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ABSTRACT 

In this thesis, second and fourth order parametric uniform numerical methods are presented for 

solving singularly perturbed delay reaction-diffusion equations with twin layers and oscillatory 

behaviour for which a small shift ( )  is in the reaction term. First, the given singularly perturbed 

delay reaction-diffusion equation is converted into an asymptotically equivalent singularly perturbed 

boundary value problem by using the Taylor series expansion for the delay term as the delay 

parameter is sufficiently small. Using the finite difference approximations the given differential 

equation is transformed to a three-term recurrence relation, which can easily be solved by using 

Thomas Algorithm. The stability and ε-uniform convergence of the methods have been established. 

To validate the applicability of the proposed methods, four model examples without exact solution 

have been considered and solved for different values of parameters   and   and mesh sizes h . 

Both theoretical error bounds and numerical rate of convergence have been established for the 

methods. The numerical results have been presented in tables and further to examine the effect of 

delay on the twin boundary layer and oscillatory behavior of the solution, graphs have been given 

for different values of  . In a nutshell, the present methods gives better results than some existing 

numerical methods reported in the literature.   
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CHAPTER ONE 

INTRODUCTION 

1.1. Background of the Study   

Due to the advancement in the field of computational mathematics numerical methods are most 

widely utilized to solve the equation arising in the field of applied medical science, engineering 

and technology. Numerical analysis is the branch of mathematics that deals with the 

computational methods which helps to find approximate solutions for difficult problems such as 

finding the roots of non-linear equations, integration involving complex expressions and solving 

differential equations for which analytical solution is difficult to find. Numerical analysis plays a 

significant role when difficulties encountered in finding the exact solution of an equation using a 

direct method and when it becomes very difficult or impossible to apply theoretical methods to 

find the exact solution.                 

The problems in which the highest order derivative term is multiplied by a small positive 

parameter are known to be singularly perturbed problems and the parameter is known as the 

perturbation parameter. Depending on the solution behavior of the problem in the limiting case 

when perturbation parameter goes to zero, such type of problems are classified into two classes, 

namely, (i) regularly perturbed and (ii) singularly perturbed. If the solution of the original 

problem tends to the solution of the reduced problem (i.e., the problem which is obtained by 

putting 0   in the original problem) as the perturbation parameter tends to zero, the problem is 

known as regularly perturbed otherwise, it is known as singularly perturbed.  

Any system involving a feedback control will almost involve time delays. These arise because a 

finite time is required to sense information and then react to it. If we restrict the class of delay 

differential equations to a class in which the highest derivative is multiplied by a small positive 

parameter and involving at least one delay term, then it is said to be a singularly perturbed delay 

differential equation. In these problems, typically there are thin transition layers where the 

solution varies rapidly or jumps abruptly, while away from the layers the solution behaves 

regularly and varies slowly. In the recent years, there has been a growing interest in the 

numerical treatment of such differential equations. This is due to the versatility of such type of 

differential equations in the mathematical modeling of various physical and biological 

phenomena, for example, micro scale heat transfer, hydrodynamics of liquid helium, second-
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sound theory, thermo elasticity, diffusion in polymers, reaction-diffusion equations, stability, 

control of chaotic systems, a variety of models for physiological processes, Gemechis and Reddy 

[15]. Hence in the recent times, many researchers have been trying to develop numerical 

methods for solving these problems.     

Ramesh and Kadalbajoo [35] presented the numerical approximation of singularly perturbed 

linear second order reaction-diffusion boundary value problems with a small shift (δ) in the 

reaction term (i.e., in the undifferentiated term) and the shift depends on the small parameter ( ). 

Accordingly, the problem is discretized using standard finite difference scheme on a uniform 

mesh and the retarded arguments are interpolated/extrapolated using the known computational 

grid points. Phaneendra et al [31] proposed modified upwind finite difference scheme to tackle 

the delay term which occurs in the convection term. Swamy [44] presented the quantitative 

analysis of delay differential equations with layer or oscillatory behaviour by employing the 

numerical integration. Soujanya and Reddy [42] presented a computational method for solving 

singularly perturbed delay differential equations with twin layer or oscillatory behaviour in 

which the small delay is in the reaction term. The authors [41, 42] shows, when the order of the 

coefficient of the delay term is of (1)o , the delay affects the boundary layer solution but 

maintains the layer behaviour and when the delay is ( )o  , the solution maintains layer behaviour 

although the coefficients in the equation are of (1)O and as the delay increases, the thickness of 

the left boundary layer decreases while that of the right boundary layer increases. If the 

coefficient of the delay is of (1)o , the amplitude of the oscillations increases slowly as the delay 

increases provided the delay is of ( )o  and when the solution of the problem exhibits oscillatory 

behaviour for delay equal to zero, the delay affects the oscillatory behaviour. Also Swamy et al 

[45] presented a computational technique for solving singularly perturbed delay differential 

equations with twin layer or oscillatory behaviour in which the small delay is in the reaction 

term. Phaneendra et al [32] presented a finite difference approach to solve the boundary-value 

problem for singularly perturbed differential-difference equation, which contains only negative 

shift in the convection term (i.e., in the differentiated term) by using a fourth order finite 

difference scheme, provided shifts are of ( )o  . Rao and Chakravarthy [37] presented an 

exponentially fitted tri-diagonal finite difference method for solving boundary value problems 

for singularly perturbed differential–difference equations containing a small negative shift with 
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shift parameter smaller than the perturbation parameter which is almost second order parameter 

uniform convergence. The same authors [36] proposed a finite difference method for singularly 

perturbed differential-difference equations with layer and oscillatory behaviour of convection–

diffusion type by using fourth order finite difference method. Sirisha and Reddy [41] presented 

the numerical solution of singularly perturbed differential-difference equations, which contains 

the delay and advance in the problem but not in the derivative terms exhibiting dual layer 

behavior by second order stable central difference scheme. However, some of these methods are 

not uniformly convergent, simple and more accurate.     

Thus, this study presents parametric uniform methods for solving singularly perturbed delay 

reaction-diffusion equations with twin layers and oscillatory behaviour.  

1.2. Statement of the Problem 

The numerical analysis of singular perturbation problems has always been far from trivial 

because of the boundary layer behaviour of the solution. Such problems undergo rapid changes 

within very thin layers near the boundary or inside the domain of the problem. 

The field of delay differential equation (DDE) attracted mathematicians and engineers due to the 

following reasons. Firstly, we have to find an appropriate approximation of the solution at the 

delayed arguments ( )y x  and/or ( )y x   . Secondly, the algorithm has to take care of the 

jump in the discontinuity due to the delay parameter and thirdly, its solution behavior is very 

interesting with boundary layers, interior layers and oscillations. However, the computation of its 

solution has been a great challenge and has been of great importance due to the versatility of 

such equations in the mathematical modeling of processes in various application fields, where 

they provide the best simulation of observed phenomena and hence the numerical approximation 

of such equations has been growing more and more.  

The increasing desire for the numerical solutions to such mathematical problems, which are more 

difficult or impossible to solve analytically, has become the present-day scientific research. 

Bellen and Zennaro as cited in Amiraliyev and Erdogan [2] considered some approximating 

aspects of first order delay differential equations mainly focused on the stability of numerical 

methods when the boundary layers are absent. However, it is well known that some of standard 

discretization methods for solving singular perturbation problems are unstable and fail to give 
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accurate results in the presence of boundary layers. The treatment of singularly perturbed 

problems presents severe difficulties that have to be addressed to ensure accurate numerical 

solutions, Doolan et al [7], Kadalbajoo and Reddy [18] and Roos, et al [38]. Kadalbajoo and 

Ramesh [20] states that, the accuracy of the problem increased by increasing the resolution of the 

grid which might be impractical in some cases like higher dimensions. Pratima and Sharma [34] 

states that, till date ε-uniformly convergent methods have not been sufficiently developed for a 

wide class of singularly perturbed delay differential equations. Therefore, it is important to 

develop simple, more accurate, stable and parameter uniform  i.e., numerical methods whose 

accuracy does not depend on the parameter   or the methods which are uniformly convergent 

with respect to the parameter    for solving singularly perturbed delay reaction-diffusion 

equations with twin layers and oscillatory behaviour. 

Owing to this, the present study attempt to answer the following questions:  

1. How do the present methods be described for singularly perturbed delay reaction-

diffusion equation with twin layers and oscillatory behaviour?     

2. To what extent the proposed methods approximate the solutions?   

3. To what extent are the proposed methods stable and convergent?   

4. What is the advantage of the proposed methods over the other numerical methods? 
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1.3. Objectives of the study 

1.3.1. General Objective 

The general objective of this study is to present parameter uniform numerical methods for 

solving singularly perturbed delay reaction-diffusion equation with twin layers and oscillatory 

behaviour. 

1.3.2. Specific Objectives  

The specific objectives of the present study are: 

 To describe the numerical methods of second and fourth order parametric uniform 

methods for solving singularly perturbed delay reaction-diffusion equation with twin 

layers and oscillatory behaviour. 

 To investigate the accuracy of the proposed methods.  

 To establish the stability and convergence of the proposed methods. 

 To describe the advantage of the present methods over the others.  

1.4. Significance of the Study 

The outcomes of this study may have the following importance: 

 Provide some background information for other researchers who work on this area. 

 To introduce the application of numerical methods in different field of studies.  

 Help graduate students to acquire research skills and scientific procedures. 
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1.5. Delimitation of the Study 

The singularly perturbed delay differential equations perhaps arise in variety of applied 

mathematics that contributes for the advancement of science and technology. Though, singularly 

perturbed delay differential equations are vast topics and have many applications in the real 

world, this study is delimited to singularly perturbed delay reaction-diffusion equation of the 

form: 

            ,  0 1y x a x y x b x y x f x x                                          

with interval and boundary conditions,    

     ,   0  and   1y x x x y        

where,   is a small parameter, 0 1   and   is shift parameter;    ,   ,   ( )a x b x f x  and ( )x

are bounded smooth functions in (0,1  )  and   is given constant. Further, the study is delimited to 

second and fourth order parametric uniform numerical methods for solving singularly perturbed 

delay reaction-diffusion equations with twin layers and oscillatory behaviour, though there are 

varieties of methods for solving the problem under the study.  

1.6. Important Theorems 

Theorem 1.1: For any partition J K  of the index set  1,2, ,n  of an n n  matrix A, if there 

exists j J  and k K  such that 0jka  , then A is an irreducible matrix, Varga [46]. 

