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Abstract
In thisthesis, we present a refinement and second degree iteration of generalized successive over

relaxation methods for solving large system of linear equations and their convergence properties
are discussed.

Some numerical examples are considered to show the efficiency of the proposed methods. The
present methods are also compared against the other methods based on the number of iterations,
computational running time and accuracy of each method. The results presented in tables show
that Refinement and Second Degree Iteration of Generalized Successive Over Relaxation are
mor e efficient than the other methods considered in this thess.
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CHAPTER ONE
INTRODUCTION

1.1 Background of the Study

The limitations of analytical methods in practiegplications are led mathematicians and other
scientist to evolve numerical methods. It is cléaat exact methods often fail in drawing
reasonable inference from a given set of tabula&@ or in finding solutions for different
equations. There are many more situations wherétarah methods are unable to produce
desirable results. Even if analytical solutions awilable, these are not amenable to direct

numerical interpretations (Goyal, 2007).

The ultimate aim of numerical analysis is therefaceprovide efficient methods for obtaining
useful solutions to such problems and extractirgguisnformation from available solutions.
Numerical analysis is the branch of mathematiascemed with the theoretical foundation of
numerical algorithms for the solution of problenmsiag in scientific applications. The subject
addresses a variety of questions ranging from pipecximation of functions and integrals to the
approximate solution of algebraic, transcendenddfferential and integral equations with
particular emphasis on the convergence, accuraifizieacy and reliability of numerical
algorithms (Lay, 1994).

A system of linear equations is one of the impdrtapics that studied in numerical analysis. It
is one of the methods in the field of computatiomathematics which plays a vital role in the

numerical solution of mathematical problems.

Many practical problems can be reduced to systerfinefr equationsAix = b, where A is
known non singular matrix, b is known vector ang>»xnknown vector. This type of equation
plays a prominent role in finance, industry, ecommsm engineering, physics, chemistry,

computer sciences (Igbal, 2012).

The system of linear equations can be solved usotly direct and iterative methods. The best
known direct method is Gauss elimination methode@®r 2011 and Strassen, 1969). Turing
introduced LU decomposition of a matrix for solvisgstem of linear equations. Choleski
decomposed the matrix A into the product of lowrmigular matrix and their transpose.

1



The Choleski method is more efficient than LU deposition for solving symmetric and

positive definite linear system (Burden and Fai€X)6).

Direct Methods produce new matrices at each steptlarefore they are sensitive to rounding
errors. And they are not efficient in terms of caitgr storage so these methods are prohibitively
expensive for large systems. For these reasonsamdgers have long since move to iterative
methods for solving such system of equations. tiiesranethods are very efficient when they are

applied to large and sparse systems of equatiasitise in practical problems (Igbal, 2012).

The Iterative method is a technique that starth e initial guess and attempts to solve a
problem or a solution of a linear system of equaby finding successive approximations to the
solution. lterative methods are suitable for gwjvilinear equations when the number of
equations in a system is very large, and they asé dnd simple to use when the coefficient
matrix is sparse. That is iterative methods arey vewch effective regarding the time
requirements.

The major factors to be considered in comparinfigaiht numerical methods are the accuracy of
the numerical solutions and its computational t{Bedet et al., 1975). Further it is indicated that
the comparison of numerical methods is not so ®rbpltause their performance may depend on
the characteristic of the problem at hand (Bedet.et1975 and Salkuyeh, 2007). It should also
be noted that there are other factors to be coresideuch as stability, proof against run —time
error, and so on, which are being considered intnodsthe MATLAB built-in routines
(Atkinson, 1978).

Different methods are being used for the solutibrsystem of linear equations. There is no
single method that is best for all situations. Ehaethods should be determined according to
sped and accuracy (Saeed, 2008).

Iterative refinement of system of linear equatiossdefined as a process by which a first
computed solution can sometimes be improved talyaemore accurate solution that could be
continued until the residuals stabilize at or vaear to zero. In practice one step of iterative
refinement usually suffices if iterative refinemdatls to stabilize it is likely that meaningful
solutions cannot be obtained using conventionalprding method.

In this comparison of the indirect methods theecidt considered are, number of iterations,

computational running time and accuracy of the tsmhu



1.2 Statement of the Problem

The numerical solution of systems of linear equettieenter at some stage in almost all
applications in many fields of science, engineeandg Technology. The increasing of desire for
the numerical solutions to mathematical problemiiciv are more difficult or impossible to
solve explicitly, has become the present- day sifiemesearch. The numerical method used to
find approximate solution of systems of linear d@res has an impressive importance due to its
wide applications in scientific and engineeringegshers. So, iterative method is one of the
methods used to find approximate solution of systéfimear equations.
Various methods have been introduced to solve sgst# linear equations by many authors like
( Salkuyeh, 2007,Kalambi, 2008, and Kumer and Gewa20l1land Kumer 2015).There is no
single method that is best for all situations. Eha®ethods should be determined according to
speed and accuracy. Speed is an important facteoliing large systems of equations because
the operation cost involved is very large. Anotissue in the accuracy problem for the solution
rounding off errors involved in executing these pomations. Thus the intention of this study is
to establish a numerical method that approximdtessolution of linear system of Equation by
providing the accuracy and efficiency of the nurcarsolution.
Therefore, this research is intended to answefoll@ving basic research questions:

1. What are the procedures and techniques that cdpllbeved to develop the methods

RGSOR and SDGSOR?

2. To what extent the present methods converge?

3. To what extent the present methods approximatesthet solution?

4. What is the advantage of the present methods beesther?

1.3. Objective of the Study

1.3.1. General Objective

The general objective of this study is to presefinement of Generalized successive over

relaxation and its second degree iteration methadsolving large system of linear equations.



1.3.2. Specific Objective
The specific objectives of the study are:
e To describe procedures and techniques followecet@ldp the RGSOR and SDGSOR
methods.
* To establish the convergence of the present methypdseans of error analysis.
* To compare the accuracy of the present methodsexdit solutions of system of linear
equations.

* To compare the advantage of the present methoddlwether.

1.4. Significance of the Study

The outcomes of this work may have the feifgy importance:

e It provides some background information for othesearchers who want to work on
similar topics.

* Further, this research would be useful for the gadel program of the department and

enhances the research skill and scientific comnatioic of the researcher too.

