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Abstract: This paper considers an infinite buffer single server batch service
queue with single exponential working vacation policy. The inter-arrival
times are generally independent and identically distributed random variables
and the service times are exponential. The server accesses new arrivals even
after service has started on any batch of initial number a. This operation
continues till the service time of the ongoing batch is completed or the
maximum accessible limit d of the batch being served is attained whichever
occurs first. The supplementary variable technique and the recursive method
are used to develop the steady-state queue length distributions at pre-arrival
and arbitrary epochs. Some performance measures and numerical results are
discussed.
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1 Introduction

Batch service queues have been studied extensively by many researchers owing to their
practical applicability in modelling and analysis of complex communication networks,
manufacturing and production systems, lift operations, cargo loading and unloading
problems, etc. In many telecommunication systems, it is frequently observed that the
server processes the packets in groups. For example, consider an ATM multiplexer
with multiple input links where each input link may serve messages that consist of
several packets. In semiconductor manufacturing processes, in service mechanism of a
web server and computer operating systems, jobs are frequently processed in batches
whose size usually varies depending on the total number of jobs accumulated. Neuts
(1967) proposed the general batch service rule in which service begins only when a
certain number of customers are available. Extensive studies on batch service queues
are found in Chaudhry and Templeton (1983) and Medhi (1991).

There is another class of queueing systems known as server vacationmodels, which
have been studied over the past few decades and are applied widely in several areas
as mentioned earlier. The server stops service and goes for vacation once the system
capacity drops to a specified level say zero. On return from vacation, if the server finds
the system still at zero level, then

• it goes for another vacation and continues in this manner until it finds at least
one waiting customer upon return from a vacation

• it remains idle till a customer arrives.

The former one is known asMultiple Vacation policy (MV ) and the later one as Single
Vacation policy (SV ). The vacation period may be utilised to carry out additional
works. For more details on this topic, one can refer to the comprehensive survey
by Doshi (1986) and the monographs of Tian and Zhang (2006) and Takagi (1993)
and the references therein.

Unlike the classical vacation models, in working vacation model, customers are
servedduring the vacationperiod at a rate that is generally different and lower than that
of the normal service rate. This concept of Working Vacation (WV) was introduced
by Servi and Finn (2002) for M/M/1/MWV model with a motivation to analyse a
reconfigurable Wavelength-Division Multiplexing (WDM) optical access network.

In this paper, we focus on an infinite buffer single server queue with accessible
and non-accessible batch services and with single exponential working vacations,
i.e., GI/M (a,d,b)/1/∞/SWV queue. The inter-arrival time of customers and
service time of batches are respectively, arbitrarily and exponentially distributed.
The supplementary variable technique is used to develop the steady-state equations
treating the remaining inter-arrival time as the supplementary variable. A simple
recursive method has been developed to obtain the steady-state distributions of the
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number in the system (queue) both at pre-arrival and arbitrary epochs. Performance
measures of the system are presented in the form of tables and graphs. This queueing
model has applications in the field of communication systems, manufacturing systems,
computer networks, polling systems, cinema theatres and other such related areas.

The rest of this paper is organised as follows. Section 2 presents a brief literature
review. In Section 3, we present the description of the model along with necessary
notations. Formulation and solution of the model are given in Section 4. Performance
measures and some special cases are demonstrated in Sections 5 and 6, respectively.
Numerical results in the form of tables and graphs are illustrated in Section 7.
Conclusions follow at the end.

2 Literature review

Considerable amount of research work is available on batch service queues. Gold and
Tran-Gia (1993) have analysed a single server finite capacity queue with general batch
service rule where customers arrive according to a Poisson process and service times of
the batches are arbitrarily distributed. They have obtained the distribution of number
of customers in the queue at departure and arbitrary epochs using embedded Markov
chain technique. The relationships between departure and arrival epoch probabilities
in a single server batch service queue have been studied by Hébuterne and Rosenberg
(1999), where the arrivals and service times are generally distributed. The finite buffer
continuous-time queues with general arrivals and batch service have been studied
by Vijaya Laxmi and Gupta (1999) using both the supplementary variable and the
embedded Markov chain techniques and queue length distribution at various epochs
has been obtained.

Batch service may be with accessible batches (AB). If a batch being served does
not employ its full capacity for service, late arrivals may join the ongoing service
as long as the number in that service batch is less than a pre-defined threshold
d(a ≤ d < b). The service time of the batch is not changed by inclusion of such arriving
customers in course of ongoing service. Such batch is said to be accessible batch.
However, if thenumber in the service batch exceedsd, thebatchbecomesnon-accessible
for the late arriving customers and such a batch is called non-accessible (NAB)
batch. This has been considered by Gross (2008), Kleinrock (1975) and Medhi (1991).
The infinite buffer queue with accessible and non-accessible batch service rule has
been studied by Sivasamy (1990), where the arrival and service times are exponentially
distributed. The finite and infinite buffer queues with accessible and non-accessible
batch service rule in discrete-time systems have been studied by Goswami et al. (2006),
by considering the arrivals and service times as geometrically distributed. Sivasamyand
Pukazhenthi (2009) have analysed the discrete time batch service queue with accessible
batch with the arrivals and service times as geometrically and negative binomially
distributed, respectively. Recently, Goswami and Sikdar (2010) have presented the
analysis of the discrete-time finite buffer batch service queue with accessible and
non-accessible batches using the recursive method wherein arrivals occur according
to a general process and service times of the batches are geometrically distributed.

Vacation queues have also gained notable attention owing to their wide
applications in transportation, computer communication networks, etc. Tian (1993)
studied the GI/M/1 queue with single exponential vacation. The infinite buffer single
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server batch service queue with multiple vacations has been analysed by Choi andHan
(1994). Chae et al. (2006) have discussed stochastic decomposition in GI/M/1 queue
by deriving the probability-generating function of the stationary queue length and
the Laplace-Stieltjes Transform (LST) of the stationary sojourn time. Batch arrival
batch service queue with single and multiple exponential vacations has been discussed
by Sikdar and Gupta (2008).

Queues with working vacation are quite different from classical vacation models.
During working vacation, customers are served by the server generally with a slower
rate. Therefore, the working vacation models have more complicated modalities and
their analysis is more difficult than classical vacation queues. Baba (2005) studied the
GI/M/1 queue with multiple working vacations and obtained the stationary queue
length distributions and waiting time. Wu and Takagi (2006) have considered the
M/G/1/MWV queue andgeneralised theworkof Servi andFinn (2002). TheGI/M/1
queue with exhaustive service discipline and multiple working vacations has been
studied by Banik et al. (2007) using the supplementary variable and embeddedMarkov
chain techniques to obtain system size distributions at pre-arrival and arbitrary epochs.
The M/M/1 queue with single working vacation using the quasi birth-death process
and matrix-geometric solution method has been discussed in Tian et al. (2008).
Zhao et al. (2009) studied theGI/M/1 queue with set-up period and working vacation
and vacation interruption using matrix-geometric solution method. The GI/M/1
and GI/Geo/1 queues both with single working vacation have been studied by
Chae et al. (2009) and derived the steady-state distribution of the number of customers
in the system.

