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Abstract 
In this thesis, we present a refinement and second degree iteration of generalized successive over 

relaxation methods for solving large system of linear equations and their convergence properties 

are discussed. 

Some numerical examples are considered to show the efficiency of the proposed methods. The 

present methods are also compared against the other methods based on the number of iterations, 

computational running time and accuracy of each method. The results presented in tables show 

that Refinement and Second Degree Iteration of Generalized Successive Over Relaxation are 

more efficient than the other methods considered in this thesis. 
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CHAPTER ONE 

INTRODUCTION  

1.1 Background of the Study 

The limitations of analytical methods in practical applications are led mathematicians and other 

scientist to evolve numerical methods. It is clear that exact methods often fail in drawing 

reasonable inference from a given set of tabulated data or in finding solutions for different 

equations. There are many more situations where analytical methods are unable to produce 

desirable results. Even if analytical solutions are available, these are not amenable to direct 

numerical interpretations (Goyal, 2007). 

The ultimate aim of numerical analysis is therefore, to provide efficient methods for obtaining 
useful solutions to such problems and extracting useful information from available solutions. 

 Numerical analysis is the branch of mathematics concerned with the theoretical foundation of 

numerical algorithms for the solution of problems arising in scientific applications. The subject 

addresses a variety of questions ranging from the approximation of functions and integrals to the 

approximate solution of algebraic, transcendental, differential and integral equations with 

particular emphasis on the convergence, accuracy, efficiency and reliability of numerical 

algorithms (Lay, 1994).   

A system of linear equations is one of the important topics that studied in numerical analysis. It 

is one of the methods in the field of computational mathematics which plays a vital role in the 

numerical solution of mathematical problems. 

Many practical problems can be reduced to system of linear equations �� = �, where A is 

known non singular matrix, b is known vector and x is unknown vector. This type of equation 

plays a prominent role in finance, industry, economics, engineering, physics, chemistry, 

computer sciences (Iqbal, 2012). 

The system of linear equations can be solved using both direct and iterative methods. The best 

known direct method is Gauss elimination method (Grear., 2011 and Strassen, 1969). Turing 

introduced LU decomposition of a matrix for solving system of linear equations. Choleski 

decomposed the matrix A into the product of lower triangular matrix and their transpose.  
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The Choleski method is more efficient than LU decomposition for solving symmetric and 

positive definite linear system (Burden and Faires, 2006). 

Direct Methods produce new matrices at each step and therefore they are sensitive to rounding 

errors. And they are not efficient in terms of computer storage so these methods are prohibitively 

expensive for large systems. For these reasons, researchers have long since move to iterative 

methods for solving such system of equations. Iterative methods are very efficient when they are 

applied to large and sparse systems of equations that arise in practical problems (Iqbal, 2012). 

The Iterative method is a technique that starts with an initial guess and attempts to solve a 

problem or a solution of a linear system of equation by finding successive approximations to the 

solution.  Iterative methods are suitable for solving linear equations when the number of 

equations in a system is very large, and they are fast and simple to use when the coefficient 

matrix is sparse. That is iterative methods are very much effective regarding the time 

requirements. 

The major factors to be considered in comparing different numerical methods are the accuracy of 

the numerical solutions and its computational time (Bedet et al., 1975). Further it is indicated that 

the comparison of numerical methods is not so simple because their performance may depend on 

the characteristic of the problem at hand (Bedet et al., 1975 and Salkuyeh, 2007). It should also 

be noted that there are other factors to be considered such as stability, proof against run –time 

error, and so on, which are being considered in most of the MATLAB built-in routines 

(Atkinson, 1978). 

Different methods are being used for the solution of system of linear equations. There is no 

single method that is best for all situations. These methods should be determined according to 

sped and accuracy (Saeed, 2008).  

Iterative refinement of system of linear equations is defined as a process by which a first 

computed solution can sometimes be improved to yield a more accurate solution that could be 

continued until the residuals stabilize at or very near to zero. In practice one step of iterative 

refinement usually suffices if iterative refinement fails to stabilize it is likely that meaningful 

solutions cannot be obtained using conventional computing method.  

In this comparison of the indirect methods the criteria considered are, number of iterations, 

computational running time and accuracy of the solution. 
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1.2 Statement of the Problem 

The numerical solution of systems of linear equations enter at some stage in almost all 

applications in many fields of science, engineering and Technology. The increasing of desire for 

the numerical solutions to mathematical problems, which are more difficult or impossible to 

solve explicitly, has become the present- day scientific research. The numerical method used to 

find approximate solution of systems of linear equations has an impressive importance due to its 

wide applications in scientific and engineering researchers. So, iterative method is one of the 

methods used to find approximate solution of system of linear equations. 

Various methods have been introduced to solve systems of linear equations by many authors like 

( Salkuyeh, 2007,Kalambi, 2008, and Kumer  and Genanew, 2011and Kumer 2015).There is no 

single method that is best for all situations. These methods should be determined according to 

speed and accuracy. Speed is an important factor in solving large systems of equations because 

the operation cost involved is very large. Another issue in the accuracy problem for the solution 

rounding off errors involved in executing these computations. Thus the intention of this study is 

to establish a numerical method that approximates the solution of linear system of Equation by 

providing the accuracy and efficiency of the numerical solution. 

Therefore, this research is intended to answer the following basic research   questions: 

1. What are the procedures and techniques that can be followed to develop the methods 

RGSOR and SDGSOR? 

2. To what extent the present methods converge? 

3. To what extent the present methods approximate the exact solution? 

4. What is the advantage of the present methods over the other? 

1.3. Objective of the Study 

1.3.1. General Objective 

The general objective of this study is to present refinement of Generalized successive over 

relaxation and its second degree iteration methods for solving large system of linear equations. 
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1.3.2. Specific Objective 

          The specific objectives of the study are:  

• To describe procedures and techniques followed to develop the RGSOR and SDGSOR 

methods. 

• To establish the convergence of the present methods by means of error analysis. 

• To compare the accuracy of the present methods with exact solutions of system of linear 

equations. 

• To compare the advantage of the present methods over the other. 

1.4. Significance of the Study 

       The outcomes of this work may have the following importance: 

• It provides some background information for other researchers who want to work on 

similar topics. 

• Further, this research would be useful for the graduate program of the department and 

enhances the research skill and scientific communication of the researcher too. 

1.5. Delimitation of the Study 

 This study is delimited to the indirect methods for solving system of linear equations. In 

particular, it is delimited to “Refinement of Generalized Successive Over-relaxation method” and 

“Second Degree Generalized Successive Over-relaxation method” among many other indirect 

schemes for solving system of linear equations 

1.6. Definitions of Basic Operational Terms 

Definition1.6.1 A banded matrix is a square matrix with zeros after “m” elements above and   

below the main diagonal, where m is less than the size of the matrix. i.e if the  matrix is N N×

then m N< .   

Definition 1.6.2 The term “iteration method” refers to a wide range of techniques that use  

successive approximations to obtain more accurate solution to a linear system  at each step by 

beginning with initial approximation, these methods modify the components of the 

approximation, until convergence is achieved. 
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Definition  1.6.3 A matrix A is called sparse if many of its entries are zero. Otherwise, A is called 

dense or full. 

Definition 1.6.4 A matrix A is said to be reducible, if there exists a permutation matrix P such 

that TPAP is a block upper triangular matrix, otherwise it is an irreducible. 

