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ABSTRACT 

In this research report asymptotic stability of Meshcherskii equation of dynamic system with 

variable mass is investigated. The Lyapunov function method of stability analysis is employed. 

The model of the system is considered and stability is investigated for different given 

trajectories. A Lyapunov function is constructed and asymptotic stability using the function is 

proved. Moreover, the practical applicability of the result is demonstrated by simulation using 

MATLAB. The result of the simulation shows an excellent conformity with the theoretical proof 

made in ascertaining asymptotic stability. 

 

Key words: Asymptotic stability, equilibrium point, Meshcherskii equation, Lyapunov stability, 

stability. 
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CHAPTER ONE 

1. INTRODUCTION 

1.1 Background of the Study 

According to Newton’s second law of motion, the acceleration 𝒂 of a body of mass 𝑚  is 

proportional to the force 𝑭 acting on it [1, 2, 3, 4, 5]. That is 

𝑭 = 𝑚𝒂 .                                                                                                (1.1). 

Equation (1.1) can be used to develop the dynamics of particles or bodies with a fixed masses 

which is well known in the literature. But in general it is not possible to apply the dynamics of a 

fixed mass system to a variable mass dynamic system. For instance, a rocket is propelled by 

ejecting burnt fuel which causes the mass of the rocket to decrease substantially as the rocket 

accelerates. A rain-drop falling through the damp atmosphere coalesces with small droplets 

which increase its mass. In both of these illustrations the mass of the body is varying with time. 

The term “variable mass” is used in the sense that a mass is being removed and / or added to the 

original body under consideration [6, 7, 8, 9, 10]. 

Suppose the body is also subjected to an external force 𝑭. Then Newton’s 2nd law of motion is 

now interpreted in the form, force is equal to the change in linear momentum (𝑭 =
𝒅𝒑

𝑑𝑡
). Hence 

the equation of motion assumes the form [11, 12, 13, 14] 

  𝑭 =
𝑑

𝑑𝑡
(𝑚𝒗) = 𝑚

𝑑𝒗

𝑑𝑡
+ 𝒗

𝑑𝑚

𝑑𝑡
        (1.2)  

The study [16] of stability theory has begun in the works of Aristotle and Archimedes from the 

different point of view. Aristotle investigated the motion occurring after perturbation (small 

disturbance) and he determined the stability of unperturbed state from the course of the motion. 

Archimedes observed purely geometric situation occurring after perturbation of a system and 

used it to determine the stability of the unperturbed system. Therefore these two methods are 

called kinematic method and the geometric method which is connected with the names of 

Archimedes, Torricelli, Baldi and Lagrange dominated [16] the field of mechanics for extended 

period of time (from 17th to 19th century). The energy method, which is the work of Lagrange, 

represents the third method. Now days, Energy criteria are used to determine the stability of an 
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equilibrium position.  In this century the stability concept of Lyapunov has found wide 

acceptance [16, 17, 18].  

Lyapunov stability criterion is general and use-full approach to analyze stability of nonlinear 

systems. Lyapunov stability concept includes two approaches: Lyapunov indirect method and 

Lyapunov direct method. The idea of Lyapunov indirect method is linearization of a system 

around a given point and discussing local stability with small stability regions on the other hand 

Lyapunov direct method is the most important tool for design and analysis of nonlinear systems. 

This method can be applied directly to a nonlinear system without the need of linearization and 

achieves global stability [17, 18]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

     1.2 Statement of the Problem 

 The stability of dynamic system with a constant mass is widely investigated using linearization 

techniques discussed above. Even though the use of Lyapunov direct method is more powerful 

than linearization, it is not widely applied in different researches since it is not easy to find a 

Lyapunov function. Moreover, as far as the knowledge of the researcher is concerned stability 

analysis of variable mass dynamic system is rarely found in the literature. However it is worth 

mentioning that as discussed in the background above, the famous Russian Mathematician 

Meshcherskii, I.V. [11, 14] constructed the dynamic equation of movement of variable mass 

system and opened a wide chapter of research in the area of modeling dynamics and stability 

investigation of such systems. 

It is with this understanding that the study adapted a model developed by Meshcherskii I.V.  

[14], and planned to investigate its stability using different trajectories that has to be followed by 

the system given in equation (1.3). Hence, this study establish sufficient conditions for the 

stability of the motion of dynamic system with a variable mass along a given path in the 𝑋𝑍-

plane. To simplify the investigation, we use the assumption that at each point, the tangential and 

the normal components of the velocity of the system have the form 𝑋 = 𝑘1(𝑡)𝒗 and 𝑍 = 𝑘2(𝑡)𝒗, 

where 𝒗-velocity of the mass, 𝑘1, 𝑘2 – are the coefficient of the velocity of the mass along the 𝑋 

and 𝑍-components respectively. The dynamic model of such a system with a variable mass   

𝑚 = 𝑚(𝑡), is given by [11, 14]. 

{
�̈� =

�̇�

𝑚
(𝜇 − 1)�̇� −

𝑘1
𝑚
�̇� −

𝑘2
𝑚
�̇�,

�̈� =
�̇�

𝑚
(𝜂 − 1)�̇� −

𝑘2
𝑚
�̇� +

𝑘2
𝑚
�̇� − 𝑔

                ,                                                     (1.3) 

where 𝜇 = 𝜇(𝑡), 𝜂 = 𝜂(𝑡) −the ratio of the projection of speed of change of mass and the mass 

on the 𝑥, 𝑧 −coordinate respectively. 
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In particular this research will focus on the following problems. 

i. Constructions of a Lyapunov function for the dynamic system given by equation (1.3) in 

order to ascertain asymptotic stability (Investigation of stability analysis). 

ii. Setting different stability conditions depending on a given trajectory of the system (1.3) 

iii. Demonstration of the accuracy of the results using MATLAB based on a given numerical 

data. 

1.3 Objective 

1.3.1. General Objective 

The general objective of this research is to establish sufficient conditions for the stability of a 

dynamic system with a variable mass given by equation (1.3) in the sense of Lyapunov. 

1.4 Significance of the Study 

The theory of stability is a core part of any designed dynamical model (control system). For 

instance, any control system needs to have the stability condition investigated and conditions be 

set before further applications or before using the system for any designed purpose. Otherwise it 

may be dangerous to use the system as it may not be manageable. Hence, the result of this 

research can be used: 

 for practical purpose such as in control design to the dynamic system of the model under 

discussion which can be adapted to formulate the dynamic equation of many variable 

mass systems such as Rockets. 

 as a model in transforming mathematical concepts to other applied sciences such as 

stability of dynamics of Rockets and spin stabilization of modern space crafts. 

 as a stepping stone for other researchers on investigation of stability of dynamical 

system with variable mass. 

