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ABSTRACT  

The main purpose of this research paper is to establish sufficient condition for the existence of 

point of coincidence and common fixed point for a pair of self-maps satisfying some expansive 

type conditions in a b-metric space. 

In this research undertaking, we followed analytical design. Secondary sources of data such as 

journal, internet and books were used for this study. The analysis techniques which we adopted 

for the successful completion of this study were that of Mohanta (2016). 

This study was conducted from September 2016 to June 2017.   
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CHAPTER ONE: INTRODUCTION 

1.1 Background of the study 

Let (�	, �)  be a metric space. A point � in � is said to be a fixed point of a self-map �:	� → �      

if �(�)  = z. We denote the set of fixed points of � by �(�).  
 A self-map   �:	� → � is said to be a contraction, if there exists a constant �	
	[0, 1) such that 

for all �, �	
	�,  

                            �	(��	, ��) 	≤ 	�	�(�, �)                                                                    (1.1.1) 

Banach (1922) stated his celebrated theorem on the existence and uniqueness of fixed point of a 

contraction map defined on a complete metric space for the first time. This theorem states that, 

if (�, �) is a complete metric space and �: � → � is a contraction map, then T has a unique fixed 

point. Since its first appearance, the Banach contraction mapping principle has become the main 

tool to study contractions as they appear abundantly in a wide array of quantitative sciences. This 

theorem provides a technique for solving a variety of applied problems in Mathematical sciences 

and engineering. Its most well-known application is in ordinary differential equations, 

particularly, in the proof of the Picard - Lindel�� f theorem which guarantees the existence and 

uniqueness of solution of first order initial value problems (Smith, 2014). 

  

It is worth emphasizing that its remarkable strength of the Banach principle originates from the 

constructive processes it provides to identify the fixed points. This notable strength further 

attracted the attention of not only many prominent Mathematicians related to non-linear analysis, 

but also many researchers who are interested in iterative methods to examine the quantitative 

problems involving certain mapping and space structures required in their work in various areas 

such as social science, biology, economics and computer science.  

Inequality (1.1.1) implies continuity of the self-map T. A natural question is whether we can find 

contractive conditions which will imply existence of a fixed point of a self-map in a complete 

metric space but do not imply the continuity the map. 

The Banach contraction principle has been generalized in many ways over the years. In some 

generalizations, the contractive nature of the map is weakened; see (Branciari, 2002; Kannan, 
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1969; Petric, 2010; Kikkawa and Suzuki, 2008; Kirk et al., 2003; Rhoades, 1977; Sessa, 1982 

and others). In other generalizations, the topology (ambient space) is weakened; for example 

rectangular metric (Branciari, 2000), b-metric space (Czerwik, 1993), cone metric space (Huang 

and Zhang, 2007), cone rectangular metric space (Azam et al. 2009), and cone b-metric space 

(Jovanovi´c et al., 2010) are some of the generalized metric spaces introduced by different 

authors in the recent past.  See also (Aage et al., 2008; Abbas et al., 2011; Chaipunya et al., 

2012; Panthi et al., 2015; Zeyada et al., 2005; Zoto et al. 2012 ) and others.  

A metrical common fixed point theorem is broadly comprised of conditions on commutativity, 

continuity, completeness and contraction besides suitable containment of range of one map into 

the range of the other. For proving new results, the researchers of this domain are required to 

improve one or more of these conditions.  

Let (�, �) be a metric space and �, � two self-mappings on (�, �). A point  � ∈ � is said to be a 

common fixed point of � and � if �� =  �� =  �. 
Jungck proved a common fixed point theorem for commuting maps by generalizing the Banachʼs 

fixed point theorem (Jungck, 1976). With a view to accommodate a wider class of mappings in 

the context of common fixed point theorems, Sessa (1982) introduced the notion of weakly 

commuting mappings which was further generalized by Jungck (1986) by defining compatible 

mappings. After this, there came a host of such definitions which are scattered throughout the 

recent literature whose survey and illustration (up to 2001) is available in Murthy (2001). A 

minimal condition merely requiring the commutativity at the set of coincidence points of the pair 

called weak compatibility was introduced by Jungck and Rhoades (1998). This new notion was 

extensively utilized to prove new results.  

Bakhtin introduced b-metric space as a generalization of metric space and proved the contraction 

mapping principle in b-metric space that generalized the famous Banach contraction principle in 

metric space (Bakhtin, 1989). Since then, many researchers including Czerwik (1993), Akkouchi 

(2011), Aydi et al. (2012), Boriceanu (2009), Bota et al. (2011), Kir and Kiziltunc (2013) and 

Pacurar (2010) studied the extension of the existing fixed point theorems in b-metric spaces for 

singlevalued and multivalued functions.  
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The study of expansive mappings is a very interesting research area in fixed point theory. A 

mapping satisfying the condition d�Tx, Ty� ≥ βd�x, y�  for all x, y ∈ X,  where β > 1, is called 

expansive mapping. Wang et al. (1984) introduced the concept of expanding mappings and 

proved some fixed point theorems in complete metric spaces. Rhoades (1985) and Taniguchi 

(1989) generalized the results of Wang (1984) for pair of mappings. Later, Khan et al. (1986) 

generalized the result of Wang (1984) by making use of the functions. Kang (1993) generalized 

these results of Khan et al. (1986), Rhoades (1985) and Taniguchi (1989) for expanding 

mappings. Ahmed (2009) established a common fixed point theorem for expansive mappings by 

using the concept of compatibility of type (A) in 2-metric spaces. The theorem proved by Ahmed 

(2009) was the generalization of the result of Kang et al. (1993) for expansive mappings. Şahin 

and Telci (2010) also presented a common fixed point theorem for expansion type mappings in 

complete cone metric spaces which generalizes and extends the theorem of Wang et al. (1984) 

for a pair of mappings to cone metric spaces. 