Theorem 1.2: If A is an L-matrix which is symmetric, irreducible and has weak diagonal 

dominance, then A is a monotone matrix, Young [49].  
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CHAPTER TWO 

REVIEW OF RELATED LITERATURE 

2.1. Singular Perturbation Theory 

Singular perturbation problem was first introduced by Prandtl [33] during his talk on fluid 

motion with small friction in a seven page report presented at the Third International Congress of 

Mathematicians in Heidelberg in 1904  in which he demonstrated that fluid flow past over a body 

can be divide in two regions, a boundary layer and outer region. However, the term „singular 

perturbations‟ was first used by Friedrichs et al [11] in a paper presented at a seminar on non-

linear vibrations at New York University. The solutions of singular perturbation problems 

typically contain layers. Prandtl [33], originally introduced the term „boundary layer‟, but this 

term came into more general following the work of Wasow [48].  

The study of many theoretical and applied problems in science and technology leads to boundary 

value problems for singularly perturbed differential equations that have a multi-scale character. 

However, most of the problems cannot be completely solved by analytic techniques. 

Consequently, numerical simulations are of fundamental importance in gaining some useful 

insights on the solutions of the singularly perturbed differential equations. Kadalbajoo, and 

Gupta [19] these singularly perturbed problems arise in the modeling of various modern 

complicated processes, such as fluid flow at high Reynolds numbers, water quality problems in 

rivers networks, convective heat transport problem with large   ́     numbers, drift diffusion 

equation of semiconductor device modeling, electromagnetic field problem in moving media, 

financial modeling of option pricing, turbulence model, simulation of oil extraction from under-

ground reservoirs, theory of plates and shells, atmospheric pollution, groundwater transport, and 

chemical reactor theory.  

In the modeling of these processes, characterized by dominant convection and/or intensive 

reactions, one can observe boundary and interior layers whose width, depending on the 

perturbation parameters, can be arbitrarily small. On the other hand, the domain itself, where the 

problem in question is considered, can be extremely large, even unbounded, compared to the 

available computational resources (especially in multidimensional problems for systems of 

equations).  A complicated geometry of the domains, and/or lack of sufficient smoothness (or 

compatibility) of the problem data may result in singular solutions in which different parts have 
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their own specific scales. Standard numerical methods applied to such multi-scale problems give 

unsatisfactorily large errors, which make these methods inapplicable for practical use. Thus, it is 

of considerable scientific interest to develop a solid mathematical theory and specific 

computational methods for singularly perturbed multi-scale problems and related problems 

arising from applications [19].          

Perturbation theory is a subject which studies the effect of small parameter in the mathematical 

model problems in ordinary differential equations. In Mathematics, more precisely in 

perturbation theory, a singular perturbation problem is a problem containing a small parameter 

that cannot be approximated by setting the parameter value to zero.  

During the last few years much progress has been made in the theory and in the computer 

implementation of the numerical treatment of singular perturbation problems. These problems 

depend on a small positive parameter in such a way that the solution varies rapidly in some parts 

and varies slowly in some other parts. The main concern with singular perturbation problems is 

the rapid growth or decay of the solution in one or more narrow “layer region(s)”.  

2.2. Singularly Perturbed Delay Differential Equation  

The theory and numerical solution of singularly perturbed delay differential equations are still at 

the initial stage. In the past, only very few people had worked in the area of numerical methods 

on singularly perturbed delay differential equations (SPDDEs). But in the recent years, there has 

been a growing interest in this area. In fact, Erdogan [10] proposed an exponentially fitted 

operator method for singularly perturbed first order delay differential equation, Kadalbajoo and 

Sharma [20, 22, 23] and Mohapatra and Natesan [29] proposed some numerical methods for 

SPDDEs with a small delay. It may be noted that Lange and Miura [27] gave an asymptotic 

approximation to solve singularly perturbed second order delay differential equations. In the 

present work a numerical method named as Initial Value Technique (IVT) is suggested to solve 

the boundary value problems for second order ordinary differential equations of reaction-

diffusion type with a negative shift in the differentiated term. The initial value method was 

introduced by the authors Gasparo and Macconi [13]. In fact they applied this method to solve 

singularly perturbed boundary value problems for differential equations without negative 

shift/delay. Chakravarthy et al [6] presented an exponentially fitted finite difference scheme to 

solve singularly perturbed delay differential equation of second order with a large delay    . 
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Gemechis and Reddy [14] presented a numerical method that does not depend on the asymptotic 

expansion and matching of the coefficients for solving a class of singularly perturbed delay 

differential equations with negative shift in the differentiated term.  Awoke and Reddy [3] 

provided a parameter fitted scheme and effect of small shifts on the boundary layer solution of 

the problem to solve singularly perturbed delay differential equations in the differentiated term 

of second order with left or right boundary. Accordingly, when the delay parameter is smaller 

than the perturbation parameter, the layer behaviour is maintained.   

A delay differential equation (DDE) is an equation where the evolution of the system at a certain 

time, depends on the state of the system at an earlier time. This is distinct from ordinary 

differential equations (ODEs) where the derivatives depend only on the current value of the 

independent variable. A DDE is said to be of retarded delay differential equation (RDDE) if the 

delay argument does not occur in the highest order derivative term, otherwise it is known as 

neutral delay differential equation (NDDE). If we restrict it to a class in which the highest 

derivative term is multiplied by a small parameter, then we obtain singularly perturbed delay 

differential equations of the retarded type. Frequently, delay differential equations have been 

reduced to differential equations with coefficients that depend on the delay by means of first 

order accurate Taylor's series expansions of the terms that involve delay and the resulting 

differential equations have been solved either analytically when the coefficients of these 

equations are constant or numerically, when they are not [24]. When the delay argument is 

sufficiently small, to tackle the delay term Kadalbajoo and Sharma [21], used Taylor‟s series 

expansion and presented an asymptotic as well as numerical approach to solve such type 

boundary value problem. But the existing methods in the literature fail in the case when the delay 

argument is bigger one because in this case, the use of Taylor‟s series expansion for the term 

containing delay may lead to a bad approximation.  
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2.2.1. Boundary Value Problem 

Finding the numerical solution of a boundary value problem is more difficult than that of 

corresponding initial value problem. The boundary-value problems for singularly perturbed 

delay-differential equations arise in various practical problems in biomechanics and physics such 

as in variational problem in control theory. These problems mainly depend on a small positive 

parameter and a delay parameter in such a way that the solution varies rapidly in some parts of 

the domain and varies slowly in some other parts of the domain. Moreover, this class of 

problems possesses boundary layers, i.e. regions of rapid change in the solution near one of the 

boundary points. 

There is a wide class of asymptotic expansion methods available for solving the above type 

problems. But there can be difficulties in applying these asymptotic expansion methods, such as 

finding the appropriate asymptotic expansions in the inner and outer regions, which are not 

routine exercises but require skill, insight and experimentation. Gülsu and Öztürk [16] the 

numerical treatment of singularly perturbed problems presents some major computational 

difficulties and in recent years a large number of special purpose methods have been proposed to 

provide accurate numerical solutions. This type of problem has been intensively studied 

analytically and it is known that its solution generally has boundary layers where the solution 

varies rapidly. The outer solution corresponds to the reduced problem, i.e., that obtained by 

setting the small perturbation parameter to zero. In recent years, the Chebyshev, cubic-spline, B-

spline, finite difference, stable central difference methods [36, 41, 5, 25] etc has been used to 

find the approximate solutions of differential, difference, integral and integro-differential-

difference equations. The main characteristic of this technique is that it reduces these problems 

to those of solving a system of algebraic equations, thus greatly simplifying the problem.   

Lange and Miura [26] gave asymptotic approaches in the study of class of boundary value 

problems for linear second order differential difference equations in which the highest order 

derivative is multiplied by small parameter. Accordingly, there are BVPs for DDEs exhibiting 

solutions with rapid oscillations all across the interval for shifts that are sufficiently small. Also, 

there are BVPs with solutions in which oscillations were previously confined to layer regions 

when the shifts are sufficiently small, but where the oscillations can extend into the outer region 
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when the shifts are increased. The oscillatory solutions are treated using the method of matched 

asymptotic expansions and the WKB method, which account for the small shifts.   

2.2.2. Uniformly Convergent Methods  

The singularly perturbed boundary-value problems cannot be solved numerically in a satisfactory 

manner by standard finite difference methods on uniform mesh. This encourages the need for the 

methods that behave uniformly well, i.e., which converges independent of the singular 

perturbation parameter  . Such methods are referred as ε-uniform of parameter uniform methods, 

where ε is the singular perturbation parameter. In the construction of an ε-uniform method, there 

are mainly two approaches. The first are the fitted operator methods which comprise of specially 

designed finite difference operator which reflects the singularly perturbed nature of the solution. 

Such fitted operator methods were first suggested by Allen and Southwell [1] for solving the 

problem of viscous fluid flow past a cylinder. An extensive account of ε-uniform fitted operator 

methods is discussed in Doolan et al [7]. The second are the fitted mesh methods which comprise 

of standard finite difference operators on fitted piecewise-uniform meshes condensing in the 

boundary layers [28]. 

The fitted mesh methods have probably received less detailed attention in the literature, than the 

construction of an appropriate finite difference fitted operator or finite element subspace 

methods. In 1996 [28], Miller et al. established the great importance of fitted mesh methods for 

solving singular perturbation problems. There are some problems for which no ε-uniform method 

can be constructed using a fitted operator approach on a uniform mesh while for such problem an 

ε-uniform fitted mesh method can be constructed.   

In [23, 25], an ε-uniform numerical scheme is constructed for a class of boundary value problems 

for singularly perturbed differential–difference equations with small shifts. The numerical 

method comprises a standard upwind finite difference operator on a fitted piecewise-uniform 

mesh which is condensed in the boundary layers by approximating the terms containing small 

shift by Taylor series and then apply the fitted mesh method, provided shifts are of     .  

Pratima and Sharma [34] states that, till date ε-uniformly convergent methods have not been 

sufficiently developed for a wide class of singularly perturbed delay differential equations. There 

is still a lot to be explored in the study of boundary value problems for singularly perturbed delay 
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differential equations with bigger delay and in particular, the case when the convection 

coefficient vanishes inside the domain for such type of differential equations is still to be 

investigated for big as well as small delay.  

2.3. Double Mesh Principle  

According to Doolan et al as cited in Pratima and Sharma [34] the double-mesh principle used to 

calculate the maximum absolute error and rate of convergence of the numerical scheme, when 

the differential equation has no exact solution.  So the accuracy of their numerical solutions will 

be computed using double mesh principle. For any value of N , the maximum point wise errors 

E for the solution iy , will be calculated by 2max ,
h

h

h i i
i

E y y  1...,,2,1  Ni , where h

iy
 
is 

the computed solution with N number of mesh intervals and 2
h

iy
 
is the numerical solution on a 

mesh, obtained by bisecting the original mesh with N  number of mesh intervals (i.e. 2N  mesh 

intervals).  And rate of convergence   are computed using the double-mesh principle as, 

  
   

2

log log

log 2

h hE E



  
 

  

2.4. Finite Difference Method 

Finite difference methods were made during the period of, and immediately following, the 

Second World War, when large-scale practical applications became possible with the aid of 

computers. A major role was played by the work of von Neumann, partly reported in O'Brien, 

Hyman and Kaplan (1951).              

