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Abstract

The main purpose of this study is to develop a scheme to find analytic approximate solutions of
initial value problems of one dimensional homogeneous time fractional Cahn-Hilliard equation
by reduced differential transform method. The reduced differential transform method procedures
for solving one dimensional homogeneous time fractional Cahn-Hilliard equation subjected to
the initial condition are newly developed and introduced. The reduced and inverse reduced
differential transformed functions in one dimension for solving initial value problems of one
dimensional homogeneous time fractional Cahn-Hilliard equation are defined. Some theorems
and Corollaries used in one dimension for solving initial value problems of one dimensional
homogeneous time fractional Cahn-Hilliard equation are defined and proved. The time fractional
Cahn-Hilliard equation is obtained from the standard Cahn-Hilliard equation by replacing the «
integer order time derivative by a fractional derivative. The fractional derivative involved here is
in sense of Caputo fractional derivatives, for its advantage that the initial conditions for
fractional differential equations take the traditional form as for integer order differential
equations. In order to show the reliability of the solutions, examples are constructed and 3D

figures for some of the solutions are sketched.

Key Words: Reduced Differential Transform Method, One Dimensional Homogeneous Time

Fractional Cahn-Hilliard Equation.
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CHAPTER ONE
1. INTRODUCTION

1.1. Background of the study

Nonlinear partial differential equations are widely used to describe many important
phenomena and dynamic processes in Physics, Mechanics, Chemistry, Biology, etc. The
study of non- linear partial differential equations plays an important role in Physical
Sciences and Engineering fields. The investigation of exact solutions of non- linear partial
differential equations plays an important role in the study of non -linear physical phenomena.
Many methods, exact, approximate, and purely numerical are available in the literature for
the solution non-linear partial differentials [17].

Fractional calculus deals with fractional derivatives and integrals of any order. That is a
generalization of ordinary (standard) differentiation and integration to arbitrary (non-
integer) order [20]. Fractional calculus is a branch of mathematical analysis that studies

the possibility of taking real number, or even number , powers of the differential operator
D :% and the integration operator [20].

Fractional derivatives provide an excellent instrument for the descriptive and hereditary
properties of various materials and processes. So solving FPDEs is completely important
in the circumstance of Applied Mathematics, Theoretical Physics and Engineering Sciences

[26]. For further understanding of their practical application refer to [26].

Fractional order partial differential equations, as generalizations of classical integer order
PDEs, have been used to model problems in fluid flow and other areas of differential
equations, [25]. For example, in order to formulate certain electrochemical problems, half order

derivatives and integrals are more useful than the classical models [25].

There are well known definitions of a fractional derivative and integrals of order, a >0
( aeR) such as Riemann- fractional Liouville, Grunwald- used Letnikow, Caputo and

generalized functions approach from calculus . The most commonly used definitions are



Riemmann and Caputo. The Riemann- Liouville fractional derivative is mostly used by
mathematicians but it is not suitable for physical problems of the real world since it
requires the definition of fractional order initial conditions which have no physically
meaningful explanation yet [25]. Caputo fractional derivative allows traditional initial and
boundary conditions to be included in the formulation of the problem. So, Caputo
fractional derivative is the base for FDE with integer order initial conditions such as

TFPDEs with integer order initial conditions [25],

Time fractional partial differential equations (TFPDEs) are differential equations which can be
obtained from the standard partial differential equations by replacing the integer order time
derivative by a fractional derivative. Some of these are time fractional heat equations, time
fractional wave equations, time fractional telegraphic equations and so on and are represented by

linear and nonlinear PDEs [11].

Several real phenomena emerging in engineering and science fields can be demonstrated
successfully by developing model using the fractional calculus theory. The fractional differential
theory has gained much more attention as the fractional order system response ultimately
converges to the integer order equation. Before the nineteenth century, no analytical solution
method was available for such type of equations even for the linear fractional differential

equations [29].

In recent past, the glorious developments have been envisaged in the field of fractional calculus
and fractional differential equations .Differential equation involving fractional order derivatives
are used to model a variety of systems of real world physical electrolyte polarization, heat

conduction electromagnetic waves, diffusion equation, etc [1].

Mathematical approaches to partial differential equations are divided in to two methods called
Analytical methods which strive to find exact formulae for the dependent variable as a function
of independent variables and numerical methods which result in approximate values of
dependent variable at prescribed and discrete location within a finite domain of the independent
variables [23].

But, there are mathematical approaches which can be neither of the two methods. These are semi

analytical and semi numerical methods. For example, reduced differential transform method
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(RDTM) is semi analytical method and used to find exact solutions or closed approximate
solution of a differential equation [27]. It is an iterative procedure for obtaining Taylor series

solution of differential equation [26].

The RDTM was first introduced by a Turkish Mathematician Keskin.Y [16]. This method based
on the use of the traditional DTM techniques. Usually, a few numbers of iteration needed of the
series solution for numerical purposes to get high accuracy. The solution procedure of the
RDTM is simpler than that of traditional DTM, and the amount of computation required in
RDTM is much less than that in traditional DTM. The solution obtained by the RDTM is an
infinite power series for initial value problems, which can be in turn, expressed in a closed form,

the exact solution [16].

As in [18], RDTM can be successfully applied to solve telegraph and Cahn-Hilliard equations.
But, nothing will discussed about how to solve IVPs of one dimensional homogeneous time
fractional Cahn- Hilliard equations by applying reduced differential transform method in the
existing literature. This motivated the researcher to choose this topic and fill the gap of the work
of Mahmoud and Nazek [18].

Therefore, the main purpose of this study is to develop a scheme to find analytic approximate

solutions of one dimensional homogeneous time fractional Cahn- Hilliard equations of form:

o“u(xt) 2%u(x.t)

e " —u(x,t)+u*(x,t)=0 ,0<a <1, t>0.