Recently, Mohanta (2016) established sufficient conditions for existence of point of coincidence 

and common fixed points for a pair of self-maps satisfying the following expansive type 

conditions in b-metric spaces: 

Theorem 1.1 (Mohanta, 2016) Let ��, �� be a b-metric space with coefficient	" ≥ 1. Suppose 

the mappings #, $: � → � satisfy the conditions 

�($�, $�) ≥ �%�(#�, #�) + �'�($�, #�) + �(�($�, #�)                          (1.1.2) 

for all �, � ∈ �, where �) ≥ 0 for each * = 1,2,3 with �% + �' + �( > ".  
Assume the following hypotheses:  

(i) �' < 1 and	�% ≠ 0,    (ii) #(�) ⊆ $(�),  and (iii) $(�) or #(�) is complete. Then $ and # 

have a point of coincidence in � . Moreover, if	�% > 1, then the point of coincidence is 

unique. If $ and # are weakly compatible and �% > 1, then $ and # have a unique common 

fixed point in �. 

Motivated and inspired by the work of Mohanta (2016), in this research work the researchers 

studied the sufficient conditions for the existence of points of coincidence and common fixed 

points for a pair of self-maps satisfying some expansive type conditions in b-metric spaces by 
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replacing inequality (1.1.2) with a more general expansive type condition. We have also 

supported our main result with examples. 

1.2   Statement of the Problems 

This study focuses on the sufficient conditions for existence of points of coincidence and 

common fixed points for a pair of self-maps satisfying some expansive type conditions in b-

metric spaces by replacing inequality (1.1.2) with a more general expansive type condition of the 

form 

    ��$�, $�� + 01 ���#�, $�� 	+ 		�(#�, $�)2 ≥ �%�(#�, #�) 	+	�'	�($�, #�)	+	�(	�($�, #�)      (1.2.1) 

for all �, � ∈ �, where �) ≥ 0 for each * = 1,2,3, " ≥ 1 and 3 ≥ 0. 

Thus, this study answers the following questions:     

1. How can we prove the existence of a point of coincidence of the maps $ and # satisfying 

the expansive type condition under investigation in b-metric space? 

2. How can we get a unique point of coincidence and hence the unique common fixed point 

of the maps $ and # satisfying the expansive type condition under investigation in b-

metric space? 

3. How can we validate our main results by supporting with an applicable example? 

1.3 Objective of the Study 

1.3.1 General objective  

The main objective of this study was to establish sufficient conditions for existence of point of 

coincidence and common fixed points for a pair of self-maps satisfying an expansive type 

condition (1.2.1) in b-metric spaces. 

1.3.2 Specific objectives 

1. To prove the existence of point of coincidences of the maps $  and #  satisfying the 

expansive type condition under investigation in b-metric space. 
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2. To prove the uniqueness of point of coincidences and hence prove existence unique 

common fixed point of the maps $ and # satisfying the expansive type condition under 

investigation in b-metric space. 

3. To validate the main results of this study using applicable example. 

1.4 Significance of the Study 

Fixed point theory has been a subject of growing interest of many researchers for various types 

of well-known Contraction principle in this space.  The researchers hope that the results obtained 

in this study contribute to further research activities in this area. Furthermore, collaboration in 

this research is useful for the graduate program of the department. The researchers also benefit 

from this study since it helps to develop scientific research writing skill and scientific 

communication in mathematics.  

1.5 Delimitation of the Study 

This study was conducted under the stream of functional analysis and delimited to the study of 

existence of points of coincidence and unique common fixed point for a pair of self-maps 

satisfying expansive type condition in b-metric space. 
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CHAPTER TWO: REVIEW OF RELATED LITERATURE 

The theory of fixed point is one of the most powerful tools of modern mathematics. Not only it is 

used on a daily basis in pure and applied mathematics but also serves as a bridge between 

analysis and topology and provides a very fruitful area of interaction between the two. 

 Let X be a nonempty set and �: � ⟶ � be a self-map on X. An element p	∈ � is called a 

periodic point for T if there exists a positive integer k such that		�56 = 6. If  7 = 1,  then p is 

called a fixed point of T.  

Theorem 2.1 (Banach, 1922) Let (�, �)  be a complete metric space and �: � ⟶ �  a strict 

contraction, i.e., a map satisfying   

�(��, ��) 	≤ ��(�, �), $�8	�, �	
	�,                                                  (2.1.1)                               

where 0 ≤ � < 1 is constant. Then  

(P1) � has a unique fixed point 6 in � (i.e.�6 = 6) 

(P2) The Picard iteration 9�:;	:<=>  defined by �:?% =��:  , @	 = 0, 1, 2, 3,⋯ converges to 6 for �= ∈ �. 

Kannan (1968) has been the first one to consider discontinuous self-mapping T, by considering, 

instead of (2.1.1), the following alternative and independent contractive condition. 

Theorem 2.2 (Kannan, 1968). Let (�, �) be a complete metric space, T is a self-map of X. 

Assume that there exists 3
[0, %') such that for all x, y	
	� 

                                    �(��, ��) ≤ 3[�(�, ��) + �(�, ��)2                                         (2.1.2) 

 Then T has a unique fixed point in X.                                                                               

Mappings satisfying the inequality (2.1.2) are called Kannan type mapping.       
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Theorem 2.3 (Chatterjea, 1972) Let ��, ��  be a complete metric space, T be a self-map of X. 