1.5. Delimitation of the Study

This study is delimited to the indirect methods &mlving system of linear equations. In
particular, it is delimited to “Refinement of Geakred Successive Over-relaxation method” and
“Second Degree Generalized Successive Over-retaxatiethod” among many other indirect

schemes for solving system of linear equations

1.6. Definitions of Basic Operational Terms

Definition1.6.1 A banded matrix is a square matrix with zerosrdfte” elements above and
below the main diagonal, where m is less than ittee &f the matrixi.e if the matrix iSN x N
thenm< N.

Definition 1.6.2 The term “iteration method” refers to a wide ramgfetechniques that use
successive approximations to obtain more accurdtgien to a linear system at each step by
beginning with initial approximation, these methoadsodify the components of the

approximation, until convergence is achieved.



Definition 1.6.3A matrix A is called sparse if many of its entregge zero. Otherwise, A is called
dense or full.
Definition 1.6.4 A matrix A is said to be reducible, if there exists a pertmtamatrix P such

that PAP"is a block upper triangular matrix, otherwise iaisirreducible.
Definition 1.6.5A matrix A is said to be strictly diagonally domitgSDD) if

&> 3 [a) i=12..n
J

=1, j#i

and is said to be weakly diagonally dominant (WD)
|aﬂ| > Z ‘aﬂ‘, i=1,2,..n
j=1,j#i

Definition 1.6.6 A matrix A is said to be irreducibly weakly diagdly dominant (IWDD) if A is
WDD and irreducible.

Definition 1.6.7.A real matrix A is said to be positive definitepositive real if(Ax, x) > 0,

OxOOM,x#0
Definition1.6.8. Iterative refinement is a process by which a ficemputed solution can

sometimes be improved to yield a more accuratdiealu



CHAPTER TWO

LITERATURE REVIEW

The approximate methods for solving system of lireguations makes it possible to obtain the
values of the roots system with the specified amcyras the limit of the sequence of some
vectors. This process of constructing such a semuenknown as iteration. Unlike the direct
methods, which attempt to calculate an exact swiuith a finite number of operations, indirect
methods start with an initial approximation and gyate successively improved approximations
in an infinite sequence whose limit is the exadtitson (Yarlett, 1980). In practical situation, hi
has more advantage because the direct solutiorbaiiubject to rounding off errors. A code is
more efficient if it solves problems in less CRibhes. However, this criterion is problem

dependent, and hence it is necessary to testezfligiby considering problem (Hull.et al., 1972).

The efficiency of any method will be judged by tarteria:

i. How fast it is? That is how many operations arelined?

ii. How accurate is the computer solution?
Because of the large amount of computations reduodinear equations for large system, the
need to answer the first question is necessary.nBeel to answer the second, arise because
small round off error may cause errors in the campsolution out of all proportions to their
size. Furthermore because of the large number efatipns involved in solving higher order

system, the potential round off errors could caugestantial loss of accuracy (Kalambi, 2008).

(Bedet et al., 1975 and Salkuy2t07) indicated that it is important to note that thalaation/
comparison of numerical methods is not so simpleabse their performances may depend on
the characteristic of the problem at hand. It sth@l$o be noted that there are other factors to be
considered such as stability, proof against ruretierror and so on, which are being considered
in most of the MATLAB built-in routines (Censor, 8D and Amos, 2015).

Performance actually depends on several factorsdhgutation time taken for one iteration of

the algorithm, the time step for one iteration vhiepresents the time discretization required to
reach a given accuracy or numerical stability fogieen method, the desired accuracy of the
method, the numerical stability of the method whad¢$o limits the time step for a given method

(Volino, and Thalmann, 2000).



The direct methods of solving linear equationskar@wn to have their difficulties. For example
the problem with Gauss elimination system of apgholges in control of the accumulation of
rounding errors (Turner, 1989). To get rid of theseblems many authors like (Kalambi, 2008
and Rajasekaran, 1992) were encouraged to invessgéutions of linear equations by indirect
methods. Most researchers dealt with the iterathethods for solving linear systems of
equations and inequalities for sparse Matrices.

Various methods have been developed to solve sgstérntinear equations by many authors.
There is no single method that is best for allagians. These methods should be determined
according to their speed and accuracy (Saeed, 2008)

In this thesis we present two indirect methods ngniRefinement of Generalized Successive
Over Relaxation schemes and Second Degree Gemrer&izccessive Over Relaxation methods
for solving large system of linear equations angl@&r the efficiency of the present methods in

terms of number of iteration, required time to cerge and accuracy of the result.

2.1. Successive Over Relaxation Method

The SOR method seems to have appeared in the 1@flishwell, 1946 as cited in Hadjidimos,
2000). However, formally its theory was establiska@ohost simultaneously by Frankel and
Young's (Frankel, 1950 and Young, 1950, as citeéibgjidimos, 2000).

The Gauss- Seidel iteration was the starting pfuntthe successive over relaxation method
which dominated much of the literature on Iterativethods for a big part of the second half of
the 19" century (Saad, 2000). The successive over retaxatiethod, is devised by applying
extrapolation to the Gauss- Seidel method. Thisapwlation takes the form of a weighted
average between the previous iterate and the cewpBtauss- Seidel iterate successively for
each component. The idea is to choose a valueptimom relaxation factor that will accelerate

the rate of convergence of iterates to the solyt@lambi, 2008).

According to (Saad, 2000), the blossoming of Swsgesover relaxation techniques seems to
have been initiated by the PhD work of David Yourigung introduced important notions such

as consistent ordering and property A, which heldseformulation of an elegant theory for the

convergence of these methods. Generalizations oihd'e result to other relevant classes of
matrices were due to Varga who published his baoknatrix iterative analysis in 1962.



It covered important notions such as regular $pdjite rather a complete theory of Stieljes and
M-matrices and a treatment of semi-iterative meshimetluding the Chebyshev Semi iterative

method.

The accelerated Gauss Seidel method has motivatpdrtant developments in the theory of
matrix linear algebra. In particular relevant pndigs for M-matrices introduced by Ostrowski
were uncovered and convergence result for so cedigalar splitting, introduced by Varga were
established. A corner stone in the convergenceryheas the theorem of Stein-Rosbenberg
(Stein-Rosbenberg , 1948 as cited by Saad, 200@hwvnoved relation between the asymptotic
rate of convergence for the successive over retaxanethods including the Gauss Seidel and

Gauss Jacobi method.

Sufficient conditions for convergence of the SORhuods were given by theorem Ostrowski and
Reich. Lower bounds for the spectral radius of 3R iteration matrix were derived by Kahan.
This together provided the basis for a theory tierative methods published in Varga book from
which many methods emerged (Saad, 2000).

