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Abstract 

The main purpose of this study is to develop a scheme to find analytic approximate solutions of 

initial value problems of one dimensional homogeneous time fractional Cahn-Hilliard equation 

by reduced differential transform method. The reduced differential transform method procedures 

for solving one dimensional homogeneous time fractional Cahn-Hilliard equation subjected to 

the initial condition are newly developed and introduced. The reduced and inverse reduced 

differential transformed functions in one dimension for solving initial value problems of one 

dimensional homogeneous time fractional Cahn-Hilliard equation are defined. Some theorems 

and Corollaries used in one dimension for solving initial value problems of one dimensional 

homogeneous time fractional Cahn-Hilliard equation are defined and proved. The time fractional 

Cahn-Hilliard equation is obtained from the standard Cahn-Hilliard equation by replacing the 

integer order time derivative by a fractional derivative. The fractional derivative involved here is 

in sense of Caputo fractional derivatives, for its advantage that the initial conditions for 

fractional differential equations take the traditional form as for integer order differential 

equations. In order to show the reliability of the solutions, examples are constructed and 3D 

figures for some of the solutions are sketched.  

Key Words: Reduced Differential Transform Method, One Dimensional Homogeneous Time 

Fractional Cahn-Hilliard Equation. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1. Background of the study 

Nonlinear  partial  differential  equations  are  widely  used  to  describe  many  important 

phenomena  and  dynamic  processes  in  Physics,  Mechanics, Chemistry, Biology,  etc.  The 

study  of  non- linear  partial  differential  equations  plays  an  important  role  in  Physical 

Sciences and Engineering fields. The  investigation  of  exact  solutions  of  non- linear  partial 

differential equations plays an important role  in  the  study  of  non -linear  physical phenomena.  

Many  methods,  exact,  approximate,  and  purely  numerical  are  available  in  the literature  for  

the  solution  non-linear  partial  differentials [17].  

Fractional  calculus  deals  with  fractional  derivatives  and  integrals  of  any  order.  That  is  a 

generalization   of  ordinary  (standard)  differentiation  and  integration  to  arbitrary  (non-

integer)  order [20].  Fractional  calculus  is  a  branch  of  mathematical  analysis  that  studies  

the possibility of  taking real  number,  or even number , powers  of  the differential  operator  

D = 
 

  
  and the  integration  operator [20]. 

Fractional  derivatives  provide an   excellent instrument  for the  descriptive  and  hereditary 

properties of  various  materials  and  processes.  So  solving  FPDEs  is  completely  important 

in  the  circumstance of Applied  Mathematics,  Theoretical  Physics  and  Engineering  Sciences 

[26]. For further understanding of their practical application refer to [26]. 

Fractional  order partial differential equations,  as  generalizations  of  classical  integer  order  

PDEs,  have  been  used to  model  problems  in  fluid  flow  and  other  areas  of  differential  

equations, [25]. For example, in order to formulate certain electrochemical problems, half order 

derivatives and integrals are more useful than the classical models [25]. 

There  are  well  known  definitions of a fractional  derivative and integrals of order,    0 

(      such as Riemann- fractional Liouville, Grunwald- used Letnikow, Caputo and  

generalized  functions  approach  from  calculus . The most commonly used definitions are 
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Riemmann and Caputo. The  Riemann- Liouville  fractional  derivative  is  mostly used by  

mathematicians  but  it  is not  suitable  for  physical  problems  of  the  real  world   since  it  

requires  the  definition  of fractional  order  initial  conditions  which  have  no  physically  

meaningful  explanation  yet [25]. Caputo  fractional  derivative  allows  traditional  initial  and  

boundary  conditions  to  be included  in  the  formulation  of  the  problem.  So, Caputo  

fractional  derivative  is  the  base for  FDE  with  integer  order  initial  conditions  such  as  

TFPDEs  with  integer  order   initial  conditions [25], 

Time fractional partial differential equations (TFPDEs) are differential equations which can be 

obtained from the standard partial differential equations by replacing the integer order time 

derivative by a fractional derivative. Some of these are time fractional heat equations, time 

fractional wave equations, time fractional telegraphic equations and so on and are represented by 

linear and nonlinear PDEs [11]. 

Several real phenomena emerging in engineering and science fields can be demonstrated 

successfully by developing model using the fractional calculus theory. The fractional differential 

theory has gained much more attention as the fractional order system response ultimately 

converges to the integer order equation.  Before the nineteenth century, no analytical solution 

method was available for such type of equations even for the linear fractional differential 

equations [29]. 

In recent past, the glorious developments have been envisaged in the field of fractional calculus 

and fractional differential equations .Differential equation involving fractional  order derivatives 

are used to model a variety of systems of real world physical electrolyte polarization, heat 

conduction electromagnetic  waves, diffusion equation, etc [1]. 

Mathematical approaches to partial differential equations are divided in to two methods called 

Analytical methods which strive to find exact formulae for the dependent variable as a function 

of independent variables and numerical methods which result in approximate values of 

dependent variable at prescribed and discrete location within a finite domain of the independent 

variables [23]. 

But, there are mathematical approaches which can be neither of the two methods. These are semi 

analytical and semi numerical methods. For example, reduced differential transform method 
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(RDTM) is semi analytical method and used to find exact solutions or closed approximate 

solution of a differential equation [27]. It is an iterative procedure for obtaining Taylor series 

solution of differential equation [26]. 

The RDTM was first introduced by a Turkish  Mathematician  Keskin.Y [16]. This method based 

on the use of the traditional DTM techniques. Usually, a few numbers of iteration needed of the 

series solution for numerical purposes to get high accuracy. The solution procedure of the 

RDTM is simpler than that of traditional DTM, and the amount of computation required in 

RDTM is much less than that in traditional DTM. The solution obtained by the RDTM is an 

infinite power series for initial value problems, which can be in turn, expressed in a closed form, 

the exact solution [16]. 

As in [18], RDTM can be successfully applied to solve telegraph and Cahn-Hilliard equations. 

But, nothing will discussed about how to solve IVPs of one dimensional homogeneous time 

fractional Cahn- Hilliard equations by applying reduced differential transform method in the 

existing literature. This motivated the researcher to choose this topic and fill the gap of the work 

of Mahmoud and Nazek [18]. 