 

    1.5 Delimitation of the Study 

This study is delimited to discussing the stability conditions of the equation of variable mass 

dynamic system given by equation (1.3). This research is conducted in Jimma university 

department of mathematics. 
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CHAPTER TWO 

2. LITERATURE REVIEW 

    2.1. Stability  

Stability theory plays a central role in systems theory and engineering. In a dynamic system we 

have by definition an equilibrium means �̇�(t) =  𝟎 for all t. In other words: The equilibrium 

points are those points which satisfies 𝐟(𝐗(𝐭)) =  𝟎 for autonomous (time invariant) systems and 

for non-autonomous systems, of the form �̇�  =  𝐟(𝐱, t) equilibrium points x0 are defined 

by 𝐟(x0, t) = 0   ∀t > t0. In this case equilibrium refers to certain points in phase space  

(a set whose elements called “points” of the system at any moment of time) which have the 

property that if the system is located for such a point, it sits there forever, because the derivative 

of all the coordinates are zero [19, 20, 21]. 

An equilibrium is also encounter in the earth motion around the Sun which is different from the 

other. In this case we do not have an equilibrium situation like the one we just described. Still 

this system is also in some kind of equilibrium in the sense that it repeats its motion periodically. 

We have a closed path which after a year repeats itself. It is meaningful to ask the question about 

stability in both these cases, however, these two phenomenon are so different that they require 

different concepts of stability in order to catch the important properties of each system [19].  

The other possibility of discussing about stability is one can imagine a motion that is a solution 

curve for �̇� = 𝑓(𝑿) which starts in x0. What will happen if we start a motion close by x0? Are 

we then going to find a motion which always will be close to the motion that started in x0. 

Lyapunov has given the name to the stability definition which deals with this problem [19].  

Other concept of stability is due to Laplace. All motion which is limited, that is |𝑿(𝑡)| < ∞ ∀𝑡 is 

stable [19]. 

In general, stability theory [1, 2, 19, 20] addresses the stability of solutions of differential 

equations and trajectories of dynamical systems under small disturbance or perturbations of 

initial conditions. In dynamical systems, an orbit is called Lyapunov stable if the forward orbit of 

any point is in a small enough neighborhoods or it stays in a small neighborhood. Various 

criteria have been developed to prove stability or instability of an orbit. Under favorable 

circumstances, the question may be reduced to a well-studied problem involving eigenvalues of 
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matrices. A more general method involves Lyapunov functions. In practice, any one of a number 

of different stability criteria is applied. 

Stability of equilibrium points is usually characterized in the sense of Lyapunov, a Russian 

mathematician and engineer who laid the foundation of the theory. Lyapunov states that an 

equilibrium point is stable if all solutions starting at nearby points stay nearby; otherwise, it is 

unstable. Also he showed that an equilibrium point of a nonlinear system is exponentially stable 

if and only if the linearization of the system about that point has an exponentially stable 

equilibrium at the origin. Lyapunov stability analysis can be used to show boundedness of the 

solution, even when the system has no equilibrium points [19, 20].  

Lyapunov stability criterion is a general and use-full approach to analyze stability of nonlinear 

systems. Lyapunov stability concept includes two approaches: Lyapunov indirect method and 

Lyapunov direct method. The idea of Lyapunov indirect method is linearization of a system 

around a given point and discussing local stability with small stability regions on the other hand 

Lyapunov direct method is the most important tool for design and analysis of nonlinear systems. 

This method can be applied directly to a nonlinear system without the need of linearization and 

achieves global stability [20]. 

Even though Lyapunov function method is more general and powerful, it has some drawbacks in 

that it is not easy to find the Lyapunov function 𝑉 and the theorems are only sufficient 

conditions. That is, the fact that Lyapunov function doesn’t exist or difficult to find doesn’t mean 

the dynamic system is not stable. Moreover, failure of Lyapunov function candidate to satisfy 

asymptotic stability condition doesn’t mean that the system is not asymptotically stable. These 

two are series drawbacks of Lyapunov stability analysis application in practice [20, 21].  

In Lyapunov stability theory we think of mainly three kinds of stability theorems: neutral 

stability, asymptotic stability and exponential stability theorems. Exponential stability is stronger 

than asymptotic stability in that asymptotic stability tells us the stability and convergence, 

exponential stability indicates in addition the rate of convergence. Asymptotic stability is 

stronger than neutral stability. In many practical application, especially in engineering, 

asymptotic stability is more desired as it finally indicates the system converging to the 

equilibrium point [20, 21]. 
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CHAPTER THREE 

3. METHODOLOGIES 

3.1 Study Site and Period 

This study was conducted in Jimma University in the department of mathematics from October 

2015 to June 2016. 

3.2 Study Design 

In this research both analytical and approaches ware employed. Analytically constructing 

Lyapunov function and proving if the function satisfies the required Lyapunov stability criteria 

was made and experimentally the well-known software MATLAB was used to demonstrate the 

applicability of the results using given particular numerical data. 

3.3 Source of Information 

The source of information used in this research was books related to stability theory and control 

system, articles on stability of a system, related journals and lecture notes. 

3.4 Procedure of the Study 

 Define Lyapunov function candidate. 

 Check if the defined function satisfies the Lyapunov function conditions. 

 Set stability conditions for different given trajectories. 

 Demonstrate the result for some given numerical data using MATLAB. 

3.5 Ethical Consideration 

Ethical clearance was obtained from Mathematics department, College of Natural Sciences, 

Jimma University and any concerned body was informed about the purpose of the study. 
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CHAPTER FOUR 

4. RESULT AND DISCUSSION 

4.1. Preliminaries 

Definition 4.1: [21] Autonomous system 

A system of ordinary differential equations is said to be autonomous (time invariant) if it does 

not explicitly contain the independent time (t). 

Let us consider system of differential equation 

�̇�(𝑡) = 𝑋(𝑥(𝑡)), 

where, 

 𝑥 = [

𝑥1
𝑥2
⋮
𝑥𝑛

]              and            𝑋 = [

𝑋1
𝑋2
⋮
𝑋𝑛

], 

otherwise it non autonomous (time variant). 

Definition 4.2: [21, 22] (Equilibrium point) 

Equilibrium point is a point 𝑥0  ∈  ℝ
𝑛 such that �̇�(𝑥0) = 0 (for all future time). 

Definition 4.3: [19, 20, 21, 22] (Lyapunov equilibrium stability) 

 The equilibrium point 𝑥0 = 0 is called  

i. Stable if for each 휀 > 0 , there exist a 𝛿 = 𝛿(휀) > 0 such that 

‖𝑥(0)‖ < 𝛿 ⇒ ‖𝑥(𝑡)‖ < 휀. 

ii. Asymptotically stable if it is stable and 𝛿 can be choosen such that  

    ‖𝑥(0)‖ < 𝛿 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0 

 

 

http://mathworld.wolfram.com/OrdinaryDifferentialEquation.html
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iii. Exponentially stable if there exist two strictly positive numbers 𝒂 and 𝜆 such that 

 ||𝑥(𝑡)|| ≤ 𝑎||𝑥(0)||𝑒−𝜆𝑡   

in some ball 𝐵𝑟 around the origin. 

iv. Unstable if it not stable. 