Recently, Yesuf and Vijaya Laxmi (2009) have analysed the infinite buffer single
server accessible and non-accessible batch service queue with multiple exponential
working vacations. Using the supplementary variable technique and a simple recursive
method, they have derived the steady-state distribution of number of customer in the
queue at pre-arrival and arbitrary epochs. In this paper, the main purpose is to do both
analytic and computational analysis ofGI/M (a,d,b)/1/∞/SWV queuewith accessible
and non-accessible batch service, which have importance both from theoretical and
applied point of view.

3 Description of the model

Let us consider an infinite buffer single server accessible and non-accessible batch
service queue with single working vacations. The inter-arrival times are independent
and identically distributed random variables with probability distribution function
A(u), probability density function a(u), u ≥ 0, LST A∗(θ) (Re(θ) ≥ 0) and the mean
inter-arrival time is 1/λ = −A∗(1)(0). The customers are served exponentially with
parameter µ by a single server in batches whose minimum and maximum sizes are a
and b, respectively. However, if the number of customers in the queue is less than the
minimum threshold value a, the server takes single exponential working vacation with
parameter φ.

During any single working vacation period, the customers are served one by
one exponentially at a rate η (say), which is generally different and lower than its
normal service rate µ. The arrival times, vacation times and service times are mutually
independent of each other. Furthermore, to start service in theworking vacation period
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the server requires a minimum of a customers, otherwise it will wait until a minimum
of a customers accumulate in the system and then start service one by one or wait till
the single working vacation period ends whichever occurs first. On return from the
single working vacation, if the server finds n (0 ≤ n ≤ a − 1) customers in the system,
it enters into the idle period. On the other hand, if on return from the single working
vacation there are n(n ≥ a) customers waiting in the queue, it begins to serve them
with the normal service rate µ according to batch service rule. Moreover, the service
interrupted at the end of the single working vacation restarts from the beginning. If b or
more customers are present in the queue at service initiate or single working vacation
completion epoch, then only b of them are taken into service and the rest will wait in
the queue.

It is further assumed that the late entries can join a batch in course of ongoing
service as long as the number of customers in that batch is less than d < b (called
maximum accessible limit).

At every departure epoch of service, the server may find the system in any one of
the following three cases:

i 0 ≤ n ≤ a − 1

ii a ≤ n ≤ d − 1

iii n ≥ d.

In case (i), it takes single working vacation. In case (ii), the server takes the entire queue
for batch service and admits the subsequent arrivals in the batch while the service is
on, till the accessible limit d is reached, and such a batch is called an accessible batch.
In case (3), it takes min(n, b) customers for the service and does not allow further
arrivals into the batch being served even if the current batch size is not b, i.e., when
the batch size is greater than or equal to d, the batch becomes non-accessible for late
arriving customers. If b ormore customers are present in the queue at service initiate or
single working vacation completion epoch, then only b of them are taken into service
and the rest of the customers will wait in the queue. The traffic intensity is given by
ρ = λ/bµ < 1.

The state of the system at time t is described by the following random variables,
namely

• Ns(t) = number of customers present in the system including those in service

• Nq(t) = number of customers present in the queue not counting those in service

• U(t) = remaining inter-arrival time for the next arrival

• ζ(t) =




0, if the server is idle,
1, if the server is on working vacation,
2, if the server is busy with an accessible batch,
3, if the server is busy with a non-accessible batch.

Let us define the joint probabilities by

Rn(u, t)du = P (Ns(t) = n, u < U(t) ≤ u + du, ζ(t) = 0), u ≥ 0,

0 ≤ n ≤ a − 1,
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Pn,0(u, t)du = P (Ns(t) = n, u < U(t) ≤ u + du, ζ(t) = 1), u ≥ 0, n ≥ 0,

Qn,0(u, t)du = P (Ns(t) = n, u < U(t) ≤ u + du, ζ(t) = 2), u ≥ 0,

a ≤ n ≤ d − 1,

Qn,1(u, t)du = P (Nq(t) = n, u < U(t) ≤ u + du, ζ(t) = 3), u ≥ 0, n ≥ 0.

These probabilities in steady state, i.e., as t → ∞ are denoted by Rn(u), Pn,0(u),
Qn,j(u) and their LSTs are R∗

n(θ), P ∗
n,0(θ), Q

∗
n,j(θ), j = 0, 1, respectively.

4 Formulation and solution of the model

In this section, we determine the distribution of number of customers in the system
(queue) at various epochs using the supplementary variable technique and the recursive
method. The former technique is used to develop the steady-state equations treating
the remaining inter-arrival time as the supplementary variable while the latter one is
used to obtain the steady-state distribution of the number in the system (queue) both
at pre-arrival and arbitrary epochs.

Relating the states of the system at two consecutive time epochs t and t + dt,
using definitions and probabilistic arguments, we have in steady state

− d
du

R0(u) = φP0,0(u), (1)

− d
du

Rn(u) = φPn,0(u) + a(u)Rn−1(0), 1 ≤ n ≤ a − 1, (2)

− d
du

P0,0(u) = −φP0,0(u) + µQ0,1(u) + µ

d−1∑
k=a

Qk,0(u), (3)

− d
du

Pn,0(u) = −φPn,0(u) + µQn,1(u) + a(u)Pn−1,0(0), 1 ≤ n ≤ a − 2, (4)

− d
du

Pa−1,0(u) = −φPa−1,0(u) + µQa−1,1(u) + ηPa,0(u) + a(u)Pa−2,0(0), (5)

− d
du

Pn,0(u) = −(φ + η)Pn,0(u) + a(u)Pn−1,0(0) + ηPn+1,0(u), n ≥ a, (6)

− d
du

Qa,0(u) = −µQa,0(u) + φPa,0(u) + µQa,1(u) + a(u)Ra−1(0), (7)

− d
du

Qn,0(u) = −µQn,0(u) + φPn,0(u) + µQn,1(u) + a(u)Qn−1,0(0),

a + 1 ≤ n ≤ d − 1, (8)

− d
du

Q0,1(u) = −µQ0,1(u) + φ

b∑
k=d

Pk,0(u) + µ

b∑
k=d

Qk,1(u) + a(u)Qd−1,0(0),

(9)

