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  Abstract  

This research paper mainly presents predictor-corrector method for solving initial value 

problems of second order Bratu-type Equations. In order to verify the accuracy, the 

numerical solutions are compared with the exact solutions. The numerical solutions are 

in good agreement with the exact solutions.  

The stability and convergence of the method have been investigated. Three model 

examples are considered to demonstrate the reliability and efficiency of the method. 

Point wise absolute errors are obtained by using MATLAB software. The proposed 

method also compared with the existing literatures and the proposed method is quite 

efficient and practically suited for solving these problems. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Background of the Study 

Many problems in science and engineering can be formulated in terms of differential 

equations. A differential equation is an equation involving a relation between an 

unknown function and one or more of its derivatives. Equations involving derivatives of 

only one independent variable are called ordinary differential equations which may be 

evaluated at either initial-value problems or boundary-value problems (Sewell, 2005; 

King et al., 2003). Many authors have attempted to solve initial value problems (IVP) to 

obtain highly accurate and rapidly convergent to the solution by using numerous 

methods, such as Taylor’s method, Runge-Kutta method, predictor-corrector method and 

some other methods.  

In numerical analysis, predictor–corrector methods belong to a class of algorithms 

designed to integrate ordinary differential equations to find an unknown function that 

satisfies a given differential equation. When considering the numerical solution of 

ordinary differential equations (ODEs), a predictor–corrector method typically uses an 

explicit method for the predictor step and an implicit method for the corrector step. 

The Bratu-type equations arise from a simplification of the solid fuel ignition model in 

thermal combustion theory. Studies on fuel ignition in thermal combustion theory have 

been on the increase over the last few years. The reason for the increased study is to 

ensure the safety of working environment especially when working with combustible 

fluid in some petro-chemical engineering process. Combustion problems are generally 

characterized by strong nonlinearity and singularity (Felobello-Nino et al., 2013; 

Zarebnia and Hoshyar, 2014; Adesanya et al., 2013). 

The standard nonlinear initial value problems of Bratu-Type equation is given by, 

                        

'' ( )( ) 0, 0 , where 0 1u xu x e x l l     
                (1.1) 

subject to the initial conditions  

                          
'(0) , (0)u u                                                                              (1.2) 

where and,    are constants  ( 0)  and ( )u x is unknown function. 



2 

 

As Jin, (2010) and Feng et al., (2008) stated, recently much attention has been given to 

develop several iterative methods for solving nonlinear equations of the type of Eq. (1.1) 

with initial condition given on Eq. (1.2). The nonlinear models of real-life problems are 

still difficult to solve analytically. Batiha, (2010) and Adesanya et al., (2013) said that 

there has recently been much attention devoted to the search for better and more efficient 

solution methods for determining a solution, approximate or exact, analytical or 

numerical, to nonlinear models. 

The Bratu-Type problem appears in a large variety of applications such as fuel ignition 

model of thermal combustion, radiative heat transfer, thermal reaction, the 

Chandrasekhar model of the expansion of the universe, chemical reactor theory and 

nanotechnology (Batiha, 2010; Syam and Hamdan, 2006).   

Darwish and Kashkari, (2014) and Syam and Hamdan, (2006) proposed that the Bratu-

type initial value problems have been studied extensively because of its mathematical and 

physical properties. Many numerical methods have been successfully applied to solve the 

Bratu-Type equations. Among these method some of them are Adomian decomposition 

method by Hasanzadeh and Osgooei, (2017) and Adesanya and Arekete, (2013); optimal 

homotopy method (Hassan and Semary, 2013); Haar wavelet method (Vankatesh, 2010) 

and homotopy perturbation method (Ghazanfari and Sepahvandzadeh, 2015; Kashkari et 

al., 2017; Filobello-Nino et al., 2013 and Feng et al., 2008). 

The aim of this study was to apply the predictor-corrector method for solving initial value 

problems of Bratu-Type equations. We first linearize the given equation using quasi-

linearization formula and then used fourth order Adams-Bashforth method as a predictor 

and Adams-Moulton fourth order method as a corrector. The starting values ( 1 2 3, ,u u u ) 

were calculated using Runge-Kutta fourth order method. 

1.2. Statement of the Problem 

The study of nonlinear problem is important not only in mathematics but also in areas of 

physics, engineering and other disciplines. Since most phenomena in our world are 

expressed in different differential equations, it is important to find their approximate 

solution (Wazwaz, 2016). Most of engineering problems are inherently nonlinear, 
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especially those problems arising in fluid mechanics, heat transfer, large deformations, 

and nonlinear problems are difficult to solve, especially in an analytical manner (Batiha, 

2010; Syam and Hamdan, 2006). Bratu-Type equations have fundamental importance in 

various fields of science and engineering. Thus, it is important to find a better 

approximate solution. Many researchers approximate the Bratu-Type equations in 

different years using different methods as clearly discussed in the background of this 

study. 

In most of journals the accuracy of second order initial value problems of Bratu-type 

equation are still required. Even though the researchers continuous solving this equation, 

they do not get the most appropriate and accurate method that approximate the solution 

well.    

In this study, we applied a new method which is called Adams Predictor-Corrector 

Method to find better solution of initial value problems of Bratu-Type equations. 

To this end, the present study attempted to answer the following basic questions: 

 How does the predictor-corrector method be applied for solving Bratu-

Type equation? 

 To what extent the predictor-corrector method converges? 

 To what extent the predictor-corrector method approximate the solution? 

 What is the advantage of the proposed method over some of the other 

numerical methods? 
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1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this study is to approximate the initial value problems of Bratu-

type equation using the predictor-corrector method. 

1.3.2. Specific Objectives 

The specific objectives of this study are: 

 To apply the predictor-corrector method for solving initial value problems 

of Bratu-Type equation. 

 To establish the convergence of the proposed method. 

 To investigate the accuracy and stability of the numerical solutions 

obtained by the proposed method. 

 To show the advantage of the proposed method over the other numerical 

methods. 

