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ABSTRACT

The main purpose of this research paper is to ksttakufficient condition for the existence of
point of coincidence and common fixed point foraarpf self-maps satisfying some expansive
type conditions in a b-metric space.

In this research undertaking, we followed analytoesign. Secondary sources of data such as
journal, internet and books were used for thistddhe analysis techniques which we adopted
for the successful completion of this study we tif Mohanta (2016).

This study was conducted from September 2016 te 2047.
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CHAPTER ONE: INTRODUCTION

1.1 Background of the study
Let (X,d) be a metric space. A poinin X is said to be a fixed point of a self-mBpX — X
if T(z) = z. We denote the set of fixed pointsdby F(T).

A self-map T: X — X is said to be a contraction, if there exists astama € [0, 1) such that

forallx,y € X,
d(Tx,Ty) < ad(x,y) (1.1.2)

Banach (1922) stated his celebrated theorem oaxiséence and uniqueness of fixed point of a
contraction map defined on a complete metric spacéhe first time. This theorem states that,
if (X,d) is a complete metric space ahd{ — X is a contraction map, then T has a unique fixed
point. Since its first appearance, the Banach action mapping principle has become the main
tool to study contractions as they appear abungantd wide array of quantitative sciences. This
theorem provides a technique for solving a vargdtgpplied problems in Mathematical sciences
and engineering. Its most well-known application irs ordinary differential equations,
particularly, in the proof of the Picard - Lindéltheorem which guarantees the existence and

uniqueness of solution of first order initial valpmblems (Smith, 2014).

It is worth emphasizing that its remarkable strbngftthe Banach principle originates from the
constructive processes it provides to identify fixed points. This notable strength further
attracted the attention of not only many promiridathematicians related to non-linear analysis,
but also many researchers who are interested ratiite methods to examine the quantitative
problems involving certain mapping and space dtrestrequired in their work in various areas

such as social science, biology, economics and atanpcience.

Inequality (1.1.1) implies continuity of the selfam T. A natural question is whether we can find
contractive conditions which will imply existencgaofixed point of a self-map in a complete

metric space but do not imply the continuity thepma

The Banach contraction principle has been genedliz many ways over the years. In some
generalizations, the contractive nature of the msaweakened; see (Branciari, 2002; Kannan,



1969; Petric, 2010; Kikkawa and Suzuki, 2008; Ketkal., 2003; Rhoades, 1977; Sessa, 1982
and others). In other generalizations, the topol@@wbient space) is weakened; for example
rectangular metric (Branciari, 200@ymetric space (Czerwik, 1993), cone metric spaasa(td
and Zhang, 2007), cone rectangular metric spacarf al 2009), and conb-metric space
(Jovanovi'cet al, 2010) are some of the generalized metric spatesduced by different
authors in the recent past. See also (Aetgal, 2008; Abbast al, 2011; Chaipunyat al,
2012; Panthet al.,2015; Zeyadat al, 2005; Zoto et al. 2012 ) and others.

A metrical common fixed point theorem is broadlyrgised of conditions on commutativity,
continuity, completeness and contraction besidé@alda containment of range of one map into
the range of the other. For proving new results, rgsearchers of this domain are required to

improve one or more of these conditions.

Let (X, d) be a metric space asgdT two self-mappings oQX, d). A point z € X is said to be a
common fixed point of andT if Sz = Tz = z.

Jungck proved a common fixed point theorem for catimg maps by generalizing the Banach
fixed point theorem (Jungck, 1976). With a viewamcommodate a wider class of mappings in
the context of common fixed point theorems, Sed$82) introduced the notion of weakly
commuting mappings which was further generalizedlloygck (1986) by defining compatible
mappings. After this, there came a host of suclmtieins which are scattered throughout the
recent literature whose survey and illustration {op2001) is available in Murthy (2001). A
minimal condition merely requiring the commutatyvét the set of coincidence points of the pair
called weak compatibility was introduced by Jungckl Rhoades (1998). This new notion was

extensively utilized to prove new results.

Bakhtin introduced b-metric space as a generatimadf metric space and proved the contraction
mapping principle in b-metric space that generdlittee famous Banach contraction principle in
metric space (Bakhtin, 1989). Since then, manyaresers including Czerwik (1993), Akkouchi
(2011), Aydiet al (2012), Boricean{2009), Botaet al. (2011), Kir and Kiziltunc (2013) and
Pacurar (2010) studied the extension of the exjdiiked point theorems ib-metric spaces for

singlevalued and multivalued functions.