2.2. lterative Refinement

The technique of iterative refinement for improvitige computed solution to a linear system
were probably first used in a computer program hikinéon in 1948, during the design and
building of the ACE computer at the National Phgkicaboratory (Wilkinson, 1948 as cited by
Higham, 1997). Iterative refinement has achievedewiise ever since, and is exploited, for
example, by most of the linear system expert dsimeLAPACK (Andersonet al. 1995 as cited
by Higham, 1997).

The refinement process for a computed solutidaa Ax = b, whereA is n X n is nonsingular, is
simple to describe: compute the residuab — Ax solve the systemd = r for the correctiord,
and form the updated solutigre x + d. If there is not a sufficient improvement in passiragm

xtoy the process can be repeated, witbplaced by y (Higham, 1997).

2.3. Refinement of SOR Method
It is a modification of SOR iterative method which presented by (Kumar, 2015). It is an
iterative method used to solve system of lineaa&quos. It solves a matrix whose main diagonal

elements are non zero and row strictly diagonatignshant. Proceeding with the SOR method



and supposing that the equations are examinedsagaence and also the previously computed
results are used as soon as they are availablgetvihe Refinement of SOR method. We start
with an initial approximation and substitute théusion in the given equation. We shall use the
most recent value in this method. The iteratiorcess is to be continued until the relative error
is less than the pre-specified tolerance. If A iswa strictly diagonally dominant matrix, then the
SOR method converges for any arbitrary choice efittitial approximation. Accordingly, the
refinement of SOR method converges faster than3B&R method when SOR method is
convergent.

2.4. Generalized SOR Method

(Salkuyeh, 2007) introduced generalized SOR metttadh is more efficient than conventional

SOR method. Like SOR method, it is also an iteeativethod used for the solution of linear
system of equations. If the matrix is symmetricifns definite the method is much faster than
conventional SOR iterative method and it is fagt simple to use when the coefficient matrix is
sparse as well as accuracy is developed in evergtion that is continue the iteration process

until the relative error is less than pre specigecbr of tolerance.



CHAPTER THREE
METHODOLOGY

3.1. Study Area and Period

The study has been conducted at Jimma Universitie@® of Natural sciences Department of
Mathematics in 2015/2016 Academic year.

3.2. Source of Information

The data has been collected from the relevant ecafrinformation to achieve the objective of
the study and experimental results obtained bygusIATLAB software to validate the present
methods.

3.3 Study Design

This study employed mixed-design (documentary mewviesign and experimental design) for
solving system of linear equations. Since the nathare coded and run using MATLAB
software by properly inserting the problems so thamerical results are automatically
generated. All algorithms have been made in theesaondition, which use the same processor,
having the same memory size, the same operatirngrsysand using the same problems. The
processor used is Intel(R) core (TM) i3-31110M C@240GHZ 2.40GHZ with 4GM memory
(RAM),with 64 bits operating system (Window 7 hopremium). The language program used is
MATLAB version 7.60(R2008a)

Two major programs (code) have been written toesslstem of linear equations using RGSOR
and SDGSOR methods. The code contains equationitit&ii line, input arguments, commands
(equation body), and output arguments which ardtewriin the script file of MATLAB. The
equation definition line contains type of numerigathod, equation, left hand equation and right
hand column vector, initial value and number opsterhe input arguments are written in order
to insert the values after the code are saved ebdgded using MATLAB.

In the equation body the formula for column vectibe formula for methods, formula for
iteration number and formula for run time have beeded. In the output argument approximate

notation of the out puts such as the iteration remgk in our case), the corresponding numerical
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value of the determined column vector (in our cgsexact values (in our case x), error (in our
case e) and the elapsed time (t) have been written.

3.4. Study Procedures

Important materials and data for the study haven lwedlected using documentary analysis as an
instrument. In order to achieve the intended objest the study follows the following
mathematical steps.

e Step 1, write the system of equatiohs= b in the form of

A=Tm+Em+Fm

whereA = (g;)is annxn non singular matrix T, = (t; ) is a banded matrix with band length 2fin+1
where m is less than the size of the maftjxandF  are strictly lower and strictly upper triangular

parts of A—T_  respectively.

» Step 2. Deriving Iterative refinement formula fo 8GR and SDGSOR.

» Step 3. Proving the convergence of the proposetiodet

» Step 4. Validating the proposed method using nuzakexamples

» Step 5. Writing MATLAB code to compare the numerieggamples in step2 to determine
the efficiency of the method.

3.5. Ethical Consideration

The researcher takes care of ethical consideratiormigh official letter support from the
department.
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CHAPTER FOUR

DESCRIPTION OF METHODS, NUMERICAL RESULTS AND DISCU SSIONS

4.1 Description of the RGSOR Method

Consider a system of linear equations
Ax=Db 4.1)
where, A is amxn nonsingular coefficient matrix, b is a column wecndX is solution vectors
to be determined .
Based on splitting of the matrix A (Young, 1971) as
A=D+L+U (4.2)

where, D is the diagonal matrix of order(a, =0,i# j) andL andU are strictly lower and

upper triangular matrix of order n with zero diagbentries, respectively.

The Jacobi and Gauss Seidel methods for solving4En) are defined as
x = (D) (L+U)x¥ + Db
XD =-(D+L) U +(D+L) b

To obtain successive over relaxation method muyltqgth sides of the equation Eq. (4.1)day

wherew is optimum relaxation parameter, as (Salkuyeh7200
WAX = .

Then the coefficient matriwAis decomposed in the form

w(D+L+U)x=ab
{(D+wL)-((1-w)D-ald )} x=ab
(D+al)x=((1-w)D-al)x+ab

x=(D+al)” ((1-w)D-ad ) x+w(D+al) b

12



Then the iterative method of SOR method for solubbEq. (4.1) is defined as (Young, 1971)
X'=(D+al) " ((1-w)D-al )x* +w(D+al) b
X = BgpX +C (4.3)

where By, =(D+al)” ((1-w)D-al) is the iteration matrix for the SOR method and

C=w(D+wL) " b is the corresponding column vector.
To solve Eq. (4.1) we have given nonsingular mariand a known vectds, the problem is to

find the unknown vectox, we start with an initial approximatiorx(o) to the exact solution x and
produces a sequence of approximat{oﬁ}:_othat converges ®. Based on Eq. (4.2) iterative

methods for solving Eq. (4.1xan be written in the form
x=Bx+C (4.4)

for some nxn iteration matrixB that depends oA, andC is a column vector, where the
iteration matrixB and a column vector represent different valuedifferent methods .The

sequence of approximate solution vector is gengfatecomputing

x* =Bx® +C  wherek=0,1,2,.. (4.5)

x*and x® are approximate forx at (k+1)" and k" iteration respectively in the

limiting case whenk - o, xX*) convergences to the exact solution which is giwen

x=A'b (4.6)

13



Generalized Successive Over-Relaxation Method (GSQR

Consider the linear system of Eg. (4.1) and spgttnade by (Salkuyeh, 2007) as
A=T +E, +F, 4.7)
where A=(ga,)is annxn non singular matrix and,, =(t;;) is a banded matrix with band

length2m+ 1 is defined as follows.

