain the solution of the system of linear equations(4.19)by applying extended Hockney's 

method to two dimensional heat equations. 
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4.2.Extended Hockney's Method 

As we can see the matrix 
1 1R and S are areal diagonal symmetric matrix and hence the Eigen 

value and eigenvectors can easily be obtained. 

Theorem; The eigenvectors of matrix 
1R  and 

1S  with eigenvalues
i iand  respectively given 

by ; Smith G.D.(1985) 

2

2

2
1 2 2 cos and

1

2
1 2 2 cos

1

i

i

i

i

c i
b b

r M

c i
b b

r M







 
      

 

 
     

 

    i= 1, 2, 3, . . . M 

Let iq be an eigenvector of
1 1S and R corresponding the eigenvalues of 

i iand 

respectively. and =  1 2 3 . . . nQ q q q q be the modal matrix of the matrices 1 1andS R of 

order M such that, 

 

1 1 2 3

1 1 2 3

2 2 2

2 2 2

diag( . . . ) (say)

diag . . . (say)

since isadiagonalmatrix and

sin .

T

T

M

T

M

T

T

Q Q I

Q S Q H

Q R Q T

Q R Q R R

Q S Q S ce S is adiagonal matrix

   

   



 

 



                                                                     

(4.20) 

The MxM modal matrix Q is defined by, 

2
sin

1 1
ij

ij
q

M M

 
  

  
i , j =1,2,3,. . . M  .                        
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Let diag( . . . ) beamatrixof orderMxN.Thu ,Q Q Q s

2

2 2

2 2

2 2

2

satsfies

... . . . ...

T

T

I

T R

R T R

R T R
R R

R T R

R T



   

 
 
 
 

    
 
 
 
  

2

2 2

2 2

2 2

2

... ... ...

T

H S

S H S

S H S
S S

S H S

S H



 
 
 
 

    
 
 
 
                       (4.21)

 

' 'Let ,T T

k k k k k k k kU V U V B B        
  

1 2 1 2where . . . . . .
T T

n n n N n j n j n j n M j nV V V V and V V V V          

' '

1 2 1 2... and . . .
T

T

n n n N n jn jn jn MjnB b b b B b b b         

Consider the equation (4.21)can be written in matrix form as, 

1 1

2 2

... ...... ...

n n

V bR S

V bR S

V bR



 



     
     
     
     
     
      

                                                                                                         (4.22) 

pre multiplying(4.18) by using (4.22) we get, 
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'

1 2 1

'

2 3 2

'

3 4 3

'

1

...

p p p

R V S V B

R V S V B

R V S V B

R V S V B

 

 

 

 



 

 

 

 
   

(4.23) 

consider the first equation of(4.23)i.e. '

1 2 1R V S V B   which can be written as,   

2

11 2

2 2

21 2 2

2 2

31 2 2

2 2

( 1)1 2 2

2 2

1 2

2

... ... ...
....

N

N

T R
V H S

R T R
V S H S

R T R
V S H S

T
R R

V S H S
R T R

V S H
R T



 
    
    
    
    

    
    
    
    

      
 

 

12 11

22 21

32 31

1 2 ( 1)1

12

... ...

N N

NN

V b

V b

V b

V b

bV

 

   
   
   
   

   
   
   
   

            

(4.24) 

again we can write equation (4.24)as follow. 

11 2 21 12 2 22 11

2 11 21 2 31 2 12 22 2 32 21

2 21 31 2 41 2 22 32 2 32 31

2 ( 1)1 1 2 ( 1)2 2 1

...

N N N N N

TV R V HV S V b

R V TV R V S V HV S V b

R V TV R V S V HV S V b

R V TV S V HV b 

   

     

     

   

                                                                      (4.25) 

Now collecting the first equations from each equation(4.25) and consider as one group of 

equation. 

1 111 121 1 112 122 1112 2

111 1 121 131 112 1 122 132 1212 2 2 2

121 1 131 141 122 1 132 142 1312 2 2 2

1( 1)1 1 1 1 1( 1)2 1 1 2 1 12 2

. . .

i i

i i i i

i i i i

N N N N N

i i

c c
V V V V b

r r

c c c c
V V V V V V b

r r r r

c c c c
V V V V V V b

r r r r

c c
V V V V b

r r

 

 

 

  

   

     

     

   

  

(4.25a) 
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again we collecting the second  equation from each (4.25) and consider as second group of  

equations. 