Subjected to the initial condition, u(x,0)= g(x), x€ R and where «a is a parameter that describe

the order of time derivatives by fractional derivatives in sense of Caputo fractional derivatives.



1.2. Statement of the problem

Cahn-Hilliard equation can be used in a wide variety of engineering and mathematical physics
applications [18], solving initial value problems of one dimensional homogeneous time fractional
Cahn-Hilliard equations by applying reduced differential transform method is not presumably
presented in the existing literature. As a result the objective of this paper is to fill the gap and

mainly to answer the following questions.

1. How can we define the reduced and inverse reduced differential transformed function in
1D for solving initial value problems of one dimensional homogeneous time fractional
Cahn-Hilliard equation by reduced differential transform method?

2. How can we apply reduced differential transform method (RDTM) to obtain analytic
approximate solutions of initial value problems of one dimensional homogeneous time
fractional Cahn-Hilliard?

3. How can we construct supportive examples for solving IVPs of one dimensional
homogeneous time fractional Cahn-Hilliard equation by reduced differential transform
method ?

1.3.  Objectives of the study

1.3.1. General objective
The general objective of the study is to develop a scheme to find analytic approximate Solutions
of one dimensional homogeneous time fractional Cahn- Hilliard equation subject to the initial
condition by reduced differential transform method (RDTM).

1.3.2. Specific objectives
The specific objectives of the study are:

v" To define the reduced and inverse reduced differential transformed function in 1D for
solving initial value problems of one dimensional homogeneous time fractional Cahn-
Hilliard equation by reduced differential transform method.

v To apply reduced differential transform method to obtain analytic approximate solutions
for IVPs of one dimensional homogeneous time fractional Cahn-Hilliard equation.

v' To construct supportive examples for solving I\VPs of one dimensional homogeneous
time fractional Cahn-Hilliard equation by reduced differential transform method.
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1.4 The significance of the Study

This research is considered of vital importance for the following reasons.

v' It develops the researcher skill on mathematical (applied) research.

v" It provides techniques of solving initial value problems of one dimensional homogeneous
time fractional Cahn-Hilliard equations by using RDT method.

v' It familiarize researcher with the scientific communication in mathematics.

v’ It was used as a reference material for anyone who will work on this area.

1.5 Delimitation of the study
The study is delimited to initial value problems of one dimensional homogeneous time fractional
Cahn- Hilliard equation and focus only on developing a scheme to find analytic approximate
solutions of one dimensional homogeneous time fractional Cahn-Hilliard equation subjected to

the initial conditions by the RDT method in sense of Caputo fractional derivatives.



CHAPTER TWO

2 LITERATURE REVIEW

Partial differential equations (PDEs) have numerous essentials applications in various fields of
science and engineering such as fluid mechanics, thermodynamic, heat transfer, Physics[15].The
classical Taylor series method has been one of the earlier methods for solving the differential
equations with an advent of high speed computers there has been an increasing trend towards
exploring new ideas out of traditional techniques for the last couple of decades.In1986 an up
dated version of Taylor series method, called the differential transform method (DTM) was

introduced by [32] and then applied DTM in order to solve electric circuit.

In past several decades many authors mainly had paid attention to study the solution of fractional
differential equations by using various developed method such as RDTM, VIM, DTM, ADM,
Tanh-Coth method, and Sine-Cosine method. Among of these VIM, DTM, ADM, Tanh-coth
method and sine —cosine method [18] used to solve non- linear partial differential equations
(PDEs). Recently, researchers have applied the reduced differential transform method (RDTM)

successfully to obtain analytic solution. For example:

Mahmoud Rawashden [17] used the RDTM, to find exact and approximate solution for Garden
equation, Variant Non-linear Water Wave equation and the Fifth-order korteweg-de Vries(FKdv)
equation. Bayram and Ibis [11] used the RDTM, to find approximate solution for the (KdvB)
equation, Drinefel’d- sokolov- Wilson equations, Coupled Burgers equations and modified
Boussinesq equation. Keskin .Y and Oturanc.G [16] used the RDTM, to solve linear and non-
linear wave equations and they showed the effectiveness and accuracy of the proposed method.
Saravanan and Magesha [24] used the RDTM and ADM, to solve analytic solution for linear and
non-linear Newell-White head- Segel equation. Murat Gubes [23] used the RDTM, to obtain
analytic solution for non-linear time-dependent Foam Drainage equations. Vinet Srivastava [20]

used the RDTM, to obtain analytic solution of telegraph equation.

In 1998 the first analytical method the variation iteration method (VIM), was proposed by [21],
to solve fractional differential equations and after it also used to solve more complex fractional

differential equations such as linear and non-linear viscoelastic models with fractional
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derivatives, non-linear equations of fractional order, linear fractional partial differential
equations arising in fluid mechanics and the fractional heat and wave like equations with variable

coefficients.

In 2007, the Homotopy perturbation method (HPM) was applied to both non-linear and linear
fractional differential equations and it was showed that HPM is an alternative analytical method
for fractional differential equations. HPM also used to solve the fractional heat and wave like

equations with variable coefficients [21].

In 2009 another improved approach for solving initial-value problem for partial differential
equation, known as reduced differential transform method (RDTM) has recently been used by
[14] and developed the reduced differential transform method for the fractional differential
equations and showed that reduced differential transform method is the easily useable semi
analytical method and gives the exact solution for both the linear and nonlinear differential

equations.

Some examples of Analytical methods are the Adomain decomposition method, Viration
iteration method, Differential transform method, Homotopy perturbation method, Homotopy
analysis method, Sine-Cosine method, Inverse scattering method, Balance method and Hirota’s
bilinear method[15].

The Cahn- Hilliard equation can be found in a wide variety of engineering and scientific
applications. In recent years, numerous works have focused on the development of more
advanced and efficient method for Cahn- Hilliard equations such as Differential transform
method, extended fractional Ricatti Expansion method and Fractional sub-equation method. As
reference [18], reduced differential transform method (RDTM) can be successfully applied to
solve Cahn- Hilliard equations. However, how to solve initial value problems of one dimensional
time fractional Cahn- Hilliard equations by applying RDTM is not presumably discussed in [18]

and in other existing literature.