L & |j=ijm
' 0, otherwise

where E,, and F,, are strictly lower and strictly upper triangularts of A—T_respectively and

they are defined as follows

B A
T, = 6\?;1,1 B-mn
L | Ay n-m An |
— | [ A - a.1n ]
En = 8ni2a Fo = | a‘n,n.—m—l
L @1 o Gemen | ) )

Then the generalized successive over relaxatiohaddor solving Eq. (4.1) is given by
(Salkuyeh, 2007) as

(&) = (Tm + C()Em)_l((l— C()) T —(DFm) x® 4 (T, + (DEm)_l(Db (4.8)

X = Bygor X< +C, , Wherek=0,1,2,..
Bosor = (Tn + @E,,) " ((1-@) T, —0F,) (4.9)

EqQ. (4.9) is the generalized successive over rataxéeration matrix and

C.=(T, +oE_ )" wb (4.10)
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its iteration vector.

Refinement of Generalized Successive Over Relaxation Matrix form

Putting Eq. (4.7) in to Eq. (4.1), we get
(T.+E,+F,)x=b
Multiplying both sides byw we obtain

(T, +E, +F,)x=ab
[(Tn+ wE,) - ((1-@)T, - wF, ) ] x=ab

(T + @, ) X = ((1- @) T, - wF, ) x+ b

(T, + @B, ) x= (1~ @) T, + (T, + E, ~ A)) x+ b
(T + @B, ) x = ((1- ) T, + (T, + E,)) x+ (b - Ax)

x= (T, +aE,) " ((1- @) T, + (T, + E,)) x+(T,, + @E, )~ @(b- AX)

x=(T,, +E,) " (T, = T, + 6T, + 6, ) X+ (T, + wE, )™ w(b- AX)
x=(T, + @B, )™ (T, + B, ) x+ (T, + B, )™ (b= AxX)
x=x+(T, +wE, )" w(b- Ax)

Now the Refinement of generalized successive oedftion is defined as

kD) = (k1) +(Tm +wEm)_l C()(b_AX(k+l)) (4.11)

where x**V appeared in the right side is of Eq. (4.8). Sttig Eq. (4.8) in to Eq. (4.11) we
obtain:
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X* = (T, +wE, )" ((1-@)T, —oF, ) x¥ +(T, +oE,) " ob+(T, +@E,) " w(b- AxX*?)
X4 =B x® +2(T +0E, )" ob=(T, +@E,)” wAx ™

XED =B x® +2(T +0E, ) ob-(T, +wE,) " o(T, +E, +F,) X"
X0 = BugoeX® +2(T,, +0E,,) ™ 0b=(T,, + @, )™ (&, + @, +&F,, +T, =T, ) x**
XD = BuooeX™ +2(T, +0E,,) " 0b=(T, + &k, )™ (T, + wE,, = (1~ @)T,, — aF, )

X = B X +2(T, +0E,,) " ob— (1 = Begg ) X (4.12)
Similarly substituting the right side®*¥ of Eq. (4.12) by Eqg. (4.8) we obtain:

(kD) = BGSORX(k) + 2(-|-m + (DEm)_l mb—(l - BesoR)(BGsoRX(k) + (Tm + (DEm)"l mb)

X = BGS:)RX(k) + 2(Tm + (x)Em)_1 wb - BGSZ)RX(k) + ( BGSOR)2 x® = (Tm + (;)Em)_lcob * Booor (Tm + O)Em)_l b

%K) = BGSORX(k) + (Tm +oE, )—1 wb— BGSORX(k) + ( BGSDR)Z X — Bssor (Trn + (oEm)‘l ob
<D = (BGS:)R)Z x® +(| + BGS:)R)(Tm + (DEm)_l ob

x*D =g, x®+Cs (4.13)

where Brogor = (Bugn)” =| (T, + @E,.) " (1-0) T, —coFm)T (4.14)

EqQ. (4.14) is the iteration matrix of refinementr@ealized Successive over relaxation method
and

C. = ((I + Boaon) (T +mEm)‘1@b)) (4.15)

EqQ. (4.15) is its corresponding column vector.
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Error Analysis for Refinement of Generalized Succesve Over Relaxation

Let consider Eq. (4.1) and the splittingfoin Eq. (4.7), such that
x = Bx+C and the iteratiox® = Bx*™ +C

The error at thek™ iteration ise* = x* - xand the iteration matrix of RGSOR is given as

Brosor = [(Trn + a)Em)'l((l— W) T, —oJFm)}2 , then the erroe* satisfies

e =X —x = [(Tm +oE,) ((1-9)T, —anm)T XD (1 + By ) (T, +0E,,) * 0b-x
But we havex=Bx+C
X = [(Tm +oE,) " ((1-0)T, —(oFm)T X+ (1 +Bgeor ) (T +0E ) @b
So
e = [(Trn +oE,) ((1-w) T, —coFm)T XD + (1 + Bygge ) (T, +0E,,) b
—{[(Tm +0E,) (- ) T, —mFm)T +(1 + B ) (T, + 0 m)'lmb]

e = (T, +aE,) ((1-0)T, —(oFm)T (x-x)

" = (Byer) €. which implies that it is second order convergeathod.

(K)

. . e 20 L. .
Since me = (Bsgor) Which is quadratic convergence.
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4.2 Conditions for Convergence of the Method

Theorem 4.1:The SOR iteration method converge for any ingigproximation ifw lies inside
side the interva(0, 2).

Proof:- Theproof is similar to Varga , 1999
Recall that the SOR iteration matBy, is given by

Bor =(D+wl) ((1-w)D-al) where, A=[a |=D+L+U

The matrix(D + c«)L)_l is lower triangular matrix withi,i =1,2,.. nas diagonal entries and
g

the matrix ((1- ) D ~cd)) is an upper triangular matrix wifl-w)a, , i =1,2,.. nas
diagonal entries.

