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Abstract 

In this thesis, sixth order stable central difference method has been presented for solving self-

adjoint singularly perturbed two-point boundary value problems. First the given interval is 

discretized and the derivatives of the given differential equation are replaced by the central 

difference approximations. Then, the given differential equation is transformed to linear 

system of algebraic equations. Further, this algebraic system is transformed into the three 

term recurrence relation, which can easily be solved by using Thomas Algorithm. To validate 

the applicability of the proposed method, some model examples have been considered and 

solved for different values of perturbation parameter and mesh sizes. The stability and 

convergence of the method have been analyzed. As it can be observed from the numerical 

results in tables and graphs, the presented method approximates the exact solutions very well 

and provides better results than some existing numerical methods reported in the literature. 
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Chapter One 

Introduction 

1.1. Background of the Study 

  

Numerical analysis is the branch of mathematics that deals with finding approximations to 

difficult problems such as finding the roots of non-linear equations, integration involving 

complex expressions and solving differential equations for which analytical solutions do not 

exist. Numerical analysis plays a significant role when we face difficulties in finding the exact 

solution of an equation using a direct method when it becomes very difficult to apply 

theoretical methods proposed earlier to find the exact solution. We can solve problems by 

higher order method or lower order method but a higher order method gives a more accurate 

numerical solution than the lower order method for a fixed step size and to obtain a numerical 

solution with an acceptable accuracy we have to use a very small step size. 

Singularly perturbed differential equation is an ordinary differential equation in which the 

highest order derivative is multiplied by a small positive parameter  ( 0   1) and the 

behaviors of the solutions of these differential equations  depends on the magnitude of the 

parameter. In general, any differential equation whose solution changes rapidly in some parts 

of the interval and changes slowly in some of the parts of the interval is known as singular 

perturbation problem and also known as boundary layer problem. 

An adjoint differential equation is a linear differential equation usually derived from its primal 

equation using integration by part. It means that, a differential equation obtained from a given 

differential equation and having property that the solution of one equation is an integrating 

factor of the other and a differential equation that has the same solution as its adjoint equation 

is known as self-adjoint differential equation. 

 In general, self-adjoint singularly perturbed differential equation is a differential equation that 

has the same solution as its adjoint equation in which the highest order derivative is multiplied 

by a small positive parameter. 

Details of self-adjoint Singular Perturbation Problems(SPPs) are discussed in the books of 

Delkhon and Delkhosh [4]and Miller et al. [14].Singular Perturbation Problems (SPPs) arise 

very frequently in diversified fields of applied mathematics and engineering, for instance fluid 

mechanics, elasticity, hydrodynamics, quantum mechanics, plasticity, chemical-reaction 

theory, aerodynamics, plasma dynamics,  rarefied-gas dynamics, oceanography, meteorology, 
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modeling of semiconductor devices, diffraction theory and reaction-diffusion processes and 

many other allied area.  Due to this, studying the singular perturbation problem is a very 

attractive issue in the contemporary mathematical circles. The study of many theoretical and 

applied problems in science and technology leads to boundary value problems for singularly 

perturbed differential equation that has a multi-scale character .However, most of the problems 

cannot be completely solved analytically, as there is a thin layer where the solution varies 

rapidly, while away from the layer, the solution behaves regularly and varies slowly. 

Therefore, the usual numerical treatment of singularly perturbed problem gives major 

computational difficulties and in recent years a large number of special purpose methods have 

been developed to provide accurate numerical solutions. But the occurrence of sharp boundary 

layers as the coefficient of highest derivative approaches to zero creates difficulty for most 

standard numerical methods. Moreover there are a wide variety of asymptotic expansion 

methods available for solving the problem of the above type. However, there is a difficulty in 

applying these methods as finding the approximate asymptotic expansions in inner and outer 

region are not easy. 

There are a lot of techniques for solving self-adjoint singular perturbation problem. For 

instance,  discrete numerical methods have been suggested by various authors for self-adjoint 

singularly perturbed problems like, initial value technique method [15],quintic non-polynomial 

spline functions method [20,22],difference scheme using cubic spline [19],finite difference 

method with variable mesh [10], fitted mesh  B-spline collocation method [6,14] etc . It is 

well-known that existing numerical methods produce good results only when we take    

but, if we take h   they produce oscillatory solutions (totally bad results) and also most of 

the classical methods are unstable and fail to give accurate results when the perturbation 

parameter is small relative to mesh length h       that is used for discretization of the 

difference equation. Farther, classical computational approaches to singularly perturbed 

problems are known to be inadequate as they require extremely large numbers of mesh points 

to produce satisfactory computed solutions and this is very costly and time consuming method 

[5]. Hence, one has to go for non-classical method Jain [12].Some non-classical methods are 

suggested by various authors, but few authors have developed numerical methods for self-

adjoint singular perturbed boundary problems. Hence, the purpose of this research is to 

develop suitable numerical method, which is more efficient and simple to solve self-adjoint 
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singularly perturbed two-point boundary value problems. In this study, we restrict ourselves to 

find the numerical solution for linear second order self-adjoint singularly perturbed two-point 

boundary value equation of the form: 

)()())(( xfyxqyxp  , 10  x                            (1.1) 

subjected to the boundary conditions: 

,)0( y  )1(y                                                      (1.2) 

where  ,    and   is a small positive parameter and )(xp , )(xq  and )(xf  are smooth 

functions, such that 0)( xp .  