Therefore, this study is aimed to develop a scheme to find analytic approximate solutions of one
dimensional time fractional Cahn- Hilliard equation subjected to the initial conditions by reduced
differential transform method (RDTM).



CHAPTER THREE

3. METHODOLOGY

3.1 Study Site, Area and period

This study is conducted in Jimma University, under Department of Mathematics (Differential

Equation Stream) from September,2014- September, 2015.

3.2 Study Design
The study design is Analytic design.

3.3 Source of information (data)
The information that is used to conduct this study is collected from secondary sources such as

reference books, internets, published and unpublished research articles (Journals).

3.4 Procedures of the study

In order to achieve the objectives of the study, the following procedures are undertaken:
Step (I): Apply the reduced differential transform to the initial conditions.

Step (11): Apply the reduced differential transform to the one dimensional homogeneous time

fractional Cahn-Hilliard equation to obtain a recursion system for the unknown function u,(x),

u, (X), uz (x)......

Step (111): Use the transformed initial conditions and solve the recursion system for the unknown

functions u;(x), u, (x), uz (x)......

Step (1V): Use the differential inverse transform formula to obtain the analytic approximate

solutions for the one dimensional homogeneous time fractional Cahn-Hilliard equation in infinite

power series. That is, u (X, t) :Zuk(x)t K= U (X) + Uy (X) E U, (X) t2
k=0



3.5 Ethical Issues

For this study it needs books, Journals and other related materials, but there may be a problem
for collecting all above listed materials without any permitted letters. So, the researcher needs to
take a letter of permission from Mathematics department before going to collect data and have
good approaches during data collection period.



CHAPTER FOUR

4. RESULTS AND DISCUSSION

4.1. Preliminaries

4.1.1. The Gamma Function
Definition 4.1.1. The gamma function, I" (z) is defined [8] as:

[(2)=f"tztetdt, z>0 (1)
Properties of Gamma Function for, ZeN

(i) T (z+1)=z2T(2)

(i) T (z+1) =z!

(iii) T(1)=1, where z=1

4.1.2. Fractional Calculus

In this section, some definitions and properties of the fractional calculus are given.

Definition 4.1.2.1 . Real function f (t), t > 0 is said to be in the space Cl, pe R, if there exists a

real number p (>u), such that f (t) = t” £,(¢), where £, (t) € C(0,) , and it is said to be in the
space C%,ifandonlyif fMW(f®™ = 42r4)) € Cy, neN[5].

Definition 4. 1. 2. 2. The Riemann- Liouville fractional integral operator ( J*) of order o = 0, of

afunction f € ¢,, pu=> -1, is defined [9] as:

JEE®) =5 Jy (6= )7 f(s)ds, a0 2)

Properties of the operator (%), for f € ¢y, u >-1, o,p >0 and y>0 were:

) JYPF@®) = J*Ef(@) 3)
@) JYPF© =JF1ef () 4)
(i) JotY :F(FOEI—:?D Loy (5)
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Definition 4.1.2.3.

For n to be the smallest integer that exceeds o, the Caputo time fractional derivative operator of

order a > 0,in [31] defined as:

p
a)f )no‘1 u(xs)] n—1<a <n
D%u(x,t) =«

n

0
\ otn

u(x,t),a =neN (7

Properties of the operators a and B such that o, B>0,n-1< a< nandy > —1.

@ JIFO=1*#109 ®)
W) (=) = pams (=)™ (©)

—
|
w
—

(i) (J*D*f)(t)= J*D f(t) = f(t)— kZ: Jf® ot (10)

4.1.3. Generalized Taylor Formula
In this section, we define generalized Taylor formula and before we see that mean value theorem.

Theorem 4.1.3.1. [Mean value theorem]

Suppose f(x)ec([a,b]) and D,* f(x)ec([a,b]), for0< a < 1, in [19] we have
()= f(a)+ s (O F(c-ay (1)

with 0<£<x,Vxela,bjand D*is the Caputo fractional derivative of order a > 0 .

Proof: By (2), we have;

a-1

ijx s) D,“f(s)ds, a>0. (12)

J,“D,“f(x) =r(a

11



b
Using, integral mean value theorem,j f(x)dx = f(&)b—a), we have

a

a-1

1D (0= D 1@ (-s) s

a

_ 1 a A\
-@Da f(&)Xx—a), for0< & <0 (13)

Also, from (10), we have:

(0.°D,%F ()= f(x)- f (a) (14)

Lastly, from (13) and (14), we have:
1
f(x)=f ——D,f -a)*
(0= f(a)e oD, F(eN-a)
Theorem 4.1.3.2. Suppose that (Da”’)n f(x), (Da”‘)mf(x)ec(a, b], for0 <«< 1,[19] we have

0,0, £ o0 .7 (0, £ Ji= =" (o) ) (15)

Ina+1)

, Where (Da")n =D,”.D,"........ D,” (n —timesDa“)

Proof: From (15), we have:
0. £ 0=, (0, T £ Jo0= b 0.7 ) £ 1) (0,773,277 £ )
=3, 0.Vt (0~(3,7D,7 £ o)
=3,"(0, [ (60~ (3.7D,7 ) ()

By (14),(3,“D,"  [x)= f (x)- f (a)

12



LBMg@)JJ%Dfo@}— r(o-+1) &—aﬁm«DJYfkﬂ

" T(na+0+1)

Hence, b;“ﬁ%“rka)—b;””Tnyﬂka}:(X_aya«Dfoka)

Theorem 4.1.3.3. [Generalized Taylor’s Formula]

suppose (D,” ) f(x)eC(a,b], fork =01,2....,n+1, for,0< x < 1, then

f(x):g(x_a)j

F(ia+ )

oy (D)7 1(E) e
((Da ) f)(a)+ n (x——af )

with a< & < x, Vx € (a,b][19].