Definition 1.6.5 A matrix A is said to be strictly diagonally dominant (SDD) if  

 
1,

, 1,2,..., .
n

ii ij
j j i

a a i n
= ≠

> =∑  

and is said to be weakly diagonally dominant (WDD) if 

1,

, 1,2,..., .
n

ii ij
j j i

a a i n
= ≠

≥ =∑  

Definition  1.6.6 A matrix A is said to be irreducibly weakly diagonally dominant (IWDD) if A is 
WDD and irreducible.  

Definition 1.6.7.A real matrix A is said to be positive definite or positive real if ( , ) 0Ax x > ,

0, ≠ℜ∈∀ xx N  

Definition1.6.8. Iterative refinement is a process by which a first computed solution can 

sometimes be improved to yield a more accurate solution. 
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CHAPTER TWO 

LITERATURE REVIEW  

The approximate methods for solving system of linear equations makes it possible to obtain the 

values of the roots system with the specified accuracy as the limit of the sequence of some 

vectors. This process of constructing such a sequence is known as iteration. Unlike the direct 

methods, which attempt to calculate an exact solution in a finite number of operations, indirect 

methods start with an initial approximation and generate successively improved approximations 

in an infinite sequence whose limit is the exact solution (Yarlett, 1980). In practical situation, this 

has more advantage because the direct solution will be subject to rounding off errors. A code is 

more efficient if it solves problems in   less CPU times. However, this criterion is problem 

dependent, and hence it is necessary to test efficiency by considering problem (Hull.et al., 1972). 

The efficiency of any method will be judged by two criteria:  

i. How fast it is? That is how many operations are involved?  

ii. How accurate is the computer solution?  

Because of the large amount of computations required to linear equations for large system, the 

need to answer the first question is necessary. The need to answer the second, arise because 

small round off error may cause errors in the computer solution out of all proportions to their 

size. Furthermore because of the large number of operations involved in solving higher order 

system, the potential round off errors could cause substantial loss of accuracy (Kalambi, 2008).   

           (Bedet et al., 1975 and Salkuyeh, 2007) indicated that it is important to note that the evaluation/ 

comparison of numerical methods is not so simple because their performances may depend on 

the characteristic of the problem at hand. It should also be noted that there are other factors to be 

considered such as stability, proof against run-time, error and so on, which are being considered 

in most of the MATLAB built-in routines (Censor, 1981 and Amos, 2015). 

Performance actually depends on several factors the computation time taken for one iteration of 

the algorithm, the time step for one iteration which represents the time discretization required to 

reach a given accuracy or numerical stability for a given method, the desired accuracy of the 

method, the numerical stability of the method which also limits the time step for a given method 

(Volino, and Thalmann, 2000). 
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The direct methods of solving linear equations are known to have their difficulties. For example 

the problem with Gauss elimination system of approach lies in control of the accumulation of 

rounding errors (Turner, 1989). To get rid of these problems many authors like (Kalambi, 2008 

and Rajasekaran, 1992) were encouraged to investigate solutions of linear equations by indirect 

methods. Most researchers dealt with the iterative methods for solving linear systems of 

equations and inequalities for sparse Matrices.  

Various methods have been developed to solve systems of linear equations by many authors.   

There is no single method that is best for all situations. These methods should be determined 

according to their speed and accuracy (Saeed, 2008). 

In this thesis we present two indirect methods namely, Refinement of Generalized Successive 

Over Relaxation schemes and Second Degree Generalized Successive Over Relaxation methods 

for solving large system of linear equations and explain the efficiency of the present methods in 

terms of number of iteration, required time to converge and accuracy of the result. 

2.1. Successive Over Relaxation Method 

The SOR method seems to have appeared in the 1930’s (Southwell, 1946 as cited in Hadjidimos, 

2000). However, formally its theory was established almost simultaneously by Frankel and 

Young’s (Frankel, 1950 and Young, 1950, as cited by Hadjidimos, 2000).  

The Gauss- Seidel iteration was the starting point for the successive over relaxation method 

which dominated much of the literature on Iterative methods for a big part of the second half of 

the 19th century (Saad, 2000). The successive over relaxation method, is devised by applying 

extrapolation to the Gauss- Seidel method. This extrapolation takes the form of a weighted 

average between the previous iterate and the computed Gauss- Seidel iterate successively for 

each component. The idea is to choose a value for optimum relaxation factor that will accelerate 

the rate of convergence of iterates to the solution (Kalambi, 2008). 

According to (Saad, 2000), the blossoming of Successive over relaxation techniques seems to 

have been initiated by the PhD work of David Young. Young introduced important notions such 

as consistent ordering and property A, which he used for formulation of an elegant theory for the 

convergence of these methods. Generalizations of Young’s result to other relevant classes of 

matrices were due to Varga who published his book on matrix iterative analysis in 1962.  
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It covered important notions such as regular splitting a rather a complete theory of Stieljes and 

M-matrices and a treatment of semi-iterative methods including the Chebyshev Semi iterative 

method. 

The accelerated Gauss Seidel method has motivated important developments in the theory of 

matrix linear algebra. In particular relevant properties for M-matrices introduced by Ostrowski 

were uncovered and convergence result for so called regular splitting, introduced by Varga were 

established. A corner stone in the convergence theory was the theorem of Stein-Rosbenberg 

(Stein-Rosbenberg , 1948 as cited by Saad, 2000) which proved relation between the asymptotic  

rate of convergence for the successive over relaxation methods including the Gauss Seidel and 

Gauss Jacobi method. 

Sufficient conditions for convergence of the SOR methods were given by theorem Ostrowski and 

Reich. Lower bounds for the spectral radius of the SOR iteration matrix were derived by Kahan. 

This together provided the basis for a theory for iterative methods published in Varga book from 

which many methods emerged (Saad, 2000).  

2.2. Iterative Refinement  

The technique of iterative refinement for improving the computed solution to a linear system 

were probably first used in a computer program by Wilkinson in 1948, during the design and 

building of the ACE computer at the National Physical Laboratory  (Wilkinson, 1948 as cited by 

Higham, 1997). Iterative refinement has achieved wide use ever since, and is exploited, for 

example, by most of the linear system expert drivers in LAPACK (Anderson  et al. 1995 as cited 

by Higham, 1997). 

The refinement process for a computed solution x to Ax = b, where A is n x n is nonsingular, is 

simple to describe: compute the residualr b Ax= −  solve the system Ad = r for the correction d, 

and form the updated solution y = x + d. If there is not a sufficient improvement in passing from 

x to y the process can be repeated, with x replaced by y (Higham, 1997). 
 

2.3. Refinement of SOR Method 

It is a modification of SOR iterative method which is presented by (Kumar, 2015). It is an 

iterative method used to solve system of linear equations. It solves a matrix whose main diagonal 

elements are non zero and row strictly diagonally dominant. Proceeding with the SOR method 
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and supposing that the equations are examined in a sequence and also the previously computed 

results are used as soon as they are available, we get the Refinement of SOR method. We start 

with an initial approximation and substitute the solution in the given equation. We shall use the 

most recent value in this method. The iteration process is to be continued until the relative error 

is less than the pre-specified tolerance. If A is a row strictly diagonally dominant matrix, then the 

SOR method converges for any arbitrary choice of the initial approximation. Accordingly, the 

refinement of SOR method converges faster than the SOR method when SOR method is 

convergent. 