The main purpose of this study is to design/present sixth order stable central difference 

method for solving self-adjoint singularly perturbed two-point boundary value problems. 

1.2. Statement of the Problem. 

The increasing desire for the numerical solutions to mathematical problems, which are more 

difficult or impossible to solve explicitly, has become the present- day scientific research.  

Thus, this shows the importance and application of numerical methods to solve problems in 

real life. Among the methods used to find approximate solution of ordinary differential 

equations with boundary condition the finite difference method is one that approximates the 

solution of singularly perturbed two-point boundary value problems. 

The numerical method used to find approximate solution of boundary value problem has an 

impressive importance but, solving singularly perturbed problems is unstable and fail to give 

accurate results when the parameter is very small. Classical computational approaches to 

singularly perturbed problems are known to be inadequate as they required extremely large 

number of mesh points to produce satisfactory computed solutions Farell et al [6].So, solving 

singularly perturbed problems have various difficulties to get accurate numerical solutions 

Kadalbajoo [10].  Thus, existing numerical methods produce good results only when we take 

step size h  but, this is very costly and time consuming process. Therefore, this study aims 

to present numerical method which is stable, simple and more efficient for h  

As a result, this present study attempts to answer the following questions: 

 How do we describe the sixth order stable central difference method for self-adjoint singularly 

perturbed differential equation? 

 To what extent the method approximate the exact solution? 

 To what extent the present method converges? 
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1.3. Objectives of the Study 

1.3.1. General objective 

The general objective of this study is to present numerical method which is simple, efficient 

and easily adaptable for computer used for solving self-adjoint singularly perturbed 

differential equation. 

1.3.2. Specific objectives 

The specific objectives of the study are: 

 To describe sixth order stable central difference method for second order self-adjoint 

singularly perturbed two-point boundary value problem. 

 To compare the solutions obtained with the exact solution. 

 To establish the stability and convergence of the method. 

1.4. Significance of the Study 

The results of this study may contribute to research activities in this area. In addition to that it 

may be useful for students of the department to develop their research skills. Further, 

collaboration in this research project may be useful for the graduate program of the department 

and enhances the research skills and scientific communication of the researcher.  As a result, 

the study might: 

  serve as a reference material for anyone who works on this area. 

 improve the application of numerical methods in different field of studies. 

1.5. Delimitation of the Study 

 This study delimited to solve self-adjoint singularly perturbed two-point boundary value 

problems by sixth order stable central difference method. 
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Chapter Two 

Review of Related Literature 
 

2.1. Singular Perturbation Problem 
 

 The problems in which the highest order derivative term is multiplied by a small parameter 

are known to be perturbed problems and the parameter is known as the perturbation parameter. 

A perturbed problem, whose solution can be approximated on the whole of its domain whether 

space or time by a single asymptotic expansion, is a regular perturbation. 

 Most often in applications, an acceptable approximation to a regularly perturbed problem is 

found by simply replacing the small parameter   by zero everywhere in the problem 

statement. This leads to take only few terms of the expansion which have no coefficient 

perturbation parameter, yielding an approximation that converges slowly, to the true solution 

as  decreases. The solution to a singularly perturbed problem cannot be approximated in this 

way, since taking the parameter to be zero changes the nature of the problem described by 

singular perturbation problem associated with various types of differential equations. These 

singular perturbed problems arise in modeling various modern complicated processes, such as 

a fluid flow at high Reynolds, chemical reactor theory, electro magnitude field problem in 

moving media, electro analytical chemistry etc 

2.2 Self-adjoint Differential Equation 

 A differential equation that has the same solution as its adjoint equation is known as self-

adjoint differential equation.  

 A second order linear differential equation is called self-adjoint if and only if it has the 

following form: 

)()())(( xfyxqyxp    ;        where 0)( xp   on  ba,  and )(),( xpxq  and )(xf  are 

continuous functions on  ba, Delkhon and Delkhosh [4] 

2.3. Numerical Methods 

It is well known fact that the solution of singular perturbed boundary value problem exhibits a 

multi-scale character. That is there is a thin layer, where the solution varies rapidly, while 

away from the layer the solutions behave regularly and varies slowly. Therefore, usual 
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numerical treatment of SPP gives major computational difficulties and in recent years a large 

number of special purpose methods have been developed to provide accurate numerical 

solution. The occurrence of sharp boundary as the coefficient of highest derivative approaches 

zero creates difficulty for most standard numerical methods. There are a wide variety of 

perturbation methods such as asymptotic expansion method, WKB method and multiple scale 

method available for solving the problems of the above type. However, difficulties in applying 

these methods, such as finding the approximate asymptotic expansions in inner and outer 

regions are not easy. So many approximate methods have been developed and refined, 

including finite difference methods and spline method. 