Proof: From (15), we have:

(16)

(17)



X ()
By (2), (Ja(“”)“(Da“)Mka):m [(x-1) ((Dj)“%kt)dt and also by integral

nl)a

mean value theorem, (Ja(””)“(Da“)Mka):m( )ﬂ T dt
.oV e} i g o - )

Substituting (18) in to (17), we have:

(0o T 1ar =3 Lol oy

r(n+a+1)"* ~ Tia+1

Hence, f(x)=zn: (X__a)ia ((Da“) fka) + ;1)( )1 f(&)Xx—a)""

~ Tia+1) r(n+2)a +

In particularly, if @« =1, the generalized Taylor’s formula reduces to a classical Taylor’s

formula, which is:

f(x)= Z (X(._ a)i) ((Da ) f Xa) 1 (b, [ (E)Nx—a)™

Y T(i+1 r((n+1)+1)
fx:.n _iDa-fa E\x-a (19)
-3 o, ) a2y, ) ele-a)
The radius of convergence, R for generalized Taylor’s series, f : zlg )(( )I fka), is
F no +1 ( ka

i by R=[t —a“ lim,,_,o 20
given By REf=al e Iy na+1)a+1 o fka) (20)

14



4.1.4.The Reduced Differential Transform Method (RDTM)

Consider a function of two variables f(x, t) and suppose that it can be represented as a product of

two single-variable functions, i.e., f(x, t) = g(x) h(x). Based on the properties of differential

transform function f(x, t) can be represented as f(x, t) :ZG x' Z H Z fk t and

i=0 j=0 k=0
f, (x) is called t-dimensional spectrum function of f (x, t) [16].

The basic definition of the reduced differential transform and inverse reduced differential
transform in [13,14,15,16,24,27,28,29] are discussed below.

Definition 4.1.4.1. If f(x, t) is analytic and continuously differentiable with respect to the space
variable x and time variable t in the domain of interest, then the spectrum function (reduced
transform function) was defined in [13,14, 15,16,24,27,28,29] as :

Rolf (6.0 = 0= rarss { ; f(x,t)} (21)

Where, R}, - is the reduced differential transform operator.
f1(X)- is the transformed function (reduced transformed function).

Note: In the above definition, particular if o« = 1, we have:

ful= e B— f(x t)} (22)

and by gamma function property (ii), T'(k+ 1) =k!

k

f(x, t)} (23)

t=t

0
Hence, fi(X)= = L%"

0

15



Définition 4.1.4.2. If f (X, t) is analytic and continuously differentiable with respect to the space
variable x and time variable t in the domain of interest, then the inverse reduced differential
transformed function was defined in [13,14, 15,16,24,27,28,29] as :

RS W] = frt) = Y 1, (0 £k (24)

Where, Ry — Donates the inverse reduced differential transform operator.
f(x, t) - is the inverse reduced differential transformed function.

a — is the order of time derivatives by fractional derivatives in sense of Caputo fractional

derivatives.

Substituting equation (21) into equation (24), we have:

_ S lraka ka
fxt) = er ka+1Latka f(xt) . t (25)

~to

Note: In the above definition, particularly if o =1, (25) becomes:

0 k ]
(xt)=>" k % f(x,t)| t“ and by gamma function property(ii), T'(k +1)= k!
k=0 L Jt=t,
© 1 B ak N )
Hence, f(x,t)=> =|—f(xt)| t (26)
o Kl | ot dt=t,

Definitions 4.1.4.1 and 4.1.4.2 are stated in [13,14,24,26 ] for solving fractional linear heat
equations, linear and Non-linear Newell-white head-segel equations and time fractional non-
linear evolution equations having time fractional derivative of order, a such that O<a<1
respectively . These definitions are also stated in [16,27,29] for solving linear and Non-
linear wave equation and analytical approximations of two and three dimensional time
fractional telegraphic equation respectively such that 0<a < 2 .But, the definitions of the
reduced differential transformed function (t-dimensional spectrum function) and the inverse

reduced differential transformed functions are not defined in work of Mahmoud S. and Nazek A.
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Some of the fundamental theorems in one dimensional performed by reduced differential

transformed method [ 18] are discussed below.

Let f(xt),u(xt)and v(x,t)be analytical and k-times continuously differentiable functions

with respect to the space variable x and time variable t ,then the following theorems holds.
Theorem 4.1.4.1. If f(x,t)=u(x,t), then fi(X)= w(X)

Proof: Suppose f;(X) and u,(x) are the t-dimensional spectrum functions (transformed functions)

of f(x,t) and u (X, t) respectively.
Aim: we want to show, f; (X) = ux(X)

Applying the reduced differential transform operator RDT, on both sides of f(x,t)=u(x,t), we

have: RDT [f(x,t)] =RDT [u(x,t)] (27)
1 aka
By definition 4.1.4.1, RDT [f(x,t)] = m[&ka f(x,t)} and
t=t,
aka
RDT [u(xt)] = (k;l) {&k“ u(x,t)} (28)
t=t,

Now substituting ( 28) into (27), we have:

1 aka 1 aka
| 1] = | et @9

=to

Also by definition 4.1.4.1,

= fi(x) and @F i u(x,t)} = w(X) (30)

1| f(x,t)
F(ka+1) | ptke V7 otk .

t=t,
substituting( 30) into (29), we have

fie(x) = we(x).
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Theorem 4.1.4.2. If f(x,t) =u(x,t) = v(x, t), then f (X)= u,(X) + vy (X)

Proof: suppose fi(X), ux(x), and v, (x) are the t-dimensional spectrum functions (transformed

functions) of f(x, t), u (X, t) and v(x,t) respectively.
Aim: we want to show, f;(X) = u,(X) £ vi(X)