2.4. Generalized SOR Method 

(Salkuyeh, 2007) introduced generalized SOR method which is more efficient than conventional 

SOR method. Like SOR method, it is also an iterative method used for the solution of linear 

system of equations. If the matrix is symmetric positive definite the method is much faster than 

conventional SOR iterative method and it is fast and simple to use when the coefficient matrix is 

sparse as well as accuracy is developed in every iteration that is  continue the iteration process 

until the relative error is less than pre specified error of tolerance. 
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CHAPTER THREE 

METHODOLOGY  

3.1. Study Area and Period 

The study has been conducted at Jimma University College of Natural sciences Department of 

Mathematics in 2015/2016 Academic year. 

3.2. Source of Information 

The data has been collected from the relevant source of information to achieve the objective of 

the study and experimental results obtained by using MATLAB software to validate the present 

methods. 

3.3. Study Design 

This study employed mixed-design (documentary review design and experimental design) for 

solving system of linear equations. Since the methods are coded and run using MATLAB 

software by properly inserting the problems so that numerical results are automatically 

generated. All algorithms have been made in the same condition, which use the same processor, 

having the same memory size, the same operating system, and using the same problems. The 

processor used is Intel(R) core (TM) i3-31110M CPU @240GHZ 2.40GHZ with 4GM memory 

(RAM),with 64 bits operating system (Window 7 home premium). The language program used is 

MATLAB version 7.60(R2008a)  

Two major programs (code) have been written to solve system of linear equations using RGSOR 

and SDGSOR methods. The code contains equation definition line, input arguments, commands 

(equation body), and output arguments which are written in the script file of MATLAB. The 

equation definition line contains type of numerical method, equation, left hand equation and right 

hand column vector, initial value and number of steps. The input arguments are written in order 

to insert the values after the code are saved and debugged using MATLAB.  

In the equation body the formula for column vector, the formula for methods, formula for 

iteration number and formula for run time have been coded. In the output argument approximate 

notation of the out puts such as the iteration number (k in our case), the corresponding numerical 
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value of the determined column vector (in our case y), exact values (in our case x), error (in our 

case e) and the elapsed time (t) have been written. 

3.4. Study Procedures 

Important materials and data for the study have been collected using documentary analysis as an 

instrument. In order to achieve the intended objectives the study follows the following 

mathematical steps. 

• Step 1, write the system of equations �� = � in the form  of 

 m m mA T E F= + +      

 where ( )ijA a= is an n n×  non singular matrix , ( )m ijT t= is a banded matrix with band length of  2m+1 

where m is less than the size of the matrix.mE and mF are strictly lower and strictly upper triangular 

parts of mA T−     respectively.                     

• Step 2. Deriving Iterative refinement formula for GSOR and SDGSOR. 

• Step 3. Proving the convergence of the proposed method. 

• Step 4. Validating the proposed method using numerical examples 

• Step 5. Writing MATLAB code to compare the numerical examples in step2 to determine 

the efficiency of the method.     

3.5. Ethical Consideration 

The researcher takes care of ethical considerations through official letter support from the 

department.  
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CHAPTER FOUR 

DESCRIPTION OF METHODS, NUMERICAL RESULTS AND DISCU SSIONS 

4.1 Description of the RGSOR Method 

Consider a system of linear equations 

                                                  Ax b=             (4.1) 

where, A is an ��� nonsingular coefficient matrix, b is a column vector andx  is solution vectors 

to be determined . 

Based on splitting of the matrix A (Young, 1971) as 

                  A D L U= + +                                (4.2)                             

where, D is the diagonal matrix of order n ( 0, )ija i j= ≠  and L and U are strictly lower and 

upper triangular matrix of order n with zero diagonal entries, respectively.  

The Jacobi and Gauss Seidel methods for solving Eq. (4.1) are defined as 

 ( ) ( ) ( )1( 1) 1kkx D L U x D b
−+ −= − + +  

 ( ) ( )1( 1) 1( )kkx D L Ux D L b
−+ −= − + + +  

To obtain successive over relaxation method multiply both sides of the equation Eq. (4.1) by,ω  

whereω  is optimum relaxation parameter, as (Salkuyeh, 2007) 

 .Ax bω ω=  

Then the coefficient matrix Aω is decomposed in the form 

 ( )D L U x bω ω+ + =  

 ( ) ( )( ){ }1D L D U x bω ω ω ω+ − − − =  

 ( ) ( )( )1D L x D U x bω ω ω ω+ = − − +  

 ( ) ( )( ) ( )1 1
1x D L D U x D L bω ω ω ω ω− −= + − − + +
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Then the iterative method of SOR method for solution of Eq. (4.1) is defined as (Young, 1971) 

 ( ) ( )( ) ( )1 11 1k kx D L D U x D L bω ω ω ω ω− −+ = + − − + +  

 1k k
SORx B x C+ = +    (4.3) 

where ( ) ( )( )1
1SORB D L D Uω ω ω−= + − −   is the iteration matrix for the SOR method and

( ) 1
C D L bω ω −= +  is the corresponding column vector. 

To solve Eq. (4.1) we have given nonsingular matrixA  and a known vector b, the problem is to 

find the unknown vectorx , we start with an initial approximation  ( )0x  to the exact solution x and 

produces a sequence of approximation { }
0

k

k
x

∞

=
that converges tox . Based on Eq. (4.2) iterative 

methods for solving Eq. (4.1)   can be written in the form 

 x Bx C= +                   (4.4) 

for some n n×   iteration matrix B that  depends on A, and C is a column vector, where the 

iteration matrix B and a column vector represent different values in different methods .The 

sequence of approximate solution vector is generated by computing 

 ( 1) ( )k kx Bx C+ = +    where 0,1,2,k = …      (4.5) 

  

( )1 ( )K Kx and x+ are approximate for x  at  ( ) thth kandk 1+ iteration  respectively  in the  

limiting case when ∞→k , ( )Kx  convergences to  the exact solution which is given by  

 1x A b−=   (4.6) 
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Generalized Successive Over-Relaxation Method (GSOR) 

Consider the linear system of Eq. (4.1) and splitting made by (Salkuyeh, 2007) as 

 m m mA T E F= + +     (4.7) 

where  ( )i jA a= is an �	�	� non singular matrix and  ( )m i jT t=  is a banded matrix with band 

length 2m+1 is defined as follows. 

 
 ,

 
0,

i j j i m

i j
otherwise

a
t

− ≤= 
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where mE  and mF  are strictly lower and strictly upper triangular parts of  mA T− respectively and 

they are defined as follows 

    

11 1, 1

1,1 ,

, ,

m

m n m nm

n n m n n

a a

a aT

a a

+

+ −

−

… 
 
 
 =
 
 
 … 

⋱

⋮ ⋱ ⋱

⋱ ⋱

⋱ ⋮

 

  2,1

,1 1,

m m

n n m n

E a

a a

+

− −

 
 
 
 

=  
 
 
 

…  

⋮ ⋱

                   

1, 2 1,

, 1

m n

n n mm

a

F

a

a

+

− −

 
 
 
 =


…


 
  

⋱ ⋮

 

Then the generalized successive over relaxation method for solving Eq. (4.1) is given by 
(Salkuyeh, 2007) as  

 ( ) ( )( )1( 1) (k) 1
m m m m1 T ωF x (T ωE ) ωbk

m mT Ex ω ω−+ −= − − + ++     (4.8) 

 1k k
GS R sOx B x C+ = +   , where 0,1,2,...k =  

                                          ( ) ( )( )1

m m1 T ωFm mGSOR EB T ωω −= − −+                                  (4.9) 

Eq. (4.9) is the generalized successive over relaxation iteration matrix and  

 1
m m(T ωE ) ωbsC −= +                                                     (4.10) 
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its iteration vector. 