The study of expansive mappings is a very intargstesearch area in fixed point theory. A
mapping satisfying the conditiad(Tx, Ty) > Bd(x,y) for all x,y € X, wheref > 1, is called
expansive mapping. Wangt al (1984) introduced the concept of expanding magpiand
proved some fixed point theorems in complete metpaces. Rhoades (1985) and Taniguchi
(1989) generalized the results of Wang (1984) far pf mappings. Later, Khaet al (1986)
generalized the result of Wang (1984) by makingafsie functions. Kang (1993) generalized
these results of Khaet al. (1986), Rhoades (1985) and Taniguchi (1989) fopaexling
mappings. Ahmed (2009) established a common fixadt pheorem for expansive mappings by
using the concept of compatibility of type (A) im&etric spaces. The theorem proved by Ahmed
(2009) was the generalization of the result of Kahgl. (1993) for expansive mappingsahin
and Telci (2010) also presented a common fixedtgbgorem for expansion type mappings in
complete cone metric spaces which generalizes =iethas the theorem of Wargg al. (1984)

for a pair of mappings to cone metric spaces.

Recently, Mohanta (2016) established sufficientditions for existence of point of coincidence
and common fixed points for a pair of self-mapsisfghg the following expansive type

conditions in b-metric spaces:

Theorem 1.1 (Mohanta, 2016) LetX, d) be a b-metric space with coefficient 1. Suppose
the mappingyg, f: X — X satisfy the conditions

d(fx,fy) = a,d(gx, gy) + a,d(fx, gx) + azd(fy, gy) 1.1.2)
for all x,y € X, wherea; > 0 for eachi = 1,2,3 with a; + a;, + a3 > s.
Assume the following hypotheses:

() ay <landa; #0, (ii)gX) € f(X), and (iii)f(X) org(X) is complete. Theli andg
have a point of coincidence K. Moreover, ifa; > 1, then the point of coincidence is
unique. Iff andg are weakly compatible and > 1, thenf andg have a unigue common

fixed point inX.

Motivated and inspired by the work of Mohanta (2016 this research work the researchers
studied the sufficient conditions for the existerdepoints of coincidence and common fixed

points for a pair of self-maps satisfying some &gpge type conditions in b-metric spaces by

3



replacing inequality (1.1.2) with a more generabamsive type condition. We have also

supported our main result with examples.

1.2 Statement of the Problems

This study focuses on the sufficient conditions éxistence of points of coincidence and
common fixed points for a pair of self-maps satigfysome expansive type conditions in b-
metric spaces by replacing inequality (1.1.2) vaitmore general expansive type condition of the

form

d(fx, fy) +§[d(gx.fy) + d(gy, fx)] 2 a1d(gx, gy) + az d(fx,gx) + azd(fy,gy) (1.2.1)
for all x,y € X, wherea; > 0 for eachi = 1,2,3,s > 1 andp = 0.
Thus, this study answers the following questions:

1. How can we prove the existence of a point of calesce of the map§andg satisfying
the expansive type condition under investigatioh-imetric space?

2. How can we get a unique point of coincidence anttéehe uniqgue common fixed point
of the maps andg satisfying the expansive type condition under stg@ation in b-
metric space?

3. How can we validate our main results by suppontuity an applicable example?
1.3 Objective of the Study

1.3.1 General objective

The main objective of this study was to establigfii@ent conditions for existence of point of
coincidence and common fixed points for a pair eff-svaps satisfying an expansive type

condition (1.2.1) in b-metric spaces.

1.3.2 Specific objectives

1. To prove the existence of point of coincidencestt® mapsf andg satisfying the

expansive type condition under investigation in &k space.



2. To prove the uniqueness of point of coincidenced hence prove existence unique
common fixed point of the magsandg satisfying the expansive type condition under
investigation in b-metric space.

3. To validate the main results of this study usingl@pble example.

1.4 Significance of the Study

Fixed point theory has been a subject of growinigrest of many researchers for various types
of well-known Contraction principle in this spac€he researchers hope that the results obtained
in this study contribute to further research atiei in this area. Furthermore, collaboration in
this research is useful for the graduate programhefdepartment. The researchers also benefit
from this study since it helps to develop scieatifiesearch writing skill and scientific

communication in mathematics.

1.5 Delimitation of the Study

This study was conducted under the stream of fanatianalysis and delimited to the study of
existence of points of coincidence and unique comrwed point for a pair of self-maps

satisfying expansive type condition in b-metricspa



CHAPTER TWO: REVIEW OF RELATED LITERATURE

The theory of fixed point is one of the most poweétbols of modern mathematics. Not only it is
used on a daily basis in pure and applied mathemdiit also serves as a bridge between

analysis and topology and provides a very fruititda of interaction between the two.

Let X be a nonempty set affdX — X be a self-map on X. An elementepX is called a
periodic point for T if there exists a positiveager k such thal*p = p. If k=1, thenpis

called a fixed point of T.

Theorem 2.1 (Banach, 1922) LetX,d) be a complete metric space dhd{ — X a strict

contraction, i.e.a map satisfying

d(Tx,Ty) <ad(x,y), forx,yeX, 2.1.1)
where0 < a < 1 is constant. Then
(P1)T has a unique fixed poiptin X (i.eTp = p)

(P2) The Picard iteratiofx,} »-, defined byx,,, =Tx, ,n =0,1,2,3,--- converges t@ for
Xy € X.