Definition 4.4: [19] (Lyapunov motion stability) 

i. A motion (path) x(t) that starts in x∗(t0)  =  x
∗
0, and look simultaneously at another 

motion (path) which starts in x(t0)  =  x0. If for arbitrary ε > 0 , there exists a δ =

δ(ε, t0), such that ||x0 − x
∗
0 ||  <  𝛿 ⇒   ||𝑥(𝑡)  −  x∗(t)||  <  휀 for  t > t0, then the 

motion x(t)is stable.  

ii. Asymptotic stability 

If in addition to (i) the following is satisfied 

lim
t→∞

||x(t)  −  x∗(t)|| = 0, 

then the system is said to be asymptotically stable. 

iii. Unstable if it not stable 

4.1.1 The Second (Direct) Method of Lyapunov 

The main qualitative method for investigating stability properties of unperturbed motion is the 

direct method of Lyapunov also known as the second method of Lyapunov. The main aim of the 

method is to reduce the system stability analysis to the analysis of the properties of some special 

Lyapunov function V as described below [21] 

Definition:4.5:[21,22] 

1. A function 𝑉:𝐷 →  ℝ is said to be positive definite in domain 𝐷 if it satisfies the 

following conditions: 

 (𝑖) 0 ∈ 𝐷 𝑎𝑛𝑑 𝑉(0) = 0. 

 (𝑖𝑖)𝑉(𝑥) > 0, for all 𝑥 𝑖𝑛 𝐷/{0}  
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2. A function 𝑉:𝐷 →  ℝ is said to be negative definite in 𝐷 if  

 (𝑖) 0 ∈ 𝐷 𝑎𝑛𝑑 𝑉(0) = 0. 

 (𝑖𝑖) 𝑉(𝑥) < 0, for all 𝑥 𝑖𝑛 𝐷/{0}. 

3. A function 𝑉:𝐷 →  ℝ is said to be positive semi definite in 𝐷 if it satisfies the following 

conditions: (𝑖) 0 ∈ 𝐷 𝑎𝑛𝑑 𝑉(0) = 0. 

 (𝑖𝑖) 𝑉(𝑥) ≥ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝐷/{0}. 

4. A function 𝑉:𝐷 →  ℝ is said to be negative semi definite in 𝐷 if  

 (𝑖) 0 ∈ 𝐷 𝑎𝑛𝑑 𝑉(0) = 0. 

 (𝑖𝑖)𝑉(𝑥) ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝑖𝑛 𝐷/{0}. 

5. Unless and other wise 𝑉:𝐷 →  ℝ is indefinite function. 

Theorem 4.1: [21, 22, 24, 25]. Lyapunov theorem of stability 

Let 𝑥 = 0 be an equilibrium point of 𝑋:𝐷 → ℝ𝑛, 𝑋 is locally Lipchitz map and 𝐷 ⊂  ℝ𝑛 be any 

domain containing 𝑥 = 0, let 𝑉:𝐷 → ℝ be continuously differentiable function such that 𝑉(0) =

0 and 𝑉(𝑥) > 0 in 𝐷/{0} and  

�̇�(𝑥) ≤ 0 in 𝐷, then the equilibrium point 𝑥 = 0 is stable, further if �̇�(𝑥) < 0 𝑖𝑛 

 𝐷/{0} 𝑡ℎ𝑒𝑛 𝑥 = 0 is asymptotically stable. 

Proof: 

Given 휀 > 0. We need to construct 𝛿 > 0 such that any trajectory starting in 𝐵(0, 𝛿) doesn’t 

leave 𝐵(0, 휀). Let construct Ω𝛽  ⊂ 𝐵(0, 휀) 𝐵𝛿: is an open ball with radius 휀 around the origin 

                  since 휀 > 0 is given 𝐵 ⊂ 𝐷 

𝜕𝐵 : Boundary of the ball 𝐵 = {𝑥 ∈ ℝ𝑛/‖𝑥‖ = 휀 } is. Then, value of the Lyapunov function 𝑉 

on the boundary 𝜕𝐵  is strictly positive. Since 𝑉(𝑥) > 0 for all 𝑥 except 𝑥 = 0  all points 

In 𝜕𝐵  are at distance 휀 away from 0. 
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Hence, 𝑉(𝑥) > 0 ∀𝑥 ∈  𝜕𝐵  

Let 𝛼 ≔ min
‖𝑥‖

𝑉(𝑥) then 𝛼 > 0 

Take any 𝛽 ∈ (0, 𝛼) and define 

Ω𝛽 ≔ {𝑥 ∈ 𝛽 |𝑉(𝑥) ≤ 𝛽} 

Claim 1: Ω𝛽 is interior of 𝐵 . 

Suppose: Ω𝛽 was not in the interior of 𝐵  

Then there would be a point 𝑝 ∈ 𝜕𝐵 ∩ Ω𝛽.  𝑝 ∈ 𝜕𝐵 ⟹ 𝑉(𝑝) ≥ 𝛼 

 𝑝 ∈ Ω𝛽 ⟹ 𝑉(𝑝) ≤ 𝛽(< 𝛼). 

This now implies 𝛼 ≤ 𝑉(𝑝) ≤ 𝛽 < 𝛼 which is contradiction thus there cannot be a point 

 𝑝 ∈ 𝜕𝐵 ∩ Ω𝛽 or 𝜕𝐵 ∩ Ω𝛽 = ∅. 

Therefore Ω𝛽 is contained in the interior of 𝐵 . 

Also Ω𝛽 is closed set. (𝑉(𝑥) ≤ 𝛽: Boundary of Ω𝛽 is inside Ω𝛽) it is bounded:  Ω𝛽 < 𝐵  

Hence Ω𝛽 is compact.  

Claim 2: The set Ω𝛽 satisfies any trajectory in Ω𝛽 at 𝑡 = 0 stays in Ω𝛽 at 𝑡 ≥ 0 

�̇�(𝑥(𝑡)) ≤ 0 ⟹ ∫�̇�

𝑡

0

(𝑥(𝑡)) ≤ 0 

 ⟹ [𝑉(𝑥(𝑡))] 𝑡
0
≤ 0 

 ⟹ 𝑉(𝑥(𝑡)) ≤ 𝑉(𝑥(0)) ≤ 𝛽. For all 𝑡 ≥ 0 

This proves Ω𝛽 is positively invariant. 

Since  Ω𝛽 is compact set �̇� = 𝑓(𝑋) has unique solution defined for all 𝑡 ≥ 0 for each 𝑥(0) ∈ Ω𝛽. 