Assume that there exists B
�0, %'�  such that  

                 ����, ��� ≤ B����, ��� + ���, ���2  For all x, y∈ �	                              (2.1.3) 

 Then T has a unique fixed point in X                                                     

 The inequality (2.1.1), (2.1.2), (2.1.3) are independent of one another (Rhoades, 1977).  

Definition 2.4 Let	(�, �) be a metric space. A mapping �:� ⟶ � is called Zamfirescu operator 

if there exist real numbers  �, 3	and	B satisfying 0 ≤ 	� < 1, 0 ≤ 3 < %'E@�	0 ≤ B < %' such that 

for each x, y ∈ �	at least one of the following is true: 

            (Z1)  �(��, ��) ≤ 	��(�, �); 
            (Z2) 	�(��, ��) ≤ 3[�(�, ��) + �(�, ��)2; and  

            (Z3) 	�(��, ��) ≤ B[�(�, ��) + �(�, ��)2. 
Zamfirscu (1979) established the following theorem which is a generalization of Banach 

contraction principle (Banach, 1922), Kannan’s theorem (Kannan, 1968) and Chatterjea’s 

theorem (Chatterjea, 1972). 

Theorem 2.5 (Zamfirescu, 1979) Let (�, �) be a complete metric space and T be a self-map on 

X. If � is a Zamfirscu operator, then � has fixed point in	�. 

Further generalizations of Banach contraction principle are done by several authors, such as 

(Bailey, 1966; Branciare, 2002; Ciric, 1971; Das, 1980; Dutta and Choudhury, 2008; Edelstein, 

1962; Hardy and Rogers, 1973; Jaggi, 1980; Kannan, 1968; Kannan, 1969 and Kannan, 1984; 

Meir and Keeler, 1969; Reich, 1971). 
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Jungck (1976) established a common fixed point theorem for commuting mapping, which 

generalized the well-known Banach contraction principle. 

Jungck̓"  theorem was generalized and extended for commuting mapping in various ways with 

several contraction type by many authors, such as, (Bianchini, 1972; Das and Naik, 1979; Ding, 

1983; Fisher, 1978; Jungck, 1986). Sessa (1982) introduced a concept that generalizes 

commuting maps, namely, weakly commuting maps and proved a common fixed point theorem 

for such maps.  Jungck (1986) initiated the concept of compatible pair of maps, as a 

generalization of weakly commuting maps, in order to obtain common fixed points of a pair of 

self-maps.  

Jungck et al. (1993) introduced an independent notion of compatible maps, namely compatible 

map of type (A) and established common fixed point theorem. Jungck and Rhodes (1998) 

introduced the notation of weakly compatible maps which is found to be very helpful in 

obtaining coincidence point and common fixed point of various classes of mapping on metric 

space, by such researchers as, (Abbas and Rhoades, 2007; Abbas and Jungck, 2008; Ahmad, 

2003; Bari and Vetro, 2008; Beg and Abas, 2006; Fisher, 1978; Jha, 2007; Khan and Domlo, 

2006 and Pant, 1994). 
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CHAPTER THREE: METHODOLOGY OF THE STUDY 

3.1 Study site and period  

This study focuses on an interesting topic from Functional Analysis especially, fixed point 

theory. The goal of this research is to establish sufficient conditions for existence of point of 

coincidence and common fixed points for a pair of self-maps satisfying an expansive type 

condition (1.2.1) in b-metric spaces. This study is conducted from September 2016 - June 2017 

G.C. in Jimma University.   

3.2 Study design 

The study design we followed to achieve the objective of this study is analytical method. 

3.3 Source of information 

The study depends on various sources of information such as; related books in functional 

analysis in particular, fixed point theory, journals, different related unpublished / published 

research works and the internet.  

3.4 Mathematical Procedure of the Study 

Relevant materials and data for the study were collected by means of documentary review. 

Hence, in this study we followed the standard procedure used in the published work of Mohanta 

(2016) in achieving the proposed goal of this research work.  That is, we constructed a sequence 

9�:; in � such that $�: 	= 	#�:H%, for all @ ≥ 1, where $ and # are expansive self-mappings on �, and then showed that the sequence 9#�:H%; and hence  9$�:; is Cauchy in either #(�) or $(�), since at least one of them is complete. Further, we showed that the limit point of the 

Cauchy sequence is a point of coincidence of the pair of maps $ and #. 
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3.5 Ethical consideration  

Ethical considerations have been taken care of at in all stages of the research process. So, to 

make the study legal, permission has been obtained from Ethical committee of College of 

Natural Sciences of Jimma University. Moreover, the researchers have kept the rules and 

regulations of the university and have acknowledged all sources of information.   
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CHAPTER FOUR: RESULT AND DISCUSION 

4.1 PRELIMINARIES  

In this section we need to recall some basic notations, definitions and necessary results from 

existing literature. The definition of metric space, complete metric space, b- metric space, the 

Cauchy sequence, complete b-metric space, the notion of convergence and other results that we  

need in the sequel. 

Definition 4.1.1. Let � be a non-empty set and let	� ∶ 	� × �	 → 	ℜ? be a function satisfying the 

conditions, 

             �%)	�(�, �) = 0	 ⇔ 	� = �;  
             �')	�(�, �) = �(�, �); 
             �()	�(�, �) ≤ �(�, �) + �(�, �)	for all �, �, �	 ∈ 	�. Then �	is called metric on �, and the 

pair (�, �) is called a metric space. 

Definition 4.1.2 (Czerwik, 1993). Let �	be a non-empty set and 7	 ≥ 	1 be a real number. A 

mapping   �:	�	�	�	 → 	ℜ? is said to be a b-metric if for all �, �, �	 ∈ 	�, the following conditions 

are satisfied:            

  	�%)	�(�, �) = 0	⇔ 	�	 = 	�         

   �')	�(�, �) = �(�, �)	         

   �()	�(�, �) ≤ 7[	�(�, �) + �(�, �)2  
The pair (�, �) is called a b-metric space. From the above definition it is evident that the b-

metric space extends the metric space. Here, for k = 1 it reduces into standard metric space. But 

the converse is not true as is clear from the following examples.                   