Kannan (1968) has been the first one to considmodtinuous self-mapping T, by considering,

instead of (2.1.1), the following alternative andependent contractive condition.

Theorem 2.2 (Kannan, 1968). LetX, d) be a complete metric space, T is a self-map of X.
Assume that there exisfe[0, %) such that for all x, ¥ X

d(Tx,Ty) < Bld(x,Tx) + d(y,Ty)] (2.1.2)
Then T has a unique fixed point in X.

Mappings satisfying the inequality (2.1.2) are edlKannan type mapping.



Theorem 2.3 (Chatterjea, 1972 et (X,d) be a complete metric space, T be a self-map of X.
Assume that there exists |0, %) such that

d(Tx, Ty) < yld(x,Ty) + d(y,Tx)] Forall x, y¥ X (2.1.3)
Then T has a unique fixed point in X
The inequality (2.1.1), (2.1.2), (2.1.3) are indegent of one another (Rhoades, 1977).

Definition 2.4 Let (X, d) be a metric space. A mappifigX — X is called Zamfirescu operator
if there exist real numbera, § and y satisfyingd < a <1,0< 8 < %and 0<y< % such that

for each x, y€ X at least one of the following is true:
(Z1)d(Tx,Ty) < ad(x,y);
(22) d(Tx,Ty) < Bld(x,Tx) + d(y,Ty)]; and
(Z23)d(Tx,Ty) <yld(x,Ty) +d(y, Tx)].

Zamfirscu (1979) established the following theorevhich is a generalization of Banach
contraction principle (Banach, 1922), Kannan’'s tkeo (Kannan, 1968) and Chatterjea’s
theorem (Chatterjea, 1972).

Theorem 2.5 (Zamfirescu, 1979) LeiX, d) be a complete metric space and T be a self-map on

X. If T is a Zamfirscu operator, th&hhas fixed point irX.

Further generalizations of Banach contraction ppiecare done by several authors, such as
(Bailey, 1966; Branciare, 2002; Ciric, 1971; Da838Q; Dutta and Choudhury, 2008; Edelstein,
1962; Hardy and Rogers, 1973; Jaggi, 1980; Kanh868; Kannan, 1969 and Kannan, 1984;
Meir and Keeler, 1969; Reich, 1971).



Jungck (1976) established a common fixed point rer@ofor commuting mapping, which

generalized the well-known Banach contraction pipilec

Jungcks theorem was generalized and extended for commutiapping in various ways with

several contraction type by many authors, sucliBaanchini, 1972; Das and Naik, 1979; Ding,
1983; Fisher, 1978; Jungck, 1986). Sessa (1982pduted a concept that generalizes
commuting maps, namely, weakly commuting maps andeal a common fixed point theorem
for such maps. Jungck (1986) initiated the concefptcompatible pair of maps, as a
generalization of weakly commuting maps, in ordeobtain common fixed points of a pair of

self-maps.

Jungcket al. (1993) introduced an independent notion of conymtnaps, namely compatible
map of type (A) and established common fixed pdiorem. Jungck and Rhodes (1998)
introduced the notation of weakly compatible mapsiclv is found to be very helpful in

obtaining coincidence point and common fixed pahtvarious classes of mapping on metric
space, by such researchers as, (Abbas and Rh@@s, Abbas and Jungck, 2008; Ahmad,
2003; Bari and Vetro, 2008; Beg and Abas, 2006héfis1978; Jha, 2007; Khan and Domlo,
2006 and Pant, 1994).



CHAPTER THREE: METHODOLOGY OF THE STUDY
3.1 Study site and period

This study focuses on an interesting topic from diiemal Analysis especially, fixed point
theory. The goal of this research is to establidificsent conditions for existence of point of
coincidence and common fixed points for a pair eff-saps satisfying an expansive type
condition (1.2.1) in b-metric spaces. This studgasducted from September 2018une 2017

G.C. in Jimma University.

3.2 Study design

The study design we followed to achieve the objeatif this study is analytical method.

3.3 Sour ce of information

The study depends on various sources of informasioch as; related books in functional
analysis in particular, fixed point theory, joursiadifferent related unpublished / published

research works and the internet.
3.4 Mathematical Procedure of the Study

Relevant materials and data for the study wereectt by means of documentary review.
Hence, in this study we followed the standard pidoce used in the published work of Mohanta
(2016) in achieving the proposed goal of this regeaork. That is, we constructed a sequence
{x,} in X such thaffx,, = gx,_;, for alln = 1, wheref andg are expansive self-mappings on
X, and then showed that the sequefie,_,} and hence{fx,} is Cauchy in eitheg(X) or
f(X), since at least one of them is complete. Furtiver,showed that the limit point of the

Cauchy sequence is a point of coincidence of tiveopanapsf andg.