2.3.1 Spline Methods 

In the last 29 years remarkable progress has been made in the theory, methods and 

applications for the singular perturbation in the mathematical circles and a lot of new results 

have appeared .To be more accessible for practicing engineers and applied mathematicians, 

there is a need for methods, which are easy and ready for computer implementation. The 

spline technique appears to be an ideal tool to obtain these goals. There have been 

considerable amount of work using various spline methods for solution of singular 

perturbation problems. For instance, Bawa [2] proposed a spline based computational 

technique suitable for parallel computing for singularly perturbed reaction problem. To solve 

the problem, the author first decomposed the domain in to three non-overlapping sub domains 

and sub problems corresponding to boundary layer regions are solved by using adaptive spline 

scheme.Khan et al. [9] describes a sixth order method based on sextic splines.The advantage 

of this method is higher accuracy with the same computational effort as Bawa. It is 

computationally efficient method and the algorithm can be easily implemented on a computer.  

Surlaet.al.[21] Constructed a spline collocation method for singularly perturbed boundary 

value problem with two small parameters .The suitable choice of collocation points provides 

the inverse monotonicity enabling utilization of barrier function method in error analysis.  

Rao and Kumar [16] presented a higher order cubic β-spline collocation method for the 

numerical solution of self-adjoint singularly perturbed boundary value problem that is much 

easier and more efficient for computing. The essential idea in this method is to divide the 

domain of the differential equation in to three non-overlapping sub domains and solve the 

regular problems obtained by transforming the differential equation with respective boundary 
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conditions on these sub domains a higher order β-spline collocation method. The boundary 

conditions at the transition points are obtained using the zeros-order asymptotic approximation 

to the solution of the problem. The author used the two step spline approximate method, since 

a special type of tridiagonal system is obtained and proved the optimal order convergence of 

the method which is more efficient than classical finite difference scheme on piecewise 

uniform shishkin meshes as given by Farrell et al [5] and comparable with the quintic spline 

difference scheme of Bawa and Natesan[1]. Rashidinia et al. [18] developed the class of 

methods for the numerical solution of singularly perturbed two-point boundary value problems 

using spline in compression. The methods are second-order and fourth order accurate and 

applicable to both singular and non-singular perturbed problems. In the same year Rashidina et 

al [19] again developed a numerical technique for class of singularly perturbed two-point 

boundary value problems on a uniform mesh using polynomial cubic spline.  

Tirmizi et al [22] used quinitic non-polynomial spline functions to develop a class of 

numerical methods for solving self-adjoint singularly perturbed problems. The methods are 

computationally efficient and the algorithm can easily be implemented on computer. Fourth 

and sixth order convergence is obtained. It has been shown that the relative errors in absolute 

value confirm the theoretical convergence.   

Rao and Kumar [17] presented the exponential β-spline collocation method for numerical 

solution of self- ad joint singularly perturbed Dirichlet boundary value problem. It is relatively 

simple to collocate the boundary value problem at the nodal points the uniform mesh, to setup 

the collocation system and solve them. Examples show that this method is more efficient than 

the cubic β-spline collocation method on uniform mesh as well as the cubic β -spline 

collocation method on fitted mesh.  

Mishra and Kumar [15] developed an initial value technique for self-adjoint singularly 

perturbed two-point boundary  value problems by reducing the original problem to normal  

form and converted in to first order initial value problems. These initial value problems have 

been solved by the cubic spline method. 

Rashidinia et al [20] developed non-polynomial quintic spline method for numerical solution 

of self-adjont singularly perturbed value problems, the relations have been derived using 

off-step points and the developed methods are fourth, sixth and eighth order accurate.  
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 Recently Bisht and Khan [3] have applied the difference scheme using cubic spline for 

solving self-adjoint two-point boundary value problem. Their scheme leads to tridiagonal 

linear system. The convergence analysis is given, which shows the method is second and 

fourth order convergent depending upon the choice of the parameters 

2.3.2 Finite Difference Methods 

 The finite difference methods are always a convenient choice for solving boundary value 

problems because of their simplicity. Finite difference methods are one of the most widely 

used numerical schemes to solve differential equations. In finite difference methods, 

derivatives appearing in the differential equations are replaced by finite difference 

approximations obtained by Taylor series expansions at the grid points. This gives a large 

algebraic system of equations to be solved by Thomas Algorithm in place of the differential 

equation to give the solution value at the grid points and hence the solution is obtained at grid 

points. Some of the finite difference methods include forward difference method, backward 

difference methods, central difference method, etc.The challenge in analyzing finite difference 

methods for new classes of problems is often to find an appropriate definition of stability that 

allow one to prove convergence and to estimate the error in approximation. 

