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ABSTRACT 

In this thesis, Crank-Nicholson method is presented for solving two-dimensional wave 

equation. First the given two-dimensional wave equation is replaced by crank-Nicholson 

scheme. The resulting large number of algebraic equation was arranged in order to get a 

block matrix. From block matrix we obtain system of linear algebraic equation and 

changes to tridiagonal matrices by collecting like terms. Thus the tridiagonal system of 

equation can solve by Thomas Algorithm. The stability, consistency and convergence of 

the method have been established. We implement the numerical scheme by computer 

programming for initial boundary value problem and compare the exact solution with the 

numerical solution. The results have been presented in Tables 1 to 2 for different values 

of some mesh points. Then, Crank-Nicolson method is good for solving two-dimensional 

homogeneous wave equation, since it is easy to solve the resulting tridiagonal system of 

equations. 
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CHAPTER ONE 

 INTRODUCTION 

1.1. Background of the study 

Partial differential equations (PDEs) have become enormously successful as models of 

physical phenomena in all areas of engineering and sciences. The growing need for 

understanding the partial differential equations modeling of the physical problem has 

seen an increase in the use of mathematical theory and techniques, and has attracted the 

interest of many mathematicians. Many interesting progresses have been achieved in the 

last 60 years with the introduction of numerical methods that allow the use of modern 

computers to solve PDEs of every kind, in general geometries and under arbitrary 

external conditions (at least in theory; in practice there are still a large number of hurdles 

to be overcome).  

Especially in recent years we have seen a dramatic increase in the use of PDEs in areas 

such as biology, chemistry, computer sciences (particularly in relation to image 

processing and graphics) and in economics (finance). The primary reason for this interest 

was that partial differential equations both express many fundamental laws of nature and 

frequently arise in the mathematical analysis of diverse problems in science and 

engineering. The theoretical analysis of PDEs is not merely of academic interest, but 

rather has many applications that originate from a model of a physical or engineering 

problem in real life situations like wave equation. 

The wave equation is an important second-order linear partial differential equations for 

the description of waves as they occur in classical physics such as sound waves, light 

waves and water waves. It arises in fields like acoustics, electromagnetics and fluid 

dynamics.  

A variety of problems in scientific computing involve the solution of the wave equation

2
2

2

u
c u

t


 


  in                                                                                   (1.1)             

      

 



 

2 
 

    subject to the initial condition 

                           1( , ,0) ( , )u x y f x y
 

                     
      2( , ,0) ( , )tu x y f x y

 

  and appropriate boundary conditions (BC), 

i.  1U f  on   for a given function 1f , (i.e. U specified on the boundary) is called 

the Dirichlet problem,             

ii. 2

U
f

n





 on   where 2f  is a given function, n̂ denotes the unit outward normal 

to , and 
U

n



  
denotes a differentiation in the direction of n̂  (i.e., ˆ

U
n

n


 


), 

(i.e. gradient of U  normal to the boundary is specified) is called the Neumann 

problem, and 

iii.  3

U
U f

n



 


  on   where α and 3f are given functions, (i.e. the BC is in terms 

of a mixture of the first two types – typically a linear combination) is called a 

problem of the third kind (it is also sometimes called the Robin problem).  

iv. Mixed boundary condition for a PDE; that is, different boundaries are used on 

different parts of the boundary of the domain of the equation. For example, if U is 

a solution to a partial differential equation on with piecewise-smooth boundary

 , and   is divided into two parts, 1 and 2 , one can use a Dirichlet 

boundary condition on 1  and a Neumann boundary condition  on 2 , i.e. 

1 2     and U is prescribed on the boundary a 1U g   on 1  and 2

U
g

n





 

on 2 , where 1g and 2g are given functions defined on those portions of the 

boundary. 

Equation (1.1) along with the initial and boundary conditions (i) to (iv) is said to be an 

initial boundary value problem.  

Finding the solution of PDEs numerically, forced people in the area to develop different 

numerical methods and approaches. Some of the most popular numerical methods are the 

Finite Difference Method (FDM), the Finite Elements Method (FEM), the Finite Volume 
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Method (FVM), Fast Fourier Transform Methods, Spline Collocation Methods, Spectral 

Methods, Multigrid Methods, Galerkin Method, Domain Decomposition Methods, 

Boundary Element Methods, Wavelet Methods and others. 

Historically, the problem of a vibrating string such as that of a musical instrument was 

studied by Jean le Rond, d’Alembert, Leonhard Euler, Daniel Bernoulli, and Joseph-

Louis Lagrange. In 1746, d’Alembert discovered the one-dimensional wave equation, and 

within ten years Euler discovered the three-dimensional wave equation. 

Wave equations are one of the three types of classical partial differential equations of 

second order. These equations arise in mathematical modeling of the motion of vibrating 

strings and membranes, and are typical in studying partial differential equations of 

second order. Wave equations in the sense of classical derivative with smooth boundaries 

have been investigated extensively.  

In recent years, different methods have been applied to find the numerical solution of the 

hyperbolic one and two-dimensional wave equation. To mention some: Variables-

separate methods (Yeow K., 1973). Implicit finite difference scheme (Britta S et al, 

2017). Accurate discretization schemes (Santosh Konangi et al, 2017). Implicit finite 

difference scheme (Xiaofeng Wang et al, 2018). Mimetic finite difference methods 

(Beirão da Veiga L et al, 2017). Method of multiple scales (Huang Guoxiang et al, 1989). 

Galerkin schemes (Luk’a Cov´. M et al, 2006). Wave polynomials (Artur Macia and Jorg 

Wauer, 2005). Finite difference scheme (Nor Syazwani Binti and Mohd Ridzun, 2013). 

Finite Difference Analysis (Opiyo Richard et al, 2015). Crank-Nicholson Method 

(Sweilam and Nagy, 2011). Compact finite difference time domain schemes (Maarten 

van and Konrad Kowalczyk, 2008). However, the two-dimensional wave equation still 

need more work to obtain accurate numerical solutions. Hence, we intended to apply the 

Crank Nicholson scheme to obtain accurate solutions of the homogeneous two-

dimensional wave equation.   

When we treated Crank-Nicolson method to wave equation in two-dimensional, because 

it was one of the finite difference method we obtain a system of algebraic equations and 

this algebraic equations can be solved. In this study, we applied a numerical method that 
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solves the wave equation in two-dimensional using the finite difference of Crank-

Nicolson method. 