− d
du

Qn,1(u) = −µQn,1(u) + µQn+b,1(u)

+ a(u)Qn−1,1(0) + φPn+b,0(u), n ≥ 1, (10)

where Rn(0), 0 ≤ n ≤ a − 1, Pn,0(0), n ≥ 0, Qn,0(0), a ≤ n ≤ d − 1 and Qn,1(0),
n ≥ 0 are the respective rates of arrivals.
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Multiplying equations (1)–(10) by e−θu and integrating with respect to u from 0 to
∞ yields

−θR∗
0(θ) = φP ∗

0,0(θ) − R0(0), (11)

−θR∗
n(θ) = φP ∗

n,0(θ) + A∗(θ)Rn−1(0) − Rn(0), 1 ≤ n ≤ a − 1, (12)

(φ − θ)P ∗
0,0(θ) = µQ∗

0,1(θ) + µ

d−1∑
k=a

Q∗
k,0(θ) − P0,0(0), (13)

(φ − θ)P ∗
n,0(θ) = µQ∗

n,1(θ) + A∗(θ)Pn−1,0(0) − Pn,0(0), 1 ≤ n ≤ a − 2, (14)

(φ − θ)P ∗
a−1,0(θ) = µQ∗

a−1,1(θ) + ηP ∗
a,0(θ) + A∗(θ)Pa−2,0(0) − Pa−1,0(0), (15)

(φ + η − θ)P ∗
n,0(θ) = A∗(θ)Pn−1,0(0) + ηP ∗

n+1,0(θ) − Pn,0(0), n ≥ a, (16)

(µ − θ)Q∗
a,0(θ) = φP ∗

a,0(θ) + µQ∗
a,1(θ) + A∗(θ)Ra−1(0) − Qa,0(0), (17)

(µ − θ)Q∗
n,0(θ) = φP ∗

n,0(θ) + µQ∗
n,1(θ) + A∗(θ)Qn−1,0(0) − Qn,0(0),

a + 1 ≤ n ≤ d − 1, (18)

(µ − θ)Q∗
0,1(θ) = φ

b∑
k=d

P ∗
k,0(θ) + µ

b∑
k=d

Q∗
k,1(θ) + A∗(θ)Qd−1,0(0) − Q0,1(0),

(19)

(µ − θ)Q∗
n,1(θ) = µQ∗

n+b,1(θ) + φP ∗
n+b,0(θ)

+ A∗(θ)Qn−1,1(0) − Qn,1(0), n ≥ 1. (20)

Adding equations (11)–(20), and taking limit as θ → 0 and using the normalisation
condition

a−1∑
n=0

Rn +
∞∑

n=0

Pn,0 +
d−1∑
n=a

Qn,0 +
∞∑

n=0

Qn,1 = 1,

we get

a−1∑
n=0

Rn(0) +
∞∑

n=0

Pn,0(0) +
d−1∑
n=a

Qn,0(0) +
∞∑

n=0

Qn,1(0) = λ. (21)

The left-hand side of equation (21) denotes mean number of entrances into the system
per unit time and is obviously equal to mean arrival rate λ.

4.1 Steady-state distribution at pre-arrival epoch

Let R−
n be the probability that n (0 ≤ n ≤ a − 1) customers waiting in the system

at pre-arrival epoch and the server is idle and P−
n,0 be the probability that n (n ≥ 0)

customers are in the system at pre-arrival epoch and the server is on working vacation.
Furthermore, let Q−

n,0 denote the probability that the server is busy with an accessible
batch of size n(a ≤ n ≤ d − 1), and Q−

n,1 denote the probability that the server is busy
with non-accessible batch with n(n ≥ 0) customers waiting in the queue at pre-arrival
epoch. These are given by

R−
n =

1
λ

Rn(0), P−
n,0 =

1
λ

Pn,0(0), Q−
n,0 =

1
λ

Qn,0(0), Q−
n,1 =

1
λ

Qn,1(0), (22)
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where λ is given by equation (21).
To obtain R−

n , P−
n,0 and Q−

n,i, i = 0, 1, we need to evaluate Rn(0), Pn,0(0) and
Qn,i(0), i = 0, 1 which is done here.

Evaluation of rate probabilities Rn(0), Pn,0(0) and Qn,i(0)

Using the displacement operator D defined by Dxn = xn+1 for all n on equation (16)
we obtain,

(φ + η − θ − ηD)P ∗
n,0(θ) = (A∗(θ) − D)Pn−1,0(0), n ≥ a. (23)

Setting θ = φ + η − ηD in equation (23) we get

[A∗(φ + η − ηD) − D]Pn−1,0(0) = 0, (24)

whose solution is given by

Pn,0(0) = Cνn, n ≥ a − 1, (25)

where C is an arbitrary constant and ν is the unique root of the equation
A∗(φ + η − ηD) − D = 0 inside (0, 1) for ρ = λ

bµ < 1.
Substituting equation (25) in equation (23), we get the general solution as

P ∗
n,0(θ) =

C(A∗(θ) − ν)νn−1

(φ1 − θ)
, n ≥ a, (26)

where φ1 = φ + η(1 − ν).
Applying the displacement operator D, we can write equation (20) as

(µ − µDb − θ)Q∗
n,1(θ) = (A∗(θ) − D)Qn−1,1(0) + φP ∗

n+b,0(θ), n ≥ 1. (27)

Setting θ = µ − µDb in equation (27) and using equation (26), we obtain

(A∗(µ − µDb) − D)Qn,1(0) = −Cφ(A∗(µ − µDb) − ν)νn+b

φ1 − µ(1 − Db)
, n ≥ 0. (28)

Thus, the general solution of equation (28) is given by

Qn,1(0) = Krn − Cφνn+b

φ2
, n ≥ 0, (29)

where K is an arbitrary constant and r is the unique root of the equation
A∗(µ − µDb) − D = 0 in (0, 1) and φ2 = φ1 − µ(1 − νb).

Let zj(θ), 1 ≤ j ≤ b, be the b roots of µ − µDb − θ = 0 for a fixed θ with
Re(θ) ≥ 0. Then, the complementary solution of the homogeneous difference
equation (µ − µDb − θ)Q∗

n,1(θ) = 0 of equation (27) is given by

Q
∗(c)
n,1 (θ) =

b∑
j=1

djzj(θ),
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where djs are arbitrary constants. Since
∑∞

n=1 Q∗
n,1(0) ≤ 1, so wemust have all dj = 0.