There are some finite-difference methods which have been suggested by various authors for 

self-adjoint singularly perturbed problems. For instance; Kadalbajoo and Kumar [10] 

developed a numerical method based on finite difference method with variable mesh for self 

adjoint singularly perturbed two-point boundary value problem by reducing the original 

problem to normal form and solved the reduce problem by finite difference method taking 

variable mesh. Lubuma and Patidar [13] designed non-standard finite difference scheme for 

self-adjoint singularly perturbed two-point boundary value problems by using appropriate 

renormalization of the denominator of the discrete derivative. In addition to this Kadalbajoo 

and Sharma [7] present a numerical scheme for a second order singularly perturbed boundary 

value problem, which works nicely in both cases, i.e. when the delay argument is the bigger 

one as well as the smaller one. To handle the delay argument, they constructed a special type 

of mesh so that the term containing delay lies on nodal points after discretization. Yadaw [8] 

presented B-spline collocation method for solving a class of two-parameter singularly 

perturbed boundary value problems and stabilized second order uniform convergence. 
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2.4 Numerical versus Analytical Methods 

 

The techniques used for calculating the exact solution are known as analytic methods because 

we used the analysis to solve it. Analytical solution is continuous. The exact solution is also 

referred to as a closed form solution or analytical solution. But this tends to work only for 

simple differential equations with simple coefficients, for higher order or non-linear 

differential equations with complex coefficients; it becomes very difficult to find exact 

solution. Therefore, we need numerical methods for solving these equations.  Numerical 

methods are commonly used for solving mathematical problems that are formulated in science 

and engineering where it is difficult or even impossible to obtain exact solutions. Only a 

limited number of differential equations can be solved analytically, but numerical methods can 

give an approximate solution to any equation. 
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Chapter Three 

Methodology 

This chapter consists of the following methods and materials that have been used to carry out 

the study. These are; study design, study site and period, source of information, study 

procedure, and ethical considerations 

3.1. Study Site and Period 

The study was conducted at Jimma University, which is Ethiopia’s first innovative community 

oriented education institution of higher learning, department of Mathematics from September 

2014 to September 2015. 

3.2. Study Design 

This study was employed mixed design:  

 Documentary review design 

 Experimental design  

3.3. Study Area 

Conceptually this study has been focused on sixth order stable central difference method for 

self-adjoint singularly perturbed two point boundary value problems of differential equation 

with Dirichlet boundary conditions.  

3.4. Source of Information 

This study mostly depends on documentary materials and the numerical solutions which will 

be obtained by the help of MATLAB software. So, the sources of information for the study are 

books, journals and different related studies from internet services and numerical data obtained 

by writing MATLAB code for the present numerical method. The proposedmethod is 

programmed using MATLAB.  

3.5. Study Procedures 

 The study is an experimental as it involves entirely laboratory work with the help of computer 

and MATLAB software. Further, important materials for the study were collected by the 

researcher using documentary analysis. The required numerical data was collected by coding 

and running using MATLAB software to get the numerical results and the graphs of some 

examples to check the validity and efficiency of the method.  
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In order to achieve the above mentioned objectives, the study follows the following steps: 

1. Defining the Problem/formulation of the problem. 

2. Discretizing the given interval. 

3.  Replacing the differential equation by the central difference approximations. 

4. The given differential equation was transformed to algebraic equation then to tri-

diagonal system. 

5.  The tri-diagonal system (TDS) obtained in step 4 is easily solved by Discrete 

Invariant Imbedding Algorithm (Tomas Algorithm). 

6. Coding program in MATLAB software for the obtained tri-diagonal system. 

7. Validatation of the present scheme by implementing it on some numerical examples.  

3.6. Ethical Issues 
 

To be legal for collecting all the information and materials for study, it is important to have a 

permission letter. So, the researcher got a letter of permission from ethical committee of the 

college and then the researcher explained the aim of collecting of those materials to concern 

body. 
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Chapter Four 

Description of the Method, Results and Discussion 

4.1. Description of the Method 

To describe the method, considering Eqs(1.1) and (1.2), denoting ii pxp )( ,)(, ii qxq 

iiii yxyfxf  )(,)(  for simplicity and rearranging, we get: 

iiiiii cybyay 
        (4.1)

 

  )1(,)0( yy         (4.2) 
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Then, by subtracting Eq. (4.4) from Eq. (4.3), we obtain: 
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where

 
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 By differentiating both sides of Eq. (4.1) successively and rearranging it, we obtain: 

  iiiiiiiii cybybayay 
                                                                                    (4.8) 
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  (4.9)

   

   
  iiiiiii

iiiiiiiiiiiiiiiii

iiiiiiiiiiiiiii

ccacbaa

ybbbbababaybabaaaa

ybabbaabaaabaaay







3

33325

3432

2

23

22225

     (4.10)
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   


  
  

     423

4223

4

222233

222246

44627

46427

46712

1032972

64687939

iiiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

iiiiiiii

iiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii

ccacbaacbabaaaa

ybbabbbbababbabaababa

ybabbabba

aabaaabaabaaabaaabaaa

ybabbaabaaabaaaay











                       (4.11)

 By substituting Eqs (4.8)- (4.11)  into Eq. (4.7) and rearranging, we get:

 

      

    

       

 

      

  

 

     

       
3

4
444

2
4422

3
4

2

42

2

2224
4

3

4

2
222

4

222233
4

22

22

422

12

4223
4

2

422

212

360360120
4

36012012

4627
360

3
12012

646

87939
360

3325
120

2
126

46712103

2972
360

343

2
120

2
126

1

2
46427

360

3
120126

2

2

1

Tc
h

c
haha

cbaa
hhah

cbabaaaa
h

baa
haha

c

ybabba

abaaabaaaa
h

babaaaa
ha

baa
hha

ybabbabbaaabaaa

baabaaabaaabaaa
h

babbaa

baaabaaa
ha

babaaa
h

ba
ha

y
h

h

a
ybbabbbbababbabaababa

h

bbbbababa
ha

bba
hhba

b
h

y
h

a

h

ii

ii

iiii

i

iiiiiiiiiii

ii

i

iiiiii

iiiiiiiiiiiiiiiii

i

iii

i

iiiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

iiiiiiii

i

iiiiiiii

i

i

i

iiiiiiiiiiiiiiiiiiiii

iiiiiiiii

i

iii

ii

ii

i


























                     (4.12) 