Applying reduced differential transform operator RDT, on both side of £, (X,t)= u,(X,t) £ v (X,t),

we have:

RDT [f(x,t)]= RDT [f(x,t)] £ RDT [v(x,1)] (31)

ke
By definition 4.1.4.1, RDT [f(x,t)] = F(k;l) Bk“ f(x,t)}
t=t,

RDT [u(x,t)] = F(k;+1) e u(x,t)| and

" B aka 7
Tka+1) | ot v(xt) (32)

L Jt=t,

RDT [v(x,t)]=

Now, substituting (32) into (31), we have:

1 aka 1 aka 1 ﬁka
T(ka+1) {atk“ f(x,t)} = T(kat1) L}tk“ U(X't)l_t + T(ka+1) {WV(X’O}H (33)

t=t, o

also by definition 4.1.4.1

1 ok 1 ok
'(ka+1) |:atka f(X’t):| = fk(X)’ T(kat1) |: U(X;t)j| = uk(X) and

ka
ot -

t=t

1 aka
I'(ka+1) { atka V(X’t)lt = Vg (X) (34)

Substituting (34) into (33), we have: f.(X)= ui(X) £ vy (X).
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Theorem 4.1.4.3. If f(x,t)=a u(x,t) , where a is constant, then fi.(X)= a u(x)

Proof: suppose f,(x) and u;, (x) are the t-dimensional spectrum functions (transformed functions)

of f(x, t) and u (x, t) respectively and a be a constant.

Aim: we want to show, f,(x) = a u,(x)

Applying reduced differential transform operator, on both side f(x,t) = au(x,t), we have

RDT [f(x,t)]=RDT [au(x,t)]=a RDT [u(x,t)] (35)
ka
By definition 4.1.4.1, we get, RDT [f(x,t)] = I"(k(:)l(+1) {;ka f(x,t)} and
t=t,
aka
« RDT [u(xt)] = = (kzﬂ) {&k“ u(x,t)l_t (36)

0

Now, Substituting (36) into (35), we have:

1 o a ok
I'(ko+1) |:W f(X,t)} - '(ko+1) {at_kau()('t)l_t (37)

t=t, =,

By also definition 4.1.4.1 ,we have:

1 aka a aka
D {Wf(x,t)l_t = [ O, s {&Wu(x.t)l_t = ot (X) (38)

o

Substituting (38) into (37), we have:

[ ()= o we(x).
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n n

0 0
Theorem 4.1.4.4. If f(x,t) = Tu(x' t), then fi.(X) = = Uk (X)
X X

Proof: suppose fi(x) and u,(x) are the t-dimensional spectrum functions (transformed function)

of f(x,t) and u(x,t) respectively.

n

0
Aim: we want to show, f;.(X) = o Uk (X)
X

n

0
Applying reduced differential transform operator RDT on f(x,t) = o u (x,t), we have
X

RDT [f(xt)] =RDT B - u(x,t)} (39)
X
o 1 aka
By definition 4.1.4.1, we have, RDT [f(xt)] = =5 i f(xt)| and
t=t,
a n " an aka
RDT - u(x, t)] = D [ax” e u(x,t)l_t
a 1 ak(l
= x| Tlka+1) {aka U(X’t)l_t (40)
Now substituting (40) into (39), we have:
1 aka a " 1 aka
f(x,t = - ulx,t 41
I'(ka+1) |:atk“ ( )140 ox  Tkat1) {&ka ( )140 (41
1 aka a n 1 aka 8 n
f(x t)} = £ (X) and { u(x t)} = U (X) (42)
ke ! k n ko ! n Yk
r'(ka+1) |:at — X I(ka+1) | ot — X

0

n

0
Substituting (42) into (41), we have: f,(X) = o U (X).
X
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Corollary 4.1.4.4.

d d
(i).If f(x.t) :8—u(x, t), then fk(x)zﬁ—uk(x) (43)
(ii).If f(xt) = Z u(x, t), then fi(x) = ~— w(x)and ... (44)

To prove the above corollaries 4.1.4.4 (i) and 4.1.4.4 (ii), we follow that the prove of theorem
4.1.4.4

Nea

Theorem 4.1.4.5. If f(x,t)= ;Na u(x,t), then fi(x) = 2N+

Ik +1)

Upn(X)

Proof: suppose fi(x) is the t-dimensional spectrum function (transformed function) of f(x,t).

(kA +N & +1)

Aim: we want to show, f, (X) = RO D U4y (X)

Nea

Applying reduced differential transform operator RDT on f(x,t) = u(x,t) , We get

Na

Ne

RDT [f(x,t)]= RDT {;Na u(x,t)} (45)

By definition 4.1.4.1, we have

RDT [f(x,t)]= F(k01¢+1){aatk': f(x,t)} and

8Na B 1 aKa aNa 1 aKaJrNa
o {at““ U(X’t)} Tlka+D) {at” (at““ U(X’t)ﬂ =T(ka +1){6t'<’“““ uex) (46)

t=to

F@a+Na+ﬂ
I[(Ka+Na+1)

Multiplying on right side of (46) by , We have:
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Net F k N 1 1 Ka+Na
RDT | 2 u(xt)| = (ka + Na +1) e U0
I[(Ka+Na+1) Tk +1)| ot o

_ T(Ka+Na+1) I 1 o u(x,t)

PatD) | [(Ka +Ner+1) at<esNe 77|
_ [(Ka+Na+1) I 1 of e u(x,t)

ket1) | T(Ka + Na +1) gt 7 |

oNe _ T(Koa+Noa+1) 1 a(K+N)a

RDT {Wu(x,t)} = rkaD) L‘(Ka + No +1) oK1 u(xt) y (47)

ka
By definition 4.1.4.1, equations (46) and (47) becomes,m {% f(x,t)} = f,(x)
t=t,