Thus, the general solution of equation (27) using equations (26) and (29) is

Q∗
n,1(θ) =

Krn−1(A∗(θ) − r)
µ − µrb − θ

− Cφ(A∗(θ) − ν)νn+b−1

φ2(φ1 − θ)
, n ≥ 1. (30)

Let α = Qa,0(0) and ω=A∗(µ).
Setting θ = µ in equation (18), using equations (26) and (30) and after recursive

substitution, we obtain

Qn,0(0) =
Cφ(ωn−a − νn−aνn)

φ2
− Kra−b(ωn−a − rn−a) + αωn−a,

a ≤ n ≤ d − 1. (31)

Hence, the solution of equations (17) and (18) is

Q∗
n,0(θ) =

1
µ − θ

[
Cφ

φ2

{
νn−1(A∗(θ) − ν)(φ1 − µ)

(φ1 − θ)
+ νaH(θ, n, ν)

}

+K

{
µrn−1(A∗(θ) − r)

(µ − µrb − θ)
− ra−bH(θ, n, r)

}

+α(A∗(θ) − ω)ωn−a−1] , a ≤ n ≤ d − 1, (32)

where H(θ, n, x) = ωn−a−1(A∗(θ) − ω) − xn−a−1(A∗(θ) − x). Using equations (26)
and (30) in equation (17) after substituting θ = µ, we get

Ra−1(0) =
1
ω

[
α − Cφ(ω − ν)νa−1

φ2
+ Kra−b−1(ω − r)

]
. (33)

From equation (19), we get

Q∗
0,1(θ) =

1
µ − θ

[
Cφ

φ2

{
(νd−1 − νb)(A∗(θ) − ν)(φ1 − µ)

(φ1 − θ)(1 − ν)
+ νbG(θ, ν)

}

+ K

{
µ(rd−1 − rb)(A∗(θ) − r)

(µ − µrb − θ)(1 − r)
− G(θ, r)

}
+ αA∗(θ)ωd−a−1

]
, (34)

where G(θ, x) = A∗(θ)(ωd−a−1 − xd−a−1)xa−b + 1.
Let β = A∗(φ). Setting θ = φ in equations (15) and (14), we get after recursive

substitution,

Pn,0(0) = βn−a+1
[
Cνa−1(1 − β)

1 − ν
+

Cφµ(βa−n−1 − νa−n−1)νn+b

η(1 − ν)φ2

− Kµrn(βa−n−1 − ra−n−1)
µ(1 − rb) − φ

]
, 0 ≤ n ≤ a − 2. (35)

This completes the evaluation of the rate probabilities and their Laplace transform
counterparts, but their expressions involve still unknown constantsC, K and α, which
are evaluated by deriving three independent equations as discussed here.
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Evaluation of the constants C, K and α:

Using equations (26), (29), (30) and (31) in equation (19), substituting θ = µ and
simplifying, we get

Cφ

φ2
T (ν) − KT (r) + αωd−a = 0 (36)

where T (x) = (ω−x)(xd−b−1−1)
1−x + xa−bω(ωd−a−1 − xd−a−1) + 1.

Setting θ = 0 in equations (11) and (12), we get

Rn(0) = φ

n∑
j=0

Pj,0, 0 ≤ n ≤ a − 1, (37)

where Pj,0, 0 ≤ j ≤ a − 1, are obtained by setting θ = 0 in equations (13)–(15) as:

P0,0 =
1
φ

[
Cφ

φ2

{
(φ1 − µ)(νa−1 − νb)

φ1
− (ω − ν)νa−1

ω
+ νb

− µβ1−aνb(βa−1 − νa−1)
η(1 − ν)

}
− Cβ1−aνa−1(1 − β)

1 − ν

+ K

{
ra−1 − 1
1 − rb

+
(ω − r)ra−b−1

ω
+

µβ1−a(βa−1 − ra−1)
µ(1 − rb) − φ

}
+

α

ω

]
.

(38)

Pn,0 =
1
φ

[
Cφµ

φ2

{
νb[(1 − ν)νn−1 − (1 − β)νa−1βn−a]

η(1 − ν)

− (1 − ν)νn+b−1

φ1

}
+

C(1 − β)2νa−1βn−a

1 − ν

+ K

{
(1 − r)rn−1

1 − rb
− µ[(1 − r)rn−1 − (1 − β)ra−1βn−a]

µ(1 − rb) − φ

}]
,

1 ≤ n ≤ a − 2. (39)

Pa−1,0 =
1
φ

[
C

β(1 − ν)φ1

{
φµ[(β − ν)φ1 − ηβ(1 − ν)2]νa+b−2

ηφ2

+ [(1 − β)φ1 − βφ(1 − ν)]νa−1
}

+ K

{
(1 − r)ra−2

1 − rb
− µra−2(β − r)

β(µ(1 − rb) − φ)

}]
. (40)

Setting θ = φ in equation (13) andusing equations (32), (34) and (35),weobtainanother
equation as

Cφ

φ2

{
M(ν)(φ1 − µ) − νbM1(ν)

η(1 − ν)
+ νbF (ν) − β1−aνa−1(1 − β)(µ − φ)φ2

µφ(1 − ν)

}

+ K

{
µM(r) + M1(r)
µ(1 − rb) − φ

− F (r)
}

+ α

{
ωd−a+1(1 − β) − (ω − β)

ω(1 − ω)

}
= 0, (41)
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where

M(x) =
(β − x)(xa−1 − xb)

1 − x
,

F (x) = xa−b
(ωd−a+1(1 −β) − (ω −β)

ω(1 −ω)
− xd−a+1(1 −β) − (x−β)

x(1 −x)
)

+ 1 and

M1(x) = β1−a(βa−1 − xa−1)(µ − φ).

Elimination of α from equations (36) and (41) gives

C =
T2K

T1
, (42)

where

T1 =
φ

φ2

{
M(ν)(φ1 − µ) − νbM1(ν)

η(1 − ν)
− β1−aνa−1(1 − β)(µ − φ)φ2

µφ(1 − ν)

+ νb(F (ν) − J(ν))
}

,

T2 = F (r) − µM(r) + M1(r)
µ(1 − rb) − φ

− J(r),

where

J(x) =
(

xa−bωd−a(1 − x) + (1 − ω)(1 − xd−b)
1 − x

)(
1 − β − (ω − β)ωa−d−1

1 − ω

)
.