Example 4.1.3 (Berinde,1993). The space � = MN	with 0	 < 	6	 < 	1 where  

	MN(ℜ) = O� = 9�:; ⊂ ℜQ ∞<∑
∞

=1n

p

nx R , 

together with the function �:	M6	 × M6 → ℜ? defined by 

�(�, �) = (∑ |�: − �:|N>:<% )% N⁄   
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where	�	 = 9�:;, � = 9�:; 	 ∈ 	 MN	 is a b-metric space.  

Here since conditions (�%) and (�') of Definition 4.1.2 hold clearly, we only check condition 

(�().  
Indeed, since 0 < 6 < 1, the mapping � ↦ �N is concave on ℜ?and also it is subadditive. Thus 

we get the pointwise bound of  |$��� + #���|N ≤ |$���|N + |#���|N. Consequently, we have   

                ||$ + #||	NN ≤ ||$||NN + ||#||NN. 

            = 2 X%' ||$||NN + %' ||#||NNY 

                                    ≤ 2 X%' ||$||N + %' ||#||N YN
 

                                    = 2%HNZ||$||N + ||#||N [N. 
This implies 

 ||$ + #||N ≤ 2% N⁄ Z||$||N + ||#||N[. 

Now putting $ = 9\:; and # = 9]:;, where  let \: = �: − �:, ]: = �: − �:	 for each	@ =1,2,⋯, we then get �: − �: = \: + ]: for each @ = 1,2,⋯.	      

So, we obtain  

                      �(�, �) = (∑ |�: − �:|N>:<% �% N⁄  

                                   = �∑ |\: + ]:|N>:<% �% N⁄  

                                    = ‖$ + #‖N 

                                    ≤ 2% N⁄ Z||$||N + ||#||N[ 

                                    ≤ 2% N⁄ Z�∑ |�: − �:|N>:<% �% N⁄ + �∑ |�: − �:|N>:<% �% N⁄ [ 

                                     ≤ 2% N⁄ Z���, �� + ���, ��[ for all �	 = 9�:;, � = 9�:;, � = 9�:; ∈ � 

Therefore, � is a b-metric with constant	" = 2% N⁄ .   
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Similarly, we have  

Example 4.1.4 (Berinde, 1993) Let � ≔ 	`6	[0,12 be the space of all real-valued functions �(a), a	 ∈ 	 [0, 12 such that b |�(a)|N�a < ∞,%=  with 0	 < 	6	 < 	1. Define �:	�	 × � → ℜ?as:    

�(�, �) = de |�(a) − �(a)|N�a%
= f% N⁄

 

for each �, �	 ∈ �. Then � is a b-metric with coefficient " = 2% N⁄ . 

Remark 1: When " = 1, then the ordinary triangle inequality in a metric space is satisfied, 

however it does not hold true when "	 > 	1. Thus the class of b-metric spaces are effectively 

larger than that of the ordinary metric spaces. That is, every metric space is a b-metric space, but 

the converse need not be true.   

Example 4.1.5 (Akkouchi, 2011). Let � = 90, 1, 2;.  Define �:	�	 × 	�	 → ℜ?
  as follows   

                 

  �(2, 0) = �(0, 2) = g, g ≥ 2, 
 �(0	,1) = �(1, 0) = �(1, 2) = �(2, 1) = 1,	and   

 �(0, 0) = �(1, 1) = �(2, 2) = 0.  

Then, �(�, �) 	≤ 	h' [�(�, �) + �(�, �)2 for all �, �, �	 ∈ 	�.  
(�, � ) is a b-metric space with constant " = h' .	  However, if g	 > 	2  the ordinary triangle 

inequality does not hold. Thus (�, �) is not a metric space. If we take 0, 1, 2	 ∈ 	�, then we get      

�(2, 0) = g	 ≥ 	�(2, 1) + �(1, 0)  ⇒ g	 ≥ 	2.                                                                                                  

Hence it does not satisfy ordinary triangle inequality.                                                                                           

Therefore the function defined above is a b-metric space but not a metric for	g	 > 	2.                                                                                         

Example 4.1.6 (Roshan et al., 2014). Let (�, �) be a metric space and j(�, �) = (�(�, �))N, 
where 6	 > 	1	 is a real number. Then	j  is a b-metric with	" = 12 −p . However, (�, j)  is not 

necessarily a metric space.  j(�, �) = (�(�, �))N > 0 for � ≠ �, for all �, � ∈ �. 



 

 14  

 

This implies	j(�, �) > 0 if � ≠ �.           

  j(�, �) = 0 ⇔ (�(�, �))N = 0          

           ⇔ �(�, �) = 0        

           ⇔ � = �.                         

Now	j(�, �) = (�(�, �))N = (�(�, �))N = j(�, �).            

This implies	j(�, �) = j(�, �).            

Hence conditions (�%)  and	(�')	 of Definition 4.1.2 are satisfied. If	1 < 6 < ∞ , then the 

function	#(�) = �N(�	 > 	0) is strictly convex, and hence 	Xk?l' YN ≤ %' (EN + mN).	     This in turn 

implies that  (E + m)N ≤ 2NH%(EN + mN).                                                                                                                

So for all	�, �, �	 ∈ 	�,	 we have                                                                                        

               	j(�, �) 	= 	 (�(�, �))N 	≤ Z�(�, �) + �(�, �)[N                  

                  ≤ 2NH%ZZ�(�, �)[N + Z�(�, �)[N[                                            

                                                      = 2NH%(j(�, �) + j(�, �)).                                               
So condition (d3) of Definition 4.1.2 holds and hence 	j is a b-metric with constant " = 2NH%.  If � = ℜ, the set of real numbers and j(�, �) = |�	– 	�|', then j is a b-metric on ℜ with " = 2, but 

not a metric on ℜ since the ordinary triangle inequality for a metric does not hold.        