12 

 

Now to find a 𝛿 > 0 such that 𝐵𝛿 ⊂ Ω𝛽 as 𝑉(𝑥) is continuous and 𝑉(0) = 0, 𝑉(𝑥) is closed to 

zero for all 𝑥 in some 𝐵𝛿 also (𝑉 is continuos at 𝑥 = 0 if and only if for every 𝛽 > 0 there exists 

a 𝛿 > 0 such that 𝑥 ∈ 𝐵𝛿 ⟹ |𝑣(𝑥) − 𝑉(0)| < 𝛽. 

 Using 𝑉(0) = 0 and 𝑉(𝑥) > 0 for 𝑥 ∈ 𝐷 

⟹ 𝑥 ∈ 𝐵𝛿 ⟹ 𝑉(𝑥) < 𝛽 

Thus there exist a ball 𝐵𝛿 contained in side Ω𝛽 for some 𝛿 > 0 we have shown: 

For every 휀 > 0 there exists a 𝛿 > 0 such that  

𝛽𝛿 ⊂ Ω𝛽 ⊂ 𝛽  and 

𝑥(0) ∈ 𝐵𝛿 ⟹ 𝑥(0) ∈ Ω𝛽 

⟹ for all 𝑡 ≥ 0 we have 𝑥(𝑡) ∈ Ω𝛽 and hence 𝑥(𝑡) ∈ 𝛽  

Hence the point of equilibrium 𝑥 = 0 is stable. 

To show asymptotically stable 

If �̇�(𝑥) < 0 in 𝐷/{0} also holds. 

We want to show 𝑥(𝑡) ⟶ 0 as 𝑡 ⟶ ∞ 

 Since 𝑉(𝑥) = 0 ⟺ 𝑥 = 0 we can instead show 𝑉(𝑥) ⟶ 0 

�̇�(𝑥) < 0. This implies, 𝑉 is monotonically decreasing with time. 

Hence a limit does exist. 

 As 𝑡 ⟶ 0, 𝑉(𝑥(𝑡)) ⟶ 𝑐 

To show that 𝑐 = 0 

Suppose 𝑐 > 0 by continuity of (𝑥) , there is 𝑑 > 0 such that 𝐵𝑑 ⊂ Ω𝑐 

The limit 𝑉(𝑥(𝑡)) ≥ 𝑐 for all 𝑡 ≥ 0 

 Let −𝛾 ≔ max
𝑑𝑐‖𝑥‖≤

(�̇�(𝑥)) 
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Remark: over compact set, a continuous function achieves its maximum and minimum 

The compact set : 𝑑 < ‖𝑥‖ ≤ 𝛾, the continuous function on this set : �̇�(𝑥)𝑉(𝑥(𝑡)) = 𝑉(𝑥(0)) +

∫ �̇�
𝑡

0
(𝑥(𝜏))𝑑𝜏 ≤ 𝑉(𝑥(0)) − 𝛾𝑡 for 𝑥(0) ∈ 𝐵  

Since −𝛾 ≔ 𝑚𝑎𝑥�̇�(𝑥) for 𝑥 satisfaying 𝑑 ≤ ‖𝑥‖ ≤ 휀) 

Then 𝛾 > 0 

Hence RHS (right hand side) eventually become negative  

Hence the set 𝑑 ≤ ‖𝑥‖ ≤ 휀) can’t be invariant, and our assumption about 𝑐 > 0 is causes this 

contradiction. 

Thus 𝑉(𝑥(𝑡)) ⟶ 0 as 𝑡 ⟶ ∞ and hence 𝑥(𝑡) ⟶ 0 also this prove asymptotically stable      

Definition: 4.6: [21, 26] 

A continuously differentiable function 𝑉 satisfying 𝑉(0) = 0 and 𝑉(𝑥) > 0 in 𝐷 − {0} with 

�̇�(𝑥) ≤ 0 in 𝐷 and used to prove the stability of equilibrium point is called Lyapunov function. 

Theorem 4.2: [21, 22] Let 𝑥 = 0 be an equilibrium point �̇� = 𝑓(𝑥). Let 𝑉: 𝑅𝑛 → ℝ be a 

continuously differentiable function such that 

 𝑉(0) = 0 and 𝑉(𝑥) > 0    ,     ∀𝑥 ≠ 0 

 ‖𝑥‖ → ∞ ⇒ 𝑉(𝑥) → 0. 

 �̇�(𝑥) ≠ 0, ∀𝑥 ≠ 0  

Then,  𝑥 = 0 is globally asymptotically stable equilibrium point 

Theorem 4.3: [21, 22, 26] Let 𝑥 = 0 is an equilibrium point of �̇� = 𝑓(𝑥) 

Let 𝑉:𝐷 → ℝ be continuously differentiable function such that 𝑉(0) = 0 and 𝑉(𝑥0) > 0 for 

some 𝑥0 with arbitrary small ‖𝑥0‖ define a set ∪ as  

 ∪= {𝑥 ∈ 𝐵𝑟|𝑣(𝑥) > 0}, 

and suppose that �̇�(𝑥) > 0 in ∪ then, 𝑥 = 0 is unstable 
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4.1.2 Lyapunov’s Indirect Method 

[21] Consider a nonlinear autonomous system  

 �̇� = 𝑓(𝑥)          (4.1) 

𝑓:  𝐷 → ℝ𝑛, Continuously differentiable 𝐷 ⊂ ℝ𝑛 in to ℝ𝑛 

𝑥 = 0 𝜖𝐷 and 𝑓(0) = 0 

 
𝑓𝑖(𝑥)−𝑓𝑖(0)

𝑥−0
=

𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖) 

 𝑓𝑖(𝑥) − 𝑓𝑖(0) =
𝜕𝑓𝑖

𝜕𝑥
(𝑧)𝑥     (mean value theorem) 

Where 𝑧𝑖  𝜖(𝑥, 0) or (0, 𝑥) 

Since 𝑓𝑖(0) = 0 

 𝑓𝑖(𝑥) =
𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖)𝑥 =>

𝜕𝑓𝑖

𝜕𝑥
(0) + [

𝜕𝑓𝑖(𝑧𝑖)

𝜕𝑥
−
𝜕𝑓𝑖

𝜕𝑥
(0)] 

 
𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖)𝑥 =

𝜕𝑓𝑖

𝜕𝑥
(0)𝑥 + [

𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖) −

𝜕𝑓𝑖

𝜕𝑥
(0)] 𝑥 

 𝑓(𝑥) = 𝐴𝑥 + 𝑔(𝑥) 