1.2 Statement of the Problem  

Due to the wide range of the application of the two-dimensional wave equation, several 

numerical methods have been developed to solve this equation subject to initial and 

boundary conditions. Even though many numerical methods were applied to solve these 

types of equations, still it need more work to obtain accurate numerical solutions. So, we 

have been applied a Crank-Nicolson method to obtain the solution of two-dimensional 

wave equation. Owing to this, the present study attempt to answer the following 

questions: 

      1. How does the present method be described the two-dimensional wave equation? 

  2. To what extent the present method approximate the solution? 

  3. To what extent the proposed method is convergent?  
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1.3. Objectives of the study 

1.3.1. General Objective 

The general objective of this study is to find the numerical solution of the two-

dimensional wave equation using Crank-Nicolson scheme. 

1.3.1. Specific Objectives 

The specific objectives are:  

 To describe the Crank-Nicolson method for solving two- dimensional wave 

equation. 

 To investigate the accuracy of the present method.   

 To establish the convergence of the present scheme.  

1.4. Significance of the study 

The results obtained in this study may:  

Provide as reference who works in this area and help the graduate students to acquire 

research skills   and scientific procedures. 

1.5. Delimitation of the study 

Since two-dimensional wave equations have many applications in the real world and 

many numerical methods are applied to solve the two-dimensional wave equation, this 

study has been delimited to the two-dimensional wave equation of form:                            

                          

2 2 2
2

2 2 2

u u u
c

t x y

   
  

   
  in  

                    subject to the initial condition 

                1( , ,0) ( , )u x y f x y                  

    2( , ,0) ( , )tu x y f x y  

                 and boundary conditions:  

                            1(0, , ) ( , , ) ( , ) ,0 , 0u y t u a y t g y t y b t        

                        2( ,0, ) ( , , ) ( , ) ,0 , 0u x t u x b t g x t x a t     , where   is nonzero 

constant coefficient 1( , )f x y 2, ( , )f x y  and their derivatives are continuous functions of

,x y  ; 1 2( , ), ( , )g y t g x t  and their derivatives are continuous functions of t . 
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1.6. Definition of the Basic Terms 

Definition 1: Numerical analysis 

Numerical analysis is the study of algorithms that use numerical approximation (as 

opposed to general symbolic manipulations) for the problems of mathematical analysis 

(as distinguished from discrete mathematics). 

Numerical analysis naturally finds applications in all fields of engineering and the 

physical sciences, but in the 21st  century also the life sciences and even the arts have 

adapted elements of scientific computations. Ordinary differential equations appear in 

celestial mechanics (planets, stars and galaxies); numerical linear algebra is important for 

data analysis; stochastic differential equations and Markov chains are essential in 

simulating living cells for medicine and biology. 

Before the advent of modern computers numerical methods often depended on 

hand interpolation in large printed tables. Since the mid-20th century, computers 

calculate the required functions instead. These same interpolation formulas nevertheless 

continue to be used as part of the software algorithms for solving differential equations.  

Definition 2: Numerical Methods 

In numerical analysis, a numerical method is a mathematical tool designed to solve 

numerical problems. The implementation of a numerical method with an appropriate 

convergence check in a programming language is called a numerical algorithm. 

Definition 3: Differential Equation 

A differential equation is a mathematical equation that relates some function with 

its derivatives. In applications, the functions usually represent physical quantities, the 

derivatives represent their rates of change, and the equation defines a relationship 

between the two. Because such relations are extremely common, differential equations 

play a prominent role in many disciplines including engineering, physics, economics, 

and biology. 

Definition 4: Partial Differential Equation 

In mathematics, a partial differential equation (PDE) is a differential equation that 

contains unknown multivariable functions and their partial derivatives. PDEs are used to 
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formulate problems involving functions of several variables, and are either solved by 

hand, or used to create a relevant computer model. A special case is ordinary differential 

equations (ODE), which deal with functions of a single variable and their derivatives.  

Partial Differential Equation can be used to describe a wide variety of phenomena such as 

sound, heat, electrostatics, electrodynamics, fluid dynamics, elasticity, or quantum 

mechanics. These seemingly distinct physical phenomena can be formalized similarly in 

terms of PDEs. Just as ordinary differential equations often model one-dimensional 

dynamical systems, partial differential equations often model multidimensional systems. 

PDEs find their generalization in stochastic partial differential equations. 

Numerical partial differential equation is the branch of numerical analysis that studies the 

numerical solution of partial differential equations (PDEs). 

 A PDE of the form: 

 , , , , 0xx xy yy x yAu Bu Cu D x y u u u     

Where ,A B and C  are constants, called quasilinear. There are three types of quasilinear 

equations: 

                 If 2 4 0B AC  , the equation is called elliptic, 

                 If 2 4 0B AC  , the equation is called parabolic, 

                 If 2 4 0,B AC   the equation is called hyperbolic. Wave equation is a classic 

example of hyperbolic PDE. 

Definition 5: Boundary value problem  

In mathematics, in the field of differential equations, a boundary value problem is a 

differential equation together with a set of additional constraints, called the boundary 

conditions. A solution to a boundary value problem is a solution to the differential 

equation which also satisfies the boundary conditions. 

Definition 6: Matrix 

 A matrix is a collection of numbers arranged into a fixed number of rows and columns. 

Usually the numbers are real numbers. In general, matrices contain complex numbers.    
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A matrix is a way to organize data in columns and rows. A matrix is written inside 

brackets. Also a matrix is a two-dimensional array of numbers that can be written as 

                          

11 12 1

21 22 2

1 2

m

m

n n nm

a a a

a a a
A

a a a

 
 
 
 
 
 

 

Where ija is called the element or entry in the thi  row and 
thj  column. An alternative 

notation is ( )ijA a n m  . A column vector is also a 1n  matrix and a row vector is also 

a 1 m  matrix. 

Definition 7: Thomas Algorithm 

In numerical linear algebra, the tridiagonal matrix algorithm, also known as the Thomas 

algorithm (named after Llewellyn Thomas), is a simplified form of Gaussian elimination 

that can be used to solve tridiagonal systems of equations. The Thomas Algorithm is a 

special form of Gauss elimination that can be used to solve tridiagonal systems of 

equations. The form of the equation is: 

                        1 1 ,i i i i i i ia x b x c x d     1, ,i k n .  Where 1a  and nc  are zero. 