1.4. Significance of the Study 

The outcome of this study will be to apply the predictor-corrector method to find the 

numerical solution of initial value problems of Bratu-type equation. 

1.5. Delimitation of the Study 

This study was delimited to solve initial value problems of Bratu-Type equations of the 

form in Eq. (1.1) with initial condition given in Eq. (1.2) using predictor-corrector 

method.  
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CHAPTER TWO 

2. REVIEW OF RELATED LITERATURES 

2.1. Differential Equations 

A differential equation is an equation involving a relation between an unknown function 

and one or more of its derivatives. Equations involving derivatives of only one 

independent variable are called ordinary differential equations which may be evaluated at 

either initial-value problems (IVP) or boundary-value problems (BVP) (Sewell, 2005; 

King et al., 2003). The distinction between IVP and BVP lies in the location where the 

extra conditions are specified. For an IVP, the conditions are given at the same value of 

the variable, whereas in the case of the BVP, they are prescribed at two different values 

of the variable. Since there are relatively few differential equations arising from practical 

problems for which analytical solutions are known, one must resort to numerical 

methods. In this situation it turns out that the numerical methods for each type of 

problem, IVP or BVP, are quite different and require separate treatment (King et al., 

2003). 

Ordinary differential equations (ODEs) are used in mathematical modeling to describe a 

variety of real-world problems in science and engineering, such as population growth 

models, predator-prey models and chemical and biological models (Gholamtabar and 

Parandin, 2015). The discovery of ODEs goes back to Leibniz, Newton, Bernoulli, and 

others. Many methods, analytic and numerical, were used to solve ODEs, linear or 

nonlinear.  

The main concern of many researchers is to find a better method that works for almost, 

but not all, ODEs, linear or nonlinear. Researchers have been attempting to discover new 

methods for solving differential equations, analytically and numerically (Wazwaz, 2016). 

2.2. Bratu-Type Equations 

Bratu equations named from the name of person, Bratu, who first proposed and solved 

the equation of the form Eq. (1.1) in 1914. The Bratu-Type equations are employed in the 

fuel ignition model of the thermal combustion theory, the model of thermal reaction 

process, the Chandrasekhar model, chemical reaction theory, radiative heat transfer and 

nanotechnology (El Hajaji et al., 2013). Combustion problems are generally 
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characterized by strong nonlinearity and singularity, as such in most cases exact solution 

of combustion problems are very difficult to obtain (Hassan and Erturk, 2007; Filobello-

Nino et al., 2013; Zarebnia and Hoshyar, 2014 and Adesanya et al., 2013). Nonlinear 

phenomena are of fundamental importance in various fields of science and engineering. 

The nonlinear models of real-life problems are still difficult to solve analytically. There 

has recently been much attention devoted to the search for better and more efficient 

methods for determining a solution, approximate or exact, analytical or numerical, to 

nonlinear models (El Hajaji et al., 2013 and Batiha, 2010). Bratu-Type equation is widely 

used in science and engineering to describe complicated physical and chemical models 

(Kashkari and Abbas, 2017). Studies on fuel ignition in thermal combustion theory have 

been on the increase over the last few years. The reason for the increased study is to 

ensure the safety of working environment especially when working with combustible 

fluid in some petro-chemical engineering process.  

Jin, (2010) forwarded that a substantial amount of research work has been directed for the 

study of the Bratu problem. Several numerical techniques, such as the Adomian 

Decomposition Method by Hasanzadeh and Osgooei, (2017) and Adesanya and Arekete, 

(2013), Optimal Homotopy Method (Hassan and Semary, 2013), Haar wavelet method 

(Vankatesh et al., 2010) and Homotopy perturbation method (Ghazanfari and 

Sepahvandzadeh, 2015; Kashkari et al., 2017; Filobello-Nino et al., 2013 and Feng et al., 

2008) have been implemented to handle the Bratu-type model numerically. In addition, 

Wazwaz, (2016) has been established the successive differentiation method to determine 

the solutions of Bratu-type equations; Hilal et al., (2013) developed a cubic spline 

collocation method for solving Bratu’s problem; Hassan and Erturk, (2007) had applied 

differential transformation method for solving Bratu-type problem; Noor and Mohyud-

Din, (2008) established the variational iteration method (VIM) for solving Bratu-type 

problem. In all of these methods Bratu-type equations approximated well. But, still there 

is a lack of accuracy in this equation. 

2.3. Quasi-linearization Method 

The quasi-linearization method (QLM) whose origins are in the theory of dynamic 

programming was first proposed by Bellman and Kalaba, in 1965. This method can be 

viewed as the Newton-Raphson method applied to nonlinear differential equations. It is a 
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very powerful method for approximating solutions of nonlinear differential equations and 

makes use of the Taylor series expansion of first order to linearize a nonlinear differential 

equation. The solution is then approximated as a sequence of the linear equations. 

Originally, the method was restricted to twice differentiable and strictly concave (or 

convex) functions. However, great work was done by Lakshmikantham who presented 

the QLM with the concavity assumption relaxed. This made the QLM applicable to a 

wider variety of problems (Muzara, 2015, in press; Eman et al. 2013). 

2.4. Predictor-Corrector Method 

The predictor–corrector method belongs to a class of algorithms designed to integrate 

ordinary differential equations to find an unknown function that satisfies a given 

differential equation. All such algorithms proceed in two steps: First, the initial predictor 

step, starts from a function fitted to the function-values and derivative-values at a 

preceding set of points to extrapolate this function's value at a subsequent, new point. 

Second, the corrector step refines the initial approximation by using the predicted value 

of the function and another method to interpolate that unknown function's value at the 

same subsequent point. 

The major advantage of the multistep methods is that fewer functional evaluations are 

usually required per integration step (Fujii, 1991, Sehnalova, 2011).We obtain different 

types by the combinations of explicit and implicit methods. Usually the predictor is an 

Adams-Bashforth formula and it predicts first approximation value of the solution. The 

derivative evaluated from this approximation is used in Adams-Moulton corrector 

formula in the next step. Apart from the better stability of the predictor-corrector 

formulae over the explicit formulae, the predictor-corrector formulae are generally more 

accurate and provide reasonable and adequate error estimators (Fatunla, 1988). 