Refinement of Generalized Successive Over Relaxation in Matrix form 

Putting Eq. (4.7) in to Eq. (4.1), we get 

 ( )m m m xE bT F+ + =  

Multiplying both sides by		� we obtain 

( )m m m bE xT Fω ω+ + =  

( ) ( )( )1m m m mT E T F x bω ω ω ω + − − − =   

( ) ( )( )1m m m mT E x T F x bω ω ω ω+ = − − +  

( ) ( ) ( )( )1m m m m mT E x T T E A x bω ω ω ω+ = − + + − +  

( ) ( ) ( )( ) ( )1m m m m mT E x T T E x b Axω ω ω ω+ = − + + + −  

( ) ( ) ( )( ) ( ) ( )1 1
1m m m m m m mx T E T T E x T E b Axω ω ω ω ω− −= + − + + + + −

 

( ) ( ) ( ) ( )1 1

m m m m m m m mx T E T T T E x T E b Axω ω ω ω ω ω− −= + +− ++ −+
 

( ) ( ) ( ) ( )1 1

m m m m m mx T E T E x T E b Axω ω ω ω− −= + + + −+
 

( ) ( )1

m mx x T E b Axω ω−= + + −  

Now the Refinement of generalized successive over Relaxation is defined as  

( ) ( )1( 1) ( 1)( 1) k k
m m

k x T E bx Axω ω−+ ++ = + + −     (4.11) 

where ( 1)kx +  appeared in the right side is of Eq. (4.8). Substituting Eq. (4.8) in to Eq. (4.11) we 

obtain:   
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( ) ( )( ) ( ) ( ) ( )1 1 1(k)( 1 (
m

) 1)
m m m1 ωF x ωE ωbk

m m
k

m mT Tx T E T E b Axωω ω ω− − − ++ = − − ++ + + + −

( ) ( )1 1( (k) ( 1)
m

)
m

1 x 2 ωE ωb k
GSOR m m

k B T E Ax T xω ω− − ++ = + + − +  

( ) ( ) ( )1 1(k) ( 1)
m m

( 1) x 2 ωE ωb k
GSOR m m m

k
m mB T E Fx T T E xω ω− − ++ = + + − + + +  

 ( ) ( ) ( )1 1(k) ( 1)
m m

( 1) 2 ωE ωb k
GSOR m m

k
m m m m mB T E T Ex F T T xx T ω ω ω ω+ − − += + + − + + + + −  

 ( ) ( )1 1(k) ( 1)
m m m

( 1) 2 ωE ωb ( ((1 ) ) kk
GSOR m m m m mB T E T E TT Fx x xω ω ω ω− − ++ = + + − + + − − −

 

( ) ( )1(k) (1) 1
m m

( )2 ωE ωb k
GSOR GSO

k
Rx xB I B xT

− ++ = + + − −
     

 (4.12) 

Similarly substituting the right side ( 1)kx + of Eq. (4.12) by Eq. (4.8) we obtain: 

        ( ) ( ) ( )( )1 1(k) (k( 1) )2 ωE ωb ωE ωbGSOR GSOR GSOm m m mR
kx x T x TB I B B

− −+ = + + − − + +
 

( ) ( ) ( ) ( )1 2 1 1(k) (k) (k)
m m m

( 1
m

)
m m2 ωE ωb ωE ωb ωE ωbGSOR GSOR GSOR GS R

k
OB T B Bx Tx Tx Bx

− − −+ = + + − + − + + +
 

( ) ( ) ( )1 2 1(k) (k) (k)
m

( 1)
m m mT ωE ωb T ωE ωbGSOR GSOR GSOR GSOR

k B B B Bx x x x
−+ −= + + − + − +  

( ) ( )( )2 1(k)1
m m

( ) ωE ωbGSOR GSOR
k B I TBx x+ −= + + +  

( 1 (k))
sRGS

k
OR CxBx + = +   (4.13) 

where  ( ) ( )( )
212

m m( ) 1 T ωFRGSOR R mGSO mT EB B ω ω− = = + − −
 

        (4.14) 

Eq. (4.14) is the iteration matrix of refinement Generalized Successive over relaxation method 

and 

 ( ) ( )( )( )1

m mT ωE ωbs GSORC I B
−= + +                               (4.15) 

Eq. (4.15) is its corresponding column vector. 
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Error Analysis for Refinement of Generalized Successive Over Relaxation  

Let consider Eq. (4.1) and the splitting of A in Eq. (4.7), such that  

x Bx C= +  and the iteration ( ) ( 1)k kx Bx C−= +  

The error at the thk iteration is k ke x x= − and the iteration matrix of RGSOR is given as  

( ) ( )( )
21

m m1 T ωFRGSOR m mB T E ωω − −+ = −
 

 , then the error ke satisfies 

 ( ) ( )( ) ( )( )
21 1( ) ( ) ( 1)

m m m m m mT ωE 1 ωF T ωE ωbk k k
GSORe x x T x I B xω− −− = − = + − − + + + −

 
 

But we have x Bx C= +  

 ( ) ( )( ) ( )( )
21 1

m m m m m mT ωE 1 ωF ωE ωbGSORx T x I TBω− − = + − − + + +
 

 

So   

( ) ( )( ) ( )( )

( ) ( )( ) ( )( ){ }
21 1( ) ( 1)

m m m m m m

21 1

m m m m m m

T ωE 1 T ωF T ωE ωb 

T ωE 1 T ωF T ωE ωb

k k
GSOR

GSOR

e x I B

I B

ω

ω

− −−

− −

 = + − − + + +
 

− + − − +


+


+
 

     ( ) ( )( ) ( )
21( ) ( 1)

m m1 T ωFm m
k ke xE xT ωω − − = − − −

 
+  

                 ( )2( ) ( 1).k k
GSORe B e −=  which implies that it is second order convergent method. 

Since ( )
( )

2

( 1)
lim

k

GSORkk

e
B

e −→∞
= which is quadratic convergence.  
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4.2 Conditions for Convergence of the Method 

Theorem 4.1: The SOR iteration method converge for any initial approximation if � lies inside 

side the interval (0, 2). 

Proof:-  The proof is similar to Varga , 1999  

 Recall that the SOR iteration matrixSORB  is given by  

( ) ( )( )1
1SORB D L D Uω ω ω−= + − −

   
where ,     ijA a D L U = = + +   

The matrix ( ) 1
D Lω −+  is lower triangular matrix with 

1
, 1,2, ,

ii

i n
a

= … as diagonal entries and 

the matrix  ( )( )1 D Uω ω− −  is an upper triangular matrix with ( )1 iiaω−  , 1,2, ,i n= … as 

diagonal entries.  

Therefore, ( ) ( )det 1
n

SORB ω= − . Since the determinant of the matrix is equal to the product of its 

eigenvalues. We conclude that( ) 1SORBρ ω≥ − , where ( )SORBρ  is the spectral radius ofSORB . 