Where 𝐴 =
𝜕𝑓𝑖

𝜕𝑥
(0)  𝑔𝑖(𝑥) = [

𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖) −

𝜕𝑓𝑖

𝜕𝑥
(0)] 𝑥 

|𝑔𝑖(𝑥)| ≤ ‖
𝜕𝑓𝑖

𝜕𝑥
(𝑧𝑖) −

𝜕𝑓𝑖

𝜕𝑥
(0)‖‖𝑥‖  

Since  
𝜕𝑓

𝜕𝑥
  continuous we have 

‖𝑔(𝑥)‖ ≤ ‖
𝜕𝑓

𝜕𝑥
(𝑧) −

𝜕𝑓

𝜕𝑥
(0)‖ ‖𝑥‖  

 
‖𝑔(𝑥)‖

‖𝑥‖
≤ ‖

𝜕𝑓

𝜕𝑥
(𝑧) −

𝜕𝑓

𝜕𝑥
(0)‖ < 𝜖 

 
‖𝑔(𝑥)‖

‖𝑥‖
< 𝜖  ⇒ lim

‖𝑥‖→0

‖𝑔(𝑥)‖

‖𝑥‖
= 0 

This suggests that in a small neighborhood of the origin we can approximate the nonlinear 

system (4.1) by its linearization about the origin    

�̇� = 𝐴𝑥 Where 𝐴 =
𝜕𝑓𝑖

𝜕𝑥
(0).          (4.2) 
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Theorem4.4: [21, 27, 28] 

Consider a general non-homogenous non-autonomous linear system of the form 

�̇� = 𝐴(𝑡)𝑥 + 𝑓(𝑡),      (4.3) 

where 𝑓(𝑡) is a column vector. 

Suppose 𝑥∗(𝑡)is a solution of the equation (4.3). To be able to investigate the stability of the 

solution 𝑥∗(𝑡),define 

𝜉(𝑡) = 𝑥(𝑡) − 𝑥∗(𝑡). 

where 

𝑥(𝑡) is any other solution. Then we obtain the following homogenous equation 

�̇�(𝑡) = 𝐴(𝑡)𝜉 .                                                                              (4.4) 

Then all solutions of the linear system (4.3) have the same stability properties with the zero 

solution of (4.3) [19, 27, 28].  

Theorem 4.5:.[27, 29] The zero solution of the system (4.3) is stable if and only if every 

solution is 

bounded as 𝑡 → ∞. If 𝐴 is a constant matrix and every solution is bounded, then the solutions 

are uniformly stable 

Theorem 4.6: [21, 30] Let 𝑥 = 0 be an equilibrium point for the nonlinear system �̇� = 𝑓(𝑥), 

 where 𝑓: 𝐷 → ℝ𝑛 is continuously differentiable and 𝐷 is a neighborhood of the origin.  

Let 𝐴 =
𝜕𝑓

𝜕𝑥
(𝑥)|

𝑥=0
 then, 

          1. The origin is asymptotically stable if real part of all eigenvalues 𝐴  are less than zero.  

         2. The origin is unstable if real part of eigenvalues 𝐴 is greater than zero for one or more                     

eigenvalues of 𝐴.  

This method allows us to determine the stability of the nonlinear system about the equilibrium 

point on the basis of the linearized system [21, 26, 31, 32]. 
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i. If the Eigenvalues of a matrix A in the linearized system have negative real 

parts, the nonlinear system is stable about the equilibrium point. 

ii. If at least one Eigenvalue of a matrix A in the linearized system has positive 

real part, the nonlinear system is unstable about the equilibrium point. 

iii. If at least one Eigenvalue of a matrix in the linearized system has zero real 

part, the test is inconclusive. The linear approximation is in sufficient to 

determine stability. However, methods exist to include higher order terms. 

 

Example 1:  

 �̇� = 𝑥(1 − 𝑥 − 2𝑦) = 𝑓(𝑥, 𝑦) 

 �̇� = 𝑦(1 − 2𝑥 − 𝑦) = 𝑔(𝑥, 𝑦) 

The system is non linear 

 To show both 𝑓&𝑔 has continuous partial derivative up to 2nd order 

𝑓𝑥 = 1 − 2𝑥 − 2𝑦  𝑓𝑦 = −2𝑥 

𝑓𝑥𝑥 = −2    𝑓𝑦𝑦 = 0  𝑓𝑥𝑦 = −2 

𝑔𝑥 = −2𝑦    𝑔𝑦 = 1 − 2𝑥 − 2𝑦 

𝑔𝑥𝑥 = 0    𝑔𝑦𝑦 = −2  𝑔𝑥𝑦 = −2 

 Hence f & g has continuous 

s partial derivative up to 2nd order    

 Their equilibrium point is  

 (0,0), (0,1), (1,0), (
1

3
,
1

3
) 

 The Jacobian is  J = (
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

) = (
1 − 2𝑥 − 2𝑦 −2𝑥

−2𝑦 1 − 2𝑥 − 2𝑦
) 

𝐽(0,0) = (
1 0
0 1

) ⇒ |
1 − 𝜆 0
0 1 − 𝜆

| = (1 − 𝜆)2 = 𝜆1 = 𝜆2 = 1 
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Hence the nonlinear system is unstable at (0,0). 

𝐽(0,1) = (
−1 0
−2 −1

) ⇒ |
−1 − 𝜆 0
−2 −1 − 𝜆

| = 0 ⇒ 𝜆 = −1  

Hence the nonlinear system is stable at (0,1). 

𝐽(1,0) = (
−1 −2
0 −1

) ⇒ |
−1 − 𝜆 −2
0 −1 − 𝜆

| = 0 ⇒ 𝜆 = −1  

Hence the nonlinear system is stable at(1,0). 

 

4.2 Main Results 

Consider the system given by: 

{
�̈� =

�̇�

𝑚
(𝜇 − 1)�̇� −

𝑘1

𝑚
�̇� −

𝑘2

𝑚
�̇�

�̈� =
�̇�

𝑚
(𝜂 − 1)�̇� −

𝑘2

𝑚
�̇� +

𝑘2

𝑚
�̇� − 𝑔

       (4.5) 

Let 𝑥 = 𝜑(𝑡) and 𝑧 = 𝜓(𝑡) are trajectory  

Then solve for 𝜇 and 𝜂 from (4.5) 

{
�̈� =

�̇�

𝑚
(𝜇 − 1)�̇� −

𝑘1

𝑚
�̇� −

𝑘2

𝑚
�̇�

�̈� =
�̇�

𝑚
(𝜂 − 1)�̇� −

𝑘2

𝑚
�̇� +

𝑘2

𝑚
�̇� − 𝑔

       (4.6) 

   

{
𝜇 = 1 +

𝑚

�̇�
(
�̈�

�̇�
+
𝑘1�̇�+𝑘2�̇�

𝑚�̇�
)

𝜂 = 1 +
𝑚

�̇�
(
�̈�

�̇�
+

𝑔

�̇�
+
𝑘2�̇�−𝑘2�̇�

𝑚�̇�
)
       (4.7) 

 

{
 
 

 
 

�̇�1 = 𝑥2
�̇�3 = 𝑥4

�̇�2 =
�̇�

𝑚
(𝜇 − 1)𝑥2 −

𝑘1

𝑚
𝑥2 −

𝑘2

𝑚
𝑥4

�̇�4 =
�̇�

𝑚
(𝜂 − 1)𝑥4 −

𝑘2

𝑚
𝑥4 +

𝑘2

𝑚
𝑥2 − 𝑔

      (4.8) 

Substituting (4.7) in (4.8) we have   
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{
 
 

 
 

�̇�1 = 𝑥2
�̇�3 = 𝑥4

�̇�2 = (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2

𝑚
𝑥4

�̇�4 = (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4 +

𝑘2

𝑚
𝑥2  − 𝑔           

      (4.9) 

Where 𝑥2 and 𝑥4 are velocities and 𝑥1 and 𝑥3are coordinates. 