Further, from Taylor series the second order approximation of first and second derivatives of 

iy  are given as:
h

yy
y ii

i
2

11  


                 (4.13) 

 
2

11 2

h

yyy
y iii

i

 
                  (4.14) 
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Substituting Eqs (4.13) and (4.14) into Eq. (4.12),we obtain: 

     

 

     

   

   

     

   

     

 

     

   

     

       
3

4
444

2
4422

3
4

2

42

1

22224
2

3

2

2

2

4

222233
3

2

222

3

2

22224
2

3

2

2

2

42

23
4

2

422

2

1

22224
2

3

2

2

2

4

222233
3

2

222

3

2

360360120
4

36012012

4627
360

3
12012

64687939
360

332

5
120

2
12

1

6
46712103

2972
720

34

32
240

2
24122

1

64687939
180

332

5
60

2
6

1

3
4642

7
360

3
1201212

2

64687939
360

33

25
120

2
12

1

6
4671210

32972
720

34

32
240

2
24122

1

Tc
h

c
haha

cbaa
hhah

cbabaaaa
h

baa
haha

c

ybabbaabaaabaaaa
h

baba

aaa
ha

baa
a

babbabbaaaba

aabaabaaabaaabaaa
h

babba

abaaabaaa
ha

babaaa
h

ba
ha

h

a

h

ybabbaabaaabaaaa
h

baba

aaa
ha

baa
a

bbabbbbababba

baababa
h

bbbbababa
hahbhba

h
b

ybabbaabaaabaaaa
h

ba

baaaa
ha

baa
a

babbabbaaa

baaabaabaaabaaabaaa
h

babba

abaaabaaa
ha

babaaa
h

ba
ha

h

a

h

ii

ii

iiii

i

iiiiiiiiiii

ii

i

iiiiiiiiiiiiiiiiiii

iii

i

iii

i

iiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiiii

iiiiiiiii

i

iiiiiiii

ii

iiiiiiiiiiiiiiiiiii

iii

i

iii

i

iiiiiiiiiiiii

iiiiiiiiiiiiiiii

iiii

i

iiiiiiiiiiiiiiiii

iiii

i

iii

i

iiiiiiiii

iiiiiiiiiiiiiiiiiiiiiiii

iiiiiiiii

i

iiiiiiii

ii





































                      (4.15) 

 

Eq. (4.15) can be written as the three- term recurrence relation of the form: 

1...,3,2,1,11   NiHyGyFyE iiiiiii              (4.16) 
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where: 

    

 

    

  

iii

iiiiiiiiiiiiiiiiiii

i

iii

i

iiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiiii

iiiiiiii

i

iiiiiiii

ii

i

bab

baabaaabaaaa
h

babaaaa
ha

baa
a

babbabbaaabaaa

baabaaabaaabaaa
h

babbaa

baaabaaa
ha

babaaa
h

ba
ha

h

a

h
E











64

687939
360

3325
120

2
12

1

6
46712103

2972
720

343

2
240

2
24122

1

2

2224
2

3

2

2

2

4

222233
3

22

22

3

2

 

   

  

  

iiiii

iiiiiiiiiiiiiiiii

i

iiiiiiiiiiiiiiiiiiii

iii

i

iiiiiiiii

iiii

ii

babba

abaaabaaaa
h

babaaaa
ha

bbabbbbababbabaababa
h

baa
a

bbbbababa
hahbhba

h
bF















646

87939
180

3325
60

46427
360

2
6

1

3
3

1201212

2

2

2224
2

3

2

4223
4

2

2

2

422

2

 

    

 

    

  

iiiii

iiiiiiiiiiiiiiiii

i

iii

i

iiiiiiiiiiiii

iiiiiiiiiiiiiiiiiiii

iiiiiii

i

iiiiiiii

ii

i

babba

abaaabaaaa
h

babaaaa
ha

baa
a

babbabbaaabaaa

baabaaabaaabaaa
h

babbaa

baaabaaa
ha

babaaa
h

ba
ha

h

a

h
G











646

87939
360

3325
120

2
12

1

6
46712103

2972
720

343

2
240

2
24122

1

2

2224
2

3

2

2

2

4

222233
3

22

22

3

2

 

     

       
3

4
444

2
4422

3
4

2
42

360360120
4

36012012

4627
360

3
12012

Tc
h

c
haha

cbaa
hhah

cbabaaaa
h

baa
haha

cH

ii
ii

iiii
i

iiiiiiiiiii
ii

ii





 

Eq. (4.16) gives us the tri-diagonal system which can easily be solved by Thomas Algorithm. 
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4.2. Stability and Convergence Analysis 
 