When considering the numerical solution of ordinary differential equations (ODEs), a 

predictor–corrector method typically uses an explicit method for the predictor step and an 

implicit method for the corrector step. 
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In the calculation of predictor-corrector pairs there are three stages: 

1.Predict the starting value for the dependent variable as p

n k n ku u  . 

2. Evaluate the derivative at ( , )p

n k n kx u 
. 

3. Correct the evaluated predicted value.  

A combination of three stages is called PEC (predict–evaluate–correct) mode (Sehnalova, 

2011). 

As listed above many researchers were contributed different methods to solve Bratu-Type 

equations. In this study, we applied the predictor-corrector method to find better solution 

by computing Bratu-Type equations point wise by varying step sizes. 
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CHAPTER THREE 

3. METHODOLOGY 

3.1. Study Area and Period 

This study is conducted under mathematics department, college of Natural sciences of 

Jimma University from September 2016 to October 2017. 

3.2. The Study Design 

The study design is a mixed design. That is experimental and documentary review design 

method. 

3.3. Sources of Information 

The relevant sources of information for this study are books, different journals and 

internet access. 

3.4. Mathematical Procedures 

In order to achieve the stated objectives, the study follows the following procedures: 

 Defining the problem. 

 Linearizing the given nonlinear second order Bratu-type equation using the Quasi-

linearization method. 

 Reducing the linearized second order equation into first order equations. 

 Solving the reduced first order equations using Adams-Bashforth fourth order as a 

predictor and Adams-Moulton fourth order as a corrector. 

 Writing MATLAB code for the proposed method. 

 Validating the scheme using numerical examples. 
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CHAPTER FOUR 

4. FORMULATION OF THE METHOD, RESULT AND 

DISCUSSION 

4.1. Formulation of the Method 

In this section we consider nonlinear second order initial value problem of Bratu-Type 

equation of the form Eq. (1.1) with initial condition given in Eq. (1.2). 

The given nonlinear second order initial value problem of Eq. (1.1) can be linearized 

using the quasi-linearization method. 

4.1.1. Derivation of the Quasi-linearization Method (QLM) formula 

Let us consider an n
th 

order nonlinear differential equation of the form 

                            [ ( )] 0, [ , ]F u x x a b 
,                                                        (4.1) 

where x  is independent variable and 
' ' ' ( )( ) ( , , , ..., )nu x u u u u is a vector solutions of 

Eq. (4.1) 

Let '
du

u
dx

  and ( ) ,
n

n

n

d u
u

dx
 for 2, 3, 4,....n   Let assume that 

' '' ( )( , , , ..., )nz z z z z  is an 

approximate solution of Eq. (4.1) which is sufficiently close to the true solution u . 

Assuming that all the partial derivatives of F  exist, applying Taylor’s theorem we get: 

                             ).(F u F z F z u z    (higher order terms)                            (4.2) 

Ignoring the higher terms and simplifying Eq. (4.2) we obtain: 

                           . ( ). ( )F z u F z z F z                                                              (4.3) 

The solution from Eq. (4.3) will not be the exact solution of Eq. (4.1) because of the 

discarded higher order terms. We use the initial approximate solution z  as a calculated 

solution to iteratively compute the new solution u . Denoting z  and u  by ku
 
and 1ku 

respectively, we get the iterative formula 

                               1( ). ( ). ( )k k k k kF u u F u u F u  
,
                                           (4.4) 

where 1, 2, 3, ....k   
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Since  

1

1 1 1 1 1' ( 1) 1 ( )

( ) ( ) ( ) ( )
( ). ( ) ... ( ) ( )

n n

k k k k
k k k k k kn n n n

k k k k

F u F u d F u d F u d
F u u u u u u

u u dx u dx u dx



     

   
     

   

then Eq.  (4.4) can be written in operator form as 

                            L 1ku  = L ( )k ku F u                                                                        (4.5) 

where L
1

0 1 11
...

n n

n nn n

d d d
b b b b

dx dx dx




    

                                                                  
(4.6) 

And 
0 1 1( ) ( 1) '

( ) ( ) ( ) ( )
, , ..., ,k k k k

n nn n

k k k k

F u F u F u F u
b b b b

u u u u


   
   

   
  

The iterative scheme Eq. (4.5) is the standard QLM formula used to obtain the ( 1)thk   

iterative approximation 1( )ku x  of the solution of Eq. (4.1) (Muzara; in press, Eman et 

al., 2013). 

Applying the Quasi-linearization method on Bratu-Type Problem 

The Bratu-type equation of the form Eq. (1.1) can be transformed to a linear differential 

problem using the QLM Eq. (1.1) is of second order, thus we have 

 ' ' ( )' ' '( , , ) u xu x eF u u u  and  L=
2

0 1 22

d d
b b b

dx dx
   

Calculating the coefficients 0 1,b b and 2b  and substituting these values into Eq. (4.5) we 

get the iterative scheme,  

                   0 11, 0b b  and 
( )

2
ku x

b e
 

( ) ( )' '

1 1( ) ( ) ( ( ) 1)k ku x u x

k k ku x e u x e u x    
                                 

(4.7) 

                                  
'

1 1(0) and (0)k ku u   
,                                                 (4.8) 

where 1, 2, 3, ....k    

Eq. (4.7) can be used to compute 1( )ku x  provided ( )ku x is known. In particular, the 

initial approximation 0 ( )u x  must be specified so that we compute 1( )u x . Once 1( )u x is 

known, we compute 2 ( )u x  using Eq. (4.7) and so on.  
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Eqs. (4.7) and (4.8) can be reduced to the equations 

L(u)=        ' 'u x a x u x b x  ,   0 x l                                                                    (4.9)
    

       ' 'u x a x u x b x     

with initial conditions  

                        (0)u   and 
'(0)u  ,                   (4.10) 

where 
u(x)( ) ea x  and 

u(x)( ) e (u(x) 1)b x    

Therefore the given second order IVP of Bratu-type equation is linearized to Eq. (4.9) 

with initial condition given in Eq. (4.10). This equation with the given initial conditions 

can be solved by Adams-Bashforth-Moulton predictor-corrector method. 