Now using equations (25), (29), (31), (35) and (37)–(40) in equation (21), we obtain

CT3 + KT4 = λ, (43)

where

T3 =
φ

φ2

[
µνb

η(1 − ν)

{
1

βφ1
(νa−2[(β − ν)φ1 − ηβ(1 − ν)2] − βφM2(ν))

+M3(ν) + S(ν)
}

+
a(νa−1 − νb)(φ1 − µ)

φ1
+

[a(1 − ν) − 1]νb

1 − ν

−νaE(ν) − νbωa−dT (ν)
(

a

ω
+

1 − ωd−a

1 − ω

)]
+

η(1 − ν)νa−1

φ1

+
1

1 − ν

(
β1−aνa−1[1 − (1 − β)(a + M2(β))] +

νa−1(1 − 2β + βν)
β

)
,

T4 =
1

µ(1 − rb) − φ

{
φM2(r)
1 − rb

− µS(r) − µ(β − r)ra−2

β
− µM3(r)

}

+ωa−dT (r)
(

a

ω
+

1 − ωd−a

1 − ω

)
+

a(ra−1 − 1) + (1 − r)ra−2

1 − rb

+
1

1 − r
+ ra−bE(r),
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where

E(x) =
a(ω − x)

ωx
−

(
1 − ωd−a

1 − ω
− 1 − xd−a

1 − x

)
,

M2(x) =
(1 − a) + xa−2(1 − 2x) + ax

1 − x
,

M3(x) =
1 − xa−1

1 − x
+

xa−1(1 − β1−a)
1 − β

and

S(x) = xa−1β1−aM2(β) − aβ1−a(βa−1 − xa−1).

Solving the linear equations (42) and (43), we obtain C and K after some
simplification as:

C = λT2(T2T3 + T1T4)−1, (44)

K = λT1(T2T3 + T1T4)−1. (45)

Using equations (44) and (45) in equation (36), we get

α = λωa−d
(
T (r)T1 − φνb

φ2
T (ν)T2

)
(T2T3 + T1T4)−1. (46)

We summarise the above-mentioned results for pre-arrival epoch probabilities in the
following theorem.

Theorem 4.1: The pre-arrival epoch queue length distributions R−
n that an arrival

sees n customers in the system and the server is idle, P−
n,0 that an arrival sees n

customers in the system and the server is on working vacation, Q−
n,j , j = 0, 1 that the

server is busy with an accessible/non-accessible batch are given by

R−
n =

φ

λ

n∑
j=0

Pj,0, 0 ≤ n ≤ a − 1,

P−
n,0 =

βn−a+1

λ

[
Cνa−1(1 − β)

1 − ν
+

Cφµ(βa−n−1 − νa−n−1)νn+b

η(1 − ν)φ2

−Kµrn(βa−n−1 − ra−n−1)
µ(1 − rb) − φ

]
, 0 ≤ n ≤ a − 2,

P−
n,0 =

C

λ
νn, n ≥ a − 1,

Q−
n,0 =

1
λ

[
Cφ(ωn−a − νn−a)νa

φ2
− Kra−b(ωn−a − rn−a) + αωn−a

]
,

a ≤ n ≤ d − 1,

Q−
n,1 =

1
λ

[
Krn − Cφνn+b

φ2

]
, n ≥ 0.

Proof: To get the desired results, we use equation (22) in equations (37), (35), (25),
(31) and (29), respectively, and using equations (38)–(40).
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4.2 Steady-state distribution at arbitrary epoch

The arbitrary epoch queue length distributions Rn that an arrival sees n customers
in the system and the server is idle, Pn,0 that an arrival sees n customers in the
system and the server is on working vacation, Qn,j , j = 0, 1 that server is busy with an
accessible/non-accessible batch are summarised in the following theorem.

Theorem 4.2: The arbitrary epoch probabilities are given by

P0,0 =
1
φ

[
Cφ

φ2

{
(φ1 + µ)(νa−1 − νb)

φ1
− (ω − ν)νa−1

ω
+ νb

−µβ1−aνb(βa−1 − νa−1)
η(1 − ν)

}
− Cβ1−aνa−1(1 − β)

1 − ν

+K

{
ra−1 − 1
1 − rb

+
(ω − r)ra−b−1

ω
+

µβ1−a(βa−1 − ra−1)
µ(1 − rb) − φ

}
+

α

ω

]
,

Pn,0 =
1
φ

[
Cφµ

φ2

{
νb[(1 − ν)νn−1 − (1 − β)νa−1βn−a]

η(1 − ν)
− (1 − ν)νn+b−1

φ1

}

+
C(1 − β)2νa−1βn−a

1 − ν
+ K

{
(1 − r)rn−1

1 − rb

−µ[(1 − r)rn−1 − (1 − β)ra−1βn−a]
µ(1 − rb) − φ

}]
, 1 ≤ n ≤ a − 2,

Pa−1,0 =
1
φ

[
C

β(1 − ν)φ1

{
φµ[(β − ν)φ1 − ηβ(1 − ν)2]νa+b−2

ηφ2

+[(1 − β)φ1 − βφ(1 − ν)]νa−1
}

+K

{
(1 − r)ra−2

1 − rb
− µra−2(β − r)

β(µ(1 − rb) − φ)

}]
,

Pn,0 =
C(1 − ν)νn−1

φ1
, n ≥ a,

Qn,0 =
1
µ

[
Cφ

φ2

{
(1 − ν)νn−1(φ1 − µ)

φ1
+ νa((1 −ω)ωn−a−1 − (1 − ν)νn−a−1)

}

+K

{
(1 − r)rn−1

1 − rb
− ra−b((1 − ω)ωn−a−1 − (1 − r)rn−a−1)

}

+α(1 − ω)ωn−a−1
]
, a ≤ n ≤ d − 1,

Q0,1 =
1
µ

[
Cφ

φ2

{
(νd−1 − νb)(φ1 − µ)

φ1
+ νa(ωd−a−1 − νd−a−1) + νb

}

+K

{
rd−1 − 1
1 − rb

− ra−b(ωd−a−1 − rd−a−1)
}

+ αωd−a−1
]
,

Qn,1 =
K(1 − r)rn−1

µ(1 − rb)
− Cφ(1 − ν)νn+b−1

φ1φ2
, n ≥ 1.
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Proof: The results of Pn,0, 0 ≤ n ≤ a − 1 are obtained from equations (38)–(40).
The other results of the theorem are obtained by setting θ = 0 in equations (26), (32),
(34) and (30), respectively.

Remark: Equations (35), (38)–(43) and their corresponding equations in
Theorems 4.1 and 4.2 become indeterminate when η = 0. The problem may be
overcome by using L’Hopital’s rule.

Theorem 4.3: The arbitrary epoch probabilities {Rn}a−1
0 are given by

Rn = R−
n−1 − φP

∗(1)
n,0 (0), 1 ≤ n ≤ a − 1.

Finally, theonly unknownquantityR0 is obtainedbyusing thenormalisation condition

R0 = 1 −
(∑a−1

n=1 Rn +
∑∞

n=0 Pn,0 +
∑d−1

n=a Qn,0 +
∑∞

n=0 Qn,1

)
.