3.5 Ethical consideration

Ethical considerations have been taken care of alistages of the research process. So, to
make the study legal, permission has been obtdired Ethical committee of College of
Natural Sciences of Jimma University. Moreover, tiesearchers have kept the rules and

regulations of the university and have acknowledgledources of information.
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CHAPTER FOUR: RESULT AND DISCUSION

4.1 PRELIMINARIES

In this section we need to recall some basic ratati definitions and necessary results from
existing literature. The definition of metric spa@®mplete metric spacé; metric space, the
Cauchy sequence, compldtenetric space, the notion of convergence and otmilts that we

need in the sequel.

Definition 4.1.1. LetX be a non-empty set and tét X x X — R* be a function satisfying the

conditions,
d)dx,y)=0 e x=y;

dp) d(x,y) = d(y,x);

d3)d(x,y) <d(x,z) +d(z,y)forallx,y,z € X. Thend is called metric orX, and the

pair (X,d) is called a metric space.

Definition 4.1.2 (Czerwik, 1993). LeX be a non-empty set ad> 1 be a real number. A
mapping d: X x X - R is said to be &-metric if for allx,y,z € X, the following conditions
are satisfied:

d))dxy)=0 x =y

dy) d(x,y) = d(y,x)

d3) d(x,y) < k[d(x,2z) +d(z,y)]

The pair(X, d) is called ab-metric space. From the above definition it is ewdthat theb-
metric space extends the metric space. Here fofl it reduces into standard metric space. But
the converse is not true as is clear from the Walg examples.

Example 4.1.3 (Berinde,1993). The spade= [, with 0 < p < 1 where

LL,(R) = {x ={x,}cR

Sl <o,
n=1
together with the functiod: Ip x Ip - R* defined by

d(x,y) = Erzilxn = yulP)YP

11



wherex = {x,}, ¥y = {y,} € [, is ab-metric space.

Here since conditiongi() and () of Definition 4.1.2 hold clearly, we only checknzbtion
(ds).

Indeed, sinc® < p < 1, the mapping ~ x? is concave ofR*and also it is subadditive. Thus
we get the pointwise bound ¢f (x) + g(x) [P < |f(x)|P + |g(x)|P. Consequently, we have

IWF+gll s < NIFIG + llgl1p.
1 1
=2(GIF15 +511g113)

1 1 p
<2(31Ifllp +5glly )

=2P(|Ifll, +119llp )p-

This implies

I + g1l < 2YP(1If 11, + 11911p)-

Now puttingf = {u,} andg = {v,}, where lew, = x, — z,, v, = z, — y,, for eachn =

1,2,---, we then gek,, — y,, = u, + v, for eachn = 1,2, ---.

So, we obtain
d(x,y) = (Croiltn = yalIV?
= (Uiilup + v |P)VP
=f +agll
<2'2(|Ifll, + llgllp)
< 2P ((iealn = 2alP)VP + (Bl 20 — yulP)V/P)

< Zl/p(d(x' Z) + d(Z, y)) forallx = {Xn}, Yy = {Yn}fz = {Zn} eX

Therefored is ab-metric with constant = 21/,

12



Similarly, we have

Example 4.1.4 (Berinde, 1993) LeX := Lp [0,1] be the space of all real-valued functions

x(t),t € [0,1] such thagfollx(t)lpdt < oo, With0 < p < 1.Defined: X x X -» Rt*as:

1 1/p
d(x,y) = ( j () — y(t)wdt)
0

for eachx,y € X. Thend is a b-metric with coefficient = 21/7,

Remark 1: Whens = 1, then the ordinary triangle inequality in a metsigace is satisfied,
however it does not hold true when> 1. Thus the class of b-metric spaces are effectively
larger than that of the ordinary metric spacesti¥)a&very metric space is a b-metric space, but
the converse need not be true

Example 4.1.5 (Akkouchi, 2011). LeX = {0,1,2}. Defined: X x X — R* as follows

d(2,0) = d(0,2) =m, m>2,
d(0,1) = d(1,0) = d(1,2) = d(2,1) = 1, and
d(0,0) = d(1,1) = d(2,2) = 0.

Then,d(x,y) < %[d(x,z) +d(z,y)] forallx,y,z € X.

X,d) is a b-metric space with constagt= 2 However, ifm > 2 the ordinary triangle
2

inequality does not hold. Th¥, d) is not a metric space. If we taBgl, 2 € X, then we get

d(2,00)=m = d(2,1) +d(1,0) >m > 2.

Hence it does not satisfy ordinary triangle inedual

Therefore the function defined above is-metric space but not a metric far > 2.

Example 4.1.6 (Roshanet al, 2014). Let X,d) be a metric space apdx,y) = (d(x,y))?,

wherep > 1is a real number. Themis a b-metric withs = 2°*. However,(X, p) is not

necessarily a metric space.p(x,y) = (d(x,y))? > 0forx = y, forallx,y € X.