Definition (Keller [11]): The linear difference operator hL   is stable if, for sufficiently small

h , there exists a constant k, independent of h , such that

   NjvLvvkv ih
Ni

Nj ,...,2,1,0,max,max
11

0 


  for any mesh function  N

jjv
0

 

Theorem 4.1:under the assumption    0ixb   for positive constant  ,  

  064684642 22222  iiiiiiiiiiiiiiiii babbaabaaabaaabaa and
 

 
 
































b

abbabbaaababaaaababaaa

babbaabaaabaaabaa
h

iiiiiiiiiiiiiiiiiiiiii

iiiiiiiiiiiiiiiii

4

671210542

646846422
min

422

22222

The linear difference operator of Eq. (4.16) is stable for   











1
,1maxk  

Proof: 

Let  .hL  denoted the difference operator on left side of Eq. (4.16) and  iw  be any mesh 

function satisfying:  

  iih HwL                                          (4.17) 

If the iwmax  occurs for 0i  or Ni  then definition holds trivially. Since 1k  so assume 

that iwmax  occurs for 1,...2,1  Ni  under the given assumptions 

iiiii GEFGE  ,0,0 and ii GE   

This implies the tri-diagonal system in Eq. (4.16) is diagonally dominant and its solution exists 

and is unique. Then by rearranging the difference Eq. (4.16) and using the non negativity of 

the coefficients, we have: 

iiiiiii HwGwEwF   11  
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ihiiiiii wLwGwEwF   11                (4.18)
 

Since    ixb   is a constant and by assumption   0
ixb . 

Thus from Eq. (4.16) we have: 

   

  



iiiiiiiiiiii

iiiiii

i

iii

i

i

abbaaaabaaaa
h

abaaaa
ha

baa
a

h
F

468939
180

325
60

2
6

1

3

2

22224
2

3

2

2

2

2

 

Now, using the fact that, 

   

 iiiiiiiiiiii

iiiiii

i

iii

i

ii

abbaaaaabaaaa
h

abaaaa
ha

baa
a

h
GE





4687939
180

325
60

2
6

1

3

2

22224
2

3

2

2

2

2

 

and from Eq. (4.18), we get:

 
    

  

 
Kh

Nk
k

Nk
ii

ihiiii

iiiiiiiiiiiii

iiiiii

i

iii
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                               (4.19)

 

Since the inequality in Eq. (4.19) holds for every i , it follows that: 
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This implies 
Kh

Nk
i

Ni
wLw

1111
maxmax


  

Hence,    kh
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Nkh
Nk

i
Nk

wLwwwLw
11

0
1111

max,max
1
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1

max





 

Therefore,   kh
Nk

Ni wLwwkw
11

0 max,max


  where  


1
k   

Hence, hL  is stable and this implies that the solution of the system of the difference Eq. (4.16) 

are uniformly bounded, independent of mesh size h and the parameter   . Hence the scheme is 

stable for all step sizes.       

Corollary 4.1: Under the conditions for theorem 4.1, the error   iii yxye   between the 

solutions of  xy of the continuous problem and iy  of the discrete problem, with boundary 

conditions satisfies the estimate 

i
Ni

i Tke
11

max


                   (4.20) 

where    7
6

8
6

504020160
i

i
ii y

ha
y

h
T    is the truncation error and 
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Proof: under the given conditions it is clear that the error ie  satisfies 

 

     andNiTyxyLeL iiihih 1,...2,1,  00  Nee  

Then theorem 4.1, the stability of hL  implies that 

  i
Ni

iii Tkeyxy
11

max


                  (4.21) 

Hence the estimate in Eq. (4.20) establishes the convergence of the scheme for the fixed value 

of the perturbation parameter . 
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4.3. Thomas Algorithm 

The tri-diagonal matrix algorithm, also known as Thomas Algorithm, is a specified form of 

Gauss elimination that can be used to solve tri-diagonal system of equations as stated above. 

The tri-diagonal matrix algorithm is based on the Gauss elimination procedure and consists of 

two parts; a forward elimination phase and backward substitution phase. 

A description for solving the tri-diagonal system using Discrete Invariant Imbebedding 

Algorithm called Thomas Algorithm is given as follows. 

Consider Eq.(4.19) with the boundary conditions: 









)1(

)0(0

yy

yy

N

                                                                           (4.22)  

Assume that the solution of Eq. (1.1) can be written: 

1...2,1,1   NiTywy iiii                  (4.23) 

where  ii xww  and  ii xTT  to be determined. 

Evaluating Eq. (4.23) at 1 ii xx ,we have: 

111   iiii Tywy                    (4.24) 

Now, substituting Eq. (4.24) into Eq.(4.16) gives: 
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G
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Comparing Eq. (4.23) with Eq.(4.25),we get the recurrence relation: 

1


iii

i

i
wEF

G
w                    (4.26) 

1
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TEH
T                   (4.27) 
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To solve these recurrence relations for 1...3,2,1,  Ni  we need the initial conditions for 

0w  and 0T .For, this we take   0100 0 Tywyy   .Choose 00 w  then the value of 

   00 yT , with these initial values ,we compute iw and iT  for 1...3,2,1  Ni from 

Eqs.(4.26)and(4.27) in forward process, and then obtained iy  in the backward process from 

Eqs.(4.22)and(4.23).    