Definition 8: Stability 

A numerical method is said to be stable if the cumulative effect of all the errors is 

bounded independent of the number of mesh points. 

Definition 10: Consistency 

A numerical method is called consistent if the local error decays sufficiently fast as 

0h  (mesh size tends to zero). Consistency is the study of the local error. 

Definition 11: Convergence 

Convergence is the numerical solution should approach the exact solution of the PDE and 

converge to it as the mesh size tends to zero. Convergence is the study of the global error. 
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CHAPTER TWO 

LITRETURE REVIEW 

2.1. Partial Differential Equations 

Involving one or more partial derivatives of a function of two or more independent 

variables are called Partial differential Equations (PDEs). Historically, partial differential 

equations originated from the study of surfaces in geometry and a wide variety of 

problems in mechanics. During the second half of the nineteenth century, a large number 

of famous mathematicians became actively involved in the investigation of numerous 

problems presented by partial differential equations (Debnath, 2011). The primary reason 

for this research was that partial differential equations both express many fundamental 

laws of nature and frequently arise in the mathematical analysis of diverse problems in 

science and engineering. The next phase of the development of linear partial differential 

equations was characterized by efforts to develop the general theory and various methods 

of solution of linear equations (Myint-u, and Debnath, 2007). Almost all physical 

phenomena obey mathematical laws that can be formulated by differential equations. 

This striking fact was first discovered by Isaac Newton (1642– 1727) when he formulated 

the laws of mechanics and applied them to describe the motion of the planets.  

During the three centuries since Newton’s fundamental discoveries, many partial 

differential equations that govern physical, chemical, and biological phenomena have 

been found and successfully solved by numerous methods. These equations include 

Euler’s equations for the dynamics of rigid bodies and for the motion of an ideal fluid, 

Lagrange’s equations of motion, Hamilton’s equations of motion in analytical mechanics, 

Fourier’s equation for the diffusion of heat, Cauchy’s equation of motion and Navier’s 

equation of motion in elasticity, the Navier–Stokes equations for the motion of viscous 

fluids, the Cauchy Riemann equations in complex function theory, the Cauchy Green 

equations for the static and dynamic behavior of elastic solids, Kirchhoff’s equations for 

electrical circuits, Maxwell’s equations for electromagnetic fields, and the Schrödinger 

equation and the Dirac equation in quantum mechanics.  

In its early stages of development, the theory of second-order linear partial differential 

equations was concentrated on applications to mechanics and physics. All such equations 
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can be classified into three basic categories: the wave equation, the heat equation, and the 

Laplace equation or potential equation. Thus, a study of these three different kinds of 

equations yields much information about more general second-order linear partial 

differential equations. 

Jean d’Alembert (1717–1783) first derived the one dimensional wave equation for 

vibration of an elastic string and solved this equation in 1746. His solution is now known 

as the d’Alembert solution. The wave equation is one of the oldest equations in 

mathematical physics. Some form of this equation, or its various generalizations, almost 

inevitably arises in any mathematical analysis of phenomena involving the propagation of 

waves in a continuous medium. In fact, the studies of water waves, acoustic waves, 

elastic waves in solids, and electromagnetic waves are all based on this equation. A 

technique known as the method of separation of variables is perhaps one of the oldest 

systematic methods for solving partial differential equations including the wave equation 

(Aubert and Kornprobst, 2006).The wave equation and its methods of solution attracted 

the attention of many famous mathematicians including Leonhard Euler (1707–1783), 

James Bernoulli (1667–1748), Daniel Bernoulli (1700–1782), J.L. Lagrange (1736–

1813), and Jacques Hadamard (1865–1963).  

Hence, hyperbolic wave equation is a significant class of the partial differential equation 

due to its wide range of applications in many areas of science and engineering as 

mentioned in the introduction part. 

 2.2. The wave equation 

A wave is a disturbance from a normal or equilibrium condition that propagates without 

the transport of matter. Wave equation is an important second-order linear partial 

differential equation for the description of waves as they occur in classical physics such 

as sound waves, light waves and water waves. It arises in fields like acoustics 

electromagnetics, and fluid dynamics. 

Wave equations are one of the three types of classical partial differential equations of 

second order. These equations arise in mathematical modeling of the motion of vibrating 

strings and membranes, and are typical in studying partial differential equations of 
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second order. Wave equations in the sense of classical derivative with smooth boundaries 

have been investigated extensively.  

To deal with such equation, various mathematical methods have been proposed for 

obtaining exact and approximate analytic solutions. For instance, (Yeow K. W, 1973) 

used variables-separate methods to Webster wave equation in two dimensions. (Shuonan 

Dong http://mit.edu/dongs/Public/18.086/Project1) solved with finite difference methods 

for the Hyperbolic Wave Partial Differential Equations. (Santosh Konangi et al, 2017) 

used von Neumann stability analysis of first-order accurate discretization schemes for 

one-dimensional and two-dimensional fluid flow equations. (Britta S et al, 2017) 

numerical solution of the wave equation with variable wave speed on nonconforming 

domains by high-order difference potentials using an implicit finite difference scheme. 

(Xiaofeng Wang et al, 2018) a conservative linear difference scheme for the two-

dimensional regularized long-wave equation using implicit finite difference scheme. 

(Beirão da Veiga. et al, 2017) used mimetic finite difference methods for Hamiltonian 

wave equations in 2D. (Luk’a ˇCov´a et al, 2006) on the stability of evolution Galerkin 

schemes applied to a two-dimensional wave equation system. (Artur Macia and Jorg 

Wauer, 2005) found solution of the two-dimensional wave equation used wave 

polynomials. (Nor Syazwani and Mohd Ridzun, 2013) done numerical modeling of one-

dimensional wave equation using finite difference scheme. (Opiyo Richard et al, 2015) 

used finite difference analysis of two-dimensional Acoustic Wave with a Signal Function. 

(Sweilam and Nagy, 2011) done Numerical Solution of Fractional Wave Equation using 

Crank-Nicholson Method. (Maarten Van and Konrad Kowalczyk, 2008) done on the 

Numerical Solution of the two-dimensional Wave Equation with Compact Finite 

Difference Time Domain schemes. Solutions of the wave equation are still an attractive 

and interesting topic. Due to this, we are interested in finding the numerical solution of 

hyperbolic wave equation using finite difference of Crank-Nicolson scheme.   