The second order initial value problem of Eq. (4.9) can be reduced to first order system of 

equations using the substitutions 
'( ) ( )v x u x and

' ' '( ) ( )v x u x . Then the given second 

order initial value problem of Eq. (4.9) with Eq. (4.10) can be re-written as: 

               

'

'

( ) ( ) ( , , ), (0)

( ) ( ) ( ) ( ) ( , , ), (0)

u x v x F x u v u

v x b x a x u x G x u v v









  

           

   (4.11) 

Dividing the interval [0, ]l  into  N equal subintervals of mesh length h and the mesh 

point is given by 0 , for 1, 2, ..., 1.nx x nh n N     For the sake of simplicity, let 

use the notation: ( )n nu x u , ( )n nv x v , etc.  

Thus, at the nodal point n
x  Eq. (4.11), can be written as: 

                
'

' ( , , ), (0)

( , , ), (0) ,n

n n n n

n n n

u F x u v u

v G x u v v









 

 
                                        (4.12) 

where      ( , , )n n n n n nG x u v a x u x b x   

To solve the system of equations given in Eq. (4.12) we may use multistep methods that 

require information about the solution at nx
 
to calculate at 1nx   from the solution at a 

number of previous solutions.  From one of the single step methods we use the fourth 

order Runge-Kutta method since it is self-starter and then we use the fourth order Adams-

Bashforth-Moulton method to solve the Bratu-type equations. 
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For the general case, let’s consider the first order initial value problem of the form  

                             

'

0( ) ( , ( )), ( )u x f x u x u x  

                                      

(4.13) 

                            and 0nx x nh   

4.1.2. The fourth order Runge-Kutta Method 

The initial value problem of the form of Eq. (4.13) can be solved by using fourth 

order Runge-Kutta method. The general fourth order Runge-Kutta method of Eq. 

(4.13) is given by (Butcher, 2008): 

                        

4

1

1

4

,

1

,

where ( , )

n n n n

n

n n n n n j j

j

u u h w k

k f x c h u a k







 

  




                                          

(4.14) 

 The values of   nw ,  nc   and ,n ja are given by the Butcher tableau (Butcher, pp. 175) 

1c  

2c  

3c  

4c  

  

2,1a  

3,1a       3,2a  

4,1a        4,2a      4,3a     

 
1w        2w        3w     4w  

The corresponding values of variables of the above tableau are given for the classical 

runge-kutta method (Butcher, pp.180). 

0  

1

2
 

1

2
 

1 

  

1

2
 

0        
1

2
 

0         0         1    

 1

6
       

1

3
       

1

3
    

1

6
 

Using these values for particular fourth order classical Runge-Kutta method the scheme is 

given by: 

  

n+1 1 2 3 4

1
= ( 2 2 ),

6
nu u h k k k k                        (4.15)                      

where 1 ( , )n nK f x u   
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2 1

3 2

4 3

1 1
( , )

2 2
1 1

( , )
2 2

( , )

n n

n n

n n

k f x h u k

k f x h u k

k f x h u k

  

  

  

                                                                          

                                                                                                  

 

For the fourth order Runge-Kutta method of the system of two equations of the form of 

Eq. (4.12) can also be expressed as: 

           
1

1

4

1

4

1

,

n
n

n
n

n n n

n n nm

u wu

v

k

v w














 

 




                                                               (4.16)

 

where 

              

1 1

1 1

4 4

4 4

( ,   , ) 

( ,  ,   ) 

n n nj j nj j
j j

nj j nj j
j j

n n n

n n n n n

hF x c h u a k v a

hG x

k m

m mc h u a k v a

 

 









   

   

 

 
 

Particularly, Eq. (4.16) can also be simplified to the fourth order of classical Runge-Kutta 

method as: 

 
1 1 2 3 4

1 1 2 3 4

1
( 2 2 )

6
4.17

1
( 2 2 ),

6

nn

nn

u u h k k k k

v v h m m m m











    

    

 

n n n n1 1

n n n n2 1 1 2 1 1

n n n n3 2 2 3 2 2

4

where =F(x , , v )                                   =G(x , , v )

1 1 1 1 1 1
k =F(x + h, + k , + m )        =G(x + h, + k , + m )

2 2 2 2 2 2

1 1 1 1 1 1
k =F(x + h, + k , + m )       =G(x + h, + k , + m )

2 2 2 2 2 2

k =

n n

n n

n n

k u m u

u v m u v

u v m u v

n n n n3 3 4 3 3F(x +h, +k , +m )                 =G(x +h, +k , +m )n nu v m u v

 

Using Eq. (4.17) we can derive the Runge-kutta general formula of the linearized Bratu-

type equation given in Eq. (4.12). Let calculate the values of ik  and im  for 1, 2, 3i   and 

4  as follow:
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'

1

1

2 1 1

'

' ''

2 1 1

'

'

( , , )

( , , ) -

1 1 1
( , , )

2 2 2

1 1 1
( , , (- ) )

2 2 2

1

2

1 1 1
( , , )

2 2 2

1 1 1
( , , (- ))

2 2 2

1
- ( )

2

n n n n

n n n n n n

n n n

n n n n n n n

n n

n n n

n n n n n n n

n n n n

k F x u v u

m G x u v a u b

k F x h u k v m

F x h u u v a u b

u u

m G x h u k v m

G x h u u v a u b

a u u b

 

  

   

    

 

   

    

  
 

3 2 2

' ' ' ' ''

' ' ' ' ' '

3 2 2

' '' ' ''

' ''

1 1 1
( , , )

2 2 2

1 1 1 1
( , ( ), ( ( ) ))

2 2 2 2

1 1

2 4

1 1 1
( , , )

2 2 2

1 1 1 1
( , ( ), ( ( ) ))

2 2 2 2

1 1
( )