Therefore, the main purpose of this study is to develop a scheme to find analytic approximate 

solutions of one dimensional homogeneous time fractional Cahn- Hilliard equations of form: 

   
    0,,

,, 3

2

2










txutxu

x

txu

t

txu




  , 0<         .    

Subjected to the initial condition,    xgxu 0, , x        where   is a parameter that describe 

the order of time derivatives by fractional derivatives in sense of Caputo fractional derivatives. 
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1.2.  Statement of the problem 

 Cahn-Hilliard equation can be used in a wide variety of engineering and mathematical physics 

applications [18], solving initial value problems of one dimensional homogeneous time fractional 

Cahn-Hilliard equations by applying reduced differential transform method is not presumably 

presented in the existing literature. As a result the objective of this paper is to fill the gap and 

mainly to answer the following questions. 

1. How can we define the reduced and inverse reduced differential transformed function in 

1D for solving initial value problems of one dimensional homogeneous time fractional 

Cahn-Hilliard equation by reduced differential transform method? 

2. How can we apply reduced differential transform method (RDTM) to obtain analytic 

approximate solutions of initial value problems of one dimensional homogeneous time 

fractional Cahn-Hilliard? 

3. How can we construct supportive examples for solving IVPs of one dimensional  

homogeneous time  fractional Cahn-Hilliard  equation  by reduced  differential  transform  

method ? 

1.3. Objectives of the study 

1.3.1. General objective 

The general objective of the study is to develop a scheme to find analytic approximate Solutions 

of one dimensional homogeneous time fractional Cahn- Hilliard equation subject to the initial 

condition by reduced differential transform method (RDTM). 

1.3.2. Specific objectives 

          The specific objectives of the study are: 

 To define the reduced and inverse reduced differential transformed function in 1D for 

solving initial value problems of one dimensional homogeneous time fractional Cahn-

Hilliard equation by reduced differential transform method.  

 To apply reduced differential transform method to obtain analytic approximate solutions 

for IVPs of one dimensional homogeneous time fractional Cahn-Hilliard equation.   

 To construct supportive examples for solving IVPs of one dimensional homogeneous 

time fractional Cahn-Hilliard equation by reduced differential transform method.                                                                                      



5 
  

          1.4  The significance of the Study 

This research is considered of vital importance for the following reasons. 

 It develops the researcher skill on mathematical (applied) research. 

 It provides techniques of solving initial value problems of one dimensional homogeneous 

time fractional Cahn-Hilliard equations by using RDT method. 

 It familiarize researcher with the scientific communication in mathematics. 

 It was used as a reference material for anyone who will work on this area. 

1.5  Delimitation of the study 

The study is delimited to initial value problems of one dimensional homogeneous time fractional 

Cahn- Hilliard equation and focus only on developing a scheme to find analytic approximate 

solutions of one dimensional homogeneous time fractional Cahn-Hilliard equation subjected to 

the initial conditions by the RDT method in sense of Caputo fractional derivatives. 
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CHAPTER TWO 

    2   LITERATURE REVIEW 

Partial differential equations (PDEs) have numerous essentials applications in various fields of 

science and engineering such as fluid mechanics, thermodynamic, heat transfer, Physics[15].The 

classical Taylor series method has been one of the earlier methods for solving the differential 

equations with an advent of high speed computers there has been an increasing trend towards 

exploring new ideas out of traditional techniques for the last couple of decades.In1986 an up 

dated version of Taylor series method, called the differential transform method (DTM) was 

introduced by [32] and then applied DTM in order to solve electric circuit. 

In past several decades many authors mainly had paid attention to study the solution of fractional 

differential equations by using various developed method such as RDTM, VIM, DTM, ADM, 

Tanh-Coth method, and Sine-Cosine method. Among of these VIM, DTM, ADM, Tanh-coth 

method and sine –cosine method [18] used to solve non- linear partial differential equations 

(PDEs). Recently, researchers have applied the reduced differential transform method (RDTM) 

successfully to obtain analytic solution. For example: 

Mahmoud Rawashden [17] used the RDTM, to find exact and approximate solution for Garden 

equation, Variant Non-linear Water Wave equation and the Fifth-order korteweg-de Vries(FKdv) 

equation. Bayram and Ibis [11] used the RDTM, to find approximate solution for the (KdvB) 

equation, Drinefel’d- sokolov- Wilson equations, Coupled Burgers equations and modified 

Boussinesq equation. Keskin .Y and Oturanc.G [16] used the RDTM, to solve linear and non-

linear wave equations and they showed the effectiveness and accuracy of the proposed method. 

Saravanan and Magesha [24] used the RDTM and ADM, to solve analytic solution for linear and 

non-linear Newell-White head- Segel equation. Murat Gubes [23] used the RDTM, to obtain 

analytic solution for non-linear time-dependent Foam Drainage equations. Vinet Srivastava [20] 

used the RDTM, to obtain analytic solution of telegraph equation.  

In 1998 the first analytical method the variation iteration method (VIM), was proposed by [21], 

to solve fractional differential equations and after it also used to solve more complex fractional 

differential equations such as linear and non-linear viscoelastic models with fractional 
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derivatives, non-linear equations of fractional order, linear fractional partial differential 

equations arising in fluid mechanics and the fractional heat and wave like equations with variable 

coefficients. 

In 2007, the Homotopy perturbation method (HPM) was applied to both non-linear and linear 

fractional differential equations and it was showed that HPM is an alternative analytical method 

for fractional differential equations. HPM also used to solve the fractional heat and wave like 

equations with variable coefficients [21]. 

In 2009 another improved approach for solving initial-value problem for partial differential 

equation, known as reduced differential transform method (RDTM) has recently been used by 

[14] and developed the reduced differential transform method for the fractional differential 

equations and showed that reduced differential transform method is the easily useable semi 

analytical method and gives the exact solution for both the linear and nonlinear differential 

equations. 

Some examples of Analytical methods are the Adomain decomposition method, Viration 

iteration method, Differential transform method, Homotopy perturbation method, Homotopy 

analysis method, Sine-Cosine method, Inverse scattering method, Balance method and Hirota’s 

bilinear method[15]. 