2.3. Finite Difference Method 

 A computational solution of a partial differential equation (PDE) involves a 

discretization procedure by which the continuous equation is replaced by a discrete 

algebraic equation. The discretization procedure consists of an approximation of the 

http://mit.edu/dongs/Public/18.086/Project1
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derivatives in the governing PDE by differences of the dependent variables, which are 

computed only at discrete points (grid or mesh points) in different geometries. In general, 

one starts with a given PDE and uses a discretization procedure for developing a finite-

difference equation (FDE) that is a linear relation between discrete values of the 

unknown function computed on grid point. 

Thus, a finite difference solution basically involves three steps: 

1. Dividing the solution domain into grids of nodes. 

2. Approximating the given differential equation by finite difference equivalence 

that relates the solutions to grid points. 

3.  Solving the difference equations subject to the prescribed boundary and/or initial 

conditions.   

When approximating the given PDE by its finite difference approximation, we have to 

consider some factors, for instance, the order of accuracy of an approximation, stability, 

consistency and convergence of the difference scheme having a potential impact on the 

approximate solution. Here, one of the methods is the Crank-Nicolson method. 

2.4. Crank-Nicolson Scheme  

Crank-Nicolson scheme is a finite difference method based on two time steps used for 

solving numerically a partial differential equation. It is either fully or semi implicit in 

time and transform the given PDE into algebraic equations that can be solved by any 

existing method. The method was developed by John Crank and Phyllis Nicolson in the 

mid-20th century (Crank and Nicolson, 1947). 

 

 

 

 



 

13 
 

CHAPTER THREE 

METHODOLOGY 

3.1. Study Site 

This study was conducted in Jimma University department of Mathematics under the 

numerical Analysis stream from September 2017 G.C to November 2018 G.C. The study 

focus on two-dimensional wave equation. 

3.2. Study Design 

This study was employed mixed-design (documentary review design and experimental 

design) on two- dimensional wave equation. 

3.3. Source of Information 

The relevant sources of information for this study were Journals, books, published 

articles & related studies from internet and the experimental result has be obtained by 

writing MATLAB code. 

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the study was followed the following 

procedures: 

     1. Defining the problem of the two-dimensional wave equation, 

     2. Discretizing the domain for the defined problem, 

     3. Replace the Partial Differential Equation by finite difference approximation method 

of Crank-Nicolson scheme.                                                                                                           

     4. The result system of equations has been solved by Thomas Algorithm.   

     5.  MATLAB code for the systems obtained and 

     6. Validating the schemes by using numerical examples. 
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CHAPTER FOUR 

DISCRPTION OF METHODS, NUMERICAL RESULTS AND DISCUSSION 

4.1. Description of the methods  

Consider the two-dimensional wave equation 

      

2 2 2
2

2 2 2

u u u
c

t x y

   
  

                                                                                     (4.1)                                                                                       

 

2 2 2
2

2 2 2
0

u u u
c

x y t

   
    

     

          subject to the initial condition 

       1( , ,0) ( , )u x y f x y                                                                                          

                 2( , ,0) ( , )tu x y f x y                                                        (4.2) 

      and boundary conditions:  

                  1(0, , ) ( , , ) ( , ) ,0 , 0u y t u a y t g y t y b t        

                2( ,0, ) ( , , ) ( , ) ,0 , 0u x t u x b t g x t x a t     .                           (4.3) 

where   is nonzero constant coefficient  1 2( , ), ,f x y f x y
 
and their derivatives are 

continuous functions of ,x y ; 1 2( , ), ( , )g y t g x t  and their derivatives are continuous 

functions of t The domain with a two-dimensional grid in a rectangular region in length 

a  and b ,    0, 0,a b  , we first partition the intervals  0,a and  0,b into respective 

finite grids as follows.  

Let , 1,2,...,ix i x i M   where
a

x
M

  , 

     
, 1,2,...,jy j y j N   where 

b
y

N
   

Similarly we partition  0,T  as , 0,1,2,...,kt k t k P    where 
T

t
P

   

Where ,i j  location (node numbers), k  time (time step number) 

Further, to find the more accurate numerical solution of Eq. (4.1) with respect to the 

given conditions in Eqs. (4.2) and (4.3), we will apply finite difference method of Crank-

Nicolson.  
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Assume that there are M , N and P  mesh points along the X , Y  and time in t directions 

respectively, and let ( , , )U x y t  be discretized at the mesh point ( , , )i j k  and we adopt 

writing ,

k

i jU  for ( , , )i j kU x y t , where 1(1)i M , 1(1)j N  and 0(1) .k P  

 

Let  and  be thestep sizes in the X and Y directions respectively.We transform equation

 4.1  into itsequivalent finite difference approximation by Crank Nicolson method.

x y 



 
 

 
 

 
 

2
1 1 1

1, , 1, 1, , 1,2

2
1 1 1 1 1

, 1 , , 1 , 1 , , 1 , , ,2 2

2 2
2

1
2 2 2 0

2

k k k k k k

i j i j i j i j i j i j

k k k k k k k k k

i j i j i j i j i j i j i j i j i j

c
U U U U U U

x

c
U U U U U U U U U

y t

  

   

    

   

      


        
 

 (4.4)

 

Where     

2
1

2

c t
r

x

 
  

 
   and    

2

1

2

c t
e

y

 
  

 

 We can write the above equation as 

      

     

1 1 1 1 1

, 1, 1, , 1 , 1

1

, 1, 1, , 1 , 1 ,

1 2 2

2 2 2 0

k k k k k

i j i j i j i j i j

k k k k k k

i j i j i j i j i j i j

r e U r U U e U U

r e U r U U e U U U

    

   



   

        

       
                         (4.5) 

In (4.4) we put 0k   and 1j   , by taking i  from 1  to M  we get M set of equations 

along the x direction. Again putting 2j  still we get another M set of equations, and so 

on until j N  getting a total of MN set of equations on the plane parallel to the XY

plane. Again for 1(1)k P  we follow the same pattern as 0k  and finally we have P

block of equations and each block has a set of MN equations. Thus, in general, (4.1) can 

be written in matrix form as  

                            AU B                                                                                   (4.6)                                                                                     

  where                                                            

 

                            

R S

Y R S

Y R S
A

Y R S

Y R

 
 
 
 

  
 
 
 