Definition 4.1.7 (Boriceanu, 2009) Let ��, �� be a b-metric space, � ∈ � and 9�:;	be a sequence 

in �. Then 

(i)  9�:;	  converges to	�  if and only if lim:→> d(�:, �) = 0	 . We denote this by lim:→> �: = �	 or �: → � (@ → ∞) 
(ii)   9�:;	 is Cauchy if and only if  lim:.h→> d(�:, �h) = 0	. 
(iii)  (�, �) is complete if and only if every Cauchy sequence in � is convergent.  

Remark 2 (Boriceanu, 2009) In a b-metric space (X, d), the following assertions hold: 

(i) A convergent sequence has a unique limit.  

(ii)  Each convergent sequence is Cauchy.  

(iii) In general, a b-metric is not continuous. 

The following example shows that a b-metric need not be continuous. 
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Example 4.1.8  (Hussein et al., 2012). Let � = ℕ ∪ 9∞; and let �: � × � → ℝ be defined by  

��g, @� =
uvw
vx 0, if	g = @,																																																																																																		z 1g − 1@z , if	one	of	g, @	is	even	and	the	other	is	even	or	∞,												5, if	one	of	g, @	*s	odd	and	the	other	is	odd	(and	g ≠ @)or	∞,2, otherwise.																																																																																													

 

Then considering all possible cases, it can be checked that for all g, @, 6 ∈ �, we have  

        �(g, 6) ≤ �' Z�(g, @) + �(@, 6)[. 
Then, (�, �) is a b-metric space (with " = �'). Let �: = 2@ for each @ ∈ ℕ. Then  

�(2@,∞) = %': → 0 as @ → ∞, 
that is, �: → ∞, but �(�: , 1) = 2 ↛ 5 = �(∞, 1) as @ → ∞ 

Theorem 4.1.9. (Aghajani, et al., 2014). Let (�, �) be a b-metric space and suppose that 9�:; 
and 9�:; converge to �, � ∈ �, respectively. Then, we have  1"' �(�, �) ≤ lim inf:→> �(�: , �:)≤ lim sup:→> �(�: , �:) ≤ "'�(�, �). 
In particular, if � = �, then lim:→>(�: , �:) = 0. 
Moreover, for each � ∈ �, we have  1" �(�, �) ≤ lim inf:→> �(�: , �)≤ lim sup:→> �(�:, �) ≤ "	�(�, �). 
Proof: Using the triangle inequality in a b-metric space it is easy to see that 

�(�, �) ≤ "	�(�, �:) + "'�(�:, �:) + "'	�(�: , �) 
and  

�(�: , �:) ≤ "	�(�:, �) + "'�(�, �) + "'	�(�, �:	). 
Taking the lower limit as @ → ∞ in the first inequality and the upper limit as @ → ∞ in the 

second inequality we obtain the first desired result. Similarly, using again the triangle 

inequality the last assertion follows. 

Definition 4.1.10. (Mohanta, 2016). Let (�, �) be a b-metric space with the coefficient " ≥ 1 

and let � ∶ 	� → �  be a given mapping. We say that �  is continuous at �= ∈ �  if for every 

sequence 9�:;	   in � , such that�: → �=  as @	 → 	∞  then ��: → ��=  as @	 → 	∞ . If �	 is 
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continuous at each point �= ∈ �, then we say that � is continuous on �. 

Definition 4.1.11. (Mohanta, 2016). Let ��, �� be a b-metric space with the coefficient " ≥ 1. A 

mapping � ∶ 	�	 → �  is called expansive if there exists a real constant 7	 > 	"  such that    											�(��, ��) ≥ 7	�(�, �	)										for all �, �	 ∈ �. 

Definition 4.1.12. (Roshan et al., 2014) Two  selfmaps $	and	� of a b-metric space (�, �	) are 

said to be compatible if and only if  lim:→> �($��: , �$�:) = 0	 whenever 9�:;	 is a sequence 

in �	such that    lim:→> $�: = lim:→> ��: = a for some a	 ∈ 	�. 
Thus �($��, �$�) → 0  as �($�, ��) → 0.   This implies the pair of maps $	and	�  are 

compatible. So, if $	and	�	commute, then they are compatible.                                                  

Definition 4.1.13. (Roshan et al., 2014) Let � be a set and $, �:	� → 	� be self-maps of �. A 

point x in �	is called a coincidence point of $	and	� if 	$� = ��. We shall call � = $� = ��	a 

point of coincidence of $	and	�. The set of coincidence points of � and $ is denoted by �(�, $). 
Example  4.1.14. Take � = [0,12, ��	 =  �',   ��	 = 	 �' . It is clear that 90	, %';  is the set of 

coincidence point of �	and � and 0 is the unique common fixed point. 

Definition 4.1.15. (Roshan et al., 2014) Two self-maps $	and	� of a nonempty set X are said to 

be weakly compatible if they commute at their coincidence point (i.e.,  $�� = �$�  for all � ∈ �($, �)).   

Example 4.1.16. Let � = [1,∞2  with the usual metric. Define $, �: � → �  by $(�) = 4� −3	and �(�) = �' for all � ∈ �. Then 1	and 3	are the only coincidence points of $	and	�. Also, $�(1) = 1 = �$(1). But, $�(3) = 33 ≠ 81 = �$(3). Hence $  and �  are occasionally weakly 

compatible but not weakly compatible.  