Finite difference methods are always a convenient choice for solving boundary value problems 

because of their simplicity. Finite difference methods are one of the most widely used numerical 

schemes to solve differential equations and their application in sciences and technology. In finite 

difference methods, derivatives appearing in the differential equations are replaced by finite 

difference approximations obtained by Taylor series expansions at the grid points. This gives a 

large algebraic system of linear equations to be solved by Thomas Algorithm or other methods in 

place of the differential equation to give the solution value at the grid points and hence the 

solution is obtained at grid points. Some of the finite difference methods include forward 

difference method, backward difference method, central difference method, etc.  

http://www.sciencedirect.com/science/article/pii/S0377042700005070#BIB131
http://www.sciencedirect.com/science/article/pii/S0377042700005070#BIB131
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The finite difference method as cited in Vasil'eva [47] and Prandtl [33] is widely used by the 

scientific community for the numerical solution of reaction–diffusion equations; however, there 

are comparatively few studies that give stability and convergence results see Beckett, et al [4], 

Hoff [17].  For a unified treatment of how and when the finite difference method for reaction–

diffusion equations breaks down see Stuart [43], Elliott et al [9], and Ruuth [39]. A uniform 

higher order difference schemes for singularly perturbed two-point boundary value problem is 

presented by Gartland [12].       

Present-day scientific research concerns on the methods of numerical solutions to mathematical 

problems which are simpler to use and solve difficult problems. Accordingly, obtaining stable, 

accurate, uniformly convergent and fast numerical solutions for singularly perturbed delay 

differential equations has a great importance due to its wide applications in science and 

engineering research, since they are difficult or impossible to solve analytically. Owing to this, 

this study presents parametric uniform numerical methods for solving singularly perturbed delay 

reaction-diffusion equation with twin layers and oscillatory behaviour by the methods of second 

and fourth order.    
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted in Jimma University under the department of Mathematics from 

September 2015 to June 2016 G.C. Conceptually the study focus on parametric uniform 

numerical methods for solving singularly perturbed delay reaction-diffusion equation with twin 

layers and oscillatory behaviour, particularly by second and fourth order methods.   

3.2. Study Design 

This study was employed mixed-design (documentary review design and experimental design) 

on singularly perturbed delay boundary value problems of reaction-diffusion equation type.  

3.3. Source of Information 

The relevant sources of information for this study are books, published articles & related studies 

from internet and the experimental result was obtained by writing MATLAB code for the present 

numerical methods. The proposed methods are programmed using MATLAB ver. 8.1.0.604 

(R2013a).   

3.4. Study Procedures 

Necessary materials and data for the study were collected by means of documentary review and 

algorithm development. Hence, in order to achieve the stated objectives, the study procedures 

followed were:  

1. Defining the problem, 

2. Discretizing the domain/interval and formulating the methods. 

3. Replacing the differential equation by the finite difference approximations and obtaining 

the systems of equations.  

4. Reduce the obtained systems of equations into tri-diagonal systems which can be easily 

solved by Thomas Algorithm. 

5. Establishing the stability and convergence of the methods.  

6. Writing MATLAB code for the tri-diagonal systems obtained.  

7. Validating the schemes using numerical examples. 

8. Comparing the results of the present methods with existing methods.      
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3.5. Ethical Considerations 

Ethical clearance was obtained from Research and Post Graduate program coordinator Office of 

College of Natural Sciences, Jimma University and any concerned body were informed about the 

purpose of the study.   
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CHAPTER FOUR 

DESCRIPTION OF THE METHODS, RESULTS AND DISCUSSION 

4.1. Description of the Methods 

In this section, the description of second and fourth order finite difference methods and their 

stability and convergence analysis is discussed. Consider singularly perturbed delay reaction-

diffusion equation of the standard form: 

( ) ( ) ( ) ( ) ( ) ( ), 0 1y x a x y x b x y x f x x             (4.1) 

with the interval and boundary conditions,  

( ) ( ), 0y x x x      and (1)y        (4.2) 

where   is small parameter, 0 1   and   is also small delay parameter, 0 1  ; 

( ), ( ), ( )a x b x f x  and ( )x  are bounded smooth functions in  0,1 and   is a given constant. For 

0  , the solution of the boundary value problem in Eqs. (4.1) and (4.2) exhibits layer or 

oscillatory behaviour depending on the sign of ( ) ( )a x b x , for all  0,1x . If ( ) ( ) 0a x b x  , 

the solution of the problem in Eqs. (4.1) and (4.2) exhibits layer behaviour, and if 

( ) ( ) 0a x b x  , it exhibits oscillatory behaviour, Swamy et al [45]. 

The layer or oscillatory behaviour of the problem under consideration (i.e., reaction-diffusion 

type) is maintained for 0  , but sufficiently small. Therefore, if the solution exhibits layer 

behaviour, there will be two boundary layers which will be at both the end points. i.e., at 0x   

and 1x  . In general, the solution of the problem in Eqs. (4.1) and (4.2) exhibits layer or 

oscillatory behaviour depending on the sign of ( ) ( )a x b x . The solution ( )y x  must be 

continuous on  0,1 , continuously differentiable on  0,1  and also satisfies Eqs. (4.1) and (4.2), 

Ramesh and Kadalbajoo [35].  

By using Taylor series expansion in the neighborhood of the point x , we have: 

2( ) ( ) ( ) o( )y x y x y x              (4.3) 
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Substituting Eq. (4.3) into Eq. (4.1), we obtain an asymptotically equivalent singularly perturbed 

boundary value problem of the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )Ly x y x p x y x q x y x r x            (4.4) 

under the boundary conditions,  

0(0) and (1)y y   .         (4.5) 

where, 
( )

( )
a x

p x





 ,   

( ) ( ) ( )
( ) and ( )

a x b x f x
q x r x

 


  . 

The transition from Eq. (4.1) to Eq. (4.4) is admitted, because of the condition that 0 1   is 

sufficiently small. Further details on the validity of this transition can be found in Elsgolt‟s and 

Norkin [8]. 

Now, divide the interval [0,1]  into N equal parts with constant mesh length h . Let 

0 1 20 , , ,..., 1Nx x x x   be the mesh points. Then, we have 0 , 0,1, 2,...,ix x ih i N   . 

4.1.1. Method I (Second Order Method) 

Assuming that ( )y x  has continuous derivatives on [0,1] and making use of Taylor‟s series 

expansion, we have:  

2 3 4
(4) 5

1 ( )
2! 3! 4!

i i i i i i

h h h
y y hy y y y O h

              (4.6)

2 3 4
(3) (4) 5

1 ( )
2! 3! 4!

i i i i i i

h h h
y y hy y y y O h

            (4.7) 

Subtracting Eq. (4.7) from Eq. (4.6), we get: 

2

1 1
1

2 6

i i
i i

y y h
y y T

h

 
             (4.8) 

where, 
4

(5)

1 1( )
120

h
T y   , for  1 1,i ix x  . 

Again, adding Eq. (4.6) and Eq. (4.7), we get: 
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2
(4)1 1

22

2

12

i i i
i i

y y y h
y y T

h

  
            (4.9) 

where, 
4

(6)

2 2( )
360

h
T y   , for  2 1,i ix x  . 

Substituting Eqs. (4.8) and (4.9) into Eq. (4.4), we obtain: 

   
2

1 1 1 12

1
2

2 6

i
i i i i i i i i i i

p h
y y y y y p y q y r T

h h
   

       
   

(4.10) 

where, 
2

(4)

2 1 2( )
12

i

h
T y p T T    is the local truncation error and ( ) ,i ip x p ( ) ,i iq x q

( ) ,i ir x r
 

( ) .i iy x y
 

Rewriting Eq. (4.4), we have: 

( ) ( ) ( ) ( ) ( ) ( )y x r x p x y x q x y x            (4.11)
  

Differentiating both sides of Eq. (4.11) with respect to x  and evaluating at ix , we get: 

 i i i i i i i i iy r p y p q y q y         
       

(4.12) 

Substituting Eq. (4.12) into Eq. (4.10) for iy  and using central difference approximation for

andi iy y  , we obtain: 

 
 

 

2 2 2

12 2

2 2

12

1 2

2 6 12 3 12

1

2 6 12 6

i i i
i i i i i i i i

i i
i i i i i i i

p p ph h
p p q y q p q y

h h h

p p h h
p p q y r p r

h h





   
           

   

 
        

      

(4.13) 

Eq. (4.13) can be written as the three term recurrence relation of the form: 

1 1 , for 1,2,..., 1N

i i i i i i iL E y F y G y H i N      
     

(4.14) 

where,  
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2

2

1

2 6 12

i i
i i i i

p p h
E p p q

h h
      

2 2

2

2

3 6

i
i i i i

p h
F q p q

h
     

 
2

2

1

2 6 12

i i
i i i i

p p h
G p p q

h h
        

2

6
i i i i

h
H r p r 

 
 

The tri-diagonal system in Eq. (4.14) can be easily solved by the method of Discrete Invariant 

Imbedding Algorithm.   

Stability and Convergence Analysis for Method I 

To present the minimum principle and stability of the Eqs. (4.4), (4.5) and (4.14), we followed 

the procedure given by Sirisha and Reddy [40].   

Case 1: Layer Behaviour  . . ( ) ( ) 0, for (0,1). Thus ( ) 0, since 0i e a x b x x q x      . 

Lemma 4.1: (Continuous Minimum Principle)  

If (0) 0y   and ( ) 0Ly x  , for all  0,1x , then the solution ( ) 0y x  for all  0,1x for Eqs. 

(4.4) and (4.5). 

Proof: 

We prove this Lemma by contradiction. 

Suppose  0,1t , such that 
(0,1)

( ) min ( ) and ( ) 0
x

y t y x y t


  . Since,  0,1t  and is a point of 

minima, then ( ) 0y t   and ( ) 0y t  . 

Therefore, we have: 

( ) ( ) ( ) ( ) ( ) ( ) 0Ly t y t p t y t q t y t      , since ( ) 0y t   (by the assumption) and ( ) 0q t  . 

But, this is a contradiction.  