Since the spectral radius of the iteration matrix should be less than1, for convergence, we 

conclude that0 2ω< <  is the required for convergence of the SOR method.         

Theorem 4.2:   Let �	 and  mT be symmetric positive definite matrices. Then for every 

0 2ω< <  the RGSOR method converges with any initial guess  �
 . 

Proof:- The proof similar to the method SOR given by (Xiao-Qing and Yi-Min WEI, 2008).  

The iteration matrix of RGSOR is given by  ( ) ( )( )
21

m m1 ωFO mGS R mR T EB Tωω − −+ = −
 

 

Let � be an eigenvalue of the iteration matrix of RGSOR and � be the corresponding 

eigenvectors. Then we have  

RGSORB x xλ=  

                               ( ) ( )( )
21

m m1 ωFm mE T x xT ω ω λ− ⇒ − − =
 

+  

                              ( )( ) ( )( )
2 21

m m1 ωFm mT E T xω λω − − − =⇒ +  
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                              ( )( ) ( )2 2

m m1 T ωF m mT E xω λ ω− − = +⇒  

( )( ) ( )2 2

m1 T ωET
m m mT E xω λ ω⇒ − − = + , ( T

m mF E=   as A is symmetric) 

Let *x  be the conjugate transpose of  � , then we have 

( ) ( )( ) ( ) ( )2 2 2 2* *
m1 T ωET

m m mx x x T E xω λ ω− − = +  , (multiplying both sides by( )2*x ) 

( )( ) ( )2 2
* *

m1 T ωE ( )T
m m mx x x T E xω λ ω − − = +

  
   (multiplying both sides by  �) 

Let  *
mT δx x =  and *

mE α iβxx = +   Then, 

( )** *x α iβT
m m mx E x E x x E x= = = −     (Since ( )T T TA B BA=  and ( )A A

∗∗ = ) 

we then have:     

( ) ( ) ( )2 2
1 α iβ α iβω δ ω λ δ ω − − − = + +   .  

Taking the Modulus on both sides we get  

( )( ) ( )
2 22 22 2 2 2 21 ω δ ωα ω β λ δ ωα ω β− − + = +   

    
+  

and solving for  � we get  

 
( )( )

( )

22 2 2

2

22 2 2

1 ω δ ωα ω β
λ

δ ωα ω β

 − −  



+

+ + 
 

=                                   (4.16)  

On the other hand   ( ) ( ) ( )0 2m m mx Ax x T E F x i iδ α β α β δ α∗ ∗≤ = + + = + + + − = +      

Note that  

 ( )( ) ( ) ( )( ) ( )2 22 22 2 2 21 1ω δ ωα ω β δ ωα ω β ω δ ωα δ ωα − − + − + + = − − − +
 
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( ) ( ) ( )( ) ( )1 1ω δ ωα δ ωα ω δ ωα δ ωα= − − + + − − − +  , (the difference of two squares) 

                                = ( )( )2 2δ ωδ ωδ ωα− − −  

                                =  ( )( )2 2ωδ ω δ α− +  

Since A is symmetric positive definite, we have,  0 δ >  and 2 0 δ α+ >  

 If 0 2ω< <  we have  ( )( ) ( )2 22 2 2 21 ω δ ωα ω β δ ωα ω β− − − < + −
 

Using the relation 2 2 provided that and are positive,a b a b a b< ⇒ < we obtain: 

( )( ) ( )
2 22 22 2 2 21 ω δ ωα ω β δ ωα ω β 

 
 − −


− +


< −
 

                  (4.17) 

Thus from Eqs. (4.16) and (4.17) for 0 2ω< < we obtain 

 
( )( )

( )

22 2 2

2

22 2 2

1
1

ω δ ωα ω β

δ α β
λ

ω ω

 
  

 


− −

+ −


−
= <  

Therefore the RGSOR method converges. 

Theorem 4.3: Let 0 1ω< ≤ . Let  A be an IWDD matrix and mT  be irreducible. Then the GSOR 

method is convergent for every initial guessox . 

Proof:- See, ( Davod Salkuyeh,  2007). 

Theorem 4.4: Let A be an IWDD matrix and mT  be irreducible. Let also 0 1ω< ≤ . Then the 

associated RGSOR method converges for every initial guess ox .  

Proof:-  Let � be the exact solution of and ( 1)kx +  be the ( 1)thk +  approximation to the solution of 

Eq. (4.1) by method of Eq. (4.13). Then the GSOR method is convergent as proved by Salkuyeh 

2007.  
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If  ( )( 1)kx x+ − , then 

                                 =  ( ) ( )1( 1) (( ) 1)1( ) k k
m

k
mx x T E b Ax x xω ω−+ ++ − = + + − −  

 ( ) ( ) ( )1( 1) ( 1)k k
m mx x T E b Axω ω−+ += − + + −  

 ( ) ( ) ( )1( 1) ( 1)k k
m mx x T E b Axω ω−+ +≤ − + + −  

From the fact that ( 1)( ) 0kx x+ − →   we have   ( )( 1) 0kb Ax +− →  

Therefore  ( 1) 0k xx + − →  

Hence the Refinement of Generalized Successive Over Relaxation method is convergent.   

4.3. Description of Second Degree Generalized Successive Over Relaxation Method  

 

Let consider the linear stationary first degree iteration method defined by (Young, 1971) as 

 ( 1) ( )
1

k kx G x C+ = +              (4.18) 

Where, �
 is an iteration matrix of the iterative method and � is the corresponding column 

vector. Moreover (Young, 1971) defined the linear stationary second degree method as 

 ( ) ( )( ) ( ) ( )( )1 1( 1) ( ) k k k kk kx x d x x e x x− ++ = + − + −
   

(4.19) 

where ( 1)kx + appearing in the right hand side of Eq. (4.19) is substituted by ( 1)kx + in Eq.(4.18) 

which is completely consistent for any constantd and e such that � ≠ 0. 

 ( ) ( )( ) ( )( )1( 1) ( ) ( )
1

k k kk k kx x d x x e G x C x−+ = + − + + −
 

 ( )( 1) ( ) ( 1) ( ) ( )
1

kk k k k kx x dx ex eG x eC ex+ −= + − + + −  

 ( ) ( )( 1) ( 1)
11 kk kx d e I eG x dx eC+ − = + − + − +   
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 ( )( 1) ( 1)kk kx Gx Hx l+ −= + +                                               

                                    where ( ) 11G d e I eG= + − +          

 H dI= −   

 l eC=       

The second degree generalized SOR iteration method is defined by (Young, 1971) as 

 ( )( 1) ( 1)kk kx Gx Hx l+ −= + +         (4.20) 

                       where   ( )1 sG d e I eG= + − +         (4.21) 

 H dI= −       (4.22) 

 sl eC=        (4.23) 

sG
 
is the iteration matrix of generalized successive over relaxation iterative method and 

 sC  is its corresponding column vector. 