Therefore,det( By ) = (1-w)". Since the determinant of the matrix is equal toptreluct of its

eigenvalues. We conclude thg{Bg;) = [1-ad, wherep(Bgy) is the spectral radius B, .

Since the spectral radius of the iteration mathiadd be less thdn for convergence, we
conclude thad < w< 2 is the required for convergence of the SOR method.

Theorem 4.2: LetA and T_be symmetric positive definite matrices. Then foery

0<w< 2 the RGSOR method converges with any initial guess

Proof:- The proof similar to the method SOR given bygeQing and Yi-Min WEI, 2008).

The iteration matrix of RGSOR is given bB.qn = [(Tm +ak,) (1-0)T, —(oFm)T

Let 4 be an eigenvalue of the iteration matrix of RGS@RI x be the corresponding
eigenvectors. Then we have

BrogorX = AX

= [(Tm +wE,) " (- )T, -@Fm)]2 X=AX

= ((Tm + a)Em)‘l)2 ((1- )T, —oF,) = Ax

18



=((1-)T, —(DFm)2 = (T, +@E,)
= ((1—a)) T, —o)E,Tn)2 = (T, +aE,)"x, (F, =E! asAis symmetric)
Let X be the conjugate transposeof then we have
(x’k)2 ((1— )T, —coEfn)2 x=A (x*)Z(Tm + aJEm)2 X , (multiplying both sides t(y()z)
[x* ((1— )T, —an;)x]z = [(x (T, +a)Em)x)]2 (multiplying both sides byr)

Let XT,x=8 andX E, x=a+if Then,

XE, x=(EX) x=XE,x=a-ip (SinceA’B" = (BA) and (A") = A)
we then have:
[(1-w)d-w(a-ip)] =A[o+w(a+ip)]".
Taking the Modulus on both sides we get
2 2 2 2
((t-)o-wa) +a2p? | =27 (5+aa) + w7
and solving forA we get

[((1-e)o-c) +erp? |
(6+an) +aipt]

A =

On the other hand0< x"Ax=x"(T, +E, +F,)x=0+(a +iB)+(a-ipf)=d+2a
Note that

(1-w)5-an) + & ~[ (0+ wa)' +a76°|=((1-w) 5~ ca) ~(0+ wa)

19
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=(1-w) 0 -wa +(5+war)((1- w) 6~ wa) - (5 +wa) , (the difference of two squares)

= (20~ wo)(-wd - 2wa)
2 (w-2)(d+2a)

SinceA is symmetric positive definite, we havé,>0 gngd+2a >0

If 0< w< 2 we have ((1-w)d-wn)’ - & B <(5+wna)’ - B’

Using the relatiora<b = a*<b” provided thae anld are positiwwe obtain:

[((1— w)d- )’ —afﬁzT <[(5+ wa)’ —a)zﬁz]z (4.17)

Thus from Egs. (4.16) and (4.17) fOK w< 2we obtain

((t-w)o-wn)’ —afﬁz}z .

[ = T
|(6+an) - p7 |

Therefore the RGSOR method converges.

Theorem 4.3:Let O<w<1. Let A be an IWDD matrix and,, be irreducible. Then the GSOR

method is convergent for every initial gugss

Proof:- See, ( Davod Salkuyeh, 2007).

Theorem 4.4:Let A be an IWDD matrix and,, be irreducible. Let alsO < w<1. Then the

associated RGSOR method converges for every igitiass, .

Proof:- Letx be the exact solution of and“*? be the(k +1)" approximation to the solution of

EqQ. (4.1) by method of Eq. (4.13). Then the GSORhoeis convergent as proved by Salkuyeh
2007.
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If (x‘k”’—x),then
:ﬂ(x(kﬂ) X)” H (k+l)+ T +aE ) (b_AX(k+l))_X”

= “( xHD — x) +(T, +wE, )" a)(b - Ax(k+1))

< ||(x"‘*1) - x)” + H(Tm + a)Em)_1 a)(b - Ax('“l))

From the fact tha"(x“‘*l) —x)H ~ 0 we have ||(b— AxtD )” -0

Therefore ||7‘k+1) —x|| 50

Hence the Refinement of Generalized Successive Rekixation method is convergent.

4.3. Description of Second Degree Generalized Sussi&e Over Relaxation Method

Let consider the linear stationary first degreeaiien method defined by (Young, 1971) as
xX* =G x" +C (4.18)

Where,G, is an iteration matrix of the iterative method @hi the corresponding column

vector. Moreover (Young, 1971) defined the lindatisnary second degree method as

Xk = 3 () 4 g (X(k) _ X(k—l)) + e(x(k*l) _ X(k)) (4.19)

wherex**? appearing in the right hand side of Eq. (4.19) ubssituted bx**"in Eq.(4.18)

which is completely consistent for any consthaid esuch thae # 0.

Xk = 5 () 4 (X(k) — x (k) ) + e(Glx(k’ +C-— X(k))
XD = 3 () 4 gyelk) — a1 4 eGx® +eC —ex®

x4V =[(1+d -e) | +eG, |x) —dx* ™ +eC
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X = G + Hx®D 4|
whe@=(1+d-e)l +eG,
H=—dl
| =eC

The second degree generalized SOR iteration méshaefined by (Young, 1971) as

X = G + Hx®D 4| (4.20)

whereG = (1+d -e€)| +€G, (4.21)
H =—di (4.22)
| =eC (4.23)

G, is the iteration matrix of generalized successier oelaxation iterative method and
C, is its corresponding column vector.
(i.e G, =Begr =(T,+@E,) ((1-w)T, -oF,) andC, =(T,, +oE, ) ob)
Using the idea of (Golub and Varga, 1961) Eq. (#c2h be written in the form
x® 0 ) xk® 0
0 ol (0
The necessary and sufficient conditions for coneecg of the method is that the spectral radius

of G must be less than unity in magnitude for affand x® .