2 4

n n n

n n n n n n n n n

n n n

n n n

n n n n n n n n n

n n n n

k F x h u k v m

F x h u u u v a u u b

u u u

m G x h u k v m

G x h u u u v a u u b

a u u u

   

       

  

   

       

    nb

 

4 3 3

' ' ' ' ' ' ' ''

' ' ' ' ' ' (4)

( , , )

1 1 1 1
( , , ( ( ) ))

2 4 2 4

1 1

2 4

n n n

n n n n n n n n n n n

n n n n

k F x h u k v m

F x h u u u u v a u u u b

u u u u

   

         

   

 

4 3 3

' ' ' ' ' ' ' ' '

' ' ' ' ' '

( , , )

1 1 1 1
( , , ( ( ) ))

2 4 2 4

1 1
( )

2 4

n n n

n n n n n n n n n n n

n n n n n n

m G x h u k v m

G x h u u u u v a u u u b

a u u u u b

   

         

     
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Then substituting these values of 'sik  and 'sim
  i 1,  2,  3,  4  in Eq. (4.17) and 

simplifying the equations separately for 1 1and n nu v  we get:

 

1 1 2 3 4

' ' ' ' ' '' ''' ' ' ' ' ' ' (4)

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' (4)

' ' ' ' ' '

1
( 2 2 )

6

1 1 1 1 1 1
( 2( ) 2( ) ( ))

6 2 2 4 2 4

1 1 1 1
( 2 2 )

6 2 2 4

1
(( 2 2 ) (

6

nn

n n n n n n n n n n n

n n n n n n n n n n n

n n n n n n

u u h k k k k

u h u u u u u u u u u u

u h u u u u u u u u u u

u h u u u u u

     

          

          

       ' ' ' ' ' ' ' ' ' ' (4)

' ' ' ' ' ' (4)

' ' ' ' ' ' (4)

1 1 1
) ( ) )

2 2 4

1 1
(6 3 )

6 4

1 1 1
( )

2 6 24

n n n n n

n n n n n

n n n n n

u u u u u

u h u u u u

u h u u u u

   

    

    
 

And the values of 1nv  can also be calculated as follows:

 

1 1 2 3 4

' ' ' '

' ' ' ' ' '

1
( 2 2 )

6

1 1 1 1
((- ) 2(- ( ) ) 2( ( ) )

6 2 2 4

1 1
( ( ) ))

2 4

nn

n n n n n n n n n n n n n

n n n n n n

v v h m m m m

v h a u b a u u b a u u u b

a u u u u b

     

          

     

 

Simplifying this equation we get: 

' ' ' ' ' '
1

' ' ' ' ' '

1 1
( 6 3 6 )

6 4

1 1 1
( )

2 6 24

n n n n n n n n n nn

n n n n n n n n n n

v v h a u a u a u a u b

v h a u a u a u a u b

       

     
 

Therefore the system of Eq. (4.17) is simplified to:

 

' ' ' ' ' ' (4)
1

' ' ' ' ' '
1

1 1 1
( )

2 6 24
(4.18)

1 1 1
( )

2 6 24

n n n n nn

n n n n n n n n n nn

u u h u u u u

v v h a u a u a u a u b











    

     

 

This equation, Eq. (4.18), is Runge-Kutta fourth order formula used to approximate the 

values of  and n nu v  for n 1,  2,  3  since the Adams-Bashforth-Moulton predictor-

corrector method requires these values. 
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4.1.3. The Fourth order Adams-Bashforth Method 

To solve the general form of initial value problem of equation given in Eq. (4.13), we can 

apply the multistep method that requires information about the solution at 1nx   from the 

solution at a number of previous solutions. 

To begin the derivation of the multistep methods, if we integrate the initial-value problem 

of Eq. (4.13) from nx to 1nx  ,  then the following property exists (Chiou and Wu, 1999):     

1

1
(4.19)( ) ( ( , ( )) ,)

n

n

x

n n

x

u x u x f x u x dx




    

where ( , ( ))f x u x  is the first derivative of ( )u x .  

Replace ( , )f x u of Eq. (4.19) by the polynomial 1( )kp x of degree k-1, which interpolates

( , )f x u at k points and Newton backward interpolation formula gives polynomial of 

degree k-1. To derive Adams-Bashforth method, Newton backward difference formula 

with a set of equal spacing points, 1 1, , ...,n n n kx x x   ,  is used to approximate the 

integral and the fourth order Adams-Bashforth method is given by (Jain et al. 2007): 

                                                                                                              

(4.20) 

 

where kT  is the truncation error of the fourth order Adams-Bashforth method and is given 

by:                

                                 55 5251
( )

720
kT h u O h                                                              (4.21)     

To use Eq. 4.20, we require the starting values 1 2, ,n n nu u u   and 3nu   which are 

calculated by self-starting single step method, Runge-Kutta fourth order method for our 

case. The fourth order Adams-Bashforth method for the system of equations given in Eq.

 
(4.12), can be solved using Eq. 4.20 and it becomes

 

 

 

1 1 2 3

1 1 2 3

55 59 37 9
24

(4.22)

55 59 37 9
24

n n n n n n

n n n n n n

h
u u F F F F

h
v v G G G G

   

   


    


     


 1 1 2 355 59 37 9 ,
24

n n n n n n k

h
u u f f f f T        
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Using Eq. (4.22) we can formulate the general form of the system of Eq. (4.12) for 4n  . 