The Cahn- Hilliard equation can be found in a wide variety of engineering and scientific 

applications. In recent years, numerous works have focused on the development of more 

advanced and efficient method for Cahn- Hilliard equations such as Differential transform 

method, extended fractional Ricatti Expansion method and Fractional sub-equation method. As 

reference [18], reduced differential transform method (RDTM) can be successfully applied to 

solve Cahn- Hilliard equations. However, how to solve initial value problems of one dimensional 

time fractional Cahn- Hilliard equations by applying RDTM is not presumably discussed in [18] 

and in other existing literature. 

Therefore, this study is aimed to develop a scheme to find analytic approximate solutions of one 

dimensional time fractional Cahn- Hilliard equation subjected to the initial conditions by reduced 

differential transform method (RDTM). 
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CHAPTER THREE 

      3.  METHODOLOGY 

3.1 Study Site, Area and period 

This study is conducted in Jimma University, under Department of Mathematics (Differential 

Equation Stream) from September,2014- September, 2015. 

3.2 Study Design 

The study design is Analytic design. 

3.3 Source of information (data) 

The information that is used to conduct this study is collected from secondary sources such as 

reference books, internets, published and unpublished research articles (Journals). 

3.4   Procedures of the study 

In order to achieve the objectives of the study, the following procedures are undertaken: 

Step (I):  Apply the reduced differential transform to the initial conditions. 

Step (II):  Apply the reduced differential transform to the one dimensional homogeneous time 

fractional Cahn-Hilliard equation to obtain a recursion system for the unknown function    (x), 

   (x),    (x)……  

Step (III): Use the transformed initial conditions and solve the recursion system for the unknown 

functions   (x),    (x),    (x)…... 

Step (IV): Use the differential inverse transform formula to obtain the analytic approximate 

solutions for the one dimensional homogeneous time fractional Cahn-Hilliard equation in infinite 

power series.  That is, u (x, t) =
k

k

k txu


0

)( = u 0 (x) + u 1 (x) t


+ u 2 (x) t
2

+…  
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3.5 Ethical Issues 

For this study it needs books, Journals and other related materials, but there may be a problem 

for collecting all above listed materials without any permitted letters. So, the researcher needs to 

take a letter of permission from Mathematics department before going to collect data and have 

good approaches during data collection period. 
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CHAPTER FOUR 

  4.  RESULTS AND DISCUSSION 

  4.1.   Preliminaries 

  4.1.1. The Gamma Function 

Definition 4.1.1.  The gamma function, Γ (z) is defined [8] as: 

Γ (z) =∫                    
 

 
                                                                                                      (1) 

Properties of Gamma Function for, Z ℕ 

 (i)  Γ (z+1)=z Γ(z) 

  (ii)  Γ (z+1) = z ! 

  (iii)  Γ(1)=1, where  z = 1 

  4.1.2.  Fractional Calculus 

In this section, some definitions and properties of the fractional calculus are given. 

Definition 4.1.2.1 . Real function f (t), t > 0 is said to be in the space Cµ, µℝ , if there exists  a 

real number p (> ), such that f (t) = t
p
  (  , where   (    (     , and it is said to be in the 

space     
  , if and only if   (  ( (     

    (      Cµ,    nℕ [5]. 

Definition  4. 1. 2. 2. The Riemann- Liouville fractional integral operator (   ) of order α     of 

a function  f     ,   µ ≥  -1, is defined [9] as: 

   f (t) =
  

 (  
∫ (        

 
 (       α > 0                                                                                     (2) 

 Properties of the operator (   , for  f     ,  µ  ≥ -1,    α, β  ≥ 0   and  γ ≥ 0  were: 

(            (         (                                                                                                            (3) 

(             (        (                                                                                                            (4) 

(               =
 (    

 (      
                                                                                                               (5) 
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Definition 4.1.2.3.  

For n to be the smallest integer that exceeds α, the Caputo time fractional derivative operator of 

order              defined as: 

   (     

{
 
 

 
 

 
 

 (    
∫ (           

   

 

 

 (                  

       


 

   
  (                                                                                                      (  

 

Properties of the operators    and β such that   , β > 0, n-1 <    <  n and      . 

(           f(t)=     f(x)                                                                                                               (8) 

(            (      =  
 (    

 (      
(                                                                                            (9) 

(         (    f)(t)=     f(t) = f(t)   J
n

k






1

0

  
 

!k

st
sf k 

      t > s                                               (10)  

4.1.3.  Generalized Taylor Formula 

In this section, we define generalized Taylor formula and before we see that mean value theorem.  

Theorem 4.1.3.1.  [Mean value theorem] 

Suppose     bacxf ,  and       0,, forbacxfDa 


    , in [19] we have 

   
 

   



axfDafxf a 




1
                                                                                          (11) 

with  andbaxx ,,0   
D is the Caputo fractional derivative of order      . 

Proof: By (2), we have; 

    
 

    ,
1

1

dssfDsxxfDJ a

x

a

aa











 


    .                                                                  (12) 
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Using, integral mean value theorem,     abfdxxf

b

a

  , we have 

 

 

                     =
 

  



axfDa 



1
, for                                                                       (13) 

Also, from (10), we have: 

      afxfxfDJ aa 


                                                                                                          (14) 

Lastly, from (13) and (14), we have: 

      
 

  



axfDafxf a 




1

  

Theorem 4.1.3.2.  Suppose that          ],(,
1

bacxfDxfD
n

a

n

a 


, for                   

         
 
 

   afD
n

ax
xfDJxfDJ

n

a

na
n

a

n

a

n

a

n

a
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                                                (15) 

, where    

aaaa

n

a timesDnDDDD  ......... .  