It follows that ( ) 0y t 
 
and therefore, ( ) 0y x   for all  0,1x . 
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Theorem 4.1: (Stability) 

The solution of the problem in Eqs. (4.4) and (4.5) satisfies  
(0,1)

( ) max (0) , max ( )
x

y x C y Ly x


 , 

for some constant 1C  .
 

Proof: 

Define two functions,
  

(0,1)
max (0) , max ( ) ( )

x
C y Ly x y x 


  .

 
Then,  

(i)  (0) max (0) ,max (0) (0)C y Ly y     

Case I: if  max (0) ,max (0) (0)y Ly y , we have; 

(0) (0) (0) 0 as 1.C y y C     
 

Case II: if  max (0) ,max (0) max (0)y Ly Ly , then: 

       
max (0) (0) max (0) (0) as 1.Ly y C Ly C y C     

Thus,  (0) max (0) ,max (0) (0)C y Ly y   
 

      

max (0) (0)

(0) (0) 0.

C Ly y

C y y

 

    

Hence, (0) 0.  
 

(ii)  
(0,1)

( ) ( ) max (0) , max ( ) ( )
x

L x C q x y Ly x Ly x 


   

Case I: if  
(0,1) (0,1)

max (0) , max ( ) max ( )
x x

y Ly x Ly x
 

 , we have: 

    
 

(0,1)

(0,1)

( ) ( ) max (0) , max ( ) ( )

( ) max ( ) ( ) 0 , since ( ) 0 and for suitable choice of .

x

x

L x C q x y Ly x Ly x

C q x Ly x Ly x q x C

 





 

   
 

Case II: if  
(0,1)

max (0) , max ( ) (0)
x

y Ly x y


 , then, 

(0,1) (0,1)
(0) max ( ) ( ) (0) ( ) max ( ) as 1 and ( ) 0.

x x
y Ly x C q x y C q x Ly x C q x

 
    

 

Thus,  
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(0,1)

(0,1)

( ) ( ) max (0) , max ( ) ( )

( ) (0) ( )

( ) max ( ) ( ) 0 , since ( ) 0.

x

x

L x C q x y Ly x Ly x

C q x y Ly x

C q x Ly x Ly x q x

 





 

 

   

 

Hence, ( ) 0.L x  
 

Therefore, by Lemma 4.1, we get,  ( ) 0, forall 0,1x x    .
 
So,  

 
 

 

(0,1)

(0,1)

(0,1)

max (0) , max ( ) ( ) 0

max (0) , max ( ) ( )

( ) max (0) , max ( ) .

x

x

x

C y Ly x y x

C y Ly x y x

y x C y Ly x

 







  

 

 
 

 

Hence, the stability of the solutions of the problem in Eqs. (4.4) and (4.5) is proved for the case 

of layer behaviour.  

Lemma 4.2: (Discrete Minimum Principle)   

The finite difference operator NL
 
in Eq. (4.14) has the discrete minimum principle, if iw

 
is any 

mesh function such that 0 0w 
 
and 0N

iL w  , for all  0,1ix  , then 0iw   for all  0,1x . 

Proof: 

Suppose that there exists a positive integer k such that 0kw 
 
and 

0
k i

i N
w min w

 
 . 

Then from Eq. (4.14), we have: 

       

 

1 1

2 2 2

12 2

2

12

1 2

2 6 12 3 6

1

2 6 12

N

k k k k k k k

k k k
k k k k k k k k

k k
k k k k

L w E w F w G w

p p ph h
p p q w q p q w

h h h

p p h
p p q w

h h
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2 2

1 1 1 12 2

2

1 1

6 6 2 12

6

k k k
k k k k k k k k k

k k k k

p p p h
w w w w p p q w w

h h h

h
q p q w

   

     
              

    

 
  

    

For sufficiently small h  (i.e., as 0h  ) and for suitable value of kp , we obtain: 

0N

kL w  . Since, 0kw 
 
(by the assumption) and 

2

0
6

k k k k

h
q p q q
 

   
 

. But, this is a 

contradiction.  

Hence, 0iw   for all  0,1ix  . 

Theorem 4.2: The finite difference operator NL
 
in Eq. (4.14) is stable for ( ) ( ) 0a x b x  , if iw

is any mesh function, then  0
(0,1)

max , max
i

i i
x

w C w Lw


 , for some constant 1C  . 

Proof: 

We define two functions,
  0

(0,1)
max , max

i

i i i
x

C w Lw w 


  .

 
Then, similar to Theorem 4.1, we 

get: 

0 0  
 
and  

 0
(0,1)

max , max 0
i

i i i i
x

L Cq w Lw Lw 


   , since 0 0i i ia b q   

 
and 1C  .

 
 

Therefore by Lemma 4.2 we get: 

 0, forall 0,1 .i ix   
 

 
(0,1)

max , max 0
i

i o i i
x

C w Lw w 


    .

 

Thus,  
(0,1)

max , max
i

i o i
x

w C w Lw


 . 

This proves the stability of the scheme for the case of layer behaviour. 
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Case 2: Oscillatory Behaviour  . . ( ) ( ) 0, for (0,1). Thus ( ) 0, as 0i e a x b x x q x      .  

The continuous maximum principle and stability of the solution of Eqs. (4.4) and (4.5) are 

presented as follows for the case of oscillatory behaviour.  

Lemma 4.3: (Continuous Maximum Principle)  

If (0) 0y   and ( ) 0Ly x  , for all  0,1x , then the solution ( ) 0y x   for all  0,1x  for Eqs. 

(4.4) and (4.5). 

 Proof: 

We prove this Lemma by contradiction. 

Suppose  0,1t , such that 
(0,1)

( ) max ( ) and ( ) 0
x

y t y x y t


  . Since,  0,1t  and is a point of 

maxima, therefore ( ) 0y t   and ( ) 0y t  . 

Therefore, we have:  

( ) ( ) ( ) ( ) ( ) ( ) 0Ly t y t p t y t q t y t      , since ( ) 0y t   (by the assumption) and ( ) 0q t  . 

But, this is a contradiction. 

Hence,  ( ) 0, forall 0,1 .y x x   

Theorem 4.3: (Stability) 

The solution of the problem in Eqs. (4.4) and (4.5) satisfies  
(0,1)

( ) max (0) , max ( )
x

y x C y Ly x


 , 

for some constant 1.C 
 

Proof: 

Define two functions,
  

(0,1)
max (0) , max ( ) ( )

x
C y Ly x y x 


  .

 
Then, similar to Theorem 4.1, we 

obtain:       

(0) 0    and       
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(0,1)

( ) ( ) max (0) , max ( ) ( ) 0
x

L x C q x y Ly x Ly x 


   , since ( ) 0 and 1.q x C   

Therefore by Lemma 4.3 we get,  ( ) 0 forall 0,1x x    .
 
 

Thus,  
(0,1)

( ) max (0) , max ( ) .
x

y x C y Ly x



 

Hence, the stability of the solutions of the problem in Eqs. (4.4) and (4.5) is proved for the case 

of oscillatory behaviour. 

Now, we present the maximum principle and stability of the discrete problem in Eq. (4.14) for 

the case of oscillatory behaviour.
 

Lemma 4.4: (Discrete Maximum Principle)   

The finite difference operator NL
 
in Eq. (4.14) has the discrete maximum principle, if iw is any 

mesh function such that 0 0w 
 
and 0N

iL w  , for all  0,1ix  , then 0iw   for all  0,1x . 

Proof: 

Suppose that there exists a positive integer k  such that 0kw 
 
and 

0
k i

i N
w max w

 
 . 

Then from Eq. (4.14), we have: 

       

 

1 1

2 2 2

12 2

2

12

1 2

2 6 12 3 6

1

2 6 12

N

k k k k k k k

k k k
k k k k k k k k

k k
k k k k

L w E w F w G w

p p ph h
p p q w q p q w

h h h

p p h
p p q w

h h

 





  

   
            

   

 
     

 

 

     

       
2 2

1 1 1 12 2

2

1 1

6 6 2 12

6

k k k
k k k k k k k k k

k k k k

p p p h
w w w w p p q w w

h h h

h
q p q w

   

     
              

    

 
  

 

 

For sufficiently small h  and for suitable value of kp , we obtain: 
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0N

kL w  . Since, 0kw 
 
(by the assumption) and 

2

0
6

k k k k

h
q p q q
 

   
 

. But, this is a 

contradiction.  

Hence, 0iw   for all  0,1ix  . 

Theorem 4.4: The finite difference operator NL
 
in Eq. (4.14) is stable for ( ) ( ) 0a x b x  , 

 . . ( ) 0i e q x  , if iw is any mesh function, then  0
(0,1)

max , max
i

i i
x

w C w Lw


 , for some constant 

1.C   

Proof: 

We define two functions,
  0

(0,1)
max , max

i

i i i
x

C w Lw w 


  .

 
Then, similar to Theorem 4.1, we 

get:       

0 0   and  0
(0,1)

max , max 0
i

i i i i
x

L C q w Lw Lw 


    since 0 and 1.iq C 

 

Therefore, by Lemma 4.4, we get: 

 0, forall 0,1 .i ix   
 

        
(0,1)

max , max 0
i

i o i i
x

C w Lw w 


    . 

Thus,  
(0,1)

max , max
i

i o i
x

w C w Lw


 . 

This proves the stability of the scheme for the case of oscillatory behaviour. 
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Definition 4.1 (Uniformly Convergence): Let y be a solution of Eqs. (4.1) and (4.2). Consider a 

difference scheme for solving Eqs. (4.1) and (4.2). If the scheme has a numerical solution Ny

that satisfies 

N py y C h  , 

where 0C  and 0p   are independent of   and of the mesh size h , then we say the scheme 

uniformly converges to   with respect to the norm . , O‟Riordan and Stynes [30]. 

Theorem 4.5: Let ( )y x be the analytical solution of the problem in Eqs. (4.4) and (4.5) and 

( )Ny x be the numerical solution of the discretized problem of Eq. (4.14). Then, 2Ny y C h   

for sufficiently small h  and C  is positive constant. 

Proof: 

Multiplying both sides of Eq. (4.13) by 
2h , we get: 

 

   

2 3 2 4
2 2 2

1

2 3 2
2 2

1

1 2
2 6 12 3 6

1 0
2 6 12 6

i i i i i i i i i i i

i i i i i i i i i i

h h h h h
p p p p q y p h q p q y

h h h h
p p p p q y h r p r T h





   
            

   

   
             

   

  

(4.15) 

where,  
4

(4) 6

2( ) ( )
12

i

h
T h y O h   is a local truncation error, for 1,2,..., 1i N  . 