                       (4.7)                                                               
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Matrix A has p blocks and each block is of order MN MN,  

1 2

2 1 2

2 1 2

2 1 2

2 1

R R

R R R

R R R
R

R R R

R R

 
 
 
 

  
 
 
 
 

               

1 2

2 1 2

2 1 2

2 1 2

2 1

S S

S S S

S S S
S

S S S

S S

 
 
 
 

  
 
 
 
   

 

1

1

1

1

Y

Y

And Y Y

Y

 
 
 
 
 
 
 
                                                                                  (4.8)

 

,  and have  blocks and each block is of order M M,R S Y N   

1

1 2 2

1 2 2

1 2 2

1 2 2

1 2 2

r e r

r r e r

r r e r
R

r r e r

r r e

   
 

  
 
   

  
 
   
 

   

 

1

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

r e r

r r e r

r r e r
S

r r e r

r r e

  
 

 
 
  

  
 
  
 

  

                                                                               

2 2

e

e

R Se

e

 
 
 
  
 
 
 
 

   And 

    

1

1

1

1

1

Y

 
 


 
  
 
 
                           (4.9)
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Where 1R And 1S are square matrices of order M  and 2R , 2S  and 1Y are diagonal matrices 

of order M , 

      0 1 1...
T

p pU U U U U  And  0 1 1...
T

p pB B B B B  

     1 2

T

k k k NkU U U U  And  1 2

T

jk jk jk MjkU U U U     

     1 2

T

k k k NkB d d d    And  1 2

T

jk jk jk Mjkd d d d       

  0,1,2,...,k p  is the known column vector such that each ijkd represents known 

boundary values of .U Thus (4.6) can be written as                                                                

      

0 0

1 1

2 2

1 1p p

p p

U BR S

U BY R S

U BY R S

U BY R S

U BY R

 

    
    
    
    

    
    
    
       

                                                              (4.10)

 

Equation (4.10) once again can be written as 

          0 1 0RU SU B   

 0 1 2 1YU RU SU B    

 1 2 3 2YU RU SU B    

               ... 

      1P P PYU RU B  
          (4.11)                                                                          

Now we can solve equation (4.11) directly by using Crank-Nicolson method depending 

on initial and boundary conditions.  

From Eq. (4.5) and Eq. (4.11) we get the following algebraic equations 

For 0,1,2,..., , 1, 1,2,...,k P j i M      

           

           

1 1 1 1 1 1

1,1 2,1 0,1 1,2 1,0 1,1 2,1 0,1 1,2 1,0 1,1

1 1 1 1 1 1

2,1 3,1 1,1 2,2 2,0 2,1 3,1 1,1 2,2 2,0 2,1

1 2 2 2 2 2 0

1 2 2 2 2 2 0

1 2

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

               

               

            

           

1 1 1 1 1 1

3,1 4,1 2,1 3,2 3,0 3,1 4,1 2,1 3,2 3,0 3,1

1 1 1 1 1 1

4,1 5,1 3,1 4,2 4,0 4,1 5,1 3,1 4,2 4,0 4,1

2 2 2 2 0

1 2 2 2 2 2 0

       

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

             

               

  
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For 2j   

           

           

1 1 1 1 1 1

1,2 2,2 0,2 1,3 1,1 1,2 2,2 0,2 1,3 1,1 1,2

1 1 1 1 1 1

2,2 3,2 1,2 2,3 2,1 2,2 3,2 1,2 2,3 2,1 2,2

1 2 2 2 2 2 0

1 2 2 2 2 2 0

1 2

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

               

               

            

           

1 1 1 1 1 1

3,2 4,2 2,2 3,3 3,1 3,2 4,2 2,2 3,3 3,1 3,2

1 1 1 1 1 1

4,2 5,2 3,2 4,3 4,1 4,2 5,2 3,2 4,3 4,1 4,2

2 2 2 2 0

1 2 2 2 2 2 0

       

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

             

               

  

 

Againfor 3j   

           

           

1 1 1 1 1 1

1,3 2,3 0,3 1,4 1,2 1,3 2,3 0,3 1,4 1,2 1,3

1 1 1 1 1 1

2,3 3,3 1,3 2,4 2,2 2,3 3,3 1,3 2,4 2,2 2,3

1 2 2 2 2 2 0

1 2 2 2 2 2 0

1 2

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

               

               

            

           

1 1 1 1 1 1

3,3 4,3 2,3 3,4 3,2 3,3 4,3 2,3 3,4 3,2 3,3

1 1 1 1 1 1

4,3 5,3 3,3 4,4 4,2 4,3 5,3 3,3 4,4 4,2 4,3

2 2 2 2 0

1 2 2 2 2 2 0

       

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

             

               

  

 

Continuing for 4j   

           

           

1 1 1 1 1 1

1,4 2,4 0,4 1,5 1,3 1,4 2,4 0,4 1,5 1,3 1,4

1 1 1 1 1 1

2,4 3,4 1,4 2,5 2,3 2,4 3,4 1,4 2,5 2,3 2,4

1 2 2 2 2 2 0

1 2 2 2 2 2 0

1 2

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

               

               

            

           

1 1 1 1 1 1

3,4 4,4 2,4 3,5 3,3 3,4 4,4 2,4 3,5 3,3 3,4

1 1 1 1 1 1

4,4 5,4 3,4 4,5 4,3 4,4 5,4 3,4 4,5 4,3 4,4

2 2 2 2 0

1 2 2 2 2 2 0

       

k k k k k k k k k k k

k k k k k k k k k k k

r e u r u u e u u r e u r u u e u u u

r e u r u u e u u r e u r u u e u u u

     

     

             

               

  

 

Collecting the like term we obtain such likes of tridiagonal linear algebraic equations 

For 0, 1, 1,2,3,...,k j i M    

   

   

   

   

1 1 1

1,1 2,1 1,1 2,1 1,1

1 1 1 1

1,1 2,1 3,1 1,1 2,1 3,1 2,1

1 1 1 1

2,1 3,1 4,1 2,1 3,1 4,1 3,1

1

3,1

1 2 2 2 3

1 2 2 2 3

1 2 2 2 3

1

k k k k k

k k k k k k k

k k k k k k k

k

r e u ru r e u ru u

ru r e u ru ru r e u ru u

ru r e u ru ru r e u ru u

ru

  

   

   



         

           

           