Therefore, Eq. (4.22) can be derived as follow:

 

          
1 1 2 3(55 59 37 9 )

24
n n n n n n

h
u u F F F F         

But, since the values of 1 2, ,n n nF F F  and 3nF  , for 4n  , can be calculated using the 

linearized system of Eq. (4.12), we have

 
' ' ' '

1 1 2 2 3 3, , , ,n n n n n n n nF u F u F u F u          then  

' ' ' '

1 1 2 3(55 59 37 9 )
24

n n n n n n

h
u u u u u u         

For 1 1 2 3(55 59 37 9 )
24

n n n n n n

h
v v G G G G        , where the values of

1 2 3 ,  , ,n n n nG G G G     are given by:
 

                             

1 1 1 1

2 2 2 2

3 3 3 3

,

,

,

n n n n

n n n n

n n n n

n n n n

G a u b

G a u b

G a u b

G a u b

   

   

   

  

  

  

  

 

1 1 1 1 2 2 2

3 3 3

(55( ) 59( ) 37( )
24

9( ))

n n n n n n n n n n n

n n n

h
v v a u b a u b a u b

a u b

      

  

         

  

 

Then the system of equation becomes 

 

' ' ' '

1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( )
24

9( ))

n n n n n n

n n n n n n n n n n n

n n n

h
u u u u u u

h
v v a u b a u b a u b

a u b

   

      

  


    




         


  



(4.23) 

This equation, Eq. (4.23), is the fourth order Adams-Bashforth predictor method for the 

given system of equations in Eq. (4.12). 
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4.1.4. The Fourth order Adams-Moulton Method 

Again to solve the given differential equation using fourth order Adams-Moulton method, 

first let’s consider the first order initial value problem of the form Eq. (4.13) and the 

method is derived by using the set of equal spacing points, 1 1
, , ...,nn n k

x x x  
. 

Integrating both sides of Eq. (4.13) with respect to x from 1ton nx x  we have, (Chiou and 

Wu, 1999) 

1

1( ) ( ) ( , ( ))
n

n

x

n n

x

u x u x f x u x dx


   
                                                                 

(4.24) 

Replace ( , )f x u in Eq. (4.24) by the polynomial ( )kp x of degree k, which interpolates 

( , )f x u at k + 1 points and Newton backward interpolation formula, gives polynomial of 

degree k and the fourth order Adams-Moulton method is given by (Jain et al. 2007): 

1 1 1 2 ,9 19 5
24

n nn n n n l

h
u u f f f f T          

                                                     (4.25) 

where the truncation error lT  is given by: 

   55 519
( )

720
lT h u O h


 

                                                                                        (4.26) 

The system of equations given in Eq. (4.12) is then given by: 

To apply Eq. (4.27) on Bratu-type equation, we simplify this equation using the same 

procedures as we have done for the Adams-Bashforth predictor method.

 
That is, the values of 1 1 2, , ,n n n nF F F F   and 

1 1 2, ,  ,n n n nG G G G  
are as calculated for the 

predictor method. Therefore, the system of Eq. (4.27) can be written as: 

 

 

1 1 1 2

1 1 1 2

9 19 5
24

(4.27)

9 19 5
24

n n n n n n

n n n n n n

h
u u F F F F

h
v v G G G G

   

   


    


     

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' ' ' '
1 1 1 2

1 1 1 1 1 1 1

2 2 2

(9 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

n nn n n n

n n n nn n n n n n n

n n n

h
u u u u u u

h
v v a u b a u b a u b

a u b

   

      

  











    

         

  

  

(4.28) 

This equation, Eq. (4.28), is the Adams-Moulton corrector formula. 

4.1.5. Predictor-Corrector Method 

Here we combine the Adams-Bashforth and Adams-Moulton fourth order method. We 

use the fourth order Adams-Bashforth method as a predictor and Adams-Moulton method 

as a corrector and we have the following equations. 

1 1 1 1

1 1 1 1

where ( , , )

( , , )

p p
n n n n

p p
n n n n

F F x u v

G G x u v


   


   




 

                1 1and  p p
n nu v  are calculated from Eq. 4.29 

 Applying these equations, Eqs. (4.29) and (4.30), on the Bratu-type equations is the same 

as combining Eq. (4.23) and Eq. (4.28); using Eq. (4.23) as a predictor and Eq. (4.28) as a 

corrector and it becomes: 

 

 

 

 

1

1

1 2 3

1 2 3

55 59 37 9
24

(4.29)

55 59 37 9
24

n

n

p
n n n n n

p
n n n n n

h
u u F F F F

h
v v G G G G





  

  


  


   

    

    

1 1 1 2

1 1 1 2 ,

9 19 5
24

(4.30)

9 19 5
24

c
n nn n n n

c
n nn n n n

h
y y F F F F

h
z z G G G G


   


   


   


  

 

    

    
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Predictor Formula 

' ' ' '

1 1 2 3

1 1 1 1 2 2 2

3 3 3

(55 59 37 9 )
24

(55( ) 59( ) 37( ) (4.31)
24

9( ))

p

n n n n n n

p

n n n n n n n n n n n

n n n

h
u u u u u u

h
v v a u b a u b a u b

a u b

   

      

  


    




         


  



   

 

And corrector formula

 
' ' ' '

1 1 1 2

1 1 1 1 1 1 1

2 2 2

(4.32)

(9( ) 19 5 )
24

(9( ) 19( ) 5( )
24

( ))

c p

n n n n n n

c p

n n n n n n n n n n n

n n n

h
u u u u u u

h
v v a u b a u b a u b

a u b

   

      

  


    




         


  



 

4.2. Truncation Error, Stability and Convergence Analysis 

Let’s consider the more general multistep method of the following (Sewell, 2005) 

                  

 1 1 2 1 1

0 1 1 1 1 1

( ) ( ) ( ) ... ( )

( , ( )) ( , ( )) ... ( , ( )),

k k k m k m

k k k k m k m k m

U t U t U t U t

h

f t U t f t U t f t U t

  

  

   

     

   

   
      

(4.33) 

where i  and j , (for 1, 2, 3, ...,i m  and 0, 1, 2, 3, ....,j m ) are constants.

 

Before we go to the actual analysis of the truncation error, stability and convergence let 

state the definitions of these words and some related theorems without proofs.  

Definition 4.1: The truncation error is the amount by which the solution of the 

differential equation fails to satisfy the approximate equation (Sewell, 2005 pp. 45). 

Definition 4.2: An approximate method is consistent with the differential equation if the 

truncation error goes to zero as the step size h goes to zero. 

Definition 4.3: An approximate method is stable if the error goes to zero as the 

truncation error goes to zero. 