Simplifying Eq. (4.15), we get: 

     1 11 2 1 0i i i i i i i iu y v y w y g T          
     

(4.16) 

where, 

 

 

2 3
2

2 4
2 2

2 3
2

2 6 12

3 6

2 6 12

i i i i i i

i i i i i

i i i i i i

h h h
u p p p p q

h h
v p h q p q

h h h
w p p p p q
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2
2

6
i i i i

h
g h r p r

 
  

 
 

Incorporating the boundary conditions 0 0 0( ) , (1)Ny x y y     
 
in Eq. (4.16), we get the 

systems of equations of the form:  

   

     

   

 

 

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3

1 1 1 1 1 1

2 1 0 0 1 (0)

1 2 1 0

0 0

0 1 2 1N N N N N N

v w y g u T

u v w y g T

y g T

u v y g w T



     

           
      
          

           
      
      
                   

 

  ( ) 0D P y M T h    
        

(4.17) 

where, 

2 1 0 0

1 2 1 0

0

0 1 2

D

 
 
 
 
    
 
 
    

,    

1 1

2 2 2

1 1

0 0

0

0

0 N N

v w

u v w

P

u v 

 
 
 
    
 
 
   

 are tri-diagonal matrices of 

order 1N  , and   

     1 1 2 3 1 11 (0) , , , , 1 ,
T

N NM g u g g g w  
          4( ) andT h O h

 
     1 2 1 1 2 1, , , , ( ) , , , , 0 0, 0, ,0

T TT

N Ny y y y T h T T T   
 
are the associated vectors 

of Eq. (4.17). 

Let 
1 2 1, , ,N N N N T

Ny y y y y
     

be the solution which satisfies the Eq. (4.17), we have: 

  0ND P y M  
         

(4.18) 

Let , for 1,2, , 1N

i i ie y y i N     be the discretization error, then, 

 1 2 1, , ,N T

Ny y e e e   .  
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Subtracting Eq. (4.17) from Eq. (4.18), we get: 

   ( )ND P y y T h  
        

(4.19)
 

Let 
1ip C , 

2ip C  , 
1 2,i iq K q K   

Let ijt be the  ,
th

i j element of the matrix P , then: 

 

 

2 3
2

, 1

2
21
1 1 2 1

2 6 12

2 6 12

i i i i i i i i

h h h
t w p p p p q

C h h
h C C C K


     

 
    

 

,     1,2, , 2i N   

 

 

2 3
2

, 1

2
21
1 1 2 1

2 6 12

2 6 12

i i i i i i i i

h h h
t u p p p p q

C h h
h C C C K


    

 
    

 

,      2,3, , 1i N  . 

Thus, for sufficiently small h , we have: 

, 11 0i it    , 1,2, , 2i N   

, 11 0i it    , 2,3, , 1i N  , since the    , 1 and , 1
th th

i i i i  of the matrix D  is 1 . 

Hence, the matrix  D P is irreducible, Varga [46]. 

Let iS  be the sum of the elements of the thi row of the matrix  D P , then: 

 

 

2 4 2 3
2 2 2

2
2 3 4

1 , for 1

1
3 6 2 6 12

1
2 6 12 6

i i i

i i i i i i i i i

i i i i i
i i i

S v w i

h h h h h
p h q p q p p p p q

p p p p q
h h q h p q h
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2 3 2 4
2 2 2

2 3
2

2 4

, for 2,3, , 2

2 6 12 3 6

2 6 12

6

i i i i

i i i i i i i i i

i i i i i

i i
i

S u v w i N

h h h h h
p p p p q p h q p q

h h h
p p p p q

p q
h q h

    

   
          

   

 
     

 

 
    

 

 

 

 

2 3 2 4
2 2 2

2
2 3 4

1 , for 1

1
2 6 12 3 6

1
2 6 12 6

i i i

i i i i i i i i i

i i i i i
i i i

S u v i N

h h h h h
p p p p q p h q p q

p p p p q
h h q h p q h

    

   
           

   

      
             

      

 

Let 
* *

1* 1 1* 1
1 1 1 11 1 1 1
min , max , min , maxi i i i
i N i Ni N i N

C p C p K q K q
          

    , then: 

* *

1* 1 1 1* 1 10 and 0C C C K K K       

For sufficiently small h ,  D P is monotone. Since,  D P D 
 
which is symmetric and has 

weak diagonal dominance, Varga [46] and Young [49]. 

Hence,  
1

D P


 exists and  
1

0D P


  . 

From the error Eq. (4.19), we have: 

 
1

( )Ny y D P T h


  
        

(4.20) 

For sufficiently small h , we have: 

2

1*K , for 1,2, , 1iS h i N    

Let  
1

,i k
D P


 be the  ,

th
i k element of  

1
D P


  and we define,         

   
1

1 1

,1 1 1 1
1

max and ( ) max
N

ii ki N i N
k

D P D P T h T


 

     


   
    

(4.21) 
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Since  
1

,
0

i k
D P


  , then from the theory of matrices, we have:  

 
1

1

,
1

. 1
N

ki k
k

D P S






  ,  1,2, , 1i N  . 

Hence,  

 
1

1

2 2 2,
1 1*

1 1

1 1 1

min

N

i k
k k

k N

D P
S h K h Q h Q





  

    
 

,   since 0 1     (4.22) 

where, 
1 1
min i i
i N

Q a b
  

  , since 
( ) ( )

( ) i i
i

a x b x
q x



 
  
 

. 

Now, from Eqs. (4.20), (4.21) and (4.22), we get: 

  
(4)4

(4) 2 22
22

( )1
( )

12 12

N yh
y y y h Ch

h Q Q




  
     

         

(4.23) 

where 
(4)

2( )

12

y
C

Q


 . 

This establishes the convergence of the finite difference scheme of Eq. (4.14) and its rate of 

convergence is 2. From Eq. (4.23), one can observed that the proposed method is  -uniform 

convergent, since the error is of the form 2Ny y C h  , where C  is independent of 

perturbation parameter   and mesh size h .    
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4.1.2. Method II (Fourth Order Method) 

Assuming that ( )y x  has continuous derivatives on  0,1
 
and making use of Taylor‟s series 

expansion, we have: 

2 3 4 5 6
(4) (5) (6) 7

1 ( )
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y O h

         
   

(4.24)

2 3 4 5 6
(4) (5) (6) 7

1 ( )
2! 3! 4! 5! 6!

i i i i i i i i

h h h h h
y y hy y y y y y O h

             (4.25) 

Subtracting Eq. (4.25) from Eq. (4.24), we get: 

2 4
(5)1 1

1
2 6 120

i i
i i i

y y h h
y y y

h
 

    
      

(4.26) 

where, 
6

(7)

1 1( )
7!

h
y   , for  1 1,i ix x  .  

Again, adding Eq. (4.24) and Eq. (4.25), we get: 

2 4
(4) (6)1 1

22

2

12 360

i i i
i i i

y y y h h
y y y

h
  

    
     

(4.27) 

where, 
6

(8)

2 2( )
8!

h
y   , for  2 1,i ix x  . 

Substituting Eqs. (4.26) and (4.27) into Eq. (4.4) and simplifying, we obtain: 

   
   

2 2 4
(4) (5)

1 1 1 12

1
2

2 6 12 120

i
i i i i i i i i i i i i i

p h h h
y y y y y p y y p y q y r

h h
   

         
 

(4.28) 

where, 
4

(6)

2 1 2( )
360

i

h
y p       is the local truncation error and  

( ) ,i ip x p ( ) ,i iq x q ( ) ,i ir x r ( ) .i iy x y  

By successively differentiating both sides of Eq. (4.11) and evaluating at ix , we have: 
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  i i i i i i i i iy r p y p q y q y                   (4.29) 

      (4) 2 2 2i i i i i i i i i i i i i i i i i iy r p r p p q y p p q p q y p q q y                   
  

(4.30) 

      
       

  

(5) 2 2

2

2

3 2 3 3 2

3 2

2

i i i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i

i i i i i i i i i i

y r p r p q p r p p p q p p q p p p q y

p p q p p q p q p q p q p p q y

p q p q q q p p q y

                     

                   

          

 

(4.31) 

Using Eqs. (4.29), (4.30) and (4.31)  into Eq. (4.28) and simplifying, we obtain: 

   
   1 1 1 12

1
2

2

i
i i i i i i i i i i i i

p
y y y y y A y B y C y H

h h
   

         , for 1,2, , 1i N    (4.32) 

where,

             

      

        

  

 

2 2 4
2 2 2

2 2 4

2

2 2

2 2 3 3 2
6 12 120

2
6 12 120

3 2

6 12

i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i

i i i i i i i i

i i i i i i

h h h
A p p p q p p p p q p p q p p p q

h h h
B p p q p p q p q p p p q p p q p

q p q p q p p q

h h
C p q p q q

                

                  

        

       

 

4
2

2 4 2 4 4
2 2

2
120

3
12 120 12 120 120

i i i i i i i i i i i

i i i i i i i i i i i i

h
p p q p q q q p p q q

h h h h h
H r p p p p q r p r p r

           

   
             

   

 

Now, using central difference approximation for andi iy y   in Eq. (4.32) and further simplifying, 

we get: 

1 12 2 2 2 2 2

21 2 1

2 2 2 2

i i i i i i i
i i i i i

p A B A p A B
y C y y H

h h h h h h h h h h
 

     
               

        
(4.33) 

Eq. (4.33) can be written as the three term recurrence relation of the form:  

1 1 , for 1,2,..., 1N

i i i i i i iL E y F y G y H i N      
     

(4.34) 

where,  
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2 2

1

2 2

i i i
i

p A B
E

h h h h
     

2 2

22 i
i i

A
F C

h h
    

2 2

1

2 2

i i i
i

p A B
G

h h h h
       

 
2 4 2 4 4

2 23
12 120 12 120 120

i i i i i i i i i i i i

h h h h h
H r p p p p q r p r p r

   
             

   
 

The tri-diagonal system in Eq. (4.34) can be easily solved by the method of Discrete Invariant 

Imbedding Algorithm.   

Stability and Convergence Analysis for Method II  

Case 1: Layer Behaviour  . . ( ) ( ) 0, for (0,1). Thus ( ) 0, since 0i e a x b x x q x      . 

The discrete minimum principle and stability of the scheme given in Eq. (4.34) are presented as 

follows. But, for the continuous problems it is analogous to the first method.    

Lemma 4.5: (Discrete Minimum Principle)  

The finite difference operator NL
 
in Eq. (4.34) satisfies the discrete minimum principle, if iw is 

any mesh function such that 0 0w 
 
and 0N

iL w  , for all  0,1ix  , then 0iw   for all  0,1x . 

Proof: 

Suppose there exists a positive integer k  such that 0kw 
 
and 

0
k i

i N
w min w

 
 . 