4.4. Numerical Examples 

   To demonstrate the applicability of the method, three self-adjoint singular perturbation 

problems have been considered. From these examples two of them have exact solution and one 

is without exact solution. These examples have been chosen because they have been widely 

discussed in the literature their exact solutions were available for comparison. 

Example 4.1.: consider the following self-adjont singular perturbation problem: 

    10,2cos2cos 22  xxxyy   

with boundary conditions    100 yy   

The exact solution is given by: 

 
    

 
 x

xx
xy 



 2cos
1exp1

exp1exp





  

The numerical solutions are given in Tables 4.1.and comparison of the exact and numerical 

solutions for h is given in figure 4.1.   

Example 4.2.: consider the following self-adjoint singular perturbation problem:

 
     10,11

1

4
4




 xxfyx
x

y  with boundary conditions 

    11,20  yy   and   xf is chosen, such that the exact solution is given by:
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The numerical solutions in terms of maximum absolute errors are given in Tables 4.2.for 

different values of the perturbation parameters   and N and comparison of the exact and 

numerical solutions for h is given in figure 4.2.   

Example 4.3.: consider the following self-adjoint singular perturbation problem: 

     10,1513121
222

 xxxxyxy  

with boundary conditions 

)1(0)0( yy   

The exact solution of the problem is not known. The numerical results in terms of maximum 

absolute errors are given in Table 4.3 and its graph is given in figure 4.3.  

4.5 Numerical Results 

Table 4.1: Numerical solution of Example 4.1 for 
34 10,10   h  

x Exact solution 
Mishra  et.al.[15] Our Method 

 xy  Absolute error  xy  Absolute error 

0.000 0.0000000 0.0000000 0.0000000 0.0000000000000 0.0000000000000 

0.001 -0.0951527 -0.0953418 0.0001891 -0.0951527438021 0.0000000314100 

0.010 -0.6311339 -0.6323828 0.0012489 -0.6311340507449 0.0000001277022 

0.020 -0.8607221 -0.8624169 0.0016948 -0.8607221613765 0.0000000939559 

0.030 -0.9413565 -0.9431993 0.0018428 -0.9413566088407 0.0000000518442 

0.040 -0.9659759 -0.9678527 0.0018768 -0.9659759671028 0.0000000254272 

0.050 -0.9687903 -0.9706548 0.0018645 -0.9687903228384 0.0000000116899 

0.100 -0.9044631 -0.9060599 0.0015968 -0.9044630974109 0.0000000001532 

0.300 -0.3454915 -0.3448815 0.0006100 -0.3454915028141 0.0000000000017 

0.500 -0.0000000 0.0019739 0.0019739 -0.0000000000054 0.0000000000054 

0.700 -0.3454914 -0.3448814 0.0006100 -0.3454915028141 0.0000000000017 

0.900 -0.9044631 -0.9060598 0.0015967 -0.9044630974109 0.0000000001532 

1.000 0.0000000 0.0000000 0.0000000 0.0000000000000 0.0000000000000 
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Table 4.2: Maximum Absolute Errors for Example 4.2 

N   25.0
1 N    5.0

1 N    75.0
1 N    0.1

1 N  

 Our  Method 

16 2.9718E-04 4.9658E-04 8.9268E-04 1.7181E-03 

32 2.0905E-05 4.1607E-05 9.0798E-05 2.3653E-04 

64 1.4884E-06 3.4999E-06 9.8228E-06 3.9036E-05 

128 1.0650E-07 3.0026E-07 1.1659E-06 7.4775E-06 

256 7.6403E-09 2.6424E-08 1.5321E-07 1.5612E-06 

Kadalbajoo et.al.[10] 

16 2.0E-02 1.7E-02 1.5E-02 1.4E-02 

32 4.7E-03 4.0E-03 3.4E-03 4.1E-03 

64 1.1E-03 9.1E-04 9.3E-04 1.1E-03 

128 2.6E-04 2.0E-04 2.4E-04 3.2E-04 

256 6.1E-05 5.0E-05 6.4E-05 9.6E-05 

Lubuma [13] as reported in Kadalbajoo et. al.[10]  

16 3.8E-02 2.5E-02 1.6E-02 1.4E-02 

32 9.6E-03 6.3E-03 4.3E-03 7.9E-03 

64 2.4E-03 1.6E-03 1.1E-03 2.4E-03 

128 6.0E-04 3.9E-04 2.7E-04 6.2E-04 

256 1.5E-04 9.8E-05 6.9E-05 1.6E-05 
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Table 4.3: Maximum Absolute Errors for Example 4.3. 