Proof: From (15), we have: 

                xfDDJJxfDJxfDJxfDJ a

n

aa

n

a

n

a

n

a

n

a

n

a

n

a

n

a




 11
 

                                                          =        xfDJxfDJ aa

n

a

n

a


  

                                               =         xfDJxfDJ aa

n

a

n

a


  

                                                    By (14),       afxfxfDJ aa 
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1

1

dssxfDxfDJ

x

a

aaa



 













13 
  

                                                         =          afxfxfDJ
n

a

n

a 


 

                                                       =    afDJ
n

a

n

a


 

                               Using (9),    
 

 
     afDat

n
afDJ

n

a

nn

a

n
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0

10
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                                                      =
 

     afDat
n

n

a

n 




 1

1
 

                                                    =
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n
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a
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 1


 

Hence,               
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Theorem 4.1.3.3.  [Generalized Taylor’s Formula] 

Suppose     ,,1,....,2,1,0],,( fornforkbaCxfD
k
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0    , then 
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with a         (        . 

Proof: From (15), we have: 
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By (2),
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Substituting (18) in to (17), we have: 
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In particularly, if     , the generalized Taylor’s formula reduces to a classical Taylor’s 

formula, which is:  
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The radius of convergence, R for generalized Taylor’s series,  
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4.1.4.The Reduced Differential Transform Method (RDTM) 

 

Consider a function of two variables f(x, t) and suppose that it can be represented as a product of 

two single-variable functions, i.e., f(x, t) = g(x) h(x). Based on the properties of differential 

transform function f(x, t) can be represented as  f(x, t) =    
0

i j

i j o

G i x H j t
 

 

   =  
0

k

k

k

f x t




  and  

f k (x) is called t-dimensional spectrum function of f (x, t) [16]. 

The basic definition of the reduced differential transform and inverse reduced differential 

transform in                           are discussed below. 

Definition 4.1.4.1.  If  f(x, t)  is analytic and continuously differentiable with respect to the space 

variable x and time variable t  in the domain of interest, then the spectrum function (reduced 

transform function) was defined in  [13,14, 15,16,24,27,28,29] as : 

    (        (x)=  
 

 (     
 

ott

k

k

txf
t















,





                                                                    (21) 

Where,     - is the reduced differential transform operator. 

  (x)-  is the transformed function (reduced transformed function). 

Note:   In the above definition, particular if      we have: 

  (x)=  
 

 (    
 

ott

k

k

txf
t















,                                                                                                               (         

and by gamma function property (ii),     (   ) = k ! 

Hence,    (x) =  
 

  
 

ott

k

k

txf
t















,                                                                                             (23) 
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Définition 4.1.4.2. If  f (x, t) is analytic and continuously differentiable with respect to the space 

variable x and time variable t in the domain of interest, then the inverse reduced differential 

transformed function was  defined in  [13,14, 15,16,24,27,28,29] as : 

  
  [ k (x)]   (       



0k

kf (x)                                                                                             (24) 

Where   
     Donates the inverse reduced differential transform operator. 

  (x, t) - is the inverse reduced differential transformed function. 

            order of time derivatives by fractional derivatives in sense of  Caputo fractional 

derivatives. 

 Substituting equation (21) into equation (24), we have: 

  tx,  
 

 
ott

k

k

k

txf
tk





















 ,

1

1

0





 k                                                                                   (25) 

Note: In the above definition, particularly if  1 , (25) becomes: 

 
 

  k

tt

k

k

k

ttxf
tk

txf

0

,
1

1
,

0 



















   and  by gamma function property(ii),   !1 kk   

Hence,     k

tt

k

k

k

ttxf
tk

txf

0

,
!

1
,

0 

















                                                                                     (26) 

Definitions 4.1.4.1 and 4.1.4.2  are  stated  in  [13,14,24,26 ] for  solving  fractional linear heat 

equations, linear and Non-linear Newell-white head-segel equations and time fractional  non-

linear  evolution   equations  having  time  fractional  derivative of order,     such that  0<   ≤ 1 

respectively . These  definitions  are  also  stated  in  [16,27,29] for solving  linear  and  Non-

linear  wave equation  and   analytical  approximations  of  two and  three  dimensional  time  

fractional  telegraphic  equation  respectively  such  that  0<   ≤ 2 .But, the definitions of  the 

reduced differential  transformed  function  (t-dimensional  spectrum  function) and the inverse 

reduced differential transformed functions are not defined in work of Mahmoud S. and Nazek A. 
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Some  of  the  fundamental  theorems  in  one  dimensional  performed  by reduced differential 

transformed  method [ 18] are  discussed  below. 

Let   txf , ,  txu ,  and  txv , be  analytical and k-times  continuously differentiable  functions 

with respect to the space variable x and time variable t ,then  the following  theorems  holds. 

Theorem 4.1.4.1. If    txutxf ,,  , then   (x)=   (x) 

Proof: Suppose   (x) and   (x) are the t-dimensional spectrum functions (transformed functions) 

of   (x,t) and   (x, t) respectively. 

Aim: we want to show,    (x) =    (x) 

Applying the reduced differential transform operator RDT, on both sides of    txutxf ,,  , we 

have:  RDT    txf ,  = RDT   txu ,                                                                                        (27) 

          By definition 4.1.4.1, RDT   txf ,   
 

 (     
 

ott

k

k

txf
t















,





  and  

RDT   txu ,    
 

 (     
 

ott

k

k

txu
t















,





                                                                                   (28) 

    Now substituting ( 28) into (27), we have: 

 
 

 (     
 

ott

k

k

txf
t















,





  
 

 (     
 

ott

k

k

txu
t















,





                                                          (   
 

      by definition  4.1.4.1, 

 

 (     
 

ott

k

k

txf
t















,





   (x) and  
 

 (     
 

ott

k

k

txu
t















,





     (x)                                   (30) 

            (          (29), we have 

                                     ( )     ( ). 
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Theorem 4.1.4.2. If   txf ,  = u(x, t)  ±  v(x, t), then f (x)=   (x) ±   (x) 

Proof: suppose   (x),   (x), and   (x) are the t-dimensional spectrum functions (transformed 

functions) of   (x, t),   (x, t) and  (x,t)  respectively. 