Then, from Eq. (4.34), we have: 

 
     

1 1

1 1 1 12 2 2 2

1 1

2 2

N

k k k k k k k

k k k k
k k k k k k k k

L w E w F w G w

A A p B
w w w w w w C w

h h h h h h
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2 2
2

12

2 2
2

12

1
3 3 2 2

12 6 12 120

1
3 3 2 2

12 6 12 120

1
2

2 24

k k k k
k k k k k k k k k k k k k

k k k k
k k k k k k k k k k k k k

k
k

p p q h p
p q p p q p p p q p p w w

h

p p q h p
p q p p q p p p q p p w w

h

p
h p q

h





   
                  

   

   
                  

   

      

         
3

2

1 1

12

3 2
240

k
k k k k k k k

k
k k k k k k k k k k k k k k k k k

k k

p
p p p q p q

h p
p p q p p q p q p q p q p p q w w

C w

 

  
      

 


                    





 

For sufficiently small h  and for suitable value of kp , we obtain: 

0N

kL w  . Since, 0kw 
 
(by the assumption) and 0k kC q  . But, this is a 

contradiction.  

Hence, 0iw   for all  0,1ix  . 

Theorem 4.6: The finite difference operator NL
 
in Eq. (4.34) is stable for ( ) ( ) 0a x b x  , if iw is 

any mesh function, then  0
(0,1)

max , max
i

i i
x

w K w Lw


 , for some constant 1.K   

Proof:  The proof is analogous to Theorem 4.2. 

Case 2: Oscillatory Behaviour  . . ( ) ( ) 0, for (0,1). Thus, ( ) 0, as 0i e a x b x x q x       

By the same approach in the first method, here we use the maximum principles for discrete 

problems, since for the continuous problems it has already been presented in the first method.    

Lemma 4.6: (Discrete Maximum Principle)    

The finite difference operator NL
 
in Eq. (4.34) satisfies the discrete maximum principle, if iw is 

any mesh function such that 0 0w  and 0N

iL w  , for all  0,1ix  , then 0iw   for all  0,1x . 

Proof: 
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Suppose that there exists a positive integer k  such that 0kw 
 
and 

0
k i

i N
w max w

 
 . 

Then, from Eq. (4.34), we have: 

 1 1

N

k k k k k k kL w E w F w G w   

            

      

2 2
2

12

2 2
2

12

1
3 3 2 2

12 6 12 120

1
3 3 2 2

12 6 12 120

1
2

2 24

k k k k
k k k k k k k k k k k k k

k k k k
k k k k k k k k k k k k k

k
k k

p p q h p
p q p p q p p p q p p w w

h

p p q h p
p q p p q p p p q p p w w

h

p
h p q

h





   
                  

  

   
                  

   

       

         
3

2

1 1

12

3 2
240

k
k k k k k k

k
k k k k k k k k k k k k k k k k k

k k

p
p p p q p q

h p
p p q p p q p q p q p q p p q w w

C w

 

  
     

 


                    





 

For sufficiently small h  and for suitable value of kp , we obtain:

 

0N

kL w  . Since, 0kw 
 
(by the assumption) and 0k kC q  . But, this is a 

contradiction.   

Hence, 0iw   for all  0,1ix  . 

Theorem 4.7: The finite difference operator NL
 
in Eq. (4.34) is stable for ( ) ( ) 0a x b x  , if iw

is any mesh function, then  0
(0,1)

max , max
i

i i
x

w K w Lw


 , for some constant 1.K   

Proof: The proof is similar to Theorem 4.4. 

Therefore, we conclude that the stability of the scheme in Eq. (4.34) is proved for both cases 

(i.e., layer behaviour and oscillatory behaviour).    
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Theorem 4.8: Let ( )y x  be the analytical solution of the problem in Eq. (4.4) and Eq. (4.5) and 

( )Ny x  be the numerical solution of the discretized problem of Eq. (4.34). Then, * 4Ny y C h   

for sufficiently small h  and 
*C  is positive constant. 

Proof: 

Multiplying both sides of Eq. (4.33) by 
2h , we obtain: 

 

 

 

2

1 1

2

1 2 2 1
2 2 2 2

0

i i i i i i i i i i i

i i

h h h h
p A B y A h C y p A B y

h H h

 

   
              
   

     

(4.35)
 

where,  
6

(6) 8

2( ) ( )
360

i

h
h y O h  

 
is a local truncation error, for 1,2,..., 1i N  . 

Rewriting Eq. (4.35), we get: 

     1 11 2 1 0i i i i i i i iu y v y w y g           
     

(4.36) 

where, 

  

2

2

2 2

2

2 2

i i i i

i i i

i i i i

i i

h h
u p A B

v A h C

h h
w p A B

g h H

  

 

   



 

Incorporating the boundary conditions 0 0 0( ) , (1)Ny x y y     
 
in Eq. (4.36), we get the 

systems of equations of the form:   
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1 1 1 1 1 1

2 2 2 2 2 2

3 3 3

1 1 1 1 1 1

2 1 0 0 1 (0)

1 2 1 0

0 0

0 1 2 1N N N N N N

v w y g u

u v w y g

y g

u v y g w

 





      

           
      
          

           
      
      
                   

 

  ( ) 0D R y Z h    
        

(4.37) 

where; 

2 1 0 0

1 2 1 0

0

0 1 2

D

 
 
 
 
    
 
 
    

,    

1 1

2 2 2

1 1

0 0

0

0

0 N N

v w

u v w

R

u v 

 
 
 
    
 
 
   

 are tri-diagonal matrices of 

order 1N  , and   

     1 1 2 3 1 11 (0) , , , , 1 ,
T

N NZ g u g g g w  
          4( ) andh O h 

 
     1 2 1 1 2 1, , , , ( ) , , , , 0 0, 0, ,0

T TT

N Ny y y y h       are the associated vectors 

of Eq. (4.37). 

Let 
1 2 1, , ,N N N N T

Ny y y y y
     

be the solution which satisfies the Eq. (4.37), then we have: 

  0ND R y Z  
         

(4.38) 

Let , for 1,2, , 1N

i i ie y y i N     be the discretization error, then, 

 1 2 1, , ,N T

Ny y e e e   .  

Subtracting Eq. (4.37) from Eq. (4.38), we get: 

   ( )ND R y y h  
         

(4.39)
 

Let 
1ip M , 

2 3,i ip M p M   , 
1 2 3, ,i i iq K q K q K     
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Let ijr be the  ,
th

i j element of the matrix R , then: 

For 1,2, , 2i N   

 

    

, 1

2 21
1 1 2 1

3
21

1 2 3 2 1 2 1 1 1 2 1

2 2

2
2 6 12

2 3 3 2
120 2

i i i i i i

i

h h
r w p A B

M h h
h M M M K

Bh M
M M M K M M K M M M K

     


    




         



  

For 2,3, , 1i N       

  

    

, 1

2 21
1 1 2 1

3
21

1 2 3 2 1 2 1 1 1 2 1

2 2

2
2 6 12

2 3 3 2
120 2

i i i i i i

i

h h
r u p A B

M h h
h M M M K

Bh M
M M M K M M K M M M K

    


    




         



      

Thus, for sufficiently small h , we have: 

, 11 0i ir    , 1,2, , 2i N   

, 11 0i ir    , 2,3, , 1i N  , since the    , 1 and , 1
th th

i i i i  of the matrix D  is 1 . 

Hence, the matrix  D R is irreducible, Varga [46]. 

Let iS  be the sum of the elements of the thi row of the matrix  D R , then; 
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2

2

2
2 3 4

1 , for 1

1 2
2 2

1
2 2

11 1 1
1 2

2 12 6 12 24 12

i i i

i i i i i

i i i i

i i i
i i i i i i i i i i

S v w i

h h
A h C p A B

h h
A h C p B

p p p
h h q h p p p q p q p p q O h

   

     

    

    
                  

    

 

   

2

2 4

, for 2,3, , 2

2
2 2 2 2

i i i i

i i i i i i i i

i

S u v w i N

h h h h
p A B A h C p A B

h q O h

    

       

  

 

     

2

2
2 3 4

1 , for 1

1
2 2

11 1 1
1 2

2 12 6 12 24 12

i i i

i i i i

i i i
i i i i i i i i i i

S u v i N

h h
p A B h C

p p p
h h q h p p p q p q p p q O h

    

    

    
                   

    

 

Let 
* *

1* 1 1* 1
1 1 1 11 1 1 1
min , max , min , maxi i i i
i N i Ni N i N

M p M p K q K q
          

    , then: 

       * *

1* 1 1 1* 1 10 and 0M M M K K K       

For sufficiently small h ,  D R is monotone, Varga [46] and Young [49]. 

Hence,  
1

D R


 exists and  
1

0D R


  . 

From the error Eq. (4.39), we have: 

 
1

( )Ny y D R h


  
        

(4.40) 

For sufficiently small h , we have: 

2

1*

11
K , for 1

12
iS h i   



 

40 

 

2

1*

2

1* 1*
1 1

K , for 2,3, , 2

11
K , for 1 , where, min

12

i

i i
i N

S h i N

S h i N K q
  

  

   
 

Let  
1

,i k
D R


 be the  ,

th
i k element of  

1
D R


  and we define,         

   
1

1 1

,1 1
1

max
N

i ki N
k

D R D R


 

  


  
 

and 
1 1

( ) max i
i N

h 
  

     (4.41) 

Since  
1

,
0

i k
D R


  , then from the theory of matrices, we have: 

 
1

1

,
1

. 1
N

ki k
k

D R S






  , 1,2, , 1i N  . 

Hence,  
1

2 2 * 2 *,1
1 1*

1 12 1 12 12
, for 1

11 11 11i
D R k

S h K h Q h Q

  
      

 
, since 0 1  . (4.42) 

 
1

2 2 * 2 *, 1
1 1*

1 12 1 12 12
, for 1

11 11 11i N
N

D R k N
S h K h Q h Q






 
       

    

(4.43) 

Further,  
2

1

2 2 * 2 *,
2 1*

2 2

1 1 1
, 2,3, , 2

min

N

i k
k k

k N

D R for k N
S h K h Q h Q





  

      
  

(4.44) 

where, 
*

1 1
min i i
i N

Q a b
  

  , since 
( ) ( )

( ) i i
i

a x b x
q x



 
  
 

. 

Now, from Eqs. (4.40)   (4.44), we get: 

(6)6
(6) 4 * 42

22 * 2 * 2 * *

( )12 1 12 7
( )

11 11 360 792

N yh
y y y h C h

h Q h Q h Q Q




  
       

     

(4.45) 

where, 
(6)

* 2

*

( )7

792

y
C

Q

 
  

 
, which is independent of perturbation parameter   and mesh size h .  