22 

 

Theorem 4.1: If a sequence of numbers ke
 
satisfies  

1 1 2 1 1...k k k m k m ke e e e hT                                                    (4.34) 

for 1( 1)k m m   and if all the roots of the corresponding characteristic polynomial 

1 2

1 2 ...m m m

m         
                                                       

(4.35) 

are less than or equal to 1 in absolute value, and all multiple roots are strictly less than 1 

in absolute value, then 

0 1max{ ,..., } ,where t , max ,and isa constant

depending onlyon the .

k m k k j

i

e M e e t T kh T T M 



      

 

Theorem 4.2. The multistep method (4.33) is stable provided all roots of                   

                    
1 2

1 2 ....m m m

m                                                              (4.36) 

are less than or equal to 1 in absolute value, and all multiple roots are strictly less than 1 

in absolute value. 

4.2.1. Adams-Bashforth-Moulton Method 

Error Estimation 

The error terms for the numerical integration formulas used to obtain both the predictor 

and corrector are of order 
5( )O h (Eq. 4.21 and Eq.4.26). Therefore, the local truncation 

errors (L.T.E.) for equations (4.20 and 4.25) are  

   55

1 1

251
( )

720
n nu x p h u      (L.T.E. for the predictor)                                (4.37) 

   55

1 1

19
( )

720
n nu x u h u  


    (L.T.E. for the corrector),                               (4.38) 

where 1( )nu x   is given by Eq. (4.19) for the predictor and Eq. (4.24) for corrector and
 

1np   and 1nu    are calculated values for Adams-Bashforth predictor and Adams-Moulton
 

corrector given by Eq. (4.20) and Eq. (4.24) respectively. 

Suppose that h  is small and let 
(5)u  is nearly constant over the interval, then the terms 

involving the fifth derivative in Eqs. (4.37) and (4.38) can be eliminated, and the result 

becomes (Sewell, 2005),
 

1 1 1 1

19
( ) ( ) (4.39)

270
n n n nu x u u p   


  
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The importance of the predictor-corrector method should now be evident. This formula, 

Eq. (4.39), gives an approximate error estimate based on the two computed values 1np   

and 1nu   and does not use  (5)u x  (Sewell, 2005).  

Stability Analysis
 

Some of the most popular higher-order, stable, multistep methods are the Adams 

methods, which ensure stability by choosing 1 2 31 and ... 0.m         The 

characteristic polynomial corresponding to theorems 4.1 and 4.2 is 1m m    which has 

1 as a simple root and 0 as a multiple root. Thus these methods are stable regardless of 

the values chosen for the 'si . The values of 'si  are determined in order to maximize the 

order of the truncation error (Sewell, 2005).  

For Adams-Bashforth and Adams-Moulton method the value of i  
are calculated and 

given on Sewell (2005) and Jain et al. (2007). Since for all Adams methods the values of

1 2 31 and ... 0m         , the fourth order Adams-Bashforth method (Eq. 4.22) 

and fourth order Adams-Moulton method (Eq. 4.27) have the characteristic equation of 

(theorem 4.2): 

                           

4 3

3

( ) 0

( 1) 0

   

 

  

  
 

Then, 1  is a simple root and  0  is a multiple root with multiplicity 3. 

Therefore, since the simple root is 1, and multiple roots are 0 which is strictly less than 1, 

by theorem 4.2 Adams-Bashforth and Adams-Moulton methods are stable.  

Convergence Analysis 

As stated in definition 4.2, the method is said to be consistence if the truncation error 

goes to zero as the step size h goes to zero. If the truncation error goes to zero as h 

decreases (goes to zero), then the method is stable. However, consistency does not 

automatically guarantee convergence. Fourth order Adams-methods are consistence and 

also stable. Therefore, our method is convergent, since convergency is the sum of 

consistency and stability (Sewell, pp. 46-49).   
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4.3. Numerical Examples and Results 

To show the applicability and efficiency of the proposed method, we have considered 

three model examples of Bratu-type equation and compared the numerical solutions with 

different other numerical methods considered in this study and exact solution as follow. 

Example 1: Consider the Bratu-type initial value problem 

" 2 0,uu e   0 < x < 1 

(0) 0, '(0) 0u u   

whose exact solution is ( ) 2ln(cos( ))u x x   

Table 4.1: Comparison of numerical approximations and absolute errors for Example 4.1  

                with step size h= 0.1 and h=0.01 with different numerical methods 

 

 

x  

                               Absolute errors at  0.1h   Our Method 

(PC) at 

0.01h   
Aksoy and 

Pakdemirli, 2010  

Darwish and  

Kashkari, 2014  

Sinan and 

Necdet, 2016  

Our Method 

(PC) 

0.1 6.71e-6 6.41021065e-7 9.4728e-6 2.8436e-9 2.8073e-15 

0.2 9.55e-6 9.74693876e-6 3.3152e-5 1.2788e-7 1.2232e-13 

0.3 3.31e-6 4.52998213e-5 2.7254e-5 3.9593e-7 3.5863e-13 

0.4 8.04e-6 1.27118347e-4 4.4563e-6 3.4141e-6 2.3147e-12 

0.5 8.48e-6 2.68671650e-4 5.5511e-8 6.4578e-7 1.8502e-12 

0.6 2.03e-5 4.83656903e-4 7.2047e-5 6.3262e-7 1.5055e-12 

0.7 7.15e-5 8.36799541e-4 7.0044e-5 1.5328e-6 1.2795e-12 

0.8 2.91e-4 1.60053795e-3 1.2821e-4 1.5028e-6 1.1715e-12 

0.9 1.05e-3 3.64970628e-3 4.5236e-4 1.2844e-5 1.1814e-12 

1.0 3.53e-3 9.39151960e-3 4.4409e-8 3.6627e-5 1.3084e-12 
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Figure 4.1. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.1 with mesh length h=0.1 

 

Figure 4.2. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.1 with mesh length h=0.01 
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Example 2: Consider the Bratu-type initial value problem 