13



This impliesp(x,y) > 0 if x # y.
plx,y) =0 e (d(x,y))’ =0

S dx,y)=0

S x=y.
Now p(x,y) = (d(x,¥))? = (d(y,x))? = p(y,x).
This impliesp(x,y) = p(y, x).
Hence conditiongd,) and (d,) of Definition 4.1.2 are satisfied. If <p < o, then the
functiong(x) = xP(x > 0) is strictly convex, and heno@:a;r—b)p < %(ap + bP). This in turn
implies that (a + b)? < 2P~ 1(a? + bP).
Sofor allx,y,z € X, We have

p(6y) = ([@dx P < (dx2) +d(z)"
< 2071 ((d(x,2))" + (d(z,y))")

=2P"(p(x, 2) + p(z,y)).
So condition @s) of Definition 4.1.2 holds and hengeis ab-metric with constant = 2P~1. If

X =R the set of real numbers ap,y) = |x - y|?, thenp is ab-metric on®t with s = 2, but

not a metric ori] since the ordinary triangle inequality for a mettaes not hold.

Definition 4.1.7 (Boriceanu, 2009) LetX, d) be a b-metric space,€ X and{x, } be a sequence
in X. Then

(i) {x,} converges tox if and only if lim, . d(x,,x) =0 . We denote this by
lim,, e x, = x Orx, = x (n > ©)
(i) {x,} is Cauchy if and only iflim,, ;;,_,cc d(x;,, X;,) = 0.

(i)  (X,d) is complete if and only if every Cauchy sequemck is convergent.

Remark 2 (Boriceanu, 2009) In a b-metric space (X, d), kiving assertions hold:
(i) A convergent sequence has a unique limit.

(i) Each convergent sequence is Cauchy.

(i) In general, a b-metric is not continuous.

The following example shows that a b-metric needbeocontinuous.

14



Example4.1.8 (Husseiret al, 2012). LetX = N U {oo} and letd: X x X — R be defined by
(0,ifm=n,

,if one of m, n is even and the other is even or oo,

| 1 1

dimn) =4Ilm n
5,if one of m, n is odd and the other is odd (and m # n)or oo,
2, otherwise.

Then considering all possible cases, it can bekdtethat for alin, n,p € X, we have
d(m,p) < g(d(m, n) +d(n, p)).

Then,(X, d) is a b-metric space (with= g). Letx,, = 2n for eachn € N. Then
d(2n,o) = % — 0 asn — oo,

that is x,, » oo, butd(x,,1) =2 » 5 = d(w,1) asn -» o

Theorem 4.1.9. (Aghajani,et al., 2014). Let(X,d) be a b-metric space and suppose {tha}

and{y, } converge tor, y € X, respectively. Then, we have

1
S—Zd(x, y) < liminfd(x,,y,) < limsup d(x,, y,,) < s?d(x,y).
n—-00

n—-oo
In particular, ifx = y, thenlim,,_, o, (x,,, ) = 0.
Moreover, for eaclr € X, we have
1
;d(x, z) < liminfd(x,,z) < limsupd(x,, z) < s d(x, z).
n—oo n—oo

Proof: Using the triangle inequality in a b-metric spéde easy to see that
d(x,y) < sd(x,x,) + s2d(xp, y) + s> d(v,, y)

and
d(x,, y,) < sd(x,,x) +s2d(x,y) +s2d(y,y, ).

Taking the lower limit ag — oo in the first inequality and the upper limit @s> o« in the
second inequality we obtain the first desired res8imilarly, using again the triangle

inequality the last assertion follows.

Definition 4.1.10. (Mohanta, 2016). LatX,d) be a b-metric space with the coefficiert 1
and letT : X - X be a given mapping. We say tlfats continuous at, € X if for every

sequencex,} in X, such that, » x, asn —» o thenTx, » Tx, asn - o. If T is
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continuous at each poirg € X, then we say thdt is continuous oX.

Definition 4.1.11. (Mohanta, 2016). LetX, d) be a b-metric space with the coefficierit 1. A
mappingT : X — X is called expansive if there exists a real conskar> s such that
d(Tx,Ty) 2 kd(x,y) forallx,y € X.

Definition 4.1.12. (Rosharet al, 2014) Two selfmapgand T of a b-metric spacgX,d ) are
said to be compatible if and only lim,,_,. d(fTx,, Tfx,) = 0 whenevefx,} is a sequence

in X such that lim,,_, fx, =lim,_, Tx, = t for somet € X.

Thus d(fTx,Tfx) - 0 as d(fx,Tx) - 0. This implies the pair of mapgandT are

compatible. So, if and T commute, then they are compatible.

Definition 4.1.13. (Roshanet al, 2014) LetX be a set anfl,T: X - X be self-maps aof. A
point x in X is called a coincidence point ffand T if fx = Tx. We shall calw = fx =Txa

point of coincidence of and T. The set of coincidence points®fandf is denoted by (T, f).