Proof: Differentiating equation (12) with respect to θ, and setting θ = 0, we obtain

Rn = −φP
∗(1)
n,0 (0) + R−

n−1, 1 ≤ n ≤ a − 1,

where P
∗(1)
n,0 (0), 1 ≤ n ≤ a − 2 and P

∗(1)
a−1,0(0) can be obtained by differentiating

equations (14) and (15) with respect to θ and setting θ = 0, we obtain

P
∗(1)
n,0 (0) =

1
φ

(
Pn,0 − P−

n−1,0 + µQ
∗(1)
n,1 (0)

)
, 1 ≤ n ≤ a − 2,

P
∗(1)
a−1,0(0) =

1
φ

(
Pa−1,0 − P−

a−2,0 + µQ
∗(1)
a−1,1(0) + ηP

∗(1)
a,0 (0)

)
.

Finally, to know the quantities Q
∗(1)
n,1 (0), 1 ≤ n ≤ a − 1, and P

∗(1)
a,0 (0), we differentiate

equations (30) and (26) with respect to θ and setting θ = 0, we obtain

Q
∗1)
n,1(0) = Krn−1

{
λ(1 − r) − µ(1 − rb)

λµ2(1 − rb)2

}

−Cφνn+b−1
{

(λ − η)(1 − ν) − φ

λφ2
1φ2

}
, n ≥ 1,

P
∗(1)
n,0 (0) = Cνn−1

{
(λ − η)(1 − ν) − φ

λφ2
1

}
, n ≥ a,

and setting n = a in P
∗(1)
n,0 (0), we get

P
∗(1)
a,0 (0) = Cνa−1

{
(λ − η)(1 − ν) − φ

λφ2
1

}
.
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4.3 Algorithm for computing state probabilities

Todemonstrate theworking schemesof the recursivemethod,wedescribe an algorithm
for calculating the steady-state probabilities. Given the values of λ, µ, φ, η, a, d and
b, first obtain ν and r, which are the roots of the equations A∗(φ + η − ην) − ν = 0
and A∗(µ − µrb) − r = 0, respectively (see equations (25) and (29)). Mathematica 6.0
software is used to compute them as their analytical expression is difficult to derive
though not impossible for different arrival distributions. The remaining steps of the
solution algorithm are stated as follows:

Step 1: Compute Pn,0(0) for n ≥ a − 1 using equation (25).

Step 2: Compute Qn,1(0) for n ≥ 0 using equation (29).

Step 3: Compute Qn,0(0) for a ≤ n ≤ d − 1 using equation (31).

Step 4: Compute Pn,0(0) for 0 ≤ n ≤ a − 2 using equation (35).

Step 5: Compute P0,0, Pn,0, 0 ≤ n ≤ a − 2 and Pa−1,0 using equations (38)–(40),
respectively.

Step 6: Compute Rn(0) for 0 ≤ n ≤ a − 1 using equation (37).

Step 7: Compute P−
n,0, 0 ≤ n ≤ a − 2, P−

n,0, n ≥ a − 1, Q−
n,1, n ≥ 0, Q−

n,0,
a ≤ n ≤ d − 1 and R−

n , 0 ≤ n ≤ a − 1 using equation (22).

Step 8: Compute Pn,0 for n ≥ a using equation (26).

Step 9: Compute Qn,0 for a ≤ n ≤ d − 1 using equation (32).

Step 10: Compute Q0,1 using equation (34).

Step 11: Compute Qn,1 for n ≥ 1 using equation (30).

Step 12: Compute Rn for 0 ≤ n ≤ a − 1 from Theorem 4.3.

This completes the evaluation of arbitrary and pre-arrival epoch probabilities from
Theorems 4.1–4.3. In the following sections, we discuss some performance measures,
special cases and numerical results.

5 Performance measures

Performance measures are important features of queueing systems as they reflect the
efficiency of the queueing system under consideration. Once the state probabilities
at pre-arrival and arbitrary epochs are known, we can evaluate various performance
measures. The average queue length when server is idle (Lq0), the average queue length
when server is in single working vacation (Lq1), the average queue length when the
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server is busy with non-accessible batch (Lq2) and the average number of customers in
the queue at an arbitrary epoch (Lq) are given, respectively, by

Lq0 =
a−1∑
n=0

nRn, Lq1 =
∞∑

n=0

nPn,0, Lq2 =
∞∑

n=0

nQn,1

andLq =
a−1∑
n=0

nRn +
∞∑

n=0

n(Pn,0 + Qn,1).

The average waiting time in the queue (Wq) of a customer using Little’s rule is given
by Wq = Lq/λ.

Waiting time analysis

It is known from the literature that the waiting time analysis of the GI/M (a,b)/1/∞
model is not available though it is discussed for M/M (a,b)/1/∞ queue, see Medhi
(1991). However, we present the waiting time distribution in the queue of an admitted
customer for GI/M (a,d,b)/1/∞/SWV queueing model for the special case a = d = 1.

LetWA be the actualwaiting timedistribution in the queue of an admitted customer
and let W ∗

A(θ) be its LST. Because of the memoryless property of the service times
during the normal service period, service time during working vacation and the length
of working vacation time distributions, an arrival may find the system in one of the
following two situations:

Case I: A busy server with n(0 ≤ n ≤ ∞) customers in the queue during the normal
service period. In this case, the arriving customer will wait in the queue till the service
completion of [n

b ] + 1 batches, where [x] is the greatest integer contained in x.

Case II: A busy server with n (0 ≤ n ≤ ∞) customers in the queue during the working
vacation period. Here, the customer has to wait in the queue till

• the service completion of n customers during working vacation

• the service completion of k(0 ≤ k ≤ n) customers during working vacation, the
server returns from a working vacation and the service completion of [n−k

b ]
batches of customers during the normal service period.

Hence, combining all the above-mentioned cases, we have

W ∗
A(θ) =

∞∑
n=0

Q−
n,1

( µ

θ + µ

)[ n
b ]+1 +

∞∑
n=0

P−
n,0

(
η

θ + φ + η

)n+1

+
∞∑

n=0

P−
n,0

n∑
k=0

(
φ

θ + φ + η

)(
η

θ + φ + η

)k(
µ

θ + µ

)[ n−k
b ]

.

From this expression, we can easily obtainmeanwaiting time in the queue (WA), which
is given by:
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WA = −W
∗(1)
A (0)

=
1
µ

∞∑
n=0

Q−
n,1

([
n

b

]
+ 1

)
+

∞∑
n=0

P−
n,0

(n + 1)ηn+1

(φ + η)n+2

+
∞∑

n=0

P−
n,0

n∑
k=0

φηk

(φ + η)k+1

(
k + 1
φ + η

+
1
µ

[
n − k

b

])
.