Aim: we want to show,    (x) =   (x) ±   (x) 

Applying reduced differential transform operator RDT, on both side of   (x,t)=   (x,t) ±   (x,t ), 

we have: 

RDT   txf , = RDT   txf ,         txv ,                                                                          (31) 

By definition 4.1.4.1, RDT   txf ,  
 

 (     
 

ott

k

k

txf
t















,





           

RDT   txu ,  
 

 (     
 

ott

k

k

txu
t















,





 and 

RDT   txv ,    
 

 (     
 

ott

k

k

txv
t















,





                                                                                      (32) 

Now, substituting (32) into (31), we have: 

 

 (     
 

ott

k

k

txf
t















,





    
 

 (     
 

ott

k

k

txu
t















,





  
 

 (     
 

ott

k

k

txv
t















,





                          

(33) 

                                     

 
 

 (     
 

ott

k

k

txf
t















,





=    (x),    
 

 (     
 

ott

k

k

txu
t















,





 =    (x)  and 

 

 (     
 

ott

k

k

txv
t















,





 =   (x)                                                                                                    (34) 

Substituting (34) into (33), we have:   (x)=   (x) ±   (x). 



19 
  

Theorem  4.1.4.3.  If  txf , =    txu ,  , where      constant, then   (x)=      (x) 

Proof: suppose   (x) and    (x) are the t-dimensional spectrum functions (transformed functions) 

of   (x, t) and   (x, t) respectively and    be a constant. 

Aim: we want to show,  xf k  =    xuk  

Applying reduced differential transform operator, on both side  txf ,  =    txu , , we have 

RDT    txf , = RDT   txu , =   RDT   txu ,                                                                          (35) 

By definition 4.1.4.1, we get, RDT   txf ,    
 

 (     
 

ott

k

k

txf
t















,





  and 

  RDT   txu ,   
 

 (     
 

ott

k

k

txu
t















,





                                                                                  (36) 

Now, Substituting (36) into (35), we have: 

 
 

 (     
 

ott

k

k

txf
t















,





   


 (     
 

ott

k

k

txu
t















,





                                                                (37)  

                                                                                                                                                        

  
 

 (     
 

ott

k

k

txf
t















,





=   (x, t),   


 (     
 

ott

k

k

txu
t















,





 =     (x)                                      (38) 

Substituting (38) into (37), we have: 

                                         (x)=     (x). 
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Theorem 4.1.4.4.  If   txf ,  = 


 

x
 

 

 (    , then   (x) = 


 

x
 

 

   (x) 

Proof: suppose   (x) and   (x) are the t-dimensional spectrum functions (transformed function) 

of  txf ,  and  txu ,  respectively.  

Aim: we want to show,   (x) = 


 

x
 

 

   (x)  

Applying reduced differential transform operator RDT on  txf ,  =   


 

x
 

 

   (x,t), we have 

RDT   txf ,  = RDT  











txu

xn

n

,                                                                                            (39) 

By definition 4.1.4.1, we have, RDT   txf ,   
 

 (     
 

ott

k

k

txf
t















,





   and 

RDT[


 

x
 

 

 (    ]  
 

 (     
 

ott

k

k

n

n

txu
tx



















,





 

=    


 

x
 

 

 

 (     
 

ott

k

k

txu
t















,





                                                                                              (40)
 

Now substituting (40) into (39), we have: 

 

 (     
 

ott

k

k

txf
t















,





       


 

x
 

 

 

 (     
 

ott

k

k

txu
t















,





                                                           (                                      

 
 

 (     
 

ott

k

k

txf
t















,





 =     (x)      


 

x
 

 

 

 (     
 

ott

k

k

txu
t















,





 


 

x
 

 

  (x)      (42)                  

Substituting (42) into (41), we  have:    (x) =  


 

x
 

 

  (x). 
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Corollary 4.1.4.4. 

(i).If  txf ,  = 


   

 (x, t), then    (x)= 


   

   (x)                                                                  (43) 

(ii).If  txf ,  = 
 

2

    

 (x, t), then   (x) = 
 

2

    

   (x) and …                                                 (44) 

To prove the above corollaries 4.1.4.4 (i) and 4.1.4.4 (ii), we follow that the prove of theorem 

4.1.4.4 

Theorem 4.1.4.5.  If    txu
t

txf
N

N

,,







 , then   (x) = 

  (        

 (       
    (x) 

Proof: suppose   (x) is the t-dimensional spectrum function (transformed function) of  txf , . 

Aim: we want to show,       (x) = 
 (        

 (       
    (x) 

Applying reduced differential transform operator RDT on    txu
t

txf
N

N

,,







  , we get 

RDT   txf , = RDT 











),( txu

t N

N





                                                                                             (45) 

By definition 4.1.4.1, we have 

RDT   
 

 













 txf

tk
txf

k

k

,
1

1
,






  and 

RDT  











txu

t N

N

,




 =
 

 (     
























),( txu

tt N

N

K

K









=  
tot

NK

NK

txu
tk





















),(

1

1




                   (46) 

Multiplying on right side of (46) by 
 
 1

1









NK

Nk
   ,   we have:  
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RDT  











txu

t N

N

,




 
 
 1

1










NK

Nk

 
tot

NK

NK

txu
tk





















),(

1

1





  

= 
 (        

 (       
tot

NK

NK

txu
tNK





















),(

1

1





 

= 
 (        

 (         
tot

NK

NK

txu
tNK





















),(

1

1 )(






 

RDT  











txu

t N

N

,




 =   
 (        

 (       

 

 
tot

NK

NK

txu
tNK





















),(

1

1





                                  (47) 

By definition 4.1.4.1, equations (46) and (47)  becomes,
 

 (     
    xftxf

t
k

tt

k

k

o
















,




 

 and 
 (        

 (          
tot

NK

NK

txu
tNK





















),(

1

1 )(






 =    

 (        

 (     
    (              (48) 

where     (     
 

 ((       )
tot

NK

NK

txu
t



















),(

)(

)(





 

Lastly, substituting (48) into (45), we have 

                                              (x) = 
 (        

 (     
    (   

 

     Corollary 4.1.4.5 

(i).If   txf ,  = 


 

    

 (    , then   (x)= 
 (       

 (     
    (  , where, N=1                                   (49) 

(ii).If  txf ,  = 
 

  

      

 (             (     
 (        

 (     
    (    where, N=2                         (50 ) 

To prove the above corollaries 4.1.4.5 (i) and 4.1.4.5 (ii), we follow the above theorem 4.1.4.5 
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Theorem 4.1.4.6.  If      txvtxutxf ,,,  ,then    (x) = )()(
0

xVxu ik

k

i

i 



   

Proof: suppose   (x),    (          (x) are the  t-dimensional spectrum functions (transformed 

functions)  of  txf , ,   txu ,  and  txv , respectively. 