Proposition 4.1.17. (Abbas et al., 2008) Let �  and �	be weakly compatible selfmaps of a 

nonempty set �. If � and � have a unique point of coincidence	�	 = 	��	 = 	��, then y is the 

unique common fixed point of �	and  � . 

Proof : Let ] the unique point of coincidence of � and �. Then ]	 = 	�\	 = 	�\ for some \	 ∈ 	�. 

By weakly compatibility of the pair of maps (�, �), we have  �]	 = ��\	 = 	��\		 = 	�], which 
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implies  that �] = 	�]	 = 	� (say). Thus, � is also a point of coincidence of � and �.  Therefore, 

by the uniqueness of the point of coincidence of the selfmaps � and �, we have ] = 	�. 	 
Thus, ] is the unique common fixed point of S and T. 
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4.2 MAIN RESULT            

In this section, we prove some point of coincidence and common fixed point results in b-metric 

spaces. 

Theorem 4.2.1. Let ��, ��  be a b-metric space with the coefficient		" ≥ 1 . Suppose the 

mappings $, # ∶ 	�	 → � satisfy the condition   

                 �($�, $�) + 01 [�(#�, $�) + 		�(#�, $�)2 ≥ �%�(#�, #�) +	�'	�($�, #�) +	�(	�($�, #�),	                  (4.2.1)                                                               

for all �, �	 ∈ �, � ≠ � where �)	is nonnegative real numbers for each * = 1,2,3 and 3 ≥ 0 with �% + �' + �( > (1 + 23)" and 3 < ��1 +	�( . Assume the following hypotheses: 

(i) �' 	< 	1 and �% ≠ 0,  (ii) #(�) 	⊆ $(�), and (iii) $(�) or #(�) is complete. Then $ and # 

have a point of coincidence in �. Moreover, if �% > 	1 + '01 , then the point of coincidence is 

unique. If $	and #	are weakly compatible and �% > 	1 + '01 , then $ and # have a unique common 

fixed point in X. 

Proof. Let �= 	 ∈ � and choose �% 	 ∈ 	� such that #�= 	= 	$�% . This is possible since #(�) 	⊆$(�). Continuing this process, we can construct a sequence 9�:; in � such that $�: 	= 	#�:H%, 

for all @ ≥ 1. 

If $�:�?% = #�:�  for some @= ∈ ℕ, then $�:� = #�:� . 
Thus, �:� is a coincidence point of $ and #. 

So, we assume that $�: ≠ $�:?% for all @ ∈ ℕ. 

By (4.2.1), we have 

                      �($�:, $�:?%) + 01 [�(#�:, $�:?%) 	+ 		�(#�:?%, $�:)2	
      ≥ �%�(#�:, #�:?%) 	+ �'�($�: , #�:) 	+ �(�($�:?%, #�:?%) 

                 ⇒ �(#�:H%, #�:) + 01 [�(#�:, #�:) 	+ 		�(#�:?%, #�:H%)2	
  ≥ �%�(#�: , #�:?%) 	+ �'�(#�:H%, #�:) 	+ �(�(#�: , #�:?%)	

                 ⇒ �(#�:H%, #�:) + 01 �(#�:?%, #�:H%)	
  ≥ (�% + �()�(#�: , #�:?%) 	+ �'�(#�:H%, #�:)	 

                 ⇒ �(#�:H%, #�:) + 01 "[�(#�:?%, #�:) 	+ 		�(#�:, #�:H%)2	
   ≥ (�% + �()�(#�:, #�:?%) 	+ �'�(#�:H%, #�:)	 
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                 ⇒ �1 + 3 − �'���#�:H%, #�:� ≥ ��% + �( − 3���#�:, #�:?%�		
                 ⇒ �(#�:, #�:?%) 	≤ %?0H����?��H0 �(#�:H%, #�:) 

    ⇒ �(#�:, #�:?%) 	≤ ��(#�:H%, #�:)  for all @ ≥ 0, 

where � = %?0H����?��H0 ∈ X0, %1Y.	
By induction, we get that 

    �(#�:, #�:?%) ≤ �:�(#�=, #�%),                (4.2.2)                              

for all @ ≥ 0. 

For g, @	 ∈ 	ℕ with g	 > 	@, by repeated use of (4.2.2) we have 

 �(#�:, #�h) ≤ 	"	[�(#�:, #�:?%) 	+ 	�(#�:?%, #�h)2	
    ≤ "�(#�:, #�:?%) + 	"'�(#�:?%, #�:?') +	⋯ 

                                                  +	"hH	:	H%	[�(#�hH', #�hH%) 	+ 	�(#�hH%, #�h)2		
                            ≤ ["�:	 + 	"'�:?%		 	+ ⋯	+	 	"hH:H%�hH'			 +	 	"hH:H%�hH%			2	�(#�=, #�%)		 

     ≤ ["�:	 + 	"'�:?%		 	+ ⋯	+	 	"hH:H%�hH'			 +	 	"hH:�hH%			2	�(#�=, #�%)		 
      ≤ "�:	[1 + "�	 + ("�)' +⋯	+	("�)hH:H' +	("�)hH:H%2	�(#�=, #�%)		 
      ≤ 1��	%H1� �(#�=, #�%).	 

This implies that �(#�:, #�h) → 0 (as g, @ → ∞), since 
1��	%H1��(#�=, #�%) → 0 as @ → ∞. 