Example 4.1.14. TakeX =[0,1],5x = x?, Tx = g It is clear that{o,%} is the set of

coincidence point of andT and0 is the unique common fixed point.

Definition 4.1.15. (Rosharet al, 2014) Two self-mapg and T of a nonempty seX are said to

be weakly compatible if they commute at their caeace point (i.e., fTx = Tfx for all

x € C(f,T)).

Example 4.1.16. Let X = [1, 0] with the usual metric. Defing, T:X — X by f(x) = 4x —
3 andT(x) = x? for allx € X. Then1 and3 are the only coincidence points H&ndT. Also,
fT(1) =1=Tf(1). But, fT(3) = 33 # 81 = Tf(3). Hencef andT are occasionally weakly

compatible but not weakly compatible.

Proposition 4.1.17. (Abbaset al, 2008) LetS andT be weakly compatible selfmaps of a
nonempty sek. If S andT have a unique point of coincidenge= Sx = Tx, then y is the
unique common fixed point sfand T .

Proof : Letv the unique point of coincidence $fandT. Thenv = Su = Tu for someu € X.

By weakly compatibility of the pair of mags, T), we haveSv = STu = TSu = Tv, which

16



implies thatSv = Tv = w (say). Thusw is also a point of coincidence ®fandT. Therefore,
by the uniqueness of the point of coincidence efgbifmaps andT, we haver = w.

Thus,v is the unique common fixed point of S and T.
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42MAIN RESULT
In this section, we prove some point of coincideaicd common fixed point results in b-metric
spaces.
Theorem 4.2.1. Let (X,d) be a b-metric space with the coefficient>=1. Suppose the
mappingsf,g : X — X satisfy the condition

d(fx, fy) +E1d(gx, fy) + d(gy, fo)]

> a,d(gx, gy) + a, d(fx,gx) + as; d(fy, gy), (4.2.1)
for all x,y € X,x # y whereq; is nonnegative real numbers for edch 1,2,3 andf > 0 with

a, +a,+az>(1+2p)sandp < % + a3 . Assume the following hypotheses:
() a; < 1anda; #0, (i) g(X) € f(X), and (iii) f(X) or g(X) is complete. Theif andg

have a point of coincidence k1 Moreover, ifa; > 1 +%, then the point of coincidence is

unique. Iff andg are weakly compatible and, > 1 + %, thenf andg have a unique common
fixed point in X.

Proof. Letx, € X and choose; € X such thalgx, = fx;. This is possible sincg(X) <
f(X). Continuing this process, we can construct a semg{e,} in X such thaiffx,, = gx,_4,
foralln > 1.

If fxn,+1 = gxn, for somen, € N, thenfx, = gx,, .

Thus,x,, is a coincidence point ¢gfandg.

So, we assume thak, # fx,,, foralln € N.

By (4.2.1), we have

d(f o, fXns1) + 2 1A(G2n, fXnsr) + dA(GXnss, )]
2 a1d(gxn, 9Xn+1) + @d(fxn, gxn) + azd(fxni1, 9%n+1)
= d(g%¥n-1,9%n) +§[d(gxn,gxn) + d(gXn+1, 9¥n-1)]
2 1d(gxn, GXn+1) + a2d(gXn-1,9%n) + azd(gxn, gxXn+1)
= d(gxn_1,9xn) + gd(gxnﬂ' 9Xn-1)
= (a1 + a3)d(gxn, gxni1) + a2d(gxn_1, gxn)
= d(gXn-1, G%n) + = 5[d(gns1, 9%n) + A(GXn, Gn-1)]

> (a; + a3)d(gxXn, GXnt1) + a2d(gxn_1,9%n)

18



= (1 + :8 - az)d(gxn—b gxn) = (al +az — .B)d(.gxn’ gxn+1)
1 -
= d(gxn' gxn+1) < a;szd(gxn—l' gxn)

= d(gxn, 9Xn+1) < Ad(gx,_1,9x,) foralln >0,
whered = —£%2 ¢ (0 l).

a+az—pB ’s
By induction, we get that

d(gxn gxn1) < A"d(gxo, gx1), (4.2.2)

foralln > 0.
Form,n € N withm > n, by repeated use of (4.2.2) we have
d(g%xn gxm) < 5 [d(g%¥n, GXn+1) + A(GXni+1, 9Xm)]
< 5d(gxn, GXn41) + 52d(GXni1, G2Xni2) + -
+ ™ d(GXm-2, GXm-1) + d(9Xm-1,9%m)]
< [sA™ + s2AM 4. 4 gMonmlpme2 g gmen=1amel ] d(gxg, gXq)
< [sA® + s2AML . 4 gMonTlpme2 4 gmengmel 1 d(gxg, gx1)
SSA 1454 + (SA)2+ - 4+ (D™ 2+ (sA)™ " 1 d(gx,, gx1)
< 2= d(gxo, gxa).
This implies thatl(gx,,, gx,,) = 0 (asm,n — ), since%d(gxo,gxl) — 0 asn - oo,

So,{gx,}is a Cauchy sequence giiX). Suppose thag(X) is a complete. Then there exists
y € g(X) € f(X)such thagx, — yand als¢x, — y.In casef(X) is complete, this holds
also withy € f(X). Letu € X be such thafu = y.