2 211 221 2 212 222 2112 2

211 2 221 231 212 2 222 232 2212 2 2 2

221 2 231 241 222 2 232 232 243 2312 2 2 2 2

2( 1)1 2 2 1 2( 1)2 2 22 2

. . . . . . . . .

i i

i i i i

i i i i i

N N N N

i i

c c
V V V V b

r r

c c c c
V V V V V V b

r r r r

c c c c c
V V V V V V V b

r r r r r

c c
V V V V

r r

 

 

 

  

   

     

      

   2 2 1Nb

   

(4.25b)                  

 collect the last equations from each equations of(4.25) and consider as  a last group of equations.

11 21 12 22 112 2

11 21 31 31 12 22 32 212 2 2 2 2

21 31 41 22 32 42 312 2 2 2

( 1)1 31 ( 1)2 2 12 2

M M M M M M M

i i

M M M M M M M M M M

i i i i i

M M M M M M M M M

i i i i

M N M M M N M MN MN

i i

c c
V V V V b

r r

c c c c c
V V V V V V V b

r r r r r

c c c c
V V V V V V b

r r r r

c c
V V V V b

r r

 

 

 

  

   

      

     

   

   (4.25c)

 

Equation (4.25a) to (4.25c) can be written in matrix form as follow, 

2 2

11 12

2 2 2 2

21 22

31 32

2 2 2 2

1 2

2 2

... ...

... ... ... ...

i i

i i

i i

i i

i i i ii i

i i
i i

i i i i

iN iN

i i

i i

c c

r r

V Vc c c c

r r r rV V

V Vc c c c

r r r r

V V

c c

r r

 

 

 

 

   
   
   

      
      
      
      
     
     
        

   
   
      

11

21

21

1

...

i

i

i

iN

b

b

b

b

 
 
 
 

  
  
   

     

                (4.26) 
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2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2

... ... ... ... ... ...

i i

i i

i i

i i i i

i i

i i i ii i

i i

i i i i

i i

i i

c c

r r

c c c c

r r r r

c c c c

r r r rLet F G

c c c c

r r r r

c c

r r

 

 

 

 

 

   
   
   
   
   
   
   
   

    
   
   
   
   
   
   
   
   

i=1,2,..M 

                             

1 1

2 2

3 3

... ...

i n i n

i n i n

i k i n n i n

iNn iNk

V b

V b

W V B b

V b

   
   
   
    
   
   
      

 

we can write equation( 4.25a ),(4.25b) and (4.25c) as follow 

                       1 2 1i i i i iFW GW B          (4.27)
 

... ...

i i

i i

i i

i i

F G

F G

Let F F a n d G G

F G

   
   
   
    
   
   
      

 

1 2 1 2( . . . ) and ( . . . )T T

n i i ip n i i ipW W W W B B B B   

Thus the first equation of (4.23) be written as  using a matrices , , n nF G W and B as 
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1 2 1

2 3 2

3 4 3

1

. . .

N N N

FW GW B

FW GW B

FW GW B

FW GW B

 

 

 

 
                                                                         (4.28) 

1 2 1 2

1 2 1 2

observe that

( . . . ) (say) where ( . . . )

( . . . ) ( )where ( . . . )

T

N i M

T

N i M

F diag X diag

G diag Z say Z diag

      

     

    

    

 

 

2

2

1 2 1 2

1 2 1 2

2
cos

1

2
cos 1(1)

1

where ( . . . ) ( . . . )

( . . . ) ( . . . )

i i

i

i i

i

T

n n n n

T

k k k k

T T

n n n Mn jn jn jn Mjn

T T

n n n jn jn jn jn Mjn

c i
Here

r M

c i
i M

r M

Let W W

B B

and

and


 


 

 

       

     

 
   

 

 
   

 

   

    

 

   
                         (4.29)

Now pemultipling equation (4.28) by and make use of (4.29)we get,T

 

                                         

1 2 1

2 3 2

3 4 3

. . .

p p p

X Z

X Z

X Z

X Z

 

 

 

 

  

  

  

  
        

                 
(4.30) 

Now we write those sets of equations (4.30)turn by turn starting from the first row,i.e 

                                       1 2 1 ,X Z as   
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1 111 1 112 111

2 211 2 212 211

3 311 3 312 311

11 12 11

. . .