0

I'(Ka+Na+1) 1 o :| I'(Ka+No+1)
and [ o U(xt) = ————Un (%) (48)
T(ka+1) F((K + N)a +1) at(K N) o r(ka+1)
1 a(K+N)a
where uk+N(X) - r(N+k)a+1) ot (KrN)a U(X,t)
t=to
Lastly, substituting (48) into (45), we have
F(Na+ka+1)
fk(X):—Fg;:; Upqn (X)
Corollary 4.1.4.5
i).f f(xt) = o (x, 1), then = [atat) here, N=1 49
() ) - at(x Uuix, ), fk(x)_ C(ka+1) uk+1(X),W ere, N= ( )
a2()(
.. I'(ka+2
(ii).If f(xt) = ——u(x, 1), then fi () = %ukﬁ(x) where, N=2 (50 )

t2a

To prove the above corollaries 4.1.4.5 (i) and 4.1.4.5 (ii), we follow the above theorem 4.1.4.5
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Theorem 4.1.4.6. If f(x,t)=u(x,t)v(x,t) then fk(x):zk:ui(x)vki(x)

Proof: suppose f,(X), ux(x) and vi(x) are the t-dimensional spectrum functions (transformed

functions) of f(x,t), u(x,t) and v(x,t)respectively.

Aim : we want to show fi(x) = Zk:ui (X)V,;(x)

i=0

Applying the reduced differential transform operator RDT on f (x,t)=u(x,t)v/(x,t) , we have:

RDT[f(x,t)]= RDT[u(x,t(x,1t)] (51)
By definition 4.1.4.1, we have RDT[f(x,t)]= F(Kl +l){§tk:” f(x,t)}
a t=t,
1 aKa
andROTIux v - ot +1)L3tka u(x,t)v(x,t)l_to 52)
Substituting (52) in to (51), we have:
1 aka 1 8Ka
M(Ka +1){8tk“ f(X’t)LO " T(Ka +1)Ltm “(X’t)v(x’t)l_to ©?

Also by definition 4.1.4.1, we have:

F(k01c+1) {ak“ f(x,t)} = f(x) and F(ki+1){aka “(X’t)\’(xi)} :i u, (X, (x) (54)

ot ke . ot ke . —~
K
Lastly, substituting (54) in to (53), we have: f, (x)=>"u,(x},_, (55)
r=0
ki
Corollary 4.1.4.6. If f(x,t)=u’(xt)then f (x)=> > u,;(xh; (X, (x) (56)
i=0 j=0

To prove corollary 4.1.4.6 , we follow the above theorem 4.1.4.6
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4.2 Main Results

To the best of my knowledge no other researcher have developed a scheme to find
exact analytic approximate solutions of one dimensional homogenous time fractional
Cahn-Hilliard equation subjected to the initial condition by reduced differential
transform method (RDTM). Due to this, the gap of work of Mahmoud S. Rawahden and
Nazek A, Obeidat [18], were filled by the researcher to develop ascheme to find exact
analytic approximate solutions of one dimensional homogenous time fractional Cahn-
Hilliard equation subject to the initial condition by reduced differential transform
method (RDTM).

Based on the above definitions and theorems on this paper the main result of the researcher is

presented below.

4.2.1 Reduced differential transform method procedures for solving analytic approximate
solutions of 1D homogeneous time fractional Cahn —Hilliard equations

Under this section, the reduced differential transform method procedures for solving one
dimensional homogeneous time fractional Cahn —Hilliard equation of the following form is

newly introduced and developed .

Consider one dimensional homogeneous time fractional Cahn —Hilliard equation of form:

o“u(x,t) d%u(x,t)
ot” OX?

—u(x,t)+u®(x,t)=0,0<a <1, t>0 (57)

Subject to the initial condition, u(x,0)= g(x), x€ R (58)

Where « is a parameter that describes the order of time derivatives by fractional derivatives in

sense of Caputo fractional derivatives .

24



Step (i): Applying the reduced differential transform operator RDT on both sides of the problem
equation [57] and [58], we have:

a 2

RDT [sta U(x,t)} =RDT {%u(x,t)} + RDT[ u(x,t)] = RDT [’ (x,1)] 59

And RDT [u(x,0)=g (x)] (60)

Step (ii): By corollary 4.1.4.5 (i): RDT [Zzu(x, t)] = [katatty, . (x), by corollary 4.1.4.4

I'ka+1)

0%U(x,t)

(ii): RDT [

1= %uk (x), by theorem 4.1.4.1: RDT [ u(x,t)] =u,(x) and by corollary

4.1.4.6:RDT [U°(x,t)] :izi:ui_j(x)uj(x)uk_i (x)= F, (X) in [3], where F, (x) is the

i=0 j=0

transformed values of U°(x,t) and we get the following iteration formulae.

at+a+1 —_ az
F(rk(k;ir) Mper1(x) = ﬁuk(x) +u(x) -F (x), 0<a<l,t>0 (61)
And u,(x) =g(x) ,xER (62)

Step (iii): Substituting (62) into (61) by direct forward, we get the wu, (x) values, V, =1,2,3....

For K :o,r(r“(;)l) ul(x):gx—zzuo(x)+u0(x)_Fo(x),and R (x) =u(x)

[(2a ) 1, (3)+ 1, (3) () where, F (x) =30, (x)u, (x)

For K =1,-—~"" -9
o K= )%

2

2 000+, ()-30," (1)
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Mo +1) { % L (0 3u02(x)ul(X)}

= F(2a +1) y !

ufx)= 1D { " <x>+ul<x>—suf<x>ul<x>}

B F(2a+1) y '

F(Sa +1) B o°

For K =2, .
o K =2 ey M50

U, (X)+u, (x)—F, (x),where, F, (x) = 3u, (x)u,? () +3u,” (X)u, ()

2

2 00,00 (B (07 (0)+ 3, (), ()

=TRa+1)| ox% 2

F(M){ T <x>+u2<x>—(suo<x>uf<x>+3uf<X>“2<X))}

0 (x) = F(Z“”)[ Gy (x)+uz(x)—(3u0(x)u12(x)+3u02(x)uz(x))}

T TBa+1)| ax? ?