Aim : we want to show   (x) = )()(
0

xVxu ik

k

i

i 



  

Applying the reduced differential transform operator RDT on      txvtxutxf ,,,   , we have: 

       txvtxuRDTtxfRDT ,,,                                                                                                  (51) 

By definition 4.1.4.1, we have   
 

 
0

,
1

1
,

tt

k

k

txf
tK

txfRDT
























 

 and     
 

   
0

,,
1

1
,,

tt

k

K

txvtxu
tK

txvtxuRDT
























                                                         (52) 

Substituting (52) in to (51), we have: 

 
  














 0

,
1

1

tt

k

k

txf
tK 



  
   

0

,,
1

1

tt

k

K

txvtxu
tK
















 




                                                 (53) 

Also by definition 4.1.4.1, we have: 

 

 (     
    xftxf

t
k

tt

k

k

o
















,




  and 
 

 (     
       xvxutxvtxu

t
rKr

K

rtt

k

k

o


















0

,,




           (54) 

Lastly, substituting (54) in to (53), we have:     rK

K

r

rK vxuxf 




0

                                              (55)                                                                                                        

Corollary 4.1.4.6.  If    ,,, 3 txutxf  then        xuxuxuxf ikj

k

i

i

j

jik 

 


0 0

    

                 

(56) 

To prove corollary 4.1.4.6 , we follow the above theorem 4.1.4.6 
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                         4.2 Main Results 
 

To the best of my knowledge  no  other  researcher   have  developed   a  scheme   to   find   

exact    analytic   approximate  solutions  of  one  dimensional  homogenous   time   fractional   

Cahn-Hilliard   equation   subjected  to   the   initial   condition  by  reduced  differential  

transform   method  (RDTM).  Due to  this,  the  gap  of  work  of   Mahmoud S. Rawahden   and  

Nazek A, Obeidat [18], were  filled  by  the researcher   to  develop  a scheme   to   find   exact   

analytic   approximate   solutions  of  one  dimensional  homogenous   time  fractional  Cahn-

Hilliard   equation   subject  to   the initial  condition   by  reduced   differential   transform   

method (RDTM).    

Based on the above definitions and theorems on this paper the main result of the researcher is 

presented below.  

4.2.1 Reduced differential transform method procedures for solving analytic approximate 

solutions of 1D homogeneous time fractional Cahn –Hilliard equations 

Under this section, the reduced differential transform method procedures for solving one 

dimensional homogeneous time fractional Cahn –Hilliard equation of the following form is 

newly introduced and developed . 

Consider one dimensional homogeneous time fractional Cahn –Hilliard equation of form:  

   
    0,,

,, 3

2

2










txutxu

x

txu

t

txu




, 0 <                                                                (57) 

Subject to the initial condition,    xgxu 0, ,  x ℝ                                                                  (58) 

 Where    is a parameter that describes the order of time derivatives by fractional derivatives in 

sense of Caputo fractional derivatives . 
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Step (i):  Applying the reduced differential transform operator RDT on both sides of the problem 

equation [57] and [58], we have: 

RDT 











),( txu

t



=RDT 











),(

2

2

txu
x

        txu ,        3 (                                    (59)                    

And   RDT [  oxu , = g (x) ]                                                                                                      (60) 

Step (ii): By corollary 4.1.4.5 (i): RDT    

    (           (       

 (     
    (   , by corollary  4.1.4.4 

(ii):  RDT  [ 
   (    

   
 ] =  

  

   
 u k (x),  by theorem 4.1.4.1: RDT [  (    ] =  (    and by  corollary 

4.1.4.6:RDT [  3 (    ] = ( ) ( ) ( )
k i

i j j k i

i o j o

u x u x u x 

 

 = F k (x) in [3], where  F k (x) is the 

transformed  values of   3 (     and we get the following  iteration  formulae. 

        (       

 (     
    (     =  

  

      (    +   (    - F k (x) ,  0   1 ,                                    (61) 

And     (    (     , x ℝ                                                                                                        (62)                                   

Step (iii):   Substituting (62) into (61) by direct forward, we get the    (   values, 1,2,3....k 
 

 

 
           

2
3

1 0 0 0 0 02

1
0, _ ,

1
For K u x u x u x F x and F x u x

x

  
   

   

                                                 =      xuxuxu
x

3

0002

2





 

                                               xu1  
 

 
     

















 xuxuxu

x

3

0002

2

1

1

  

 

 
             

2
2

2 1 1 1 1 0 12

2 1
1, , , 3

1
For K u x u x u x F x where F x u x u x

x





  
    

    

                                        =        xuxuxuxu
x

1

2

0112

2

3
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                                        =
 
 

       
















xuxuxuxu

x
1

2

0112

2

3
12

1




 

                                xu2

 
 

       
















xuxuxuxu

x
1

2

0112

2

3
12

1




 

 

 
                 

2
2 2

3 2 2 2 2 0 1 0 22

3 1
2, , , 3 3

2 1
For K u x u x u x F x where F x u x u x u x u x

x





  
     

  

 

                                      =             xuxuxuxuxuxu
x

2

2

0

2

10222

2

33 



 

                                  =
 
 

            
















xuxuxuxuxuxu

x
2

2

0

2

10222

2

33
13

12




 

                               xu3

 
 

            
















xuxuxuxuxuxu

x
2

2

0

2

10222

2

33
13

12




,… 

Step (iv):  By definition 4.1.4.2, we have;  

 (     k

k

k txu )(
0




   

                     .....2

210   txutxuxu                                                                                                                                      

 

         =   (    (  

 (    
      

2
3

0 0 02
u x u x u x

x

 
  

 
     …                                                     (63) 

 Particularly for, 1  (63), becomes; 

           (    =   (  +      
2

3

0 0 02
u x u x u x

x

 
  

 
     …                                                    (64)                                                                                                  
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4.3 Supportive Examples 

In this  section, the  reduced  differential  transform  method  (RDTM) to  find  the analytic 

approximate solutions of one dimensional homogeneous time fractional  Cahn-Hilliard  equation  

subject  to the  initial  conditions is applied. 