M M M M M

  

   

   

    

 

 

 

 

 

                                         

1 121 1 122 121

2 221 2 222 221

3 321 3 322 321

21 22 21

. . .

M M M M M

  

   

   

    

 

 

 

 

 

                                              

1 1 1 1 1 2 1 1

2 2 1 2 2 2 2 1

3 3 1 3 3 2 3 1

1 2 1

. . .

N N N

N N N

N N N

M MN M MN MN

  

   

   

    

 

 

 

 
                              (4.30a)

  2 3 2for thesecondof equation 4.30 . , we get the secondgroupof equations.i e Z X   
 

                                               

1 112 1 113 112

2 212 2 213 212

3 312 3 313 312

12 13 12

. . .

M M M M M

  

   

   

    

 

 

 

 
 

                                                 

1 122 1 123 122

2 222 2 223 222

3 322 3 322 322

22 23 22

. . .

M M M M M

  

   

   

    

 

 

 

 
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1 2 1 1 3 1 2

2 2 2 2 2 3 2 2

3 3 2 3 3 3 3 2

2 2 2

. . .

N N N

N N N

N N N

M MN M MN MN

  

   

   

    

 

 

 

 

                                  (4.30b) 

   For the last equation of (4.30),i.e.
1p p pZ X     we obtain 

                                                 

1 11 1 1 11 11

2 21 1 2 21 21

3 31 1 3 31 31

1 1 1 1

. . . . . . . . .

p p p

p p p

p p p

M M p M M p M p

  

   

   

    









 

 

 

   
 

                                                   

1 12 1 1 12 12

2 22 1 2 22 22

3 32 1 3 32 32

2 1 2 2

. . . . . . . . .

p p p

p p p

p p p

M M p M M p M p

  

   

   

    









 

 

 

 

 

                                                   

1 1 1 1 1 1

2 2 1 2 2 2

3 3 1 3 3 3

1

. . . . . . . .

N p N p N p

N p N p N p

N p N p N p

M M N p M M N p M N p

  

   

   

    









 

 

 

 
  (4.30c)                                                                              

Now from each set of equation of(4.30a)to(4.30c),we select the first equations 

from(4.30a)(4.30b)and(4.30c)  and put together as one group of equation, again we take the 

second equations from each of(4.30a),(4.30b)and(4.30c) and put together as a second group of 

equations; consider the third equations and put together as a third group of equations and so on 

and finally we consider the last equations and put together .In doing these we obtain the 

following sets of equations, each set  being of order p .   
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1 111 1 112 111

1 112 1 113 112

1 113 1 114 113

1 11 1 1 11 11

. . .

p p p

  

  

  

  

 

 

 

 

 

                                              

2 211 2 212 121

2 212 2 213 212

2 213 2 214 213

2 21 1 2 21 21

. . .

p p p

   

   

   

   

 

 

 

 

 

                                            

     

11 12 11

12 13 12

13 14 13

1 1 1 1

. . .

M M M M M

M M M M M

M M M M M

M M P M M P M P

    

    

    

    

 

 

 

 

                                                        (4.31) 

Observe that the above set of equations (4.31),for j=1 ,and for i=1(1)M the coofficient matrix of 

the left hand side is main diagonal and sub diagonal matrix of order p.and has the form of   

contineouning for the  other groups of equations as above for j=2,3,...N, we get 

 

                                   

1 1 1 1 1 2 1 1

1 1 2 1 1 3 1 2

1 1 3 1 1 4 1 3

1 1 1 1 1 1

. . .

j j j

j j j

j j j

jp jp jp

  

  

  

  

 

 

 

 

 

                                    

2 2 1 2 2 2 2 1

2 2 2 2 2 3 2 2

2 2 3 2 2 4 2 3

2 2 1 2 2 2

. . .

j j j

j j j

j j j

jp jp jp

   

   

   

   

 

 

 

 
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1 2 1

2 3 2

3 4 3

1

. . .