Based on the above equation (4.2) and theorem 4.4 we can consider the system 

 

�̇� = 𝐴𝑥 ,  

Where 

 𝐴 =

{
 
 

 
 

�̇�1 = 𝑥2
�̇�3 = 𝑥4

�̇�2 = (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2

𝑚
𝑥4

�̇�4 = (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)𝑥4 +

𝑘2

𝑚
𝑥2

,  

To investigate the stability of the above system let us consider a Lyapunov function candidate 

given by: 

𝑉 = 𝛼(𝑡)𝑥2
2 + 𝛽(𝑡)𝑥4

2,  

where 𝛼(𝑡), 𝛽(𝑡) are nonnegative functions and both of them not equal to zero. 

 Then. 

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+ [

𝜕𝑉

𝜕𝑥2

𝜕𝑉

𝜕𝑥4
] [
�̇�2
�̇�4
]  

 Let us consider different cases to establish stability conditions. 

Case I 

Suppose 𝛼(𝑡) = 𝛽(𝑡) is constant and positive.   

Then 
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𝑑𝑉

𝑑𝑡
= [

𝜕𝑉

𝜕𝑥2

𝜕𝑉

𝜕𝑥4
] [
�̇�2
�̇�4
]  

 =[2𝛼𝑥2     2𝛽𝑥4] [
(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2

𝑚
𝑥4

(
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4 +

𝑘2

𝑚
𝑥2

]. 

The first derivative of the Lyapunov function candidate 𝑉 becomes 

�̇� = 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2

2 − 2𝛼
𝑘2
𝑚
𝑥2𝑥4 + 2𝛽 (

�̈�

�̇�
+
𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4

2 + 2𝛽
𝑘2
𝑚
𝑥2𝑥4 

                 = 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2

2 + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4

2 + (−2𝛼
𝑘2

𝑚
+ 2𝛽

𝑘2

𝑚
) 𝑥2𝑥4               (4.10) 

To guarantee asymptotical stability we need to have �̇� < 0 which can be satisfied if and only if 

2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) < 0, 2𝛽 (

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) < 0 and 

2𝑘2

𝑚
(𝛼 − 𝛽) = 0. 

 This leads to the stability condition given by: 

�̈�

�̇�
< −

𝑘2�̇�

𝑚�̇�
,     

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0     (4.11) 

Case II 

 𝛼(𝑡) and 𝛽(𝑡) are positive functions. 

𝑉 = 𝛼(𝑡)𝑥2
2 + 𝛽(𝑡)𝑥4

2  

The first derivative of the Lyapunov function candidate 𝑉 becomes 

�̇� = �̇�𝑥2
2 + 2𝛼𝑥2�̇�2 + �̇�𝑥4

2 + 2𝛽𝑥4�̇�4    

= �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼𝑥2 {(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2𝑥4

𝑚
} + 2𝛽𝑥4 {(

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4 −

𝑘2

𝑚
𝑥2}  

= �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2

2 + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4

2 + (
2𝛽𝑘2

𝑚
−
2𝛼𝑘2

𝑚
) 𝑥2𝑥4           (4.12) 

To simplify the function let as take 𝛼 =
1

�̇�2
 and 𝛽 =

1

�̇�2
 

Then �̇� =
−2�̈�

�̇�3
 and �̇� =

−2�̈�

�̇�3
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�̇� = {�̇� + 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
)} 𝑥2

2 + {�̇� + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)} 𝑥4

2 + (
2𝛽𝑘2

𝑚
−
2𝛼𝑘2

𝑚
) 𝑥2𝑥4  

    = {
−2�̈�

�̇�3
+

2

�̇�2
(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
)} 𝑥2

2 + {
−2�̈�

�̇�3
+

2

�̇�2
(
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)} 𝑥4

2 +
2𝑘2

𝑚
(
1

�̇�2
−

1

�̇�2
) 𝑥2𝑥4       (4.13) 

To guarantee asymptotical stability we need to have �̇� < 0 which can be satisfied if and only if 

−2�̈�

�̇�3
+

2

�̇�2
(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) < 0  

−2�̈�

�̇�3
+

2

�̇�2
(
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) < 0 

2𝑘2

𝑚
(
1

�̇�2
−

1

�̇�2
) = 0 

2𝑘2�̇�

𝑚�̇�3
< 0    

2𝑔

�̇��̇�2
−

2𝑘2�̇�

𝑚�̇��̇�2
< 0    �̇�2 = �̇�2 

     
𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0        

This leads to the stability condition given by:  

2𝑘2�̇�

𝑚�̇�3
< 0 ,  

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0 and �̇�2 = �̇�2.     (4.14) 

Case III  

𝛼(𝑡) 𝑎𝑛𝑑 𝛽(𝑡) are functions given by  

 𝛼 = 𝑒𝑚 = 𝛽. 

Then, 

 �̇� = �̇�𝑒𝑚 = �̇�, 

where 𝑚 is function of 𝑡.  

First derivative of Lyapunov function candidate is, 

�̇� = {�̇� + 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
)} 𝑥2

2 + {�̇� + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)} 𝑥4

2 +
2𝑘2

𝑚
(𝛽 − 𝛼)𝑥2𝑥4  (4.15) 

To guarantee asymptotical stability we need to have �̇� < 0 which can be satisfied if and only if 

�̇�𝑒𝑚 + 2𝑒𝑚 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) < 0    �̇�𝑒𝑚 + 2𝑒𝑚 (

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) < 0 

𝑒𝑚 {�̇� +
2�̈�

�̇�
+
2𝑘2�̇�

𝑚�̇�
} < 0    𝑒𝑚 {�̇� + 2 (

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)} < 0 
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�̇� +
2�̈�

�̇�
+
2𝑘2�̇�

𝑚�̇�
< 0     �̇� + 2 (

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) < 0 

2�̈�

�̇�
< −�̇� −

2𝑘2�̇�

𝑚�̇�
     

�̈�

�̇�
< −

1

2
�̇� −

𝑔

�̇�
+
𝑘2�̇�

𝑚�̇�
 

�̈�

�̇�
<

−1

   2
�̇� −

𝑘2�̇�

𝑚�̇�
  

Hence we have a stability condition given by, 
�̈�

�̇�
<

−1

   2
�̇� −

𝑘2�̇�

𝑚�̇�
 and  

�̈�

�̇�
< −

1

2
�̇� −

𝑔

�̇�
+
𝑘2�̇�

𝑚�̇�
.   (4.16) 

Example 1:  

Let 𝑥 = 𝜑 = 𝑒2𝑡  �̇� = �̇� = 2𝑒2𝑡  �̈� = �̈� = 4𝑒2𝑡 

𝑍 = 𝜓 = −𝑒2𝑡  �̇� = �̇� = −2𝑒2𝑡 �̈� = �̈� = −4𝑒2𝑡 

Where 𝑘2(𝑡) = 𝑒−3𝑡 and mass 𝑚 = 𝑒−𝑡 

The criteria of stability is given by  

2𝑘2�̇�

𝑚�̇�2
< 0     and 

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0 

−
4𝑒−3𝑡𝑒2𝑡

𝑒−𝑡𝑒4𝑡
= −4𝑒−4𝑡 < 0  

10

−2𝑒2𝑡
−

𝑒−3𝑡(2𝑒2𝑡)

𝑒−𝑡(−2𝑒2𝑡)
= −5𝑒−2𝑡 + 𝑒−2𝑡 = 4𝑒−2𝑡 < 0 

Since the criteria is satisfied 

{
  
 

  
 

�̇�1 = 𝑥2
�̇�3 = 𝑥4

�̇�2 = (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2
𝑚
𝑥4

�̇�4 = (
�̈�

�̇�
+
𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4 +

𝑘2
𝑚
𝑥2

 

Is asymptotically stable system by theorem (4.1) for Lyapunov function given by, 

𝑉 =  𝛼(𝑡)𝑥2
2
+ 4𝛽(𝑡)𝑥4

2 Where 𝛼(𝑡) =
1

4
𝑒−4𝑡 =   𝛽(𝑡)  ∀𝑡. 
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Proof:  

𝑉 =  𝛼(𝑡)𝑥2
2
+ 𝛽(𝑡)𝑥4

2  

�̇� = �̇�𝑥2
2 + 2𝛼𝑥2�̇�2 + �̇�𝑥4

2 + 2𝛽𝑥4�̇�4  

�̇� = �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼𝑥2 {(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2𝑥4

𝑚
} + 2𝛽𝑥4 {(

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)𝑥4 −

𝑘2

𝑚
𝑥2}  

�̇� = �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2

2 + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)𝑥4

2 + (
2𝛽𝑘2

𝑚
−
2𝛼𝑘2

𝑚
) 𝑥2𝑥4  

Then substitute values of 𝛼, 𝛽,𝑚, 𝜑 𝑎𝑛𝑑 𝜓 

�̇� = −𝑒−4𝑡𝑥2
2 − 𝑒−4𝑡𝑥4

2 +
1

2
𝑒−4𝑡 (

4𝑒2𝑡

2𝑒2𝑡
+
𝑒−3𝑡(−2𝑒2𝑡)

𝑒−𝑡(2𝑒2𝑡)
) 𝑥2

2 +  

1

2
𝑒−4𝑡 (

−4𝑒2𝑡

−2𝑒2𝑡
+

𝑔

−2𝑒2𝑡
−

𝑒−3𝑡(2𝑒2𝑡)

𝑒−𝑡(−2𝑒2𝑡)
) 𝑥4

2 +
2(𝑒−3𝑡)

𝑒−𝑡
(
1

4
𝑒−4𝑡 −

1

4
𝑒−4𝑡) 𝑥2𝑥4    

�̇� = −
1

2
𝑒−6𝑡𝑥2

2 + (−
𝑔

4
𝑒−6𝑡 + 𝑒−6𝑡)𝑥4

2  

�̇� = −
𝑒−6𝑡

2
[𝑥2

2 + 4𝑥4
2] < 0, 

where gravitational acceleration 𝑔 = 10 and for any 𝑥2and 𝑥4 ∈ 𝐷, �̇� < 0 for 𝐷/{0}. 

Hence by theorem (4.1) the system is asymptotically stable. 

This implies that the system given by (1.3) 

{
�̈� =

�̇�

𝑚
(𝜇 − 1)�̇� −

𝑘1
𝑚
�̇� −

𝑘2
𝑚
�̇�

�̈� =
�̇�

𝑚
(𝜂 − 1)�̇� −

𝑘2
𝑚
�̇� +

𝑘2
𝑚
�̇� − 𝑔

, 

is asymptotically stable by theorem 4.4.  

 

 

 

 



23 

 

Example 2: (Vertical Motion)  

Let 𝑥 = 𝜑 = 𝑡  �̇� = �̇� = 1  �̈� = �̈� = 0 

𝑍 = 𝜓 = −𝑡 �̇� = �̇� = −1 �̈� = �̈� = 0 

Where 𝑘2(𝑡) = 𝑒−3𝑡 and mass 𝑚 = 𝑒−𝑡 

Based on the result in case II the stability condition for this system is given by  

2𝑘2�̇�

𝑚�̇�2
< 0 and 

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0 

Which leads to 

−
2𝑒−3𝑡

𝑒−𝑡
= −2𝑒−2𝑡 < 0  

10

−1
−

𝑒−3𝑡

𝑒−𝑡(−1)
= −5 + 𝑒−2𝑡 < 0 

Since the criteria is satisfied   

{
 
 

 
 

�̇�1 = 𝑥2
�̇�3 = 𝑥4

�̇�2 = (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2

𝑚
𝑥4

�̇�4 = (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
) 𝑥4 +

𝑘2

𝑚
𝑥2

  

Let us claim that is the system stable for Lyapunov function given by  

𝑉 =  𝛼(𝑡)𝑥2
2
+ 𝛽(𝑡)𝑥4

2  

Where 𝛼(𝑡) = 1 =   𝛽(𝑡)  ∀𝑡. 