     1 1 1

4,1 5,1 3,1 4,1 5,1 4,12 2 2 3k k k k k kr e u ru ru r e u ru u          



 

Continuing in this way, we get the same linear algebraic equations and solve by Thomas 

Algorithm. 
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4.2. Convergence Analysis 

4.2.1. Stability of Crank-Nicolson scheme 

A numerical method is said to be stable if the cumulative effect of all the errors is 

bounded independent of the number of mesh points. The von Neumann stability analysis 

is a way to determine when a particular numerical method is stable. This tells us whether 

the amplitude of the wave is less than or equal to one. If the amplitude is greater than one, 

then the amplitude is increasing and will therefore eventually become unstable. Thus the 

method is stable at the values | | 1  . In general, the Von Neumann’s procedure 

introduces an error represented by a finite Fourier series and examines how this error 

propagates during the solution. To get stability of Crank Nicolson via this method, since 

stability is independent of source term then substitute ,

k k i mh i nh

i ju e e   in the 

homogeneous equation  

   Where  

           is time index in x  

            is time index in y  

          h   is spatial step size in x  and y  

          m  is spatial index in x and  

          n  is spatial index in y  

   1 1 1 1 1 1

1, , 1, , 1 , 1 1, , 1, , 1 , 1 ,1 4 2 4k k k k k k k k k k k

i j i j i j i j i j i j i j i j i j i j i jru r u ru ru ru ru r u ru ru ru u     

                     

  Where 

2
1

2

c t
r

h

 
  

                                                         (4.12)

 

Which yields, 

     

       
     

1 11 1 1

1 1 11 1

1 1 11 1

1 4

2 4

i m h i m hk i nh k i mh i nh k i nh

i n h i n h i m hk i mh k i mh k i nh k i mh i nh

i m h i n h i n hk i nh k i mh k i mh k i mh i nh

r e e r e e r e e

r e e r e e r e e r e e

r e e r e e r e e e e

    

      

      

  

   

   

   

   

   

   

    

         (4.13)

 

Again dividing the above equation by
k i mh i nhe e  , we obtain 

            11 4 2 4i h i h i h i h i h i h i h i hr r e e r e e r r e e r e e                         
  (4.14)
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Recall that
2cos 1 2sin

2 2

i ie e 



   , therefore using this fact in (4.14), yields 

   2 2 2 2 1
1 4 2 1 2sin 2 1 2sin 2 4 2 1 2sin 2 1 2sin
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After rearrangement, we get 
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Which has a non-trivial solution when 1 1i   , where i  is the magnification factor 

corresponding to eigenvalue, thus; 
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Now for | | 1i  , we have 2sin 1
2

h
  and 2sin 1

2

h
 , therefore  
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Hence for stability 0r  , which makes i less than unity for all values of r implying 

unconditional stability throughout: from (Opiyo Richard et al, 2015).  

Therefore, Crank-Nicolson scheme is unconditionally stable.  

4.2.2. Stability of time 

If x y h     and  , ,0 0tu x y   
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Coefficient on ,

k

i jU  must be non-negative for stability. 

Hence, 
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4.2.3. Truncation error and order of the method 

The local truncation error (LTE) of a numerical scheme ErrorT F is the error made when 

evaluating the numerical scheme with the exact solution ( )ju x in place of the numerical 

solution jU .The local truncation is directly obtained from the truncation error of the 

finite difference scheme.  

Taylor’s series expansion for time dependent  

         

2 3 42 3 4
, , , ,1

, , 2 3 4
...

1! 2! 3! 4!

n n n n

i j i j i j i jk n

i j i j

U U U Ut t t t
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t t t t


      

     
   

                      (4.15) 
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i j i j i j i jk n

i j i j

U U U Ut t t t
U U

t t t t


      

     
   

                       (4.16) 

Adding (4.15) and (4.16) we get 
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The same way we get independent variable x and y  
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Substituting Eqs. (4.17), (4.18) and (4.19) in the two dimensions wave equation we 

obtain 
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By Crank-Nicolson scheme:
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Therefore, the truncation error is    ErrorX ErrorY ErrorZT T T   

And the order of this method  2 2 2, ,O t x y          

4.2.4. Consistency of Crank-Nicolson scheme 

A numerical method is called consistent if the local error decays sufficiently fast as 

0h  (mesh size tends to zero). Consistency is the study of the local error. Convergence 

is the study of the global error. So the two-dimensional wave equation on Eq. (4.1) 

At x y h     by Crank-Nicolson scheme we get
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By performing a Taylor series expansion around the point , ,i j kx y t
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Adding the Taylor series of Eqs. (4.21) and (4.22) 
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The same way we obtain for x  and y  

2 2 3 3 4 4

1, 2 3 4

,

...
2 6 24

k

k

i j

i j

u x u x u x u
u u x

x x x x


       
       

    
     (4.24)

 

2 2 3 3 4 4

1, 2 3 4

,

...
2 6 24

k

k

i j

i j

u x u x u x u
u u x

x x x x


       
       

    
    (4.25)

 

2 2 3 3 4 4

, 1 2 3 4

,

...
2 6 24

k

k

i j

i j

u y u y u y u
u u y

y y y y


       
       

    
    (4.26)

 

2 2 3 3 4 4

, 1 2 3 4

,

...
2 6 24

k

k

i j

i j

u y u y u y u
u u y

y y y y


       
       

    
    (4.27)

 

   

       

   

2 22 2 2

2 2

3 3 2 23 3 3 3

3 3 2 2

1

1, 4 44 4

4 4

2 2

6 6 2 2

24 24

k

i j

t xu u u u u
u t x t x

t x t x t x

t x t xu u u u
x t

t x t x t x
u

t xu u

t x





             
                  

              

             
            

            


     
  

    

     

 

2 2 34 4

2 2 3

3 4

3

,

4 6

...
6

k

i j

t x tu u
x

t x t x

x u
t

t x

 
 
 
 
 
 
 
       

        
       

 
            (4.28)

 

   

       

   

2 22 2 2

2 2

3 3 2 23 3 3 3

3 3 2 2

1

1, 4 44 4

4 4

2 2

6 6 2 2

24 24

k

i j

t xu u u u u
u t x t x

t x t x t x

t x t xu u u u
x t

t x t x t x
u

t xu u

t x





             
                  

              

             
            

            


     
  

    

     

 