~ (0 I, . : .
where G = H G is the second degree iteration matrix.
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p(G) < 1if and only if det(/}zl —/lG—H): 0 are less than unity in modulus

det(A’1 -AG-H)=0 (4.24)
Substituting Eqgs. (4.21), (4.22) and (4.23) in tp &.24) we have

det(A% - A[(1+d -e)| +€G, |+dl )= C

det{—e/l[c;g(“d_ej (7 +d) D: 0
e el

1+d-e l_(/‘2+d)|
e j el

det(Gs+(1+d_ejl —("ZJ’d]lJ: 0 (4.25)
e el

(det(—e/]) # 0, since it is a non zero 1by 1 matrix)

det(-eA)xdet {GS +( ] =0, since, (et AB) = detAx detE)

If 4 isthe eigenvalue oty we have the relation (Manteufeel, 1981, Tesfapd42and Young,

1971)

1+d-e) [ A*+d
ﬂ+( - j_( S j (4.26)

i.e for each eigenvalueg, 4, ..., 1, of G, A are the roots of Eq. (4.26) witly =
As discussed in (Manteufeel, 1981 Tesfaye, 201d Yaung, 1971) if we let
A=re’ (4.27)

Substituting Eq. (4.27) into Eq. (4.26)

JLrd-e_ (ré?) +d (rcosd+irsing)” +d
e  ed’  er(cosd+ising)
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After simplifying and collecting like terms we get:

—1— 2 2 _
,u:e ! d+(r erjcosé?ﬂ(r d]sirﬂ (4.28)
e er er

From (4.28) we have:

_1- 2 2_
Re(,u):e i d+(r;d]cosﬂ andlm(,u):(r dJsiné’

From Re(u)we get:

_ 2
ReUO+1+Z e=(r +dJco§

1+d-e
Re(u)+
Solving for cosd we have: cosf = . €
r<+d
<)
2
, Re(,u)+1+c;_e
(cos6) o (4.29)
er
o _(r?=d) . _Im(y)
Similarly, from Im( ) = o sind we have:sing=—— ; and
r —
=)
2
(sing)" = mzn(ﬂ) (4.30)
r-—d
er

Adding Egs. (4.29) and (4.30), we obtain
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2 2

1+d-e
Re(u)+ e + Im( ) =1 (Sincesin® @+ cog = ) (4.31)
r’+d r’-d | R |
er er

From the analysis of ( Frankel, 1950 as cited byng1972 ), that if: is real and varies over the

range,a < u < [ <1then the choice of ande which minimizes the spectral radius & is

given by
A 24,
d= -1 = —P 4.32
a] ®= TG (4.32)
. 2 (B-a)
Where @ =+—— o=—"——"— (4.33)
(1+\/(1—02)) (2-(B+a))
The corresponding values of the spectral radiué @
p(G)=d"* =@ -1 (4.34)
Thus with this choice otl ande we have
G=(1+d-€)l +G, =4y — > - (5ra).
2-(B+a) 2-(B+a)
H=-d =(1-&)!I
| =eC, :—Zd)f’cs
2-(p+a)

Hence Eq. (4.20) becomes

(k#)) = ~ 26, _ (B*a)l ) o mylen , 2@C,
X %[2—(,8%1) 2~(5+a) x¥ +(1-q)x +2—(ﬁ+a) (4.35)

G, = Bgsoris the iteration matrix of GSOR and, is its corresponding vector.

G, =Bear = (Tm +C‘)Em)_l((1_w) T _(DFm)
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C,=w(T,+0E,) b

According to (David R. Kincaid, 1994 and Young'971) if A is symmetric positive definite

matrix thend has real non negative eigenvalues and we can #pplecond degree iterative
method usingg =0and 5 = .

2-(B+a) 2-u

where yis the spectral radius of the Generalized SORtitaranatrix.

2(2-p)  _ 2A2-p

“- 2-p+21-u (1+ 1—,u)2

(4.36)

seapr Aza) 2o )
(1+\/ﬁ)2 (1+\/1__,U)2

_ 2-pu-2J1-u {2—y+ 2/ u
(1+H)2 2-pu+ 21~

J , (Rationalizing the numerator)

(2-4)" (2 1—#)2 2 |
( )4 = ( H )4 , (by the difference of two squares)
1+1-u 1+ 1-pu

2

Thus, d=—*H

_— (4.37)
)
From (4.32), we have

A

e 206 _ 2y _ 2 | 22-p) |_ 4 (4.38)

(6-0) " 2-(8+a) " 24| (1s Ji=u) | (s
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Ao Y% oo H
,O(G) d \/m (1+\/E)4 (1+\/E)2

Therefore the second degree generalized SOR is biye

W =g x©
X7 =G X +C

(k+1) — £ ZBGSOR _ (,3+0’)| () o~ (k-1) ZdLCs
X w"[z—([,’m) 2-(B+a) X0+ (@) +2—(ﬁ+a)

Substituting fors and a we get(8=u & a =0)

x(k#D) = &{) 2Bsgor _ Hl % +(1_&{))X(k‘1) + Z&%CS
2-u  2-u 22—

2-p —H
N 4-2u
where Q=
[ i=s)

Basor = (Tn + @E,,) (1) T, —wF,)

C,=(T,+0E,) b
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4.4. Numerical Examples

To illustrate the feasibility and efficiency of theesent methods when employed to solve system
of linear equations, we used two systems of limeprations one dense and the other sparse. We
also compared the performance of RGSOR and SDGS{@iRother methods based on the
number of iteration, accuracy and the computatiomahing times. These examples are chosen
because they have been widely discussed in thatlire and their exact solutions are available
for comparison.

Examplel. Consider the system of linear equationsidered by (Noreen, 2012)

4% —X,—X;=0.5
-x +4x,-x,=1.3
-X t4x,-X, =1
-X, —X;+4x,=1.8

Example2. Consider the system of linear equationsidered by (Noreen, 2012)

4%, = X, = X, = 0707
=X HAX, = X3 — X = 1
=X, +4X; — X = 0707

=X HAX, X — X =
=X, =X, FAXg — Xg — X =
X3 X HAXg — X =
=X, +4X, = X5 =
X =X A% X =
—Xg = Xg T A% =

O O o © o o
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4.5. Numerical Experiments

4.5.1 Experimental Results for the RGSOR

The efficiency, computational running time, anduecy of the RGSOR have been compared

with SOR, GSOR, and RSORNd results are given in Tables 1 through 5.