Step (iv): By definition 4.1.4.2, we have;

u(et) = 3 u, (Ot

82
= o (%) + 1 {yuo (X)+Uy (X)—uy’ (x)} t*+ ... (63)
Particularly for, & =1 (63), becomes;

u(x, t)= uo(x){sx—zzuo(x)+u0(x)—u03(x)} t% + ... (64)
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4.3 Supportive Examples

In this section, the reduced differential transform method (RDTM) to find the analytic
approximate solutions of one dimensional homogeneous time fractional Cahn-Hilliard equation

subject to the initial conditions is applied.

Example 4.3.1: Consider 1D homogeneous non-linear time fractional Cahn-Hilliard equation,

a 2
aat“ u(x, t) —%u(x, t) —u(x,t) +u’(x,t) =0, 0<a<1,t>0 (65)
X
66
subjected tothe initial condition :u(x,t) = 1 - (66)
1+e$

Solution: Applying the reduced differential transform operator RDT on (65) and (66), we have:

0° o2 ;
RDTLW ()= 2 i) o) (x,t)} 67)
And,
RDT|u(x,t)= —— (68)
1+ eﬁ

0” (ke +a +1)
By corollary 4.1.45 (i): we have RDT{E“(XJ)}: (ke +1) “k+1(x), by Corollary

0? 0?
4.1.4.4(ii): we have RDT{EU(XJ)} = yuk(x) , also by theorem 4.1.4.1:

RDT [u(x, t)]=uy (X)and by corollary 4.1.4.6: RDT [u®(x,t)|= F, (x) (69)
1
And U (¥)=—= (70)
1+eV?

Substituting (69) into (67), we have:
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2

F(ka +a +1) _ 0 -
mum()()_ NG uk(x)+ u, (X) Fk(x)

Also, substituting (70) into (71), we get u (x), v, =123,

2

r 1 0
ForK =O,%ul(x):yuo(x)+ U, (X)- Fy(x)
3 1 1
Where Fo (%) =Up’ (x) = —zand U (X) = ——
£1+eﬁj 1+e\ﬁ
INa+1 0° 1 1 1
(1_,(1))1( )_W( X )"’ x N
1+e¥?  14e”? (HeﬁJ
2 x X
eV2 —eV2 1241 4eY2 4282 -2
= M 3
2[1+eﬁJ

3eV? +3e72

= X 3 M 3
2{1+ e‘EJ 2[1+ eﬁ]

X X
2x X 3eﬁ{1+ eﬁJ

3e%
= X 2
2[1+eﬁJ

X

Mo+ (x)=— 2
e’

1+eﬁ
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Se%
ul(X) =

X 2
2[1+ eﬁJ (e +1)

ForK =1, [(20+1) u,(x)= Ll u, (x)+ u,(x)- F(x)= aa—xzz U, (%) +uy ()= 3u,” (X )u, (x)

F(a + 1) 2 Ox?
0° Be% 3e% Qe%

:axz N2 + N2 - Y
2(1+eﬁJ (e +1) 2(1+eﬁJ (o +1) 2[1+eﬁ] (e +1)

Applying inverse differential transform formula and by definition 4.1.4.2, we have:

u(x,t :Zi; (X =g (%) +uy (X +u, (X2 + ...
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X X 2X
S(eﬁ]t @ 9e\2 (eﬁ —1} t2
1 -

7 B R (72)

u(x,t)= - — -
(Heﬁ] 2(1+eﬁJ (a+1) 4[1+eﬁJ I'(20 +1)

which is the general analytic approximate solution of the problems (65) and (66) in infinite

power series.

In particularly if, & =1 from (72) we have:

X X 2X
?{eﬁJt Qeﬁ(eﬁ —1}2
1 +

U(Xi):(lwfi} 2[1+ed)(§]21"(1+1) 4{1+eéj4r(2+1)

X X 2X
3{eﬁ]t Qeﬁ(eﬁ —1}2
1 +

u(xt)=——~+ .Y —
[l+eﬁJ 2[1+eﬁJu 4{1+eﬁj 2

which is also the analytic approximate solutions of the problems (65) and (66) in infinite power

B (73)

series.
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The 3D plot of solution for @« = 0.25,a = 0.5, @ = 0.75,and a = 1 are shown as follow.

Fora = 0.25 Fora = 0.5

Fora = 0.75 Fora=1

Fig 1: The 3D plot solution for example 4.3.1 when 0 < x < 10 and 0.0000 < t < 0.0010
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Example 4.3.2: Consider one dimensional homogeneous time fractional Cahn-Hilliard equation

o°u(xt) _ d%u(x.t)

v o +u(x,t)-ud(xt), o<a<1,t>0 (74)

Subject to the initial condition, u(x,0)=e* (75)

Solution: Applying the reduced differential transform operator RDT on both sides of problems

(74) and (75), we have: RDT[;C; u(x,t)= ;(—Zz(u(x,t))Jr u(x,t)- u3(x,t)} (76)

And,

RDT |u(x,t) = e*| (77)

U, (x) , by Corollary 4.1.4.4 (ii):

By Corollary 4.1.4.5 (i): RDT[a U(X’t)} _Ike+a+1)

at” [(ker +1)

%u(x,t)| &2 : :
RDT| — 5 == u,(x), by theorem 4.1.4.1: RDT [u(x,t)] = u, (x) and by Corollary 4.1.4.6:

oX
RDT |u®(x,t)]= F, (x) (78)
And,
RDTu(x, ) =e’]= u,(x)=¢ (79)

(ko +a +1) (x) 0?
T {1, . 1) “k+

T(ka +1) X :ax_zuk(x)"'uk(x)_lzk(x) (80)

Substituting (78) into (76), we get:

Substituting (79) into (80), we get U (X) Vi

[N +1 0°
For K=0, (1?(;) )ul(x):ax—zuo(x)+ Up(X)=F,(x) . where Uy(x,0)=€* and F,(x)=e™

2
F(a +1)u1(x)=aa_2(ex)+ex _e3x:2ex _e3x
X
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And by gamma function property (iii), (1) =1!