2 2 34 4

2 2 3

3 4

3

,

4 6

...
6

k

i j

t x tu u
x

t x t x

x u
t

t x

 
 
 
 
 
 
 
       

       
       

 
         

  (4.29)

 



 

24 
 

   

       

   

2 22 2 2

2 2

3 3 2 23 3 3 3

3 3 2 2

1

, 1 4 44 4

4 4

2 2

6 6 2 2

24 24

k

i j

t yu u u u u
u t y t y

t y y y t y

t y t yu u u u
y t

t y t y t y
u

t yu u

t y





            
                 

              

             
            

            


     
  

    

     

 

2 2 34 4

2 2 3

3 4

3

,

4 6

...
6

k

i j

t y tu u
y

t y t y

y u
t

t y

 
 
 
 
 
 
 
       

        
       

 
         

   (4.30) 

   

       

   

2 22 2 2

2 2

3 3 2 23 3 3 3

3 3 2 2

1

, 1 4 44 4

4 4

2 2

6 6 2 2

24 24

k

i j

t yu u u u u
u t y t y

t y t y t y

t y t yu u u u
y t

t y t y t y
u

t yu u

t y





            
                 

              

             
            

            


     
  

    

     

 

2 2 34 4

2 2 3

3 4

3

,

4 6

...
6

k

i j

t y tu u
y

t y t y

y u
t

t y

 
 
 
 
 
 
 
       

       
       

 
         

  (4.31) 

From Eq. (4.24) to Eq. (4.31) the local truncation error is

   

 
      

2 22 2 2 2 3 3

2 2 2 2 3 3

2 3
3 3 3

3

2 6 6

6

error

t xu u u t u u u u u
T

t x y t t x y t x

y u
O t O x O y

y

                 
               

               

  
      

 

 

So that 
0, 0

lim 0error
t h

T
  



    

  

Due to (Lax’s Equivalence Theorem): Given a properly posed initial- value problem and 

a finite-difference approximation to it that satisfies the consistency condition, stability is 

the necessary and sufficient condition for convergence. Therefore Crank-Nicolson 

method is consistent.  

Thus, when we conclude the Crank-Nicolson method is convergent for two-dimensional 

wave equation. Because of 

Stability and ConsistencyConvergence 
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Generally: 

 Stability is numerical errors which are generated during the solution of discretized 

equations should not be magnified. 

 Consistency is the discretization of a Partial Differential Equation should become 

exact as the mesh size tends to zero (truncation error should vanish).  

  Convergence is the numerical solution should approach the exact solution of the 

Partial Differential Equation and converge to it as the mesh size tends to zero. 
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4.3. Numerical Results  

In order to test the efficiency and adaptability of this proposed method, a computational 

experiment is done on two examples for which the exact solutions of are known to us. 

The computed solutions are displayed in terms of exact solution, numerical solution and 

absolute error (i.e. the error taken between the exact value and the computed value using 

this method) for some grid points. The results for these test problems are reported in 

Tables 1 to 2.  

Example 1: Consider the two-dimensional wave equation of the form: 

           

   
2 2 2

2

2 2 2
, , 0,1 0,1 , 0

u u u
c x y t

x y t

   
     

   
   , 2c   

The initial conditions 

                
   ( , ,0) sin( )sin(2 ) , , 0,1 0,1u x y x y x y   

 

                
( , ,0) 0tu x y 

       

And the boundary conditions 

                
   0, . 1, , 0,u y t u y t    ( ,0, ) ( ,1, ) 0,u x t u x t   

The exact solution is: 

                 ( , , ) sin( )sin(2 )cos( 5 )u x y t x y t    

Example 2: Consider the two-dimensional wave equation of the form: 

           

   
2 2 2

2

2 2 2
, , 0,1 0,1 , 1, 0

u u u
c x y c t

t x y

   
      

   
 

Initial conditions: 

              
   

1 1
, ,0 sin sin , , 0,1u x y x y x y

c c
 

   
    

   
 

              
( , ,0) 0tu x y   

Boundary conditions: 

                
   0, . 1, , 0,u y t u y t    ( ,0, ) ( ,1, ) 0.u x t u x t   

The exact solution is: 

                 

   1 1
, , sin sin cos 2u x y t x y t

c c
  

   
    

   
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Table 1: The absolute error of example 1 

t      ,x y   
Exact solution Numerical solution Absolute error 

0.035 

 

 

 

   (0.1, 0.1 ) 

  (0.05, 0.1) 

  (0.03, 0.1) 

(0.025, 0.1) 

1.76173e-01  

8.91846e-02  

5.36519e-02  

4.47302e-02 

1.74814e-01  

8.26268e-02  

5.21268e-02  

4.51871e-02 

1.35903e-03  

6.55777e-03   

1.52515e-03    

4.56955e-04 

0.017 

 

 

 

   (0.1, 0.05 ) 

  (0.05, 0.05) 

  (0.03, 0.05) 

(0.025, 0.05) 

9.48114e-02  

4.79966e-02  

2.88739e-02  

2.40725e-02 

9.35176e-02  

4.57689e-02  

2.95612e-02  

2.53616e-02 

1.29375e-03  

2.22772e-03  

6.87222e-04  

1.28907e-03 

0.012 

 

 

 

   (0.1, 0.03 ) 

  (0.05, 0.03) 

  (0.03, 0.03) 

(0.025, 0.03) 

5.76984e-02  

2.92088e-02  

1.75715e-02  

1.46496e-02 

5.81287e-02  

2.68622e-02  

1.61873e-02  

1.31232e-02 

4.30265e-04  

2.34657e-03  

1.38424e-03  

1.52640e-03 

0.0088 

 

 

 

  (0.1, 0.025 ) 

 (0.05, 0.025) 

 (0.03, 0.025) 

(0.025, 0.025) 

4.82486e-02  

2.44250e-02  

1.46937e-02  

1.22503e-02 

4.10551e-02  

1.92489e-02  

1.42847e-02  

1.11034e-02 

7.19351e-03  

5.17614e-03  

4.08998e-04  

1.14686e-03 
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Table 2: The absolute error of example 2 

t       ,x y   
Exact solution Numerical solution Absolute error 

0.07 

 

 

 

   (0.1, 0.1 ) 

  (0.05, 0.1) 

  (0.03, 0.1) 

(0.025, 0.1) 