M Mj M Mj Mj

M Mj M Mj Mj

M Mj M Mj Mj

M MjP M MjP MjP

    

    

    

    

 

 

 

 

                                                          (4.32) 

In this case also for each j=2,3,...N  the cooefficient matrix of the left hand side (4.32) is main 

diagonal and sub diagonal  matrix similar to that (4.31) for j=1 

, 1(1) , 2,3,...

... ...

i

i i

i i

i

i i

i i

L i M j N



 

 

 

 

 
 
 
 

   
 
 
 
  

                                                (4.33) 

We can easly observe that  equation (4.19)reduced to the matrix (4.33)which is main diagonal 

and sub diagonal matrix for j=1,2,3,...N and hence we solve this sets of equations (4.33) for
i j

by the use of Thomas algorithm.. Once after getting  each 
i j and hence n by the help of (4.28) 

we get nW  and again 

by the help of (4.23) we obtain nU and this means that each 
i j nU are obtained .  

4.3 Convergence  Analysis 

4.3.1 Truncation Error. 

Consider the Heat equation in the polar form, 

2 2 2 2

2 2 2 2 2 2

1 1 1 1
0

U U U U U U U U

t r r r r t r r r r 

        
        

                                           

( 4.34)        

by Crank-Nicolson approximation
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1 1 1 1

1 1 1 1 1 1 1 1

2

1 1 1

1 1 1 1

2 2

2 21 1

2 ( ) 2 2 2

2 21

( )

n n n n n n n n n n n n

ij ij i ij i j i j ij i j i j i j i j i j

n n n n n n

ij ij ij ij ij ij

U U U U U U U U U U U U

t r r r r

U U U U U U

r 

   

       

  

   

            
      

          
 

      
      

Using Taylor's expansion  we  have the following,

2 3 42 3 4
1

2 3 4

( ) ( ) ( ) ( )( ) ( ) ( )
. . . (4.34.1)

2 6 24

n n n n

ij ij ij ijn n

ij ij

U U U Ut t t
U U t

t t t t


     

    
   

  2 2 22 2
1

1 2 2

3 3 3 3 42 3 2 2 2 2

3 3 2 2 2 2

4

( ) ( ) ( ) ( )( ) ( )

2 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

6 6 2 2 4

( )

nn n n n
ijij ij ij ijn n

i j ij

n n n n n

ij ij ij ij ij

UU U U Ur t
U U r t r t

r t r t r t

U U U U Ur t r t r t
t r

r t r t r t r t

t





    
       

     

         
     

       




4 44

4 4

( ) ( )( )
. . . (3.34.2)

24 24

n n

ij ijU Ur t

t t

  


 

  2 2 22 2
1

1 2 2

3 3 3 3 4 43 3 2 2 4 4

3 3 2 2 4

( ) ( ) ( ) ( )( ) ( )

2 2

( ) ( ) ( ) ( ) ( ) (( ) ( ) ( ) ( ) ( ) ( )

6 6 2 2 24 24

nn n n n
ijij ij ij ijn n

ij ij

n n n n n

ij ij ij ij ij i

UU U U Ut
U U t t

t t t

U U U U U Ut t t
t

t t t


 

  

  


   





    
         

     

          
       

      

 

4

4 4 42 2 3 3

2 2 3 3

)

( ) ( ) ( )( ) ( ) ( ) ( )
. . . 4.34.3

4 6 6

n

j

n n n

ij ij ij

t

U U Ur r t
t r

t t r t



 




     
   

     

  2 2 22 2
1

1 2 2

3 3 3 3 43 3 2 2 2 2

3 3 2 2 2 2

4

( ) ( ) ( ) ( )( ) ( )

2 2

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

6 6 2 2 4

( )

nn n n n
ijij ij ij ijn n

ij ij

n n n n n

ij ij ij ij ij

UU U U Ut
U U t t

t t t

U U U U Ut t t
t

t t t t

t


 

  

  