(i.e  ( ) ( )( )1

m m1 T ωFs GSOR m mT EG B ω ω−+= = − −  and ( ) 1

m mT ωE ωbsC
−= + ) 

Using the idea of (Golub and Varga, 1961) Eq. (4.20) can be written in the form  

 
( ) ( 1)

( 1) ( )

0 0k k

k k

Ix x

H G lx x

−

+

      
= +      
      

 

The necessary and sufficient conditions for convergence of the method is that the spectral radius 

of �� must be less than unity in magnitude for any (0)x and (1)x   .  

where  �
0

G
G

I

H

 
= 
 

 is the second degree iteration matrix. 
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����� < 1 if and only if ( )2det 0I G Hλ λ− − =     are less than unity in modulus           

  ( )2det 0I G Hλ λ− − =         (4.24) 

Substituting Eqs. (4.21), (4.22) and (4.23) in to Eq. (4.24) we have  

 ( )( )2det 1 0sI d e I eG dIλ λ  − + − + + =   

 
21 ( )

det I 0s

d e d I
e G

e e

λλ
λ

  + − + − + − =        
 

( ) ( )2
1

det I 0s

d Id e
e det G

e e

λ
λ

λ

 ++ −  − × + − = 
   

, since, ( ( )det AB detA detB= × ) 

21
det 0s

d e d
G I I

e e

λ
λ

  + − + + − =        
           (4.25) 

 ( ( )det 0eλ− ≠ , since it is a non zero 1by 1 matrix)    

If  µ  is the eigenvalue of  �� we have the relation (Manteufeel, 1981, Tesfaye, 2014 and Young, 

1971) 

21 d e d

e e

λµ
λ

 + − + + =   
   

          (4.26) 

i.e for each eigenvalues 1, 2, ,, Nµ µ µ…   of  sG  iλ  are the roots of Eq. (4.26) with  iµ µ=  

As discussed in (Manteufeel, 1981 Tesfaye, 2014  and Young, 1971) if we let 

 ire θλ =               (4.27) 

Substituting Eq. (4.27) into Eq. (4.26) 

 
( ) ( )

( )

2 2
1

i

i

re d rcos irsin dd e

e ere er cos isin

θ

θ

θ θ
µ

θ θ
+ + ++ −+ = =

+
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After simplifying and collecting like terms we get:  

 
2 21

cos sin
e d r d r d

i
e er er

µ θ θ   − − + −= + +   
   

       (4.28) 

From (4.28) we have: 

( )
21

Re cos
e d r d

e er
µ θ − − += +  

 
  and ( )

2

sin
r d

Im
er

µ θ −=  
 

 

 

From ( )Re µ we get: 

  ( )
21

Re cos
d e r d

e er
µ θ + − ++ =  

 
 

Solving for cosθ  we have:  
( )

2

1
Re

cos

d e

e
r d

er

µ
θ

+ −+
=

 +
 
 

 

 ( )
( )

2

2

2

1
Re

cos

d e

e
r d

er

µ
θ

 + − +
 =
  +
   

  

                                                    (4.29) 

Similarly, from ( )
2

sin
r d

Im
er

µ θ
 −=  
 

  we have: 
( )

2
sin

Im

r d
er

µ
θ =

 −
 
 

 and 

                                          

 ( ) ( )
2

2

2sin
Im

r d

er

µ
θ

 
 

=  
− 

 
 

     (4.30) 

Adding Eqs. (4.29) and (4.30), we obtain 
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( ) ( )

2 2

2 2

1
Re

1

d e
Ime

r d r d

er er

µ µ
 
 
 
 
 

 + −+  
+ = 

+ − 
 
  

             (Since 2 2sin cos 1θ θ+ = ) (4.31) 

From the analysis of ( Frankel, 1950 as cited by Young1972 ), that if � is real and varies over the 

range, 1α µ β≤ ≤ < then the choice of � and � which minimizes the spectral radius of  �G  is 

given by 

             ˆ 1bd ω= −         
ˆ2

2 ( )
be

ω
β α

=
− +

     (4.32) 

  Where     ( )2

2
ˆ

1 (1 )
bω

σ
=

+ −
      

( )
( )( )2

β α
σ

β α
−

=
− +

                  (4.33) 

The corresponding values of the spectral radius of  �� is 

                                  

 1/2ˆ ˆ( ) 1bG dρ ω= = −    (4.34) 

Thus with this choice of  � and � we have  

 ( ) ( )
( )

2
ˆ1

2 ( ) 2
s

s b

IG
G d e I eG

β α
ω

β α β α
 +

= + − + = −  − + − + 
 

 ( )ˆ1 bH dI Iω= − = −  

 ( )
ˆ2

2
b s

s

C
l eC

ω
β α

= =
− +

 

Hence Eq. (4.20) becomes  

 
( )

( ) ( ) ( )

( )
1( 1) ( ) ˆ2 2

ˆ ˆ1
2 ( ) 2 2

kk ks b s
b b

IG C
x x x

β α ωω ω
β α β α β α

−+  +
= − + − +  − + − + − + 

    (4.35) 

 �� = ����� is the iteration matrix of GSOR and  �� is its corresponding vector.  

 ( ) ( )( )1

m m1 T ωFs GSOR m mT EG B ω ω−+= = − −  
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 ( ) 1

m mT ωE bsC ω −= +  

According to (David R. Kincaid, 1994 and Young’s, 1971) if A is symmetric positive definite 

matrix then � has real non negative eigenvalues and we can apply the second degree iterative 

method using 0α = and β µ= . 

 ( )2 2

β ασ
β

µ
α µ

−= =
− + −

 

   

where µ is the spectral radius of the Generalized SOR iteration matrix. 

                             

              

( ) ( )
( )2

2 2 2 2
ˆ

2 2 1 1 1
b

µ µ
ω

µ µ µ

− −
= =

− + − + −
     (4.36) 

              

( )
( )

( ) ( )
( )

2

2 2

2 2 1 12 2
ˆ 1 1

1 1 1 1
bd ω

µ µµ

µ µ

− − + −−
= − = − =

+ − + −
 

                              

 
( )2

2 2 1 2 2 1

2 2 11 1

µ µ µ µ
µ µµ

 
 − − − − + − =    − + − + −  

 

   ,  (Rationalizing the numerator) 

( ) ( )
( ) ( )

22

4

2

4

2 2 1

1 1 1 1

µ µ µ

µ µ

− − −
=

+ − + −
  , (by the difference of two squares) 

Thus,              
( )

2

4

1 1
d

µ

µ
=

+ −
          (4.37) 

From (4.32), we have 

( ) ( ) ( ) ( )2 2

ˆ ˆ2 2 2 2(2 ) 4

2 2 1 1 1 1

b be
µ

µ µ

σω ω
α α µβ β

 
− = = = = − − + −  + − + −

 

   (4.38) 
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�

( ) ( )
1
2

4

2

2
ˆ( ) 1

1 1 1 1
bG d

µ µρ ω
µ µ

= = − = =
+ − + −

     (4.39) 

Therefore the second degree generalized SOR is given by 

 (1) (0)
s sx G x C= +  

 ( )
( )

( ) ( ) ( )

( )
1( 1) ( ) ˆ2 2

ˆ ˆ1
2 2 2

kk kGSOR b s
b b

IB C
x x x

β α ωω ω
β α β α β α

−+  +
= − + − +  − + − + − + 

  (4.40)  

Substituting for  	!��	" we get ( )& 0β µ α= =  

 ( ) ( )1( 1) ( ) ˆ2 2
ˆ ˆ1

2 2 2
kk kGSOR b s

b b

B CI
x x x

µ
µ µ

ωω ω
µ

−+  
= − + − + − − − 

 