9.09105e-02  

4.60219e-02  

2.76860e-02  

2.30821e-02 

9.01872e-02  

4.40901e-02  

2.24453e-02  

1.73397e-02 

7.23304e-04  

1.93176e-03  

5.24071e-03  

5.74239e-03 

0.035 

 

 

 

   (0.1, 0.05 ) 

  (0.05, 0.05) 

  (0.03, 0.05) 

(0.025, 0.05) 

4.77576e-02  

2.41765e-02  

1.45442e-02  

1.21256e-02 

4.11927e-02  

2.42718e-02  

1.42899e-02  

1.14968e-02 

6.56492e-03  

9.53398e-05  

2.54204e-04  

6.28811e-04 

0.021 

 

 

 

   (0.1, 0.03 ) 

  (0.05, 0.03) 

  (0.03, 0.03) 

(0.025, 0.03) 

2.89546e-02  

1.46578e-02  

8.81786e-03  

7.35154e-03 

2.91683e-02  

1.46081e-02  

8.63809e-03  

7.31780e-03 

2.13678e-04  

4.96992e-05  

1.79769e-04  

3.37355e-05 

0.017 

 

 

 

 (0.1, 0.025 ) 

 (0.05, 0.025) 

 (0.03, 0.025) 

(0.025, 0.025) 

2.41761e-02  

1.22387e-02  

7.36260e-03  

6.13828e-03 

2.45731e-02  

1.21268e-02  

7.32752e-03  

6.17461e-03 

3.96989e-04  

1.11963e-04  

3.50868e-05  

3.63311e-05 
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4.4. Discussion 

In this thesis, Crank-Nicholson Scheme has been presented for solving two-dimensional 

wave equation in rectangular coordinate system with the given boundary condition. The 

numerical results have been presented in Tables 1 to 2 for different values of mesh points. 

The results obtained by the present methods have been compared with the exact solution. 

As we can observe the results from the tables, this methods was approximates to the exact 

solution very well. So, Crank-Nicolson method is good for two-dimensional wave 

equation, since it is easy to solve the resulting tridiagonal system of equations. Thus the 

tridiagonal system of equation was solved by Thomas Algorithm. Finally we concluded 

that the two dimensional wave equation by Crank-Nicholson scheme applied in the 

present paper gives good approximation results. 
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CHAPTER FIVE 

CONCLUSION AND FETURE WORK 

5.1. Conclusions 

In this thesis, we have transformed the two dimensional wave equation in rectangular 

coordinates system in to a system of linear equations using Crank-Nicholson scheme. The 

resulting large number of algebraic equation was arranged in order to get a block matrix. 

From block matrix we obtain system of linear algebraic equation and changes to 

tridiagonal matrices by collecting like terms. We have implemented Crank-Nicholson 

method to find the solution of the two-dimensional wave equation.  And we can be easily 

concluded that from Tables 1 to 2 that produces good approximation results in comparing 

with exact solution. 

5.2. Scope for future work 

 In the present thesis, the numerical methods based on Crank-Nicholson scheme were 

constructed for solving two dimensional wave equation in rectangular coordinates 

system. Hence, the schemes proposed in this thesis can also be extended to solve three 

dimensional wave equation by Crank-Nicholson scheme in rectangular coordinates 

system. 
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APPENDIX 

6.1. Matrix Generation 

This matrix depend on the solved examples 

Set one, 0,1,2,..., , 1, 1,2,3,...,k P j i M    

       

   

   

   

1 1 1

1,1 2,1 1,1 2,1 1,1

1 1 1 1

1,1 2,1 3,1 1,1 2,1 3,1 2,1

1 1 1 1

2,1 3,1 4,1 2,1 3,1 4,1 3,1

1

3,1

1 2 2 2 3

1 2 2 2 3

1 2 2 2 3

1

k k k k k

k k k k k k k

k k k k k k k

k

r e u ru r e u ru u

ru r e u ru ru r e u ru u

ru r e u ru ru r e u ru u

ru

  

   

   



         

           

           

     1 1 1

4,1 5,1 3,1 4,1 5,1 4,12 2 2 3k k k k k kr e u ru ru r e u ru u          



 

In the set two, we set 2j   to generate the system of equations 

        

   

   

   

 

1 1 1

1,2 2,2 1,2 2,2 1,2

1 1 1 1

1,2 2,2 3,2 1,2 2,2 3,2 2,2

1 1 1 1

2,2 3,2 4,2 2,2 3,2 4,2 3,2

1

3,2 4,2

1 2 2 2 4

1 2 2 2 4

1 2 2 2 4

1 2

k k k k k

k k k k k k k

k k k k k k k

k

r u ru r e u ru u

ru r u ru ru r e u ru u

ru r u ru ru r e u ru u

ru r u

  

   

   



        

          

          

    1 1 1

5,2 3,2 4,2 5,2 4,22 2 4k k k k k kru ru r e u ru u         


 

Continuing in the same trend, we set 3j   to give 

       

   

   

   

 

1 1 1

1,3 2,3 1,3 2,3 1,3

1 1 1 1

1,3 2,3 3,3 1,3 2,3 3,3 2,3

1 1 1 1

2,3 3,3 4,3 2,3 3,3 4,3 3,3

1

3,3 4,3

1 2 2 2 4

1 2 2 2 4

1 2 2 2 4

1 2

k k k k k

k k k k k k k

k k k k k k k

k

r u ru r e u ru u

ru r u ru ru r e u ru u

ru r u ru ru r e u ru u

ru r u

  

   

   



        

          

          

    1 1 1

5,3 3,3 4,3 5,3 4,32 2 4k k k k k kru ru r e u ru u         



 

  Setting 4j  yields             

       

   

   

   

 

1 1 1

1,4 2,4 1,4 2,4 1,4

1 1 1 1

1,4 2,4 3,4 1,4 2,4 3,4 2,4

1 1 1 1

2,4 3,4 4,4 2,4 3,4 4,4 3,4

1

3,4 4,4

1 2 2 2 4

1 2 2 2 4

1 2 2 2 4

1 2

k k k k k

k k k k k k k

k k k k k k k

k

r u ru r e u ru u

ru r u ru ru r e u ru u

ru r u ru ru r e u ru u

ru r u

  

   

   



        

          

          

    1 1 1

5,4 3,4 4,4 5,4 4,42 2 4k k k k k kru ru r e u ru u         



 

                                               …  …  … 

 