It may be noted here that the numerical value of the average waiting time in the queue
obtained through waiting time analysis matches exactly with the one obtained earlier
using Little’s rule, as it should be.

6 Special cases

The following special cases are deduced from our model by taking specific values of
the parameters a, d, b, φ and η.

Case 1: a = d, i.e., the server is not accessible for late arrivals. In this case, the model
reduces to GI/M (a,b)/1/∞/SWV queue.

Case 2: a = d = b = 1, i.e., the batch size one. In this case, the model reduces to
GI/M/1/∞/SWV queue and our results match analytically with the one obtained
by Chae et al. (2009).

Case 3: η → 0, i.e., the server with single vacation. In this case, the model reduces to
GI/M (a,d,b)/1/∞/SV queue.

Case 4: a = d and η → 0, i.e., the server with single vacation is not accessible for late
arrivals. In this case, the model reduces to GI/M (a,b)/1/∞/SV queue.

Case 5: a = d = b = 1 and η → 0, i.e., the batch size one with single vacation. In this
case, the model reduces to GI/M/1/∞/SV queue and our results match with the one
discussed by Tian (1993).

7 Numerical results

To demonstrate the applicability of the results obtained in previous sections,
we have presented numerical results in self-explanatory tables and graphs by
considering different inter-arrival time distributions such as exponential (M ),
deterministic (D), Erlang (Ek) and hyperexponential (HE2, with parameters
σ1, σ2, λ1, λ2). It can be seen from the theorems in Section 4 that to obtain the
pre-arrival and arbitrary epochprobabilities for various inter-arrival timedistributions
we need first to obtain the roots ν and r. But, because of the analytical complexity
it is difficult to give the explicit expressions of ν and r though numerically it is easier
to evaluate them using the softwares like Mathematica 6.0.

In Table 1, comparison of performance measures has been done for E2
inter-arrival time distribution by taking the parameters λ = 2.5, ρ = 0.5, a = 3,
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d = 6, b = 10, η = 0.2 and 0.8 and φ varying from 0.2 to 1.2. One can observe
that all the performance measures except Lq0 decrease as φ increases. This is
because, for fixed a and λ as φ increases the server attends the system more
frequently and may find the system with less than a number of customer, thereby
the queue length during idle period Lq0 increases. On the other hand, when
the system has minimum a number of customers, i.e., ready for service, the
other performance measures Lq1, Lq2, Lq, Wq naturally decrease with increasing
value of φ. Furthermore, except Lq0 all performance measures corresponding to
η = 0.2 are larger than those corresponding to η = 0.8, which may be explained
in a similar way. This observation may help us in suitably choosing φ and
η so that the server reach its optimal serving capacity to enhance the system
performance.

Table 1 Comparison of performance measures for E2/M
(3,6,10)/1/∞/SWV queue

φ Lq Wq Lq0 Lq1 Lq2

η = 0.2

0.2 11.239600 4.495850 0.010635 5.020450 6.208560
0.4 6.423580 2.569430 0.031894 2.091270 4.300410
0.6 5.147310 2.058930 0.054713 1.180080 3.912520
0.8 4.631170 1.852470 0.075811 0.764525 3.790830
1.0 4.370960 1.748380 0.094322 0.538466 3.738170
1.2 4.219990 1.688000 0.110244 0.401552 3.708190

η = 0.8

0.2 9.077620 3.631050 0.012404 4.336270 4.728950
0.4 5.666810 2.266720 0.035506 1.836070 3.795230
0.6 4.780180 1.912070 0.059123 1.053600 3.667460
0.8 4.418780 1.767510 0.080353 0.693507 3.644920
1.0 4.233050 1.693220 0.098672 0.495323 3.639050
1.2 4.123250 1.649300 0.114264 0.373784 3.635200

In Tables 2 and 3, few results of queue length distributions at pre-arrival and arbitrary
epochs along with some performancemeasures are presented for different inter-arrival
time distributions. For this case, we have taken λ = 1.25, µ = 0.3125, φ = 0.6,
η = 1.0, a = 3, d = 6, b = 10 and ρ = 0.4. As can be seen from Table 2, the queue
length distributions at pre-arrival and arbitrary epochs are same for exponential
inter-arrival times due to its memoryless property.

Figure 1 shows the effect of rate of vacation (φ) on the average waiting time in
the queue (Wq) when inter-arrival time distribution is E3 with λ = 2.5, ρ = 0.4, η = 1,
a = 3, b = 15. We have used different accessibility limit d = 5, 9, 13 and φ varying
from 0.1 to 2. It can be observed that as φ increases, Wq drastically decreases initially
and then behaves as a constant. With increasing φ, the server is frequently available
in the system clearing the backlog customers thereby decreasing the waiting time.
Furthermore, for fixed φ, as the accessibility limit d increases Wq decreases. This is
how accessible batch service is important in providing better service and improving
the performance of the system.
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Table 2 Queue length distributions at pre-arrival and arbitrary epochs

M/M (3,6,10)/1/∞ E4/M
(3,6,10)/1/∞

λ = 1.25, φ = 0.6, λ = 1.25, φ = 0.6,
ρ = 0.4, µ = 0.3125 ρ = 0.4, µ = 0.3125

η = 1.0 η = 1.0

Pre-arrival Arbitrary Pre-arrival Arbitrary

R0 0.023909 0.023909 0.019152 0.009844
R1 0.045093 0.045093 0.045234 0.035803
R2 0.071192 0.071192 0.075549 0.063786
P0,0 0.049811 0.049811 0.060297 0.039900
P1,0 0.044134 0.044134 0.050873 0.054337
P2,0 0.054373 0.054373 0.066195 0.063156
P3,0 0.029441 0.029441 0.028580 0.040248
P4,0 0.015943 0.015943 0.012339 0.017377
P5,0 0.008632 0.008632 0.005328 0.007502
P10,0 0.000402 0.000402 0.000080 0.000113
...

...
...

...
...

Q3,0 0.076689 0.076689 0.084959 0.082995
Q4,0 0.074419 0.074419 0.081237 0.083227
Q5,0 0.068574 0.068574 0.072847 0.076175
Q0,1 0.075196 0.075196 0.076061 0.075400
Q1,1 0.062028 0.062028 0.061367 0.066632
Q2,1 0.051141 0.051141 0.049505 0.053755
Q3,1 0.042150 0.042150 0.039932 0.043361
Q4,1 0.034733 0.034733 0.032208 0.034975
Q5,1 0.028617 0.028617 0.025978 0.028210
Q10,1 0.010855 0.010855 0.008867 0.009629
Q50,1 0.000004 0.000004 0.000001 0.000001
...