Table 1: Comparison of Numerical Test for System offinear Equations of Example 1
(using SOR, GSOR, RSOR & RGSOR)

Number CPU

Iterative Exact solution Numerical Solution Errors
Of time in

Method (69] (y) (e=x-y)

Iteration second
0.4125000000000000 0.4124999733216189 2.667838105985254e-08
0.612499999999999§ 0.612499990834802(0 9.165197822902371e-09

SOR 8 0.5374999999999999 0.5374999911576524 8.842347520854332e-09 0.002923

Wm0 0.7374999999999998 0.7374999955084681 4.491531702122131e-09
0.4125000000000000 0.4125000132749550 -1.327495502412290e-0
0.612499999999999§ 0.6125000144505559 -1.445055608506607e-OI

CSOR " 0.5374999999999999 0.5375000023448290 -2.344829108658075e-09 0.003171

w1058 0.7374999999999998 0.7375000021865872 -2.186587355623715e-09
0.4125000000000000 0.412499999627954(0 3.720459496037165e-1(Q
0.6124999999999998 0.6124999999433065 5.669331670787869%e-11

REOR 5 0.5374999999999999 0.5374999999459216¢ 5.407829739567660e-11 0.002642

W= 0.737499999999999§ 0.7374999999872161 1.278377403934883e-11
0.4125000000000000 0.4124999999871906 1.280942019121767e-11
0.612499999999999§ 0.6124999999866999 1.329991672349706e-11

I:jsl(z): 4 0.5374999999999999 0.5374999999979344 2.065458915012641e-12 0.001512

0.7374999999999994

0.7374999999979814

2.018385458768535e-17
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Table 2 Number of Iteration for each Method for anAccuracy Varying form 0.5 x10° to
0.5x10™ for System of Linear Equations of Example 1

Iterative Number of iteration taken for getting the solutfonan error less than
Method | 10° | 10° | 10" | 10° | 10° | 10" | 10" | 10" | 10" | 10 | 10™
SOR 7 8 9 10 11 12 12 14 15 16 1
RSOR 4 5 5 6 6 7 7 8 8 9 9
GSOR 5 6 7 8 8 9 9 11 11 12 1
RGSOR 4 4 4 5 5 5 6 6 6 7 7

Table 3 Comparison of Numerical Test for System dfinear Equations of Example 2 (using
SOR & GSOR)

Iterative
Method

Number
of

Iteration

Exact solution

)

Numerical Solution

)

Errors

(e=xy)

CPU time

in second

SOR
W=1.19

10

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000d
0.213375000000000d
0.150875000000000d
0.0583482142857143
0.0825178571428571
0.0583482142857142

0.3317768359363765
0.4692321726778547
0.3317767943344221
0.1508750428272987
0.2133750152486913
0.1508750032604461
0.0583482100776094
60.0825178570279063
80.0583482142264556

-2.982071134471909¢e-0
-8.620136437986758e-04

-1.524869128188833e-0
-3.260446107544723e-04
8 4.208104815994762e-09
P 1.149508405129396e-1Q
6 5.925861884525929%e-11

-5.0222090819396226-01

)

-4.2827298735170776-01 0.004272

)

GSOR
w=1.09

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000(
0.213375000000000(
0.150875000000000(
0.0583482142857143
0.0825178571428571
0.0583482142857142

0.3317767793618265
0.4692321338733815
0.3317767793618265
0.1508749976810884
0.2133749967205469
0.1508749976810884
0.0583482137739996
60.0825178564191715
80.0583482137739996

6.352459169800540e-09
8.983761345948693e-09
6.352459225311691e-09
2.318911562770865e-09
3.279453070215155e-09
2.318911590526440e-09
1 5.117146845146081e-10
7 7.236855836811884e-1Q
D 5.117146845146081e-1Q

0.004580
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Table 4 Comparison of Numerical Test for System dfinear Equations of Example 2 (using
RSOR& RGSOR)

Iterative
Method

Number
Of

Iteration

Exact solution

)

Numerical Solution

)

Errors

(e=x-y)

CPU
time in

seconds

RSOR
w=1.19

0.0825178571428571
0.0583482142857142

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000(
0.213375000000000(
0.150875000000000d
0.0583482142857143

0.3317767845407915
0.4692321415488724
0.3317767849770751
0.1508749997562597|
0.2133749994686667
0.1508749996795315
0.05834821410038821
6 0.08251785688944602
B8 0.0583482141564517

1.173494190709334e-09
1.308270380917520e-09
7.372105703673526e-10
2.437403334720756e-10
5.313332829270934e-10
3.204685128377349e-10
1.853260878093010e-10
2.534111392948901e-10
1.292625798066105e-10

0.003237

RGSOR
w=1.09

0.0825178571428571
0.0583482142857142

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000d
0.213375000000000d
0.150875000000000d
0.0583482142857143

0.3317767856757489
0.4692321428026435
0.3317767856757490
0.1508749999875549
0.2133749999824001
0.1508749999875549
0.05834821428307849
6 0.08251785713912956
8 0.08251785713912956

3.853678487431012e-11
5.449929396661446e-11
3.853667385200765e-11
1.244512826126254e-11
1.759983825344591e-11
1.244512826126254e-11
2.635801299444296e-12
3.727601560754579e-12
2.635794360550392e-12

0.002483

Table 5 Number of Iteration for each Method for anAccuracy Varying form 0.5 x10° to
0.5x10" for System of Linear Equations of Example 2

Iterative Number of iteration taken for getting the solutfonan error less than
Method | 10° | 10° | 10" | 10° | 10° | 10" | 10" | 10" | 10" | 10 | 10™
SOR 9 10 12 13 14 16 17 18 20 22 y.
RSOR 5 7 7 8 9 9 10 11 12 1P
GSOR 7 8 9 10 11 12 12 13 14 14 1
RGSOR 4 5 6 6 7 7 7 8 8 9
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4.5.2Experimental Results for the SDGSOR

The efficiency, computational running times, anduracy of the SDGSOR have been compared

against SOR, SDGGS GSOR and results are givenlile Baand 7.