   





    
       

     

         
     

       




4 44

4 4

( ) ( )( )
. . . (4.34.4)

24 24

n n

ij ijU Ut

t t

  


 
2 3 42 3 4

1 2 3 4

( ) ( ) ( ) ( )( ) ( ) ( )
. . . (4.34.5)

2 6 24

n n n n

ij ij ij ijn n

i j ij

U U U Ur r r
U U r

r r r r


     
    

   
2 3 42 3 4

1 2 3 4

( ) ( ) ( ) ( )( ) ( ) ( )
. . . (4.34.6)

2 6 24

n n n n

ij ij ij ijn n

i j ij

U U U Ur r r
U U r

r r r r


     
    

   
2 3 42 3 4

1 2 3 4

( ) ( ) ( ) ( )( ) ( ) ( )
. . . (4.34.7)

2 6 24

n n n n

ij ij ij ijn n

ij ij

U U U U
U U

  


   


     
    

   
2 3 42 3 4

1 2 3 4

( ) ( ) ( ) ( )( ) ( ) ( )
. . . (4.34.8)

2 6 24

n n n n

ij ij ij ijn n

ij ij

U U U U
U U

  


   


     
    

   

 substituting equation(4.34.1-4.36.8) in to equation 4.34 then gives, 
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   
2 22 2 3 4 2

2 2 3 4 2

1

2 6 12

n n n n n n n n

ij ij ij ij ij ij ij ijU U U U U U U Ut rt

t r t t r t r r t r

                  
                                          

   
2 23

3

1

2 6 12

n n n n n n n n

ij ij ij ij ij ij ij ijU U U U U U U Ut rt

t r t t r t r r t r

                  
                                          

   
2 22 2 3 4 2

2 2 2 3 2 4 2 2

1 1 1 1
(3.35)

2 6 12

n n n n n n n n

ij ij ij ij ij ij ij ijU U U U U U U Utt

t r t t r t r r t r



  

                  
                                          

 

     

22 2 2 2 3

2 2 2 2 2 2 3

2 2 24 4 3
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n n n n n n n n n

ij ij ij ij ij ij ij ij ij
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U U U U U U U U Utt

t r r r r t t r r r r t

U U Ur t

r r

 





                 
                                        

       
    
    
   

   
2 24 4

3 3 3

3 4 2 4
(( ) ) (( ) ) (( ) )

12 12

n n n

ij ijU Ur
o t o r o

t r r r






       
                       

           

Hence the trunctional error is 

     
2 2 23 4 4

3 4 2 46 12 12

n n n

ij ij ijU U Ut r
TE

t r r r





        
                  

                                                   (4.36) 

4.3.2 Consistency 

Finite difference approximation is consistent with partial differential equation  if the difference 

between  partial differential equation(i.e. the truncation error) vanishes as the size of the grid 

spacing  go to zero. 

From the above equation(4.36) 

     
2 2 23 4 4

3 4 2 40 0 0
lim lim lim 0

6 12 12

n n n

ij ij ij

t r

U U Ut r

t r r r



     

        
                    

Hence the scheme is consistency 
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              4.4.3  Stability 

A finite difference scheme is stable if the error stays constant or decreases as the iterative process 

is go on .contrary if the error growth with time ,the scheme is said to be unstable.  

consider the two dimensional heat equation in polar coordinates system  ,
             

 by Crank-Nicolson approximation, we get, 

   

 

1 1 1 1 1 1

1 1 1 1 1 1 1 12

1 1 1

1 1 1 12 2
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U U U U U U U U U U U U

r rr
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 
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1 2 32 2 2
Let

2 4 2

t t t
r r and r

r r r r 

  
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  
 

substituting in to the above ,we obtain, 

     

     

1 1 1 1 1 1 1 1

1 1 1 1 2 1 1 3 1 1 3

1 1 1 1 2 1 1 3 1 1 3

(1 2 ) ( ) 2

(1 2 ) ( ) 2
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       

     

     

         

       
                (4.37)

 

 Applying Van Neumann stability analysis,

       