Example 4.3.1: Consider 1D homogeneous non-linear time fractional Cahn-Hilliard equation,  





t


u(x, t)  

2

2

x


u(x, t)   (      3 (      0,  o                                                    (                      

                                                                (66)                                                                                                                                

 

Solution:  Applying the reduced differential transform operator RDT on (65) and (66), we have: 

        

















txutxutxu

x
txu

t
RDT ,,,, 3

2

2





                                                                      (67) 

And,                                                                     

 


















21

1
,

x

e

txuRDT                                                                                                                 (68) 

By corollary 4.1.4.5 (i): we have  
 
 

 xu
k

k
txu

t
RDT k 1

1

1
, 

























, by Corollary 

4.1.4.4(ii): we have    xu
x

txu
t

RDT k2

2

2

2

,
















  , also by theorem 4.1.4.1: 

RDT [u(x, t)]=  xuK                                 xFtxu k,3

                                      (69)                                                                                                          

And     0

2

1

1

x
u x

e





                                                                                                                 (70)  

Substituting (69) into (67), we have:  

 
2

1
: ,

1

x
subjected tothe initial condition u x t

e
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 xu

k

k
k 1

1

1




 




xu

x
k2

2

 u k (x)-  xFk                                                                         (71)  

Also, substituting (70) into (71), we get   ,.....3,2,1, kk xu  

 
 

  



 xuForK 1

1

1
,0


 




xu

x
02

2

 u 0 (x)-  xF0   

Where    3

0 0 3

2

1

1

x
F x u x and

e

 
 
 

 
 

  0

2

1

1

x
u x

e





 

 
 

 



xu1

1

1
2

2

x


  





 22 1

1

1

1
xx

ee

3

2

1

1

x

e
 
 

 
 

      

                      = 3

2

2

2

222

2

12

2242


















x

xxxx

e

eeee

 

                       = 3

2

22

3

2

22

2

12

13

12

33


















































x

xx

x

xx

e

ee

e

ee
 

                        = 2

2

2

12

3
















x

x

e

e
 

   
2

2

2

1

12

3
1

















x

x

e

e
xu  
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 112

3
2

2

2

1





















x

x

e

e
xu  

 
 

  



 xuForK 2

1

12
,1




 




xu

x
12

2

           xuxuxuxu
x

xFxu 1

2

0112

2

11 3





 

                                                          

     112

9

112

3

112

3
4

2

2

2

2

2

2

2

2

2

2


















































































x

x

x

x

x

x

e

e

e

e

e

e

x  

 

 
   

4

2

2

2

2

2

14

19

12
































x

xx

e

ee

xu  

              

 1214

19

4

2

2

2

2

2




































x

xx

e

ee

xu    

                      .                                                                                                  

                      .                                                                                  

                       . 

 Applying inverse differential transform formula and by definition 4.1.4.2, we have: 

                ......., 2

210

0






 txutxuxutxutxu k

k

k  
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2

22 2 2

2 4

2 2 2

3 9 1
1

, ...........

1 2 1 1 4 1 2 1

x x x

x x x

e t e e t

u x t

e e e

 

 

   
   

   
   

   
     
                    

                           (72) 

which is the general analytic approximate solution of the problems (65) and (66) in infinite 

power series. 

  In particularly if,   1 from (72) we have: 

 

   

...........

1214

19

1112

3

1

1
,

4

2

22

2

2

2

2

2

2




















































































x

xx

x

x

x

e

tee

e

te

e

txu  

                ...........

!214

19

!112

3

1

1
,

4

2

22

2

2

2

2

2

2


















































































x

xx

x

x

x

e

tee

e

te

e

txu                                       (73) 

which is also the analytic approximate solutions of the problems (65) and (66) in infinite power 

series.        
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The 3D plot of solution                                  are shown as follow. 

 

  

For        For     

 

Fig 1: The 3D plot solution for example 4.3.1 when          and                 

 

 

 

 

 

 

 

 

 

 

  

For        For       
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Example 4.3.2: Consider one dimensional homogeneous time fractional Cahn-Hilliard equation 

   
   txutxu

x

txu

t

txu
,,

,, 3

2

2














,    o                                                                        (74) 

Subject to the initial condition,   xexu 0,                                                                                  (75) 

Solution: Applying the reduced differential transform operator RDT on both sides of problems 

(74) and (75), we have:         

















txutxutxu

x
txu

t
RDT ,,,, 3

2

2





                                (76) 

And, 

          xetxuRDT ,                                                                                                                   (77) 

By Corollary 4.1.4.5 (i): RDT
   

 
 xu

k

k

t

txu
k 1

1

1,


























 , by Corollary 4.1.4.4 (ii): 

RDT
 

 xu
xx

txu
k2

2

2

2 ,

















, by theorem 4.1.4.1: RDT     xutxu k,  and by Corollary 4.1.4.6: 

RDT     xFtxu k,3                                                                                                                    (78) 

And, 

RDT[u(x, t)  e x ]   u 0 (x)   e
x
                                                                                             (79) 

Substituting (78) into (76), we get:
 
 

       xFxuxu
x

xu
k

k
kkkk 









 2

2

1
1

1




                (80) 

Substituting (79) into (80), we get   ......3,2,1, kk xu  

 For K=0, 
 
 

       xFxuxu
x

xu 0002

2

1
1

1









 
 ,  where   xexu 0,0   and   xexF 3

0    

             
 
 

  xxx eee
x

xu 3

2

2

1 )(
1

1









 
=

xx ee 32   
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And by gamma function  property (iii),   !11   

                                    
 

 xu1
!1

1 
    =

xx ee 32   

                                                      
 1

2 3

1







xx ee
xu  

For k=1, 
 
 

       xFxuxu
x

xu 1112

2

2
1

12














, where      xuxuxF 1

2

01 3  

                                         =
   


 


1

2
3

1

2
)

1

2
(

3
2

33

2

2





















xx
x

xxxx ee
e

eeee

x
 

                                         =
   

 
 1
23

1

2

1

92 3233

















xxxxxxx eeeeeee
 

                                          =
 1

36292 5333







xxxxxx eeeeee
 

                                        xu212     = xxx eee 53 3164   

                                                    
 12

3164 53

2







xxx eee
xu   

                                                       .                                  