F(a];r 1 u,(x) =2e*-e*

0,(x) = 2e* —e¥
! (o +1)

F(Za +1) u, (X) = i U, (X)"‘ Ul(x)_ F (X), where Fl(x) = 3U02 (X)ul(x)

2e* —e¥

F(a + 1)

0% 2e*—e¥ . 2e*-e* _
+ ~3e(
ox? F(a +1) F(a +1)

)

_2e-9e%  2e—e¥ 3 (2e* —e¥)
= + —
Ma+1) T(a+1) (o +1)

2e* —9e® +2e* —e¥ — e + 3
(o +1)

T2 +1)u,(x) =4e* —16e* +3e™

0, (x)= 4e* —16e% +3e™
2 (20 +1)

Applying inverse transform formulae and by definition 4.1.4.2, we have;
u(X,t) =D U (X =g (%) +u () +u, (X +.....
k=0

X 3x 5X
fe” 10T 4367 ey (81)
F(Za +1)
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In particularly if & =1, (91) becomes:

2e* — ¥ 4e* —16e* + 3>

wet) ="+ oy (T

LS

And, by gamma function property (ii), we have: T(1+1)=1,T(2+1)=2!,........

2e* —e¥ 4e* —16e* + 3>
(= X +( X+

Hence,  u(x,t)=e* +
u 2!

(82)

which is also the analytic approximate solutions of the problems (74) and (75) in infinite power

series.

Example 4.3.3: Consider one dimensional homogeneous time fractional Cahn-Hilliard equation

» o°u(xt) _ d%u(x.t)

v o +u(x,t)-ud(xt), o<a<1,t>0 (83)

sin

Subject to the initial condition, u(x,0)=sin x (84)

Solution: Applying the reduced differential transform operator RDT on both sides of problems

(83) and (84), we have: RDT[sin2 X ;Z u(x,t)= aax—zz(u(x,t))+ u(x,t)- u3(x,t)} (85)
And,
RDT[u(x,t)=sinx] (86)

u.,(x) , by Corollary

By Corollary 4.1.45()); RDT [Sin2 xZ u(i(t)} — sin? XM

I'(ka +1)

2 2
41.4.4 (ii): RDT {a “(X’t)}— O u.(x), by theorem 4.14.1: RDT [u(xt)]=u,(x) and by

x> | ox?
Corollary 4.1.4.6: RDT [u3(x,t)|= F, (x) (87)
And,
RDT[u(x, t) =sinx]=  u,(x) = sinx (88)
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Substituting (87) into (85), we get:

2 F(ka+a+1)

sin XF(T_'_:L)ukﬂ(X):%uk(x)—'—uk(x)_Fk(x) (89)

Substituting (88) into (89), we get Uy (X). ¥y 125,

For K=0, sin®x

ra) ul(x):y“o(x)ﬂo(x)—':o(x) ~ where Uy(x,0)=sinx and

F,(x)=sin® x

F(a +1) 0°

F(Za + 1)

Forket, sin® x2S ()= £, 00,0 ), where F00 =30, (1)

0° (—sinx sin x —sinx

"ok F(a+l))_r(a+1)_38in X (e +1)

)

_ sinx_ sinx +33in3x
F(a+1) F(a+1) F(a+1)

_ 3sin® x
(o +1)

sin® XI'(2a +1)u, (x) =3sin®x
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Applying inverse transform formulae and by definition 4.1.4.2, we have ;

o0

u(X,t) =D U (X =g (%) +u () +u, (X +.....

k=0

L sin x . 3sin x 2
=i M e M 0

which is the general analytic approximate solutions of the problems (83) and (84) in infinite
power series.

In particularly if « =1, (90) becomes:

. sin X 3sinx .,
u(x,t)=sinx —( ) ro+( 2+ x? +

And, gamma function property (ii), we have: T(1+1)=1,T(2+1)=2!,........

sin x +( 3sin x )t2

Hence,  u(x,t)=sinx—( T o

(91)

=sinx|l-—+——.........
n 2

which is the analytic approximate solutions of the problems (83) and (84) in infinite power
series.
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The 3D plot of the solution for example 4.3.3 in domain xR fora =0.25, « = 0.5, = 0.75,

a =1 are shown below.

Fora = 0.25 Fora = 0.5

Fora = 0.75 Fora =1

Fig 2: The 3D plot solution for example 4.3.3 when 0 < x < 10 and 0.0000 < t < 0.0010
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CHAPTER FIVE

5 CONCLUSION AND FUTURE SCOPE

In this study, the reduced differential transform method (RDTM) is proposed to solve the exact
analytic approximate solution of non- linear initial value problems of one dimensional
homogeneous time fractional Cahn Hilliard equation in sense of Caputo fractional derivatives.
The reduced and inverse reduced differential transformed function in one dimension for solving
initial value problems of one dimensional homogeneous time fractional Cahn-Hilliard equation
are defined. Six mathematical operations (theorems) with some corollaries are used for solving
exact analytic approximate solutions of one dimensional homogeneous time fractional Cahn-
Hilliard equation subject to the initial condition by using definitions of reduced and inverse
reduced differential transformed function are given and proved. The procedures of solving exact
analytic approximate solutions of one dimensional homogeneous time fractional Cahn-Hilliard
equation subject to the initial condition by reduced differential transform method is newly
developed and introduced. The solution are obtained in infinite power series. Thus, we conclude
that the proposed method is very effective, simple and can be applied to other non -linear partial
differential equations models in area of Physics and Engineering. My future proposed is applying
the method used to solve another non-linear time fractional partial differential equation .
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