       
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2 2 2

1 2 3

2 2 2

1 2 3

1 4 sin 2 sin 4 sin
2 2 2

1 4 sin 2 sin 4 sin
2 2 2

r r i r

r r i r

  


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 
   

   
   
                                                           ( 4.39)

 

the above equation 3.39 is amplification factor, then stability satisfy that, 

 
( ) 1  

                                                                                                                (4.40)
 

1 1
for uniform mesh point,M=N and h=

2 2 2 2 2

Then equation 4.39abovecan be written asfollow,

N M

N h M h N M

N M

    
  



      

2 2 2

1 2 3

2 2 2

1 2 3

1 2 3
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1 2 3

1 4 sin 2 sin 4 sin
2 2 21 1

1 4 sin 2 sin 4 sin
2 2 2

1 4 2 4
1 1 sinceall , aregreater than zero.

1 4 2 4

r r r

r r r

r r r
r r and r

r r r
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  

 
   

   
   
 

   
    

   

 

Cranck-Nicolson scheme is unconditionally stable. A numerical scheme is convergent if the 

computed solution  of the discretized  equation leads to the exact solution  of the differential equations as 

the time and grid  spacing leads to zero. satisfying the following convergence conditions  . 

, , 0
lim 0 a fixed , and where, isan error.ij i j n ij

t r
r i r j t n t


   

   
      

 
Lax theorem; states that for a well posed  initial and boundary value problems, if a finite 

difference scheme is consistence with the partial differential equations ,then the stability is the 

necessary and sufficient condition for convergence that is,

 consistence + stability   convergence 

The scheme is convergence 
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4.4 .Numerical Results 

In order to test the efficiency and  adaptabilities of the proposed method two selected  problems  

that may arise in practice for which the analytic solutions of U are  known .The computed 

solutions are found for all grid points in Crank-Nicolson scheme with Hockney's. The results are 

reported  in terms of absolute error  and are shown in table1 and table2. 

This computational result is made on personal computer (Laptop) with processor: intel(R) Core 

i3 CPU@2.40GHz and RAM memory 2.00GB 

Example1: 

Consider the two dimensional heat equation in polar coordinates system is given by 

2

1 1
t rr rU U U U

r r
   , 0 1, 0 2r and     

 

subject to the initial condition; 

 ( , ,0) sin 2 cos sin 2 ( sin )U r r r      

with boundary condition 

(0, , ) ( ,0, ) 0

(1, , ) sin 2 (cos )sin 2 (sin )

( ,2 , ) 0

U t U r t

U t

U r t



    



 




 

and exact solution  

28( , , ) sin 2 ( cos sin( sin ) tU r t r r e       

 

 

 

 

 

 

 

 

 

 

mailto:CPU@2.40GHz
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Table 4.1:MaximumAbsolute errors and CPU computational time for Crank-Nicolson and 

Crank-Nicolson with  Hockney's method 
         Scheme 

 

 

N=M 

 

Crank Nicolson Scheme 

 

Crank Nicolson  with Hockney's 

Max.abs.error

, ,
max ( , , )n

ij i j n
i j n

U u x y t  

CPU Comp. 

Time in sec. 

Max. abs. error 

, ,
max ( , , )n

ij i j n
i j n

U u x y t  

CPU Comp.  

Time in sec. 

10 

20 

30 

40 

50 

60 

70 

80 

1.4300e-02 

9.8561e-04 

3.4418e-04 

9.7899e-05 

2.9530e-05 

------------ 

------------ 

------------ 

8.204946 

15.635776 

52.771701 

240.986369 

954.767625 

------------ 

------------ 

------------- 

1.4300e-02  

9.8561e-04 

3.4418e-04 

9.7899e-05 

2.9530e-05 

9.2119e-06 

2.8230e-06 

7.9206e-07 

9.531230 

12.752585 

32.330180 

52.541178 

82.873367 

120.5373595 

182.890577 

227.166939 

 

 

Figure1: On the left hand side the numerical solution using Crank Nicolson with Hockeny’s and 

on the right hand side the exact solution at time T=0.01 second 
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Figure2: On the left hand side the numerical solution using Crank Nicolson with Hockeny and 

on the right hand side the exact solution at time T=0.1 second 

 