 ( ) ( ) ( ) ( ) ( ) ( )( )1( 1) ( )2 2 1 ˆ
2

ˆ

2

ˆ k k k kk k
GSOR

b b
bsx B x C x x x x

ω ω µ ω
µ µ

−+  
= + − + − + − − − 

 

 ( )( ) ( ) ( ) ( ) ( )( )1( 1) ˆ ˆ
2 ˆ2 1 1

2 2
k k k kk

GSOR s
b b

bx B x C x x x
ω ω µ ω

µ µ
−+  

= + + − + − − − − 
 

where                         
( )2

4 2
ˆ

1 1
b

µω
µ

−=
+ −

 

 ( ) ( )( )1

m m1 T ωFm mGSOR EB T ωω −= − −+  

 ( ) 1

s m mC T ωE ωb
−= +  
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4.4. Numerical Examples 

To illustrate the feasibility and efficiency of the present methods when employed to solve system 

of linear equations, we used two systems of linear equations one dense and the other sparse. We 

also compared the performance of RGSOR and SDGSOR with other methods based on  the 

number of iteration, accuracy and the computational running times.  These examples are chosen 

because they have been widely discussed in the literature and their exact solutions are available 

for comparison. 

Example1. Consider the system of linear equations considered by (Noreen, 2012) 

 

1 2 3

1 2 4

1 3 4

2 3 4

4 0.5

4 1.3

4 1

4 1.8

x x x

x x x

x x x

x x x

− − =
− + − =
− + − =

− − + =

 

Example2. Consider the system of linear equations considered by (Noreen, 2012) 
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=−+−−
=−+−
=−+−−
=−−+−−
=−−+−
=−+−
=−−+−
=−−
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4.5. Numerical Experiments 

4.5.1 Experimental Results for the RGSOR 
 

The efficiency, computational running time, and accuracy of the RGSOR have been compared 

with SOR, GSOR, and RSOR, and results are given in Tables 1 through 5.  

Table 1: Comparison of Numerical Test for System of Linear Equations of Example 1 
(using SOR, GSOR, RSOR & RGSOR) 
 

Iterative 

Method 

Number 

Of 

Iteration 

Exact solution 

(x) 

Numerical Solution 

(y) 

Errors 

(e=x-y) 

CPU 

time in 

second 

 

SOR 

ω =1.09 

 

 

8 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4124999733216189 

0.6124999908348020 

0.5374999911576524 

0.7374999955084681 

2.667838105985254e-08 

9.165197822902371e-09 

8.842347520854332e-09 

4.491531702122131e-09 

 

 

0.002923 

 

GSOR 

ω = 1.035 

 

 

6 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4125000132749550 

0.6125000144505559 

0.5375000023448290 

0.7375000021865872 

-1.327495502412290e-08 

-1.445055608506607e-08 

-2.344829108658075e-09 

-2.186587355623715e-09 

 

0.003171 

 

RSOR 

ω =1.09 

 

5 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4124999996279540 

0.6124999999433065 

0.5374999999459216 

0.7374999999872161 

3.720459496037165e-10 

5.669331670787869e-11 

5.407829739567660e-11 

1.278377403934883e-11 

 

0.002642 

 

RGSOR 

ω =1.03 

 

4 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4124999999871906 

0.6124999999866999 

0.5374999999979344 

0.7374999999979814 

1.280942019121767e-11 

1.329991672349706e-11 

2.065458915012641e-12 

2.018385458768535e-12 

 

0.001512 
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Table 2 Number of Iteration for each Method for an Accuracy Varying form 0.5 x10-6 to  
0.5x10-15  for System of Linear Equations of Example 1 
 

Iterative 

Method 

Number of iteration taken for getting the solution for an error less than 

10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 

SOR 7 8 9 10 11 12 12 14 15 16 17 

RSOR 4 5 5 6 6 7 7 8 8 9 9 

GSOR 5 6 7 8 8 9 9 11 11 12 13 

RGSOR 4 4 4 5 5 5 6 6 6 7 7 

 

 

Table 3 Comparison of Numerical Test for System of Linear Equations of Example 2 (using 
SOR & GSOR) 
 

Iterative 

Method 

Number 

Of 

Iteration 

Exact solution 

(x) 

Numerical Solution 

(y) 

Errors 

(e=x-y) 

CPU time 

in second 

 
 
 
 

SOR 
ω =1.19 

 
 
 
 
 

10 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317768359363765 

0.4692321726778542 

0.3317767943344221 

0.1508750428272987 

0.2133750152486913 

0.1508750032604461 

0.05834821007760948 

0.08251785702790632 

0.05834821422645566 

-5.022209081939622e-08 

-2.982071134471909e-08 

-8.620136437986758e-09 

-4.282729873517077e-08 

-1.524869128188833e-08 

-3.260446107544723e-09 

4.208104815994762e-09 

1.149508405129396e-10 

5.925861884525929e-11 

 

 

 

0.004272 

GSOR 

ω =1.09 
8 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767793618265 

0.4692321338733815 

0.3317767793618265 

0.1508749976810884 

0.2133749967205469 

0.1508749976810884 

0.05834821377399961 

0.08251785641917157 

0.05834821377399960 

6.352459169800540e-09 

8.983761345948693e-09 

6.352459225311691e-09 

2.318911562770865e-09 

3.279453070215155e-09 

2.318911590526440e-09 

5.117146845146081e-10 

7.236855836811884e-10 

5.117146845146081e-10 

 

0.004580 
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Table 4 Comparison of Numerical Test for System of Linear Equations of Example 2 (using 
RSOR& RGSOR) 
 

Iterative 

Method 

Number 

Of 

Iteration 

Exact solution 

(x) 

Numerical Solution 

(y) 

Errors 

(e=x-y) 

CPU 

time in 

seconds 

 

 

RSOR 

ω =1.19 

 

6 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767845407915 

0.4692321415488724 

0.3317767849770751 

0.1508749997562597 

0.2133749994686667 

0.1508749996795315 

0.05834821410038821 

0.08251785688944602 

0.0583482141564517 

1.173494190709334e-09 

1.308270380917520e-09 

7.372105703673526e-10 

2.437403334720756e-10 

5.313332829270934e-10 

3.204685128377349e-10 

1.853260878093010e-10 

2.534111392948901e-10 

1.292625798066105e-10 

 

0.003237 

 

RGSOR 

ω =1.09 

5 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767856757489 

0.4692321428026435 

0.3317767856757490 

0.1508749999875549 

0.2133749999824001 

0.1508749999875549 

0.05834821428307849 

0.08251785713912956 

0.08251785713912956 

3.853678487431012e-11 

5.449929396661446e-11 

3.853667385200765e-11 

1.244512826126254e-11 

1.759983825344591e-11 

1.244512826126254e-11 

2.635801299444296e-12 

3.727601560754579e-12 

2.635794360550392e-12 

 

0.002483 

 

 

Table 5 Number of Iteration for each Method for an Accuracy Varying form 0.5 x10-6 to 
0.5x10-15 for System of Linear Equations of Example 2 
 

Iterative 

Method 

Number of iteration taken for getting the solution for an error less than 

10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 

SOR 9 10 12 13 14 16 17 18 20 22 23 

RSOR 5 6 7 7 8 9 9 10 11 12 12 

GSOR 7 8 9 10 11 12 12 13 14 14 16 

RGSOR 4 5 5 6 6 7 7 7 8 8 9 
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4.5.2 Experimental Results for the SDGSOR 
 

The efficiency, computational running times, and accuracy of the SDGSOR have been compared 

against SOR, SDGGS GSOR and results are given in Table 6 and 7. 