This establishes that the method is of fourth order uniformly convergent.   
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4.2. Numerical Examples 

To demonstrate the applicability of the methods, we implement the methods on four numerical 

examples, two with twin boundary layers and two with oscillatory behaviour. We present the 

graphs of the computed solution of the problem for different values of   and of ( )o  . Since 

those examples have no exact solution, so the numerical solutions are computed using double 

mesh principle. The maximum absolute errors are computed using double-mesh principle given 

by: 

2max ,
h

h

h i i
i

Z y y  1...,,2,1  Ni       (4.46) 

where 
h

iy  is the numerical solution on the mesh  
1

1

N

ix


at the nodal point
i

x and 0 ,ix x ih 

1,2,..., 1i N 
 
and 2

h

iy  is the numerical solution at the nodal point
i

x on the mesh  
2 1

1

N

ix


 

where,
0 , 1,2,..., 2 1

2i
hx x i i N   

 
(i.e., the numerical solution on a mesh, obtained by 

bisecting the original mesh with N  number of mesh intervals), Doolan et al [7].  

Example 4.1: 

Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour, Swamy 

et al [45].  

( ) 0.25 ( ) ( ) 1y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 0y  . 

The maximum absolute errors are presented for both present methods, in Tables (4.1) and (4.5) 

for different values of   and  . The graph of the computed solution for 0.01   and different 

values of  is also given in Figs. (4.1) and (4.5). 

Example 4.2: 

Consider the singularly perturbed delay reaction-diffusion equation with layer behaviour, Swamy 

et al [45]. 

( ) 2 ( ) ( ) 1y x y x y x       

under the interval and boundary conditions 
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( ) 1, 0y x x     and (1) 0y  .  

The maximum absolute errors are presented for both present methods, in Tables (4.2) and (4.6) 

for different values of   and  . The graph of the computed solution for 0.01   and different 

values of  is also given in Figs. (4.2) and (4.6). 

Example 4.3: 

Consider the singularly perturbed delay reaction-diffusion equation with oscillatory behaviour, 

Swamy et al [45].  

( ) 0.25 ( ) ( ) 1y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 0y  .  

The maximum absolute errors are presented for both present methods, in Table (4.3) for different 

values of  . The graph of the computed solution for 0.001   and different values of  is also 

given in Figs. (4.3) and (4.7). 

Example 4.4: 

Consider the singularly perturbed delay reaction-diffusion equation with oscillatory behaviour, 

Swamy et al [45]. 

( ) ( ) 2 ( ) 1y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 0y  .  

The maximum absolute errors are presented for both present methods, in Table (4.4) for different 

values of  . The graph of the computed solution for 0.001   and different values of  is also 

given in Figs. (4.4) and (4.8). 
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4.3. Numerical Results 

Table 4.1: The maximum absolute errors of Example 4.1, for different values of  with 0.1  .  

   100N   200N   300N   400N   500N   

Fourth Order Method (Our Method) 

0.03  1.2007e-09  7.5051e-10  1.4815e-11   4.6660e-12    1.9661e-12 

0.05  1.2135e-09  7.5860e-10  1.4980e-11   4.7337e-12    1.9339e-12 

0.09  1.2290e-09  7.6818e-10  1.5168e-11   4.7632e-12    2.0450e-12 

Second Order Method (Our Method) 

0.03 2.4645e-05 6.1616e-06 2.7385e-06 1.5404e-06 9.8587e-07 

0.05 2.4393e-05 6.0986e-06 2.7105e-06 1.5247e-06 9.7581e-07 

0.09 2.3947e-05 5.9872e-06 2.6611e-06 1.4969e-06 9.5799e-07 

Results in Swamy et al  [45] 

0.03  2.1999e-03  1.1041e-03  7.3705e-04  5.5315e-04  4.4269e-04 

0.05  2.2012e-03  1.1049e-03  7.3749e-04  5.5345e-04  4.4293e-04 

0.09  2.1999e-03  1.1038e-03  7.3676e-04  5.5289e-04  4.4247e-04 

 

Table 4.2: The maximum absolute errors of Example 4.2, for different values of  with 0.1  .  

   100N   200N   300N   400N   500N   

Fourth Order Method (Our Method) 

0.03  5.9892e-09  3.7452e-10  7.3976e-11   2.3404e-11    9.5863e-12 

0.05  3.3028e-09  2.0657e-10  4.0807e-11   1.2909e-11    5.2809e-12 

0.09  4.6352e-09  2.8949e-10  5.7180e-11   1.8085e-11    7.4190e-12 

Second Order Method (Our Method) 

0.03 5.5262e-05 1.3819e-05 6.1422e-06 3.4551e-06 2.2112e-06 

0.05 6.1292e-05 1.5325e-05 6.8113e-06 3.8314e-06 2.4521e-06 

0.09 7.5050e-05 1.8764e-05 8.3405e-06 4.6916e-06 3.0026e-06 

Results in Swamy et al  [45] 

0.03  3.1674e-03  1.6058e-03  1.0754e-03  8.0837e-04  6.4760e-04 

0.05  3.1437e-03  1.5949e-03  1.0685e-03  8.0338e-04  6.4367e-04 

0.09  3.0784e-03  1.5660e-03  1.0502e-03  7.9000e-04  6.3310e-04 
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Table 4.3: The maximum absolute errors of Example 4.3, for different values of  with 0.1  .  

   100N   200N   300N   400N   500N   

Fourth Order Method (Our Method) 

0.03  3.9856e-08  2.4916e-09  4.9143e-10   1.5603e-10    6.1932e-11 

0.05  3.8949e-08  2.4343e-09  4.8003e-10   1.5358e-10    7.0907e-11 

0.09  3.7554e-08  2.3446e-09  4.6287e-10   1.6033e-10    6.1303e-11 

Second Order Method (Our Method) 

0.03 5.2227e-04 1.3061e-04 5.8052e-05 3.2655e-05 2.0899e-05 

0.05 5.1649e-04 1.2916e-04 5.7409e-05 3.2293e-05 2.0668e-05 

0.09 5.0518e-04 1.2634e-04 5.6156e-05 3.1588e-05 2.0217e-05 

Results in Swamy et al  [45] 

0.03  2.5991e-03  1.2872e-03  8.5528e-04  6.4039e-04  5.1179e-04 

0.05  2.6270e-03  1.3013e-03  8.6474e-04  6.4750e-04  5.1749e-04 

0.09  2.6813e-03  1.3289e-03  8.8320e-04  6.6139e-04  5.2863e-04 

 

Table 4.4: The maximum absolute errors of Example 4.4, for different values of  with 0.1  .  

   100N   200N   300N   400N   500N   

Fourth Order Method (Our Method) 

0.03  1.5497e-07  9.6846e-09   1.9131e-09   6.0394e-10    2.4770e-10 

0.05  1.5900e-07  9.9375e-09  1.9630e-09   6.2120e-10    2.5444e-10 

0.09  1.7208e-07  1.0754e-08  2.1244e-09   6.7226e-10    2.7451e-10 

Second Order Method (Our Method) 

0.03 8.3415e-04 2.0833e-04 9.2578e-05 5.2071e-05 3.3324e-05 

0.05 8.8299e-04 2.2050e-04 9.7980e-05 5.5110e-05 3.5269e-05 

0.09 9.7538e-04 2.4370e-04 1.0828e-04 6.0909e-05 3.8980e-05 

Results in Swamy et al  [45] 

0.03  1.5929e-02  7.4850e-03  4.8816e-03  3.6202e-03  2.8764e-03 

0.05  1.5470e-02  7.2782e-03  4.7473e-03  3.5209e-03  2.7975e-03 

0.09  2.1396e-02  1.0097e-02  6.5922e-03  4.8916e-03  3.8879e-03 
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Table 4. 5: The maximum absolute errors of Example 4.1, for different values of   with

0.5  .  

   42N   
52N   

62N   
72N   

82N   

Fourth Order Method (Our Method) 

42  4.7163e-06 2.9533e-07 1.8473e-08 1.1546e-09 7.2184e-11 

52  1.6851e-05 1.0582e-06 6.6233e-08 4.1407e-09 2.5883e-10 

62  6.1305e-05 3.9010e-06 2.4413e-07 1.5281e-08 9.5513e-10 

72  2.3541e-04 1.5098e-05 9.4835e-07 5.9419e-08 3.7143e-09 

82  9.2982e-04 5.9195e-05 3.7478e-06 2.3512e-07 1.4703e-08 

92

 3.5840e-03 2.3115e-04 1.4856e-05 9.3248e-07 5.8449e-08 

102  1.1856e-02 9.1935e-04 5.8565e-05 3.7066e-06 2.3261e-07 

Second Order Method (Our Method) 

42  1.5070e-03 3.7828e-04 9.4715e-05 2.3685e-05 5.9215e-06 

52  2.6509e-03 6.6781e-04 1.6749e-04 4.1894e-05 1.0475e-05 

62  4.8151e-03 1.2413e-03 3.1158e-04 7.8047e-05 1.9517e-05 

72  9.2994e-03 2.4334e-03 6.1499e-04 1.5434e-04 3.8604e-05 

82  1.8030e-02 4.8019e-03 1.2303e-03 3.0956e-04 7.7486e-05 

92

 3.3607e-02 9.3674e-03 2.4542e-03 6.1966e-04 1.5557e-04 

102  5.2477e-02 1.8177e-02 4.8372e-03 1.2385e-03 3.1168e-04 

Results in Swamy et al  [45]  

42  1.8632e-02 9.6189e-03 4.8865e-03 2.4643e-03 1.2376e-03 

52  2.8161e-02 1.4818e-02 7.6255e-03 3.8713e-03 1.9509e-03 

62  3.7958e-02 2.0967e-02 1.0977e-02 5.6273e-03 2.8498e-03 

72  5.0640e-02 2.8316e-02 1.5267e-02 7.9105e-03 4.0287e-03 

82  6.3580e-02 3.7706e-02 2.0984e-02 1.1012e-02 5.6555e-03 

92

 8.3843e-02 5.0477e-02 2.8297e-02 1.5261e-02 7.9111e-03 

102  9.9137e-02 6.3529e-02 3.7660e-02 2.0974e-02 1.1011e-02 
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Table 4. 6: The maximum absolute errors of Example 4.2, for different values of   with 

0.5  .  