 So, 9#�:; is a Cauchy sequence in #(�). Suppose that #(�) is a complete. Then there exists �	 ∈ 	#(�) ⊆ 	$(�)	such that #�: 	→ 	� and also$�: 	→ 	�. In case, $(�) is complete, this holds 

also with �	 ∈ $(�). Let \	 ∈ � be such that $\	 = 	�. 

By (4.2.1), we have 

 �($�:, $\) + 01 [�(#�:, $\) 	+ 		�(#\, $�:)2 
 ≥ �%�(#�: , #\) 	+ �'�(#�: , $�:) 	+ �(�(#\, $\) 

 ⇒ �($�:, �) + 01 [�(#�: , �) 	+ 		�(#\, $�:)2 
 ≥ �%�(#�: , #\) + �'�(#�:, $�:) + �(�(#\, �).	

If   �% ≠ 0, then 

             �(#�:, #\) ≤ %�� 	�(#�:H%, �) + 0��1 [�(#�:, �) + 		�(#\, $�:)2 
                                                     − ���� �(#�:, $�:) − ���� �(#\, �).	
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Therefore, 

 ���, #\� ≤ "����, #�:� 	+ 	�(#�: , #\)2	
   ≤ "[�(�, #�:) 	+	 %�� 	�(#�:H%, �) + 0��1 [�(#�:, �) + 		�(#\, $�:)2 

−�'�% �(#�:, $�:) − �(�% �(#\, �)2 
   ≤ "[�(�, #�:) 	+	 %�� 	�($�:, �) + 0��1 �(#�: , �) + 0�� �(#\, �) + 0�� �(�, $�:) −�'�% �(#�: , $�:) − �(�% �(#\, �)2. 

 

Taking limit as @ → 	∞, using Theorem 4.1.9  we obtain 

      �(�, #\) ≤ " � 0�� �(#\, �) − ���� �(#\, �)� = 1�� (3 − �()�(#\, �). 
 ⇒ d1 + 1�� (�( − 3)f�(�, #\) ≤ 0. 
 ⇒ �(�, #\) = 0.             (Since 3 < ��1 +	�() 

Hence, #\	 = 	�	and hence $\	 = 	#\	 = 	�.  

Therefore, � is a point of coincidence of $ and #. 

Now we suppose that  �% > 	1 + '01 . Let ]  be another point of coincidence of $  and # . So $�	 = 	#�	 = 	] for some � ∈ �. Then 

                   �($�, $\) + 01 [�(#�, $\) 	+ 		�(#\, $�)2 ≥ �%�(#�, #\) 	+ 	�'	�($�, #�) 	+	�(	�($\, #\) 
 ⇒ �(], �) + 01 [�(], �) 	+ 		�(�, ])2 ≥ �%�(], �),	 
 ⇒ X�% − 1 − '01 Y�(], �) ≤ 0.	 
 ⇒ �(], �) = 0.	             (Since �% > 1 + '01 ) 

Hence,			]	 = 	�. Therefore, $ and #	have a unique point of coincidence in �. 

 

If $ and # are weakly compatible, then by Proposition 4.1.17, $	and #	have a unique common 

fixed point in �. 
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Remark (i) If we take	3 = 	0 in Theorem 4.2.1, we get Theorem 1.2 as a corollary to  

                      Theorem 4.2.1. 

(ii)  If we take 3 = �' = �( = 	0 in Theorem 4.2.1, we get the following as a corollary. 

 

Corollary 4.2.2. Let (�, �)  be a b-metric space with the coefficient " ≥ 1 . Suppose the 

mappings $, # ∶ 	� → 	� satisfy the condition 

 �($�, $�) ≥ �%�(#�, #�)	
for all �, � ∈ �, where �% > " is a constant. If #(�) ⊆ $(�) and $(�) or #(�) is complete, then $ and #	have a unique point of coincidence in �. Moreover, if $ and # are weakly compatible, 

then $ and #	have a unique common fixed point in �. 

The following Corollary is the b-metric version of Banach's contraction principle. 

Corollary 4.2.3. Let (�, �) be a complete b-metric space with the coefficient " ≥ 1. Suppose the 

mapping # ∶ 	�	 → 	� satis es the contractive condition 

      �(#�, #�) ≤ ��(�, �) 
for all �, �	 ∈ 	� , where � ∈ (0, %1	)	 is a constant. Then #  has a unique fixed point in � . 

Furthermore, the iterative sequence 9#:�; converges to the fixed point. 

Proof. It follows by taking	3 = �' = �( = 	0   and $	 = 	� , the identity mapping on � , in 

Theorem 4.2.1. 

Corollary 4.2.4. Let (�, �) be a complete b-metric space with the coefficient " ≥ 1. Suppose the 

mapping $ ∶ 	� → 	� is onto and satisfies  

                              �($�, $�) ≥ �%�(�, �) 
for all �, � ∈ �, where  �% > "	is a constant. Then $ has a unique fixed point in 	�. 

Proof. Taking #	 = 	� and 	3 = �' = �( = 	0   in Theorem 4.2.1, we obtain the desired result. 
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Corollary 4.2.5. Let ��, �� be a complete b-metric space with the coefficient  " ≥ 1. Suppose 

the mapping $ ∶ 	� → � is onto and satisfies the condition 

 �($�, $�) ≥ �%�(�, �) + �'3�($�, �) + �(B�($�, �)	
for all �, � ∈ �, where �) 	is nonnegative real numbers for each * = 1,2,3  with �% ≠ 	0, �' <	1, �% + �' + �( > 	". Then $ has a fixed point in �. Moreover, if �% > 1, then the fixed point of $ is unique. 

Proof. It follows by taking 	3 = 	0 and #	 = 	� in Theorem 4.2.1. 

Now we give an example in support of our main result. 