Figure3: On the left hand side the numerical solution using Crank Nicolson with Hockney's and 

on the right hand side the exact solution at time T=1 second. 
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Example 2: Consider the two dimensional heat equation in polar coordinates system is given by 

2

1 1
t rr rU U U U

r r
   , 0 1, 0 2r and       

subject to the initial  condition ; 

 ( , ,0) 10sin 2 cos sin 2 ( sin )U r r r    
 

 with boundary condition 

(0, , ) ( ,0, ) 0

(1, , ) 10sin 2 (cos )sin 2 (sin )

( ,2 , ) 0

U t U r t

U t

U r t



    



 




 

and exact solution; 

28( , , ) 10sin 2 ( cos sin( sin ) tU r t r r e       

Table 4.2:Maximum Absolute errors and computational time for Crank-Nicolson and Crank-

Nicolson with  Hockney's method.
 

Scheme 

 

N=M 

Crank Nicolson Scheme Crank- Nicolson  with Hockney's 

Max.abs.error

, ,
max ( , , )n

ij i j n
i j n

U u x y t  

CPU Comp. 

Time in sec. 

Max. abs. error 

, ,
max ( , , )n

ij i j n
i j n

U u x y t  

CPU Comp. 

Time in sec. 

10 

20 

30 

40 

50 

60 

70 

80 

1.4300e-01 

9.9000e-03 

7.8000e-03 

2.9530e-04 

2.9530e-04 

------------ 

------------ 

------------ 

6.986180 

13.166935 

23.3468170 

206.716720 

862.982759 

------------ 

------------ 

------------- 

1.4300e-01 

9.9000e-03 

7.8000e-03 

2.9530e-03 

2.9530e-04 

9.2119e-05 

2.8230e-05 

7.9206e-06 

6.344063 

11.770737 

21.846837 

38.071393 

60.989153 

88.973377 

120.735133 

176.222124 
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Figure1: On the left hand side the numerical solution using Crank Nicolson with Hockney's and 

on the right hand side the exact solution at time T=0.001 second 

 

Figure2: On the left hand side the numerical solution using Crank Nicolson with Hockeny and 

on the right hand side the exact solution at time T=1 second 
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Figure 3: On the left hand side the numerical solution using Crank Nicolson with Hockeny and 

on the right hand side the exact solution at time T=1.5 sec 

4.5. Discussion 

In this thesis, Crank-Nicholson Scheme and Crank-Nicolson with Hockney’s method have been 

compared for CPU computational time and convergence accuracy for solving two dimensional 

Heat equation in polar coordinate domain. According to numerical result presented on table 

4.1and table 4.2  the accuracy of the two methods are equivalent but the Crank-Nicolson with 

Hockney's splitting   is very fast compared to the  Crank-Nicolson method in computational time 

When the number of mesh point increases while Crank-Nicolson with Hockney's giving result. 

The  Crank-Nicolson fails to compute the solution due to shortage of memory storage capacity of                              

the computer and processing ability . So we conclude that Crank-Nicolson with Hockney' 

splitting is fast solver method with equivalent accuracy of Crank(i.e.       2 2 2
O t r       
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CHAPTER FIVE 

CONCLUSION AND SCOPE FOR FUTURE WORK 

5.1. Conclusion 

In this thesis, we have presented  Crank-Nicolson with Hockney's method for solving two 

dimensional Heat equation  in polar coordinates system .Two  examples have been used  to 

compared with the present numerical method with Cranck-Nicolson. the accuracy of the two 

methods are equivalent but the Crank-Nicolson with Hockney's splitting   is very fast compared to the  

Crank-Nicolson method in computational time When the number of mesh point increases the error of the 

method is decresing.The numerical results obtained in this method is  well.   

5.2. Scope for Future Work 

In this thesis, the numerical method based on Finite Difference(Crank-Nicolson) with Hockney's 

method is introduced for solving two dimensional Heat equation in polar coordinate system. 

Hence, the scheme proposed in this thesis can also be extended to three dimensional Heat  and 

wave equation in polar coordinate system. We recommend researchers and peoples working on 

computational area for using this algorithm for fast and accurate computational requiring 

purpose. 
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