Table 6 Comparison of Numerical Test for System dfinear Equations of Example 1 (using
SOR, SDGGS, GSOR & SDGSOR)

Number CPU
lterative Exact solution Numerical Solution Errors
Of time in
Method (x) ) (e=x-y)
Iteration seconds
0.4125000000000000 0.4124999733216189 2.667838105985254e-08
0.6124999999999998 0.6124999908348020 9.165197822902371e-09
SOR
8 0.5374999999999999 0.5374999911576524 8.842347520854332e-09 0.002923
w=1.09
0.7374999999999998 0.7374999955084681 4.491531702122131e-09
0.4125000000000000 0.4124999990375529 9.624470664881812e-1(
0.6124999999999998 0.6124999990266025 9.733973627135129e-1(
SDGGS 6 0.5374999999999999 0.5374999996784543 3.215455679494994e-1(0 0.003139
0.7374999999999998 0.7374999996762642¢ 3.237355938878750e-1(
0.4125000000000000 0.4125000132749550 -1.327495502412290e-04
0.6124999999999998 0.6125000144505559 -1.445055608506607e-0§
GSOR
6 0.5374999999999999 0.5375000023448290 -2.344829108658075e-09 0.003171
W=1.035
0.7374999999999998 0.7375000021865872 -2.186587355623715e-09
0.4125000000000000 0.4125000012955918 -1.295591856020906e-09
0.6124999999999998 0.6124999995333953 4.666045327894608e-10
SDGSOR
5 0.5374999999999999 0.5375000003615139 -3.615140409252149e-1() 0.002836
w=1.03

0.7374999999999998

0.7374999998011715

1.988282871678848e-1(
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Table 7 Comparison of Numerical Test for System of Linear fuations of Example 2
(using, SOR, GSOR SDGGS & SDGSOR)

Iterative
Method

Number Of
Iteration

Exact solution

)

Numerical Solution

)

Errors
(e=x-y)

CPU time
in seconds

SOR
W=1.19

10

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000(
0.213375000000000d
0.150875000000000(
0.0583482142857143

0.08251785714285716 0.08251785702790632
0.05834821428571428 0.05834821422645566

0.3317768359363765
0.4692321726778542
0.3317767943344221
0.1508750428272987
0.2133750152486913
0.1508750032604461
0.05834821007760948

-5.022209081939622e-0
-2.982071134471909e-0
-8.620136437986758e-0
-4.282729873517077e-0
-1.524869128188833e-0
-3.260446107544723e-0
4.208104815994762e-0
1.149508405129396e-1
5.925861884525929e-1

8
8
0 0.004272
8

GSOR

w=1.035

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000(
0.213375000000000(
0.150875000000000(
0.0583482142857143
0.0825178571428571
0.0583482142857142

0.3317767793618265
0.4692321338733815
0.3317767793618265
0.1508749976810884
0.2133749967205469
0.1508749976810884
0.05834821377399961
6 0.08251785641917157
B8 0.0583482137739996

6.352459169800540e-0
8.983761345948693e-0
6.352459225311691e-0
2.318911562770865e-0
3.279453070215155e-0
2.318911590526440e-0
5.117146845146081e-1
7.236855836811884e-1
5.117146845146081e-1

0.004580

SDGGS

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000d
0.213375000000000(
0.150875000000000d
0.0583482142857143
0.0825178571428571
0.0583482142857142

0.3317767745107025
0.4692321270133500
0.3317767745107025
0.1508749885183459
0.2133749837625242
0.1508749885183459
0.05834820984542199
6 0.0825178508633420%
8 0.05834820984542199

1.120358322781456e-0
1.584379283325887e-0
1.120358322781456e-0
1.148165404418755e-0
1.623747580836721e-0
1.148165404418755e-0
4.440292307450466e-0
6.279515102347588e-0
4.440292293572679¢e-0

0.005013

SDGSOR
w=1.03

0.3317767857142857
0.4692321428571428
0.3317767857142857
0.150875000000000(
0.213375000000000(
0.150875000000000(
0.0583482142857143
0.0825178571428571
0.0583482142857142

0.3317767842293651
0.4692321407681666
0.3317767842293651
0.1508749943453905
0.2133749920029026
0.1508749943453905
0.05834821300094367
6 0.08251785532592118
8 0.05834821300094367

1.484920575389737e-0
2.088976214231764e-0
1.484920575389737e-0
5.654609475103101e-0
7.997097373202422e-0
5.654609475103101e-0
1.284770623222187e-0
1.816935976672873e-0
1.284770609344399¢e-0

8
0
)
D
|
)
)
)
)
)
)
D
D
D
3
3
3
3
3
3
)
)
)
)
)
)
)
) 0.004437
)

)

)

)
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4.6. Discussion

In this thesis, Refinement and Second Degree iterabf Generalized Successive Over
Relaxation methods for solving large system of Am&quations have been presented. Two
practical examples, 4X 4, and9X 9 system of linear equations, were considered. Titali

approximation for both systems is taken as all zeextors. The stopping criterion

||x(k+1) - x(k)” <10° was used. We let m=1 and in this c@sgis a tri-diagonal matrix. A simple

experimental determination afis used to find the optimum relaxation factor. Wedrdifferent
values of w and compared the rates of convergence and conttheeekperiment with the value
of w which gives better approximation. The resultsaoted by the present methods have been
compared with numerical results obtained by othethwmds used for comparison in Tables 1
through 7.

As it can be observed from Tables 1 through 5,réfimement of generalized successive over
relaxation requires less computational runningetirfess number of iterations and approximates
the exact solution better than the other methogkd or comparison. Further, the results
presented in Tables 2 and 5 revealed that, asrtbe @ tolerance decreases the number of
iterations taken for convergence by the refinentérgeneralized successive over relaxation is
the smallest of all other methods presented in thesis. Thus the refinement of generalized

successive over relaxation could be consideredaas mfficient method than others.

With the same stopping criterioer("*l’—x‘k’||<10‘6 and the initial guess taken to be zero

vectors,the Second Degree Generalized Successive Over &ielaxis more efficient than the
other methods used for comparison in terms of aogyymumber of iteration and computational

running times.
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CHAPTER FIVE

CONCLUSION AND FUTURE WORK
5.1. Conclusion
In this thesis, we have presented Refinement ofe@dimed Successive Over Relaxation
(RGSOR) and Second Degree Generalized SuccesseeR&axation (SDGSOR) and studied
their convergence properties for symmetric positiedinite matrices. Two systems of linear
equations were studied and the results are presémte@bles. We have compared the present
methods with successive over relaxation, refinensercessive over relaxation, Generalized
successive over relaxation and second degree alizieel Gauss Seidel for solving system of
linear equations by considering number of iteratjoaccuracy of the numerical results and
computational running times. The numerical resolitained show that both the Refinement of
Generalized Successive Over Relaxation and SecaegleP Generalized Successive Over
Relaxation are efficient than the other methodsl disecomparison in this thesis.

Thus the Refinement of Generalized Successive (Relaxation and Second Degree
Generalized Successive Over Relaxation could besidered as more efficient than the

Generalized Successive Over Relaxation for solsysem of linear equations.

5.2. Future Work
To make this work more effective and realisticwvduld be interesting to investigate optimum

parameter.
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