 

Table 6 Comparison of Numerical Test for System of Linear Equations of Example 1 (using 
SOR, SDGGS, GSOR & SDGSOR) 
 

Iterative 

Method 

Number 

Of 

Iteration 

Exact solution 

(x) 

Numerical Solution 

(y) 

Errors 

(e=x-y) 

CPU 

time in 

seconds 

 

SOR 

ω =1.09 

 

 

8 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4124999733216189 

0.6124999908348020 

0.5374999911576524 

0.7374999955084681 

2.667838105985254e-08 

9.165197822902371e-09 

8.842347520854332e-09 

4.491531702122131e-09 

 

 

0.002923 

 

SDGGS 

 

6 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4124999990375529 

0.6124999990266025 

0.5374999996784543 

0.7374999996762642e 

9.624470664881812e-10 

9.733973627135129e-10 

3.215455679494994e-10 

3.237355938878750e-10 

 

0.003139 

 

GSOR 

ω =1.035 

 

6 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4125000132749550 

0.6125000144505559 

0.5375000023448290 

0.7375000021865872 

-1.327495502412290e-08 

-1.445055608506607e-08 

-2.344829108658075e-09 

-2.186587355623715e-09 

 

0.003171 

 

SDGSOR 

ω =1.03 

 

5 

0.4125000000000000 

0.6124999999999998 

0.5374999999999999 

0.7374999999999998 

0.4125000012955918 

0.6124999995333953 

0.5375000003615139 

0.7374999998011715 

-1.295591856020906e-09 

4.666045327894608e-10 

-3.615140409252149e-10 

1.988282871678848e-10 

 

0.002836 
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Table 7 Comparison of Numerical Test for System of Linear Equations of Example 2 
(using, SOR, GSOR SDGGS & SDGSOR) 
 

Iterative 
Method 

Number Of 
Iteration 

Exact solution 

(x) 

Numerical Solution 

(y) 

Errors 

(e=x-y) 

CPU time 
in seconds 

 

 

 

SOR 
ω =1.19 

 

 

 

 

10 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317768359363765 

0.4692321726778542 

0.3317767943344221 

0.1508750428272987 

0.2133750152486913 

0.1508750032604461 

0.05834821007760948 

0.08251785702790632 

0.05834821422645566 

-5.022209081939622e-08 

-2.982071134471909e-08 

-8.620136437986758e-09 

-4.282729873517077e-08 

-1.524869128188833e-08 

-3.260446107544723e-09 

4.208104815994762e-09 

1.149508405129396e-10 

5.925861884525929e-11 

 

 

0.004272 

 

 

GSOR 

 

ω =1.035 

 

 

8 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767793618265 

0.4692321338733815 

0.3317767793618265 

0.1508749976810884 

0.2133749967205469 

0.1508749976810884 

0.05834821377399961 

0.08251785641917157 

0.0583482137739996 

6.352459169800540e-09 

8.983761345948693e-09 

6.352459225311691e-09 

2.318911562770865e-09 

3.279453070215155e-09 

2.318911590526440e-09 

5.117146845146081e-10 

7.236855836811884e-10 

5.117146845146081e-10 

 

0.004580 

 

 

SDGGS 

 

 

7 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767745107025 

0.4692321270133500 

0.3317767745107025 

0.1508749885183459 

0.2133749837625242 

0.1508749885183459 

0.05834820984542199 

0.08251785086334205 

0.05834820984542199 

1.120358322781456e-08 

1.584379283325887e-08 

1.120358322781456e-08 

1.148165404418755e-08 

1.623747580836721e-08 

1.148165404418755e-08 

4.440292307450466e-09 

6.279515102347588e-09 

4.440292293572679e-09 

 

 

 

0.005013 

 

SDGSOR 

ω =1.03 

6 

0.3317767857142857 

0.4692321428571428 

0.3317767857142857 

0.1508750000000000 

0.2133750000000000 

0.1508750000000000 

0.0583482142857143 

0.08251785714285716 

0.05834821428571428 

0.3317767842293651 

0.4692321407681666 

0.3317767842293651 

0.1508749943453905 

0.2133749920029026 

0.1508749943453905 

0.05834821300094367 

0.08251785532592118 

0.05834821300094367 

1.484920575389737e-09 

2.088976214231764e-09 

1.484920575389737e-09 

5.654609475103101e-09 

7.997097373202422e-09 

5.654609475103101e-09 

1.284770623222187e-09 

1.816935976672873e-09 

1.284770609344399e-09 

0.004437 
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4.6. Discussion 

In this thesis, Refinement and Second Degree Iteration of Generalized Successive Over 

Relaxation methods for solving large system of Linear Equations have been presented. Two 

practical examples, a 4$	4, and 9$	9 system of linear equations, were considered. The initial 

approximation for both systems is taken as all zero vectors. The stopping criterion 

( 1) ( ) 610k kx x+ −− <  was used. We let m=1 and in this case &' is a tri-diagonal matrix.  A simple 

experimental determination ofω is used to find the optimum relaxation factor. We tried different 

values of ω  and compared the rates of convergence and continued the experiment with the value 

of  which gives better approximation. The results obtained by the present methods have been 

compared with numerical results obtained by other methods used for comparison in Tables 1 

through 7. 

As it can be observed from Tables 1 through 5, the refinement of generalized successive over 

relaxation  requires less computational running time , less number of iterations and approximates 

the exact solution better than  the other methods used for comparison. Further, the results 

presented in Tables 2 and 5 revealed that, as the error of tolerance decreases the number of 

iterations taken for convergence by the refinement of generalized successive over relaxation is 

the smallest of all other methods presented in this thesis. Thus the refinement of generalized 

successive over relaxation could be considered as more efficient method than others. 

With the same stopping criterion, ( 1) ( ) 610k kx x+ −− <  and the initial guess taken to be zero 

vectors, the Second Degree Generalized Successive Over Relaxation  is more efficient than the 

other methods used for comparison in terms of accuracy, number of iteration and computational 

running times.  

 

 

 

 

 

ω
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1. Conclusion 
In this thesis, we have presented Refinement of Generalized Successive Over Relaxation 

(RGSOR) and Second Degree Generalized Successive Over Relaxation (SDGSOR) and studied 

their convergence properties for symmetric positive definite matrices. Two systems of linear 

equations were studied and the results are presented in tables. We have compared the present 

methods with successive over relaxation, refinement successive over relaxation, Generalized 

successive over relaxation and  second degree generalized Gauss Seidel for solving system of 

linear equations by considering number of iterations, accuracy of the numerical results and 

computational running times.  The numerical results obtained show that both the Refinement of 

Generalized Successive Over Relaxation and Second Degree Generalized Successive Over 

Relaxation are efficient than the other methods used for comparison in this thesis.  

Thus the Refinement of Generalized Successive Over Relaxation and Second Degree 

Generalized Successive Over Relaxation could be considered as more efficient than the 

Generalized Successive Over Relaxation for solving system of linear equations. 

5.2. Future Work 
To make this work more effective and realistic, it would be interesting to investigate optimum 

parameter. 
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