Example 4.2.6: Let X = [0,1) ∪ (1,42 and define d: X × X → ℜ by d(x, y) = |x − y|'. Then (X, d) is a b-metric space with s = 2. Define mappings f, g: X → X by  

               $(�) = �4�,			� ∈ �0, %�Y															4,				� ∈ [%� , 1) ∪ (1,42	   and  #(�) = ��, � ∈ �0, %��																																				0, � ∈ X%� , 1Y ∪ (1,42	.    
Then (�) = [0,1) ∪ 94; , and #(�) = [0, %�2, so that #(�) ⊆ $(�) and #(�) is complete. 

Also, $ and # satisfy the expansive type condition (4.2.1) with �% = 6, �' = %� = �( and 3 = 1, 

as it is explained in the following five cases. 

Case (i):  �, � ∈ [0, %�),  � ≠ �. In this case we assume � > �. Then  

�($�, $�) = 16(� − �)', �(#�, #�) = (� − �)', �($�, #�) = 9�', �($�, #�) = 9�', �($�, #�) = (4� − �)', and �($�, #�) = (4� − �)'. 

Now we get 

        16(� − �)' + 			%' [(4� − �)' + (4� − �)'2 ≥ 6(� − �)' + %� (9�') + %� (9�'), 
since the above inequality reduces to  

29(� − �)' + 6�' + 6�' + 2�� ≥ 0. 
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Case (ii): � ∈ �0, %�� and � ∈ X%� , 1Y ∪ �1,42.  
Here also we have  ��$�, $�� = 16�� − 1�', ��#�, #�� = �', ��$�, #�� = 9�', ��$�, #�� =16, ��$�, #�� = 16�', and ��$�, #�� = �4 − ��'. 

Now again we get 

                             16�� − 1�' + %' �16�' + �4 − ��'2 ≥ 6�' + �' + %�� , 

since the above inequality reduces to  

16�� − 1�' + 32 �' + 569 − 4� ≥ 0. 
Case (iii): � ∈ �0, %�� and � = %�.  

Here also we have  ��$�, $�� = 16�� − 1�', ��#�, #�� = X� − %�Y'
, ��$�, #�� = 9�', 

��$�, #�� = ''�%� , ��$�, #�� = X4� − %�Y'
, and ��$�, #�� = �4 − ��'. 

Here also 

                             16�� − 1�' + %'  X4� − %�Y' + �4 − ��'¡ ≥ 6 X� − %�Y' + �' + ''�%��, 

which implies 

16�� − 1�' + 12 ¢4� − 14£' + 12 ¤�4 − ��' − 12 ¢� − 14£' − 2�' − 22572 ¦ ≥ 0, 
since 

                  �4 − ��' − 12 X� − %�Y' − 2�' − ''�§' > 0 for � ∈ �0, %��. 

Case (iv):  �, � ∈ �1,42, with � ≠ �. 

Here also we have  ��$�, $�� = 0, ��#�, #�� = 0, ��$�, #�� = 16, ��$�, #�� = 16, ��$�, #�� = 16, and ��$�, #�� = 16. 
Now again we get 

                                          0 + %' �16 + 162 ≥ 6�0� + %� �16� + %� �16�, 

since 16 ≥ ('� . 
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Case (v):  � ∈ X%� , 1Y ∪ �1,42, and	� = %�. 
Here also we have  �($�, $�) = 0, �(#�, #�) = %%� , �($�, #�) = 16, �($�, #�) = ''�%� , �($�, #�) = ''�%� , and �($�, #�) = 16. 
Now again we get 

                                          0 + %' �''�%� + 16� ≥ 6 X %%�Y + %� X''�%� Y + %� (16), 
since 

��%(' ≥ �=�%��. 
Thus in all the five cases for each � ≠ � the expansive condition (4.2.1) holds with �% = 6, �' =%� = �( and 3 = 1. 

Here we observe the pair ($, #) is weakly compatible at � = 0, which is the only point of 
coincidence of $ and #. Hence � = 0 is the unique common fixed point of $ and #.  

We note from case (v) that the expansive condition (1.2.1) in Theorem 1.2  fails to hold for any �%, �', �( ≥ 0 with  �% + �' + �( > " for " = 2 when � ∈ X%� , 1Y ∪ (1,42 and � = %�,  
since	�($�, $�) = 0, �(#�, #�) = %%�, �($�, #�) = 16 and	�($�, #�) = ''�%�  and hence the 

inequality (1.2.1) becomes  0 ≥ %%��% + 16�' + ''�%� �(	which is absurd. 
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              CHAPTER FIVE: CONCLUSION AND FUTURE SCOPE 

5.1 CONCLUSION  

In 2016, Mohanta established the sufficient conditions for existence of point of coincidence and 

common fixed point for pair of self-maps satisfying expansive type condition (1.2.1). 

In this thesis, we established the sufficient condition for existence of point of coincidence and 

common fixed point, namely Theorem 4.2.1 for pair of self-maps satisfying the expansive type 

condition (1.2.2) in b-metric spaces.     

Also, we have supported our main result of this research work by an example. Example 4.2.6 

shows our work is more general than the main result of Mohanta (2016).  

  

5.2  FUTURE SCOPE  

Fixed point theory is one of active and vigorous areas of research in Mathematics and other 

sciences. There are several published results related to the existence of point of coincidence and 

common fixed point theorems for a pair of self-maps satisfying some expansive type condition in 

b-metric spaces.  

The researcher believes that the search for the existence of point of coincidence and common 

fixed point for a pair of self-maps satisfying some expansive type condition in b-metric space is 

an active area of study. So, we recommend to the forthcoming post graduate students or any 

other interested researchers of the department of  mathematics can exploit this opportunity and 

conduct their research  work in this area. 
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