                                                       . 

Applying inverse transform formulae and by definition 4.1.4.2, we have; 

                                      ......, 2

210

0






 txutxuxutxutxu k

k

k  

                                      = 
 

 
 


3 3 5

22 4 16 3
....

1 2 1

x x x x x
x e e e e e

e t t 

 

  
  

   
                       (81) 
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      In particularly if 1 , (91) becomes: 

                               txu , 
 

 
 


3 3 5

22 4 16 3
....

1 1 2 1

x x x x x
x e e e e e

e t t
  

  
   

 

And, by gamma function property (ii), we have:     !212,!111  ,…….. 

Hence,        txu , =     ....
!2

3164

!1

2 2
533







 t
eee

t
ee

e
xxxxx

x
                                  (82) 

which is also the analytic approximate solutions of the problems (74) and (75) in infinite power 

series. 

Example 4.3.3: Consider one dimensional homogeneous time fractional Cahn-Hilliard equation 

   
   txutxu

x

txu

t

txu
x ,,

,,
sin 3

2

2
2 













,    o                                                              (83) 

Subject to the initial condition,   xxu sin0,                                                                               (84) 

Solution: Applying the reduced differential transform operator RDT on both sides of problems 

(83) and (84), we have:         

















txutxutxu

x
txu

t
xRDT ,,,,sin 3

2

2
2





                      (85) 

And, 

  xtxuRDT sin,                                                                                                                        (86) 

By Corollary 4.1.4.5(i): RDT
   

 
 xu

k

k
x

t

txu
x k 1

22

1

1
sin

,
sin 

























 , by Corollary 

4.1.4.4 (ii): RDT
 

 xu
xx

txu
k2

2

2

2 ,

















, by theorem 4.1.4.1: RDT     xutxu k,  and by 

Corollary 4.1.4.6: RDT     xFtxu k,3                                                                                       (87)                                                                                                             

And, 

RDT[u(x, t)  sinx]   u 0 (x)   sinx                                                                                        (88) 
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Substituting (87) into (85), we get: 

 
 

       xFxuxu
x

xu
k

k
x kkkk 









 2

2

1

2

1

1
sin




                                                              (89) 

Substituting (88) into (89), we get   ......3,2,1, kk xu  

 For K=0, 
 
 

       xFxuxu
x

xux 0002

2

1

2

1

1
sin 








 
 , where   xxu sin0,0  and 

  xxF 3

0 sin   

             
 
 

  xxx
x

xux 3

2

2

1

2 sinsin)(sin
1

1
sin 








 
= x3sin  

And by gamma function  property (iii),   !11   

                                    
 

 xux 1

2

!1

1
sin

 
    = x3sin  

                                                      
 1
sin

1







x
xu  

For k=1, 
 
 

       xFxuxu
x

xux 1112

2

2

2

1

12
sin 













, where      xuxuxF 1

2

01 3  

                                         =
   


 


1

sin
sin3

1

sin
)

1

sin
( 2

2

2



















x
x

xx

x
 

                                         =
     1

sin3

1

sin

1

sin 3







 

xxx
 

                                          =
 1

sin3 3

 

x
 

                                        xux 2

2 12sin     =3sin x3  



36 
  

                                                    
 12

sin3
2






x
xu  

                                                      .                                     

                                                      . 

Applying inverse transform formulae and by definition 4.1.4.2, we have ; 

                                      ......, 2

210

0






 txutxuxutxutxu k

k

k  

                                      = 
 

 
 

 ....
12

sin3

1

sin
sin 2 





 


t

x
t

x
x                                    (90) 

which is the general analytic approximate solutions of the problems (83) and (84) in infinite 

power series. 

In particularly if 1 , (90) becomes: 

                               txu , 
 

 
 

 ....
12

sin3

11

sin
sin 2 





 t

x
t

x
x  

And, gamma function property (ii), we have:     !212,!111  ,…….. 

Hence,        txu , =     ....
!2

sin3

!1

sin
sin 2  t

x
t

x
x                                                          (91) 

                            = 







 ..........

!2

3

!1
1sin

2tt
x  

 which is the analytic approximate solutions of the problems (83) and (84) in infinite power 

series. 
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The 3D plot of the solution for example 4.3.3 in domain x  for ,25.0  5.0 ,  75.0 ,

 1 are shown below. 

 

 

 

 

 

For        For       

 

 

  

For        For     

 

Fig 2: The 3D plot solution for example 4.3.3 when          and                 
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CHAPTER FIVE 

5 CONCLUSION AND FUTURE SCOPE 

In this study, the reduced differential transform method (RDTM) is proposed to solve the exact 

analytic approximate solution of non- linear initial value problems of one dimensional 

homogeneous time fractional Cahn Hilliard equation in sense of Caputo fractional derivatives. 

The reduced and inverse reduced differential transformed function in one dimension for solving 

initial value problems of one dimensional homogeneous time fractional Cahn-Hilliard equation 

are defined. Six mathematical operations (theorems) with some corollaries are used for solving 

exact analytic approximate solutions of one dimensional homogeneous time fractional Cahn-

Hilliard equation subject to the initial condition by using definitions of reduced and inverse 

reduced differential transformed function are given and proved. The procedures of solving exact 

analytic approximate solutions of one dimensional homogeneous time fractional Cahn-Hilliard 

equation subject to the initial condition by reduced differential transform method is newly 

developed and introduced. The solution  are obtained in infinite power series. Thus, we conclude 

that the proposed method is very effective, simple and can be applied to other non -linear partial 

differential equations models in area of Physics and Engineering. My future proposed is applying 

the method used to solve another non-linear time fractional partial differential  equation . 
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