2
2

2

ud u
e

dx
   ; (0) 0, '(0)u u    

Whose exact solution is ( ) ln(1 sin( ))u x x   

Table 4.2: Comparison of numerical approximations and absolute errors for Example 4.2  

                with step size h= 0.1 and h=0.01 with RKM  

x  Exact value Absolute errors at  0.1h   Our Method (PC) at 

0.01h    Eslam et al.  2015, 

(RKM) 

Our Method 

(PC) 

0.1 0.26928 3.20777e-4 3.4129e-5 4.1477e-10 

0.2 0.46234 2.37600e-5 5.7752e-5 8.0185e-10 

0.3 0.59278 3.58700e-5 7.9099e-5 1.1645e-09 

0.4 0.66837 8.01000e-5 2.7368e-4 3.5093e-09 

0.5 0.69315 1.19500e-4 4.2841e-5 2.7071e-09 

0.6 0.66837 1.66200e-4 6.8607e-5 1.9756e-09 

0.7 0.59278 2.20200e-4 1.3754e-4 1.3059e-09 

0.8 0.46234 2.85100e-4 1.8845e-4 6.9034e-10 

0.9 0.26928 4.03400e-4 2.2350e-4 1.2237e-10 

1.0 2.2204e-16 5.37400e-4 2.1737e-4 4.0377e-10 
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Figure 4.3. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.2 with mesh size h=0.1 

Figure 4.4. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.2 with mesh size h=0.01 
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Example 3: (Eslam et al., 2015) Consider the Bratu-type initial value problem 

2" 0uu e  ; 0 < x < 1 

(0) 0, '(0) 0u u   

whose exact solution is ( ) ln(sec( ))u x x : 

Table 4.3: Comparison of numerical approximations and absolute errors for Example 4.3  

                with step size h= 0.1 and h=0.01 with the exact solution  

x  Exact solution       Numerical solution at        Absolute errors at  

 0.1h   0.01h   0.1h   0.01h   

0.1 5.0084e-3 5.0084e-3 5.0084e-3 1.4218e-9 6.5411e-13 

0.2 2.0135e-2 2.0135e-2 2.0135e-2 6.3940e-8 4.5335e-12 

0.3 4.5692e-2 4.5691e-2 4.5692e-2 1.9796e-7 1.4653e-11 

0.4 8.2229e-2 8.2227e-2 8.2229e-2 1.7071e-6 3.2161e-11 

0.5 1.3058e-1 1.3058e-1 1.3058e-1 2.2452e-6 5.9328e-11 

0.6 1.9197e-1 1.9196e-1 1.9197e-1 3.4494e-6 1.0021e-10 

0.7 2.6809e-1 2.6808e-1 2.6809e-1 5.8706e-6 1.6204e-10 

0.8 3.6319e-1 3.6138e-1 3.6319e-1 1.0790e-5 2.5830e-10 

0.9 4.7544e-1 4.7542e-1 4.7544e-1 2.1378e-5 4.1603e-10 

1.0 6.1563e-1 6.1558e-1 6.1563e-1 4.6258e-5 6.9674e-10 
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Figure 4.5. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.3 with mesh size h=0.1 

 

Figure 4.6. Plot of exact and approximated solution of Bratu-type equation using 

predictor-corrector method for example 4.3 with mesh size h=0.01 
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4.4. Discussion  

In this study, we presented the Predictor-corrector method for solving second order initial 

value problems of Bratu-Type equation. In order to verify the accuracy of the method, 

three model examples were considered and the point wise absolute error displayed using 

tables. Graphs have been plotted for the model examples with the exact and approximate 

solution for different step size h. 

Table 1 shows that the results of the point wise absolute errors obtained by predictor-

corrector method perform better when compared with other numerical methods such as; 

Perturbation Iteration Algorithm (PIA) by Aksoy and Pakdemirli, (2010), Adomian 

Decomposition Method (ADM) by Wazwaz, (2012) and Optimal Perturbation Iteration 

Asymptote  method (OPIA) by Sinan and Necdet, (2016). 

Table 2 shows the comparison of point wise absolute error of the proposed method with 

the Reproducing Kernels Hilbert method (RKM), (Eslam et al., 2015). As indicated in the 

table, the proposed method is better approximates than the indicated numerical method. 

Table 3 shows the comparison of exact and numerical solution obtained by predictor-

corrector method and also it indicates the point wise absolute errors of the method. As it 

can be observed from the tables, as the mesh size h decreases the numerical solution 

approximate the given equations well and the point wise absolute error becomes 

decreased which shows the method is consistent and convergent by definition 4.1 and 4.2.   

Moreover, according to the plotted graphs (figures 4.1-4.6) one can clearly observe that 

the numerical and exact solutions agree very well. This shows that the proposed method 

approximates the exact solution well. Generally, the present method is stable, efficient, 

convergent and accurate than some previously existing methods. 
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CHAPTER FIVE 

5. CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

This study was devoted to apply the new method which is called Adams Predictor-

corrector method to the nonlinear second order IVP of Bratu-Type equations. First QLM 

was applied on the nonlinear equation to linearize the given Bratu-type equation and the 

fourth order Adams-Bashforth was used as a predictor and the fourth order Adams-

Moulton method as a corrector to solve the Bratu-type equation. The starting values for 

the fourth order Adams-Bashforth method were calculated using the fourth order Runge-

Kutta method.  

The method was validated by considering three model examples. The point wise absolute 

errors of example 1 and 2 were compared with the results of other numerical methods, 

and the show that the present method has a better accuracy. 

The third example was compared with the exact value of the problem at different mesh 

size h . 

For each example the tables were given and also the graphs were plotted. 

In general, the proposed method was easy to use, more accurate and more efficient as 

compared to the other methods considered in this study. 

5.2. Recommendation 

In the present study, the numerical method called Adams-Bashforth-Moulton Predictor-

corrector method was constructed for solving nonlinear second order initial value 

problem of Bratu-type equation. Hence, the proposed scheme can also be extended to the 

nonlinear higher order differential equations other than Bratu-type equations. 
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