By (4.2.1), we have

d(fxtn, fu) +E[d(gxn, f1) + d(gu, fx,)]
> ayd(gn, gU) + @2d(gn, fXn) + a3d(gu, fu)
= d(fxn,y) +5[d(gxny) + d(gu fxn)]

> a,d(gxy, gu) + ayd(gxy, fx,) + azd(gu,y).
If a; #0,then

d(gsn gu) < = d(gxn-1,3) + 2 [d(gxa y) + dlgu, fxa)]

—2d(gxn, fx,) = > d(gu, y).
1 1
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Therefore,
d(y,gu) < s[d(y,gxn) + d(gxn, gu)]
< s[d(, g%) + 7 d(gxn-1,Y) + - [d(g%n ) + dlgu, fx,)]

a, as
- a d(gxn'fxn) - a d(gu,y)]

< s[d(y, gxn) + — d(fxp,y) +ailsd(gxn,y) +£d(gu,y) +a£1d(y.fxn)

aq

a a
——2d(gxy, fx,) — —d(gu, y)]-
ag ag

Taking limit asn — oo, using Theorem 4.1.9e obtain

d(y, gu) < s[7-d(gu,y) — 2 d(gu, )| = - (B — a)d(gu,»).

= <1 +ail(a3 — ﬁ))d(y,gu) <0.

= d(y,gu) = 0. (Sincg <= + a3)
Hence,gu = yand hencgu = gu = y.
Thereforey is a point of coincidence gfandg.
Now we suppose thair; > 1 +%. Let v be another point of coincidence fpfandg. So
fx = gx = v forsomex € X. Then
d(fx, fu) + Eld(gx, fu) + d(gu f0] 2 ayd(gx, gu) + @ d(fx, gx) +

az d(fu, gu)

> dw,y) +L[dwy) + d,v)] 2 @dw,y),

N (al -1 —%)d(v,y) <0.

=>d(w,y) =0. (Sincer; > 1 +¥

Hence, v = y. Thereforef andg have a unique point of coincidenceXn

If f andg are weakly compatible, then by Proposition 4.1f18ndg have a unique common

fixed point inX.
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Remark (i) If we takef = 0 in Theorem 4.2.1, we get Theorem 1.2 as a coyoltar
Theorem 4.2.1.

(i) If we takef = a, = a3 = 0in Theorem 4.2.1, we get the following as a camyll

Corollary 4.2.2. Let (X,d) be a b-metric space with the coefficient 1. Suppose the
mappingsf, g : X — X satisfy the condition

d(fx, fy) = a;d(gx, gy)

for all x,y € X, wherea; > s is a constant. [§(X) < f(X) andf (X) or g(X) is complete, then
f andg have a unique point of coincidenceXin Moreover, iff andg are weakly compatible,

thenf andg have a uniqgue common fixed pointin
The following Corollary is the b-metric version B&nach's contraction principle.

Corollary 4.2.3. Let (X, d) be a complete b-metric space with the coefficiert 1. Suppose the

mappingg : X — X satis es the contractive condition
d(gx,gy) < Ad(x,y)

for all x,y € X, wherel € (0,%) is a constant. Theg has a unique fixed point X .

Furthermore, the iterative sequefg&x} converges to the fixed point.

Proof. It follows by takings =a, =a3; = 0 andf = I, the identity mapping o, in
Theorem 4.2.1.

Corollary 4.2.4. Let (X, d) be a complete b-metric space with the coefficiert1. Suppose the

mappingf : X — X is onto and satisfies

d(fx,fy) 2 and(x,y)
for all x,y € X, where a; > s is a constant. Thefihas a unique fixed point iX.

Proof. Takingg = Iandf = a, = a3 = 0 in Theorem 4.2.1, we obtain the desired result.
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Corollary 4.25. Let (X,d) be a complete b-metric space with the coefficier®t 1. Suppose

the mapping’ : X — X is onto and satisfies the condition

d(fx, fy) 2 a1d(x,y) + axfd(fx,x) + asyd(fy,y)

for all x,y € X, whereq; is nonnegative real numbers for edch 1,2,3 witha; # 0,a, <
1,a; + @, + a3 > s. Thenf has a fixed point iX. Moreover, ifa; > 1, then the fixed point of

f is unique.
Proof. It follows by takings = 0 andg = I in Theorem 4.2.1.
Now we give an example in support of our main resul

Example4.2.6: LetX = [0,1) U (1,4] and definad: X x X - R byd(x,y) = |x — y|?. Then
(X,d) is a b-metric space with= 2. Define mapping§ g: X — X by

4x, x € [O,i) and g(x) = X, X € [0’%] .

f(x) = 1
4, x€[;, DU (14] 0, x € G, 1) U (1,4]

Then(X) = [0,1) U {4} , andg(X) = [0,%], so thalg(X) € f(X) andg(X) is complete.