  16N  32N  64N  128N  256N  512N  1024N  

42  4.9633E-04 3.1259E-05 1.9577E-06 1.2244E-07 7.6565E-09 4.7870E-10 3.0028E-11 

52  1.6268E-03 1.0705E-04 6.7125E-06 4.2143E-07 2.6349E-08 1.6469E-09 1.0297E-10 

62  6.0702E-03 3.8490E-04 2.4186E-05 1.5140E-06 9.4658E-08 5.9180E-09 3.6995E-10 

72  2.0883E-02 1.3555E-03 8.9366E-05 5.6001E-06 3.5125E-07 2.1957E-08 1.3725E-09 

82  6.3612E-02 5.3582E-03 3.3894E-04 2.1282E-05 1.3318E-06 8.3267E-08 5.2046E-09 

92  1.6774E-01 1.9166E-02 1.2357E-03 8.1656E-05 5.1156E-06 3.2064E-07 2.0043E-08 

102  3.8994E-01 5.9855E-02 5.0279E-03 3.1782E-04 1.9951E-05 1.2484E-06 7.8048E-08 

112  8.7295E-01 1.6013E-01 1.8343E-02 1.1787E-03 7.8013E-05 4.8869E-06 3.0617E-07 

 

The computational rate of convergence can also be obtained by using the double mesh 

principle defined below. Let 

1,...,2,1,max 2  NiyyZ h

i

h

ih where h

iy  is the numerical solution on the mesh  1

1

N

ix  at 

nodal point ix , where 1,...,2,1,0  Niihxxi and where 2h

iy  is the numerical solution 

at the nodal point ix  on the mesh  12

1

N

ix where 12,...2,1,20  Niihxxi  

In the same way one can define 2hZ  by replacing h  by 2h  and 1N  by 12 N .That is, 

12,...,2,1,max 42

2  NiyyZ h

i

h

ih .The computed rate of convergence is defined as: 

2log

loglog
ate

2hh ZZ
R


  

The following tables show the rate of convergence of the two Examples 4.2 and 4.3 for 

different values of the mesh size h .                                                                                            
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Table 4.4: Rate of Convergence for Example 4. 2, 

25.0

16

1








  

 h  2h  hZ  4h  
2

hZ  Rate 

 161  321  2.7628E-04 641  1.9417E-05 3.8307 

 321  641  1.9417E-05 1281  1.3819E-06 3.8126 

 641  1281  1.3819E-06 2561  9.8860E-08 3.8051 

      

Table 4.5: Rate of Convergence for Example 4.3, 42  

h  2h  hZ  4h  
2

hZ  Rate 

161  321  4.6507E-04 641  2.9301E-05 3.9884 

321  641  2.9301E-05 1281  1.8353E-06 3.9969 

641  1281  1.8353E-06 2561  1.1478E-07 3.9991 

1281  2561  1.1478E-07 5121  7.1778E-09 3.9992 

2561  5121  7.1778E-09 10241  4.4867E-10 3.9998 
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Fig 4.1 (a): Numerical Solution of Example 4.1,           Fig4.1 (b): Numerical Solution of Example 4.1, 

for 6410 3   Nand
    

for 64
64

1
 Nand

 

 

Fig 4.2 (a) Numerical Solution of Example 4.2      Fig 4.2 (b): Numerical Solution of Example 4.2 for  

6410 3   Nand     for 64
64

1
 Nand  
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Fig 4.3 (a): Numerical Solution of Example 4.3,Fig 4.3 (b): Numerical Solution of Example 4.3  

for 6410 3   Nand
  

for 64
64

1
 Nand  

 

4.6. Discussion 

In this thesis, sixth-order stable central difference method has been presented for solving self-

adjoint singularly perturbed two point boundary value problems. The numerical results have 

been presented in tables 4.1-4.3 for different values of the perturbation parameter  and 

different number of mesh points N .The results obtained by the present method have been 

compared with numerical results obtained by Mishra et.al [15] and Kadalbajoo et.al [10] and 

the results are summarized in the tables 4.1-4.3. 

As it can be observed from the tables, the present method approximates the exact solution 

better than the methods proposed by Mishra et.al [15] and Kadalbajoo [10].  

Further, as it can be observe from the graphs (Fig.4.1 -4.3), the present method approximates 

the exact solution very well for h for which most of classical numerical methods fail to 

give good result. 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y
(x

)

 

 

y-Numerical solution with single Mesh

YM-Numerical solution with double mesh

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

x

y
(x

)

 

 

y-Numerical solution with single Mesh

Ym-Numerical solution with double mesh



28 
 

Chapter Five 

Conclusion and Scope of Future Work 

5.1. Conclusion 

In this thesis the sixth order stable central difference method has been presented for solving 

self-adjoint singularly perturbed boundary value problem. It has been implemented on three 

examples by taking different values for perturbation parameter  and the computational 

results are presented in tables and graphs. The results show that the present method 

approximates the exact solution very well and it shows that the betterment of the present 

method over some existing methods reported in the literature.  

The results presented confirmed that computational rate of convergence and theoretical 

estimates indicate that sixth order method is stable and convergent. In addition to this the 

present method is conceptually simple, easy to use and readily adaptable for computer 

implementation for solving self-adjoint singularly perturbed boundary value problems.  

5.2. Scope of Future Work 

In the present thesis, the numerical method based on sixth order stable central difference 

scheme was constructed for solving self-adjoint singularly perturbed boundary problems by 

using three points (three-term recurrence relation).  Hence, the method presented in this thesis 

can also be extended to five points and higher order than sixth order stable central difference 

methods for solving self-adjoint singularly perturbed boundary problems.  
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