...
...

...
...

Sum 1.000000 1.000000 1.000000 1.000000

Lq = 2.608780, Wq = 2.087030, Lq = 2.391570, Wq = 1.913250,
Lq0 = 0.187477, Lq1 = 0.421325, Lq0 = 0.163375, Lq1 = 0.446945,

Lq2 = 1.999980 Lq2 = 1.781250

The effect of service rate during vacation (η) on the average queue length (Lq) for
HE2 inter-arrival time distribution is depicted in Figure 2. For this, we have taken the
same λ, ρ, a, b and accessibility limits d as in Figure 1, φ = 0.2, σ1 = 0.4, σ2 = 0.6,
λ1 = 2, λ2 = 3 and ηs varying from 0 to 1.6. It can be seen from this figure that Lq

decreases as η increases and all the graphs are almost linear. The server is busy all
the time except the idle period so that the accumulation of customers in the queue
decreases. Furthermore, Lq decreases faster for larger d values.

Figure 3 presents the effect of service rate during vacation (η) on the average queue
lengths (Lq0, Lq1, Lq2, Lq) when inter-arrival time distribution is E4 with parameters
λ = 2.5, φ = 0.2, ρ = 0.4, a = 3, d = 7, b = 11 and η varying from 0 to 1.6.
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Table 3 Queue length distributions at pre-arrival and arbitrary epochs

D/M (3,6,10)/1/∞ HE2/M
(3,6,10)/1/∞

λ = 1.25, φ = 0.6, λ1 = 2, λ2 = 1, σ1 = 0.4
ρ = 0.4, µ = 0.3125 φ = 0.6, λ = 1.25, ρ = 0.4

η = 1.0 µ = 0.3125, η = 1.0
Pre-arrival Arbitrary Pre-arrival Arbitrary

R0 0.016861 0.005834 0.024521 0.027989
R1 0.045254 0.031512 0.044867 0.046589
R2 0.077244 0.060555 0.070111 0.072456
P0,0 0.064976 0.035127 0.047968 0.051086
P1,0 0.053604 0.059151 0.042881 0.042387
P2,0 0.071903 0.066647 0.052650 0.052592
P3,0 0.026996 0.045841 0.029298 0.027973
P4,0 0.010135 0.017211 0.016303 0.015566
P5,0 0.003805 0.006462 0.009072 0.008662
P10,0 0.000028 0.000048 0.000484 0.000462
...

...
...

...
...

Q3,0 0.088832 0.085241 0.075224 0.075093
Q4,0 0.084021 0.087149 0.073179 0.072691
Q5,0 0.074266 0.079318 0.067727 0.067090
Q0,1 0.075956 0.075642 0.074908 0.075084
Q1,1 0.060771 0.068082 0.062069 0.061033
Q2,1 0.048619 0.054470 0.051401 0.050541
Q3,1 0.038896 0.043577 0.042551 0.041838
Q4,1 0.031117 0.034862 0.035215 0.034625
Q5,1 0.024893 0.027889 0.029139 0.028650
Q10,1 0.008157 0.009138 0.011291 0.011101
Q50,1 0.000001 0.000001 0.000005 0.000005
...

...
...

...
...

Sum 1.000000 1.000000 1.000000 1.000000
Lq = 2.311460, Wq = 1.849170, Lq = 2.656610, Wq = 2.125290,
Lq0 = 0.152623, Lq1 = 0.456760, Lq0 = 0.191500, Lq1 = 0.415894,

Lq2 = 1.702080 Lq2 = 2.049220

From this figure, it can be observed that all the average queue lengths except Lq0
decrease as η increases. Moreover, Lq0 is too small and it approaches asymptotically
to zero for all values of η.

The effect of accessible limit (d) on the average queue lengths (Lq0, Lq1, Lq2, Lq)
for deterministic inter-arrival time distribution is depicted in Figure 4. The parameters
considered in this case are λ = 2.5, φ = 0.2, ρ = 0.4, η = 0.5, a = 3, b = 15 and d
varies from3 to15.As expected, thequeue lengthsdecrease asd increases.Furthermore,
Lq0 is not influenced by d and it is zero asymptotically.

Figure 5 compares the effect of ρ on the average queue length (Lq) for the
SWV model having η = 1.2 and the SV model having η → 0 when the inter-arrival
time distribution is deterministic with the following parameters : λ = 2.5, φ = 0.2,
a = 3, d = 7, b = 11 and ρ varying from 0.05 to 0.9. As an effect of ρ on Lq, we
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Figure 1 Effect of φ on Wq

Figure 2 Effect of η on Lq

observe that the average queue lengths are almost constant for ρ ≤ 0.4 and they
increase drastically for ρ ≥ 0.8. Furthermore, the SWV outperforms the SV model as
ρ increases.

Figure 6 shows the impact of service rate (µ) on the average waiting time in the
queue (Wq) for the inter-arrival time distributionsM, E4, D andHE2 with parameters
λ = 2.5, φ = 0.2, η = 1, a = 3, d = 7, b = 11 and µ varying from 0.3 to 1.0. It can be
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Figure 3 Effect of η on average queue lengths

Figure 4 Effect of d on average queue lengths

seen that for any inter-arrival time distribution, Wq drastically decreases initially and
becomes constant as µ increases. This is because when service rate increases the server
utilisation ismore,which in turndecreases thewaiting timeof a customer.Furthermore,
for µ ≤ 0.7, the deterministic distribution has the lowest average waiting time whereas
the hyperexponential distribution has the highest.
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Figure 5 Effect of ρ on Lq

Figure 6 Effect of µ on Wq

8 Conclusions

In this paper, we have analysed an infinite buffer single server accessible and
non-accessible batch service queue with general independent arrivals, exponential
services and single exponential working vacation. Using the supplementary variable
technique and the recursivemethod, the steady-state system (queue) length distribution
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of number of customers at pre-arrival and arbitrary epochs are obtained. The recursive
methodused in this paper is simple and easy to apply. The performancemeasures tables
and graphs clearly show that the single working vacation model performs better than
the model with single vacation. This queueing model have potential applications in
the areas of communication systems, manufacturing systems, computer networks,
etc. The limitations of this research are that though we are able to find out the
approximate numerical results for GI/M (a,d,b)/1/SV queue by taking η → 0, the
analytical expressions are lengthy and cumbersome to derive. The techniques used
in this paper can be applied to analyse more complex queueing models such as
GI/G(a,d,b)/1/∞/SWV , and MAP/G(a,d,b)/1/∞/SWV which are left for future
investigations.
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