Also, f andg satisfy the expansive type condition (4.2.1) with= 6, a, = % =az andp =1,
as it is explained in the following five cases.

Case (i):x,y € [0, i), x # y. In this case we assume> y. Then

d(fx, fy) = 16(x — y)?,d(gx, gy) = (x — y)?, d(fx, gx) = 9x, d(fy, gy) = 9y?,
d(fx, gy) = (4x —y)?, andd(fy, gx) = (4y — x)*.

Now we get
16(x — )2 + 2 [(4x — y)? + (4y — 2)2] = 6(x — y)? + 3 (9x2) + 3 (9y2),
since the above inequality reduces to

29(x —y)? 4+ 6x% + 6y% + 2xy = 0.

22



Case (ii)x € [0,3) andy € (,1) U (1,4].

Here also we have (fx, fy) = 16(x — 1)?, d(gx, gy) = x%, d(fx, gx) = 9x2,d(fy,gy) =
16, d(fx, gy) = 16x2, andd(fy, gx) = (4 — x)2.
Now again we get

16(x — 1)? +§[16x2 +(4—x)?%] = 6x2+x2 + %

since the above inequality reduces to

3 56
16(x — 1)? +§x2 +?—4x > 0.

Case (jii):x € [0,7) andy ==

2
Here also we havel(fx, fy) = 16(x — 1)?, d(gx, gy) = (x - %) , d(fx, gx) = 9x2,

22

d(fy,gy) = 1_651 d(fx,gy) = (4x — %)2, andd(fy, gx) = (4 — x)2.
Here also

1241 _ 1y — )2 _ 1y 2 4 225
16(x — 1) +2[(4x 4) + (4 x)]26(x 4) +x? + 22

which implies

1\2 225

1 1 1
16(x—1)2+§<4x—z) +E[(4—x)2—12(x—z) —2x2—-""|>0

— )

72

since
2
(4 —x)? — 12 (x_%) — 2x2 —%> 0 forx € [O,i)-

Case (iv):x,y € (1,4], withx # y.

Here also we have(fx, fy) = 0, d(gx, gy) = 0, d(fx, gx) = 16, d(fy, gy) = 16,
d(fx,gy) = 16, andd(fy, gx) = 16.

Now again we get
0+2[16 + 16] = 6(0) + (16) + (16),

, 32
sincel6 = R
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Case (v):x € G 1) U (1,4], andy = i

Here also we havel(fx fy) =0,d(gx,gy) = 1—16 ,d(fx, gx) = 16,d(fy, gy) = %
d(fx,gy) = =2, andd(fy, gx) = 16.

Now again we get

0+2 [E + 16] 6 (%) ‘e (225) +2(16),

441 _ 405
smce— > —
144"

Thus in all the five cases for eachs y the expansive condition (4.2.1) holds with= 6, a, =
% = a5 andg = 1.

Here we observe the pdif, g) is weakly compatible at = 0, which is the only point of
coincidence of andg. Hencex = 0 is the unique common fixed point ffandg.

We note from case (v) that the expansive conditlo®.1) in Theorem 1.2 fails to hold for any
aq, @y, a3 = 0 with a; + a, + a3 > s fors =2 whenx € G, 1) U (1,4] andy = i,

sinced(fx, fy) = 0,d(gx,gy) = % d(fx,gx) = 16 andd(fy, gy) = % and hence the

inequality (1.2.1) become8 > 1—16a1 + 16a, + %ag, which is absurd.
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CHAPTER FIVE: CONCLUSION AND FUTURE SCOPE

5.1 CONCLUSION
In 2016, Mohanta established the sufficient condgifor existence of point of coincidence and

common fixed point for pair of self-maps satisfyexpansive type condition (1.2.1).

In this thesis, we established the sufficient cbadifor existence of point of coincidence and
common fixed point, namely Theorem 4.2.1 for pdiself-maps satisfying the expansive type

condition (1.2.2) in b-metric spaces.

Also, we have supported our main result of thisaesh work by an example. Example 4.2.6

shows our work is more general than the main resiMohanta (2016).

5.2 FUTURE SCOPE

Fixed point theory is one of active and vigorousaar of research in Mathematics and other
sciences. There are several published resultedetatthe existence of point of coincidence and
common fixed point theorems for a pair of self-mag8sfying some expansive type condition in

b-metric spaces.

The researcher believes that the search for theteze of point of coincidence and common
fixed point for a pair of self-maps satisfying someansive type condition in b-metric space is
an active area of study. So, we recommend to thtbdoming post graduate students or any
other interested researchers of the departmennathematics can exploit this opportunity and

conduct their research work in this area.
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