   42N   
52N   

62N   
72N   

82N   

Fourth Order Method (Our Method) 

42  1.7218e-05 1.0980e-06 6.9308e-08 4.3372e-09 2.7116e-10 

52  8.6267e-05 5.7179e-06 3.5965e-07 2.2514e-08 1.4086e-09 

62  4.0309e-04 2.6120e-05 1.6483e-06 1.0385e-07 6.4944e-09 

72  1.6675e-03 1.1001e-04 7.1717e-06 4.5007e-07 2.8201e-08 

82  5.7218e-03 4.6571e-04 2.9880e-05 1.8861e-06 1.1867e-07 

92

 1.5760e-02 1.8472e-03 1.2042e-04 7.7976e-06 4.8901e-07 

102  3.3872e-02 6.2077e-03 4.9356e-04 3.1554e-05 1.9940e-06 

Second Order Method (Our Method) 

42  3.5264e-03 8.9037e-04 2.2369e-04 5.5986e-05 1.4001e-05 

52  6.2964e-03 1.6598e-03 4.1737e-04 1.0450e-04 2.6149e-05 

62  1.1914e-02 3.1276e-03 7.9216e-04 1.9981e-04 4.9993e-05 

72  2.1388e-02 5.8351e-03 1.5338e-03 3.8613e-04 9.6851e-05 

82  3.2782e-02 1.1174e-02 2.9520e-03 7.5112e-04 1.8935e-04 

92

 4.1139e-02 2.0396e-02 5.6170e-03 1.4743e-03 3.7135e-04 

102  4.1585e-02 3.1521e-02 1.0818e-02 2.8673e-03 7.3159e-04 

Results in Swamy et al  [45] 

42  2.1118e-02 1.1692e-02 6.1941e-03 3.1887e-03 1.6178e-03 

52  2.7872e-02 1.6023e-02 8.6367e-03 4.4957e-03 2.2948e-03 

62  3.5711e-02 2.1293e-02 1.1869e-02 6.2731e-03 3.2240e-03 

72  4.6679e-02 2.8350e-02 1.6107e-02 8.6728e-03 4.5120e-03 

82  5.4895e-02 3.6018e-02 2.1373e-02 1.1929e-02 6.2847e-03 

92

 5.7371e-02 4.7254e-02 2.8581e-02 1.6140e-02 8.6961e-03 

102  5.7878e-02 5.5695e-02 3.6153e-02 2.1406e-02 1.1956e-02 
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4.3.1. Illustration of the Effect of Delay for Method I  

The following graphs (Figs. (4.1) – (4.4)) show the numerical solutions obtained by the present 

method (i.e., second order) for different values of delay parameter  .   

 

Fig. 4. 1: The numerical solution of Example 4.1 with 0.01 and 100N   . 

   

Fig. 4. 2: The numerical solution of Example 4.2 with 0.01 and 100N   . 
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Fig. 4. 3: The numerical solution of Example 4.3 with 0.001 and 300N   . 

  

Fig. 4. 4: The numerical solution of Example 4.4 with 0.001 and 300N   . 
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4.3.2. Illustration of the Effect of Delay for Method II 

The following graphs (Figs. (4.5) – (4.8)) show the numerical solutions obtained by the present 

method (i.e., fourth order) for different values of delay parameter  .   

 

Fig. 4. 5: The numerical solution of Example 4.1 with 0.01 and 100N   . 

    

Fig. 4. 6: The numerical solution of Example 4.2 with 0.01 and 100N   . 
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Fig. 4. 7: The numerical solution of Example 4.3 with 0.001 and 100N   . 

      

Fig. 4. 8: The numerical solution of Example 4.4 with 0.001 and 100N   . 
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4.3.3. The Rate of Convergence   for the Present Methods  

In the same way in Eq. (4.46) one can define 
2

hZ  by replacing  h  by 
2

h  and 1N   by 2 1N  , 

that is: 

  2 4

2

max
h h

h i i
i

Z y y  , for .12...,,2,1  Ni  

The computational rate of convergence   is also obtained by using the double mesh principle 

defined as, Doolan et al [7]: 

  
   

2

log log

log 2

h hZ Z



  
  .

 

The following Tables (i.e., Tables (4.7) – (4.10)) shows the rate of convergence   of the present 

methods for different values of the mesh size h .  

 

Table 4. 7: Rate of Convergence   for Example 4.1 ( 0.1   and 0.05  ).  

Method   h  2/h        hZ  4/h       2/hZ                

Second Order  

 1/100 1/200 2.4393e-05 1/400 6.0986e-06          1.9999 

1/200 1/400 6.0986e-06 1/800 1.5247e-06          2.0000 

1/300 1/600 2.7105e-06 1/1200 6.7764e-07          2.0000 

Fourth Order  

 1/100 1/200 1.2135e-09 1/400 7.5855e-11          3.9998 

1/200 1/400 7.5860e-11 1/800 4.9848e-12          3.9277 

1/300 1/600 1.4980e-11 1/1200 9.4408e-13          3.9880 
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Table 4. 8: Rate of Convergence   for Example 4.2 ( 0.1   and 0.05  ).   

Method  h  2/h        hZ  4/h       2/hZ                

Second Order  

 1/100 1/200 6.1292e-05 1/400 1.5325e-05          1.9998 

1/200 1/400 1.5325e-05 1/800 3.8314e-06          2.0000 

1/300 1/600 6.8113e-06 1/1200 1.7028e-06          2.0000 

Fourth Order  

 1/100 1/200 3.3028e-09 1/400 2.0653e-10          3.9993 

1/200 1/400 2.0657e-10 1/800 1.2909e-11          4.0002 

1/300 1/600 4.0807e-11 1/1200 2.5474e-12          4.0017 

Table 4. 9: Rate of Convergence   for Example 4.3 ( 0.1   and 0.03  ).  

Method  h  2/h        hZ  4/h       2/hZ                

Second Order  

 1/100 1/200 5.2227e-04 1/400 1.3061e-04          1.9996 

1/200 1/400 1.3061e-04 1/800 3.2655e-05          1.9999 

1/300 1/600 5.8052e-05 1/1200 1.4513e-05          2.0000 

Fourth Order  

 1/100 1/200 3.9856e-08 1/400 2.4913e-09          3.9998 

1/200 1/400 2.4916e-09 1/800 1.5603e-10          3.9971 

1/300 1/600 4.9143e-10 1/1200 3.0611e-11          4.0049 

Table 4. 10: Rate of Convergence   for Example 4.4 ( 0.1   and 0.03  ).  

Method  h  2/h        hZ  4/h       2/hZ                

Second Order  

 1/100 1/200 8.3415e-04 1/400 2.0830e-04          2.0016 

1/200 1/400 2.0833e-04 1/800 5.2068e-05          2.0004 

1/300 1/600 9.2578e-05 1/1200 2.3141e-05          2.0002 

Fourth Order  

 1/100 1/200 1.5497e-07 1/400 9.6846e-09          4.0001 

1/200 1/400 9.6846e-09 1/800 6.0394e-10          4.0032 

1/300 1/600 1.9131e-09 1/1200 1.1975e-10          3.9978 
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4.4. Discussion  

In this thesis, parameter uniform second and fourth order numerical methods are presented for 

solving singularly perturbed delay reaction-diffusion equations with twin layers and oscillatory 

behaviour. First, the given singularly perturbed delay reaction-diffusion equation is converted 

into an asymptotically equivalent singularly perturbed boundary value problem by using the 

Taylor series expansion for the delay term as the delay parameter is sufficiently small. Then, 

given interval is discretized and the derivative of the given differential equation is replaced by 

the finite difference approximations. And, the given differential equation is transformed into a 

three-term recurrence relation, which can easily be solved by using Thomas Algorithm. The 

stability and convergence of the methods have been investigated. Further, the present methods 

are  -uniformly convergent methods for which have not been sufficiently developed for a wide 

class of singularly perturbed delay differential equations, Pratima and Sharma [34]. The 

numerical results have been presented in Tables (4.1) – (4.6) for different values of the 

perturbation parameter  and delay parameter   and number of mesh points N. The results 

obtained by the present method are compared with Swamy et al [45].   

It can be observed from the tables that the present methods give better results than the method by 

Swamy et al [45]. Further, it can be observed from the tables that, the accuracy of the problem 

increased by increasing the resolution of the grid, Kadalbajoo and Ramesh [20]. i.e. it is 

significant that all of the maximum absolute errors decrease rapidly as N increases.  

The graphs of the considered examples for different values of delay parameter and for fixed step 

size h  and   are plotted in Figs. (4.1) – (4.8), to examine the effect of delay on the twin 

boundary layer and oscillatory behavior of the solution. Tables (4.7) – (4.10) depicts that the 

present methods have the rate of convergence which are in agreement with the theoretical proofs.  

Moreover, to demonstrate the effect of delay on the twin boundary layer, we consider examples 

(4.1) and (4.2). From Fig. (4.1) or (4.5), we observed that when the order of the coefficient of the 

delay term is of (1)o , the delay affects the boundary layer solution but maintains the layer 

behaviour. From Fig. (4.2) or (4.6), we observed that when the delay is ( )O  , the solution 

maintains layer behaviour although the coefficient of the delay term in the equation is of (1)O  

and as the delay increases, the thickness of the left boundary layer decreases while that of the 

right boundary layer increases. To demonstrate the effect of delay on the oscillatory behaviour, 
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we consider the examples (4.3) and (4.4). Accordingly, one can conclude that the solution 

oscillates throughout the domain for different values of shift parameter   (Figs. (4.3), (4.4), 

(4.7) and (4.8)).   
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CHAPTER FIVE 

CONCLUSION AND SCOPE FOR FUTURE WORK 

5.1. Conclusion 

This study is implemented on four linear examples without exact solutions by taking different 

small values for the perturbation parameter   and delay parameter   and the computational 

results are presented in the tables. Generally for both methods, we conclude that; the results 

observed from the tables demonstrate that the present methods approximate the solution very 

well. A numerical result presented in this thesis shows the superiority of the proposed methods 

over some existing methods reported in the literature. Furthermore, fourth order method is more 

accurate than second order method for the same examples. The stability and  -uniform 

convergence of the methods are established well. The results presented confirmed that 

computational rate of convergence as well as theoretical estimates indicate that second order 

method is a second order convergent and fourth order method is a fourth order convergent. The 

graphs show the effect of delay on the twin boundary layer depending on the order of the 

coefficient of the delay term and also for oscillatory behavior, the solution is oscillated 

throughout the domain for different values of shift parameter  .   

5.2. Scope for Future Work  

The schemes proposed in this thesis can also be extended to sixth and higher order numerical 

methods for singularly perturbed delay reaction-diffusion equation. And also, this thesis 

considered the  -uniform convergent.  So, one can establish the numerical methods of fourth 

and higher order whose convergence of the difference scheme is for fixed values of the 

parameter . i.e., convergence is dependent on  .    
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