Indeed, 

𝑉 =  𝛼(𝑡)𝑥2
2
+ 𝛽(𝑡)𝑥4

2  

�̇� = �̇�𝑥2
2 + 2𝛼𝑥2�̇�2 + �̇�𝑥4

2 + 2𝛽𝑥4�̇�4  

�̇� = �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼𝑥2 {(
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2 −

𝑘2𝑥4

𝑚
} + 2𝛽𝑥4 {(

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)𝑥4 −

𝑘2

𝑚
𝑥2}  

�̇� = �̇�𝑥2
2 + �̇�𝑥4

2 + 2𝛼 (
�̈�

�̇�
+
𝑘2�̇�

𝑚�̇�
) 𝑥2

2 + 2𝛽 (
�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
)𝑥4

2 + (
2𝛽𝑘2

𝑚
−
2𝛼𝑘2

𝑚
) 𝑥2𝑥4  

Then substitute values of 𝛼, 𝛽,𝑚, 𝜑 and 𝜓 
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�̇� = 2(0 +
4𝑒−𝑡(−1)

𝑒−𝑡(1)
)𝑥2

2 + 2(0 +
𝑔

−1
−
4𝑒−𝑡(1)

𝑒−𝑡(−1)
)𝑥4

2 +
2(4𝑒−𝑡)

𝑒−𝑡
(1 − 1)𝑥2𝑥4 

�̇� = −4𝑥2
2 − 12𝑥4

2, 

where gravitational acceleration 𝑔 = 10, for any 𝑥2 and 𝑥4 ∈ 𝐷, �̇� < 0 for 𝐷/{0}. 

Hence by theorem (4.1) the system is asymptotically stable. 

Which implies that the system given by (1.3) 

{
�̈� =

�̇�

𝑚
(𝜇 − 1)�̇� −

𝑘1
𝑚
�̇� −

𝑘2
𝑚
�̇�

�̈� =
�̇�

𝑚
(𝜂 − 1)�̇� −

𝑘2
𝑚
�̇� +

𝑘2
𝑚
�̇� − 𝑔

, 

is asymptotically stable system. 

Let us see the simulation result using MATLAB 2008B based on the data in example 2 of 

vertical motion. 

 Accordingly the coefficient matrix, A, is: 

 𝐴 = (

0
0
0
0

   

1
−1
0
1

   

0
0
0
0

   

0
−1
1
−9

) 

     Eigenvalues 

𝑑 = (

0     0    0            0
0     0    0           0
0
0

    
0
0

−1.127 0
        0   −8.8730

) 

     

Eigenvector 

    𝑝 = (

1 0 −0.6584 −0.0141
0 0    0.7420   0.1252
0
0

1
0

−0.0836 −0.1111
   0.0943    0.9858

) 

In this case the general solution of the system is given by 
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𝑐1(

1
0
0
0

) + 𝑐2(

0
0
1
0

) + 𝑐3(

−0.6584
0.7420
−0.0836
−0.0943

)e−1.127t + 𝑐4(

−0.0141
 0.1252
−0.1111
0.9858    

) e−8.8730t 

 

It turns out that any point in the plane generated by the null-space of 𝐴𝑋, that is  

 ℵ(𝐴) =  {𝑐1(

1
0
0
0

) + 𝑐2(

0
0
1
0

) : 𝑐1, 𝑐2 𝜖ℝ}, 

 

Consists of the equilibrium points and the phase trajectories are rays parallel to the plane 

generated by the other two eigenvectors. Since the nonzero eigenvectors are negative the motion 

as 𝑡 → ∞ converges to a point in the null space (asymptotic stability is then achieved). The 

simulation result, including the code (see appendix 1A), is shown in the figure below. In this 

particular simulation graph the same initial point is used for both the coordinates and the 

velocities of the system.  
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fig. 1 

All the velocities which starts from different initial values converge to the Z-axis (which is bold 

line in the figure above) and the trajectories remain parallel to it. It is observed from the above 

3D graph that, all the trajectories converge to a line in space given by the equation     

     {
𝑥 = 1.8 + 1.8𝜆
𝑦 = 1.2 + 1.2𝜆

𝑧 = 𝑡
  , 

where 𝑡, 𝜆 𝜖ℝ, 𝑎𝑛𝑑 𝑡 ≥ 0 , provided that the initial condition of the trajectories and the velocities 

are the same. Moreover it can be shown that this equilibrium line (with the fourth component 

zero) is a subspace of the null space of the coefficient matrix 𝐴. Moreover all the velocity curves 

converge to the Z-axis shown in bold line in the figure above. The portrait of the velocity 

direction is shown in the figure below (see appendix B for a Syntax). 
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fig.2 

Starting from any initial point in the XY plane the velocity trajectories are stable to the Z-axis. 

The stability of the coordinates and the velocity curves are also simulated in 2D as shown in the 

figure below (see appendix C and D for a Syntax). 
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fig.3: trajectory time graph 

 

 

fig.4: velocity time graph 
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CHAPTER FIVE 

5. CONCLUSION AND FUTURE SCOPE 

5.1 Conclusion 

In this paper the stability condition of Meshcherskii dynamic system with variable mass for 

different trajectories is analyzed. For the stability Lyapunov’s direct Method is used.  The result 

obtained based on Lyapunov function construction for different trajectories is summarized in the 

table below.  

No. General trajectory  Lyapunov function  Stability criteria  Remark  

1 𝑥 = 𝜑(𝑡) and 

𝑧 = 𝜓(𝑡) 

𝑉 = 𝛼(𝑡)𝑥2
2 + 𝛽(𝑡)𝑥4

2 �̈�

�̇�
< −

𝑘2�̇�

𝑚�̇�
 

�̈�

�̇�
+

𝑔

�̇�
−
𝑘2�̇�

𝑚�̇�
< 0 𝛼 −

𝛽 = 0 

 

𝛼 = 𝛽 

positive 

constant  

2𝑘2�̇�

𝑚�̇�3
< 0 

2𝑔

�̇�
−
2𝑘2�̇�

𝑚�̇�
< 0

 �̇�2 = �̇�2 

 

 

𝛼 =
1

�̇�2
 and 

𝛽 =
1

�̇�2
 

 

�̈�

�̇�
<
−1

   2
�̇� −

𝑘2�̇�

𝑚�̇�
 

�̈�

�̇�
< −

1

2
�̇� −

𝑔

�̇�
+
𝑘2�̇�

𝑚�̇�
 

𝛼 = 𝑒𝑚

= 𝛽 
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5.2 Future Scope  

Now a day stability theory is the most desirable area of study. In this work the stability criteria of 

Meshcherskii’s equation of variable mass system was done. The upcoming post graduate student 

and other researchers who are interested in this area to use the result of this as a stepping stone 

and make further investigations. For instance the results of this paper can extended to control 

design for the dynamic system Rockets motion and spin stabilization of modern space crafts. 
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Appendix 1 

A: MATLAB code for fig.1 

tspan=[0 150]; 

y0=[3;3;3;3]; 

[t,y]=ode45(@sta1,tspan,y0); 

xlabel('x'),ylabel('y'),zlabel('t'); 

plot3(y(:,2),y(:,4),t,'r'); 

hold on; 

tspan=[0 150]; 

y0=[5;5;5;5]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'g'); 

hold on; 

y0=[1;1;1;1]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'--'); 

grid  on; 

hold on; 

y0=[0.4;0.4;0.4;0.4]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'-'); 

hold on ; 

tspan=[0 150]; 

y0=[3;3;3;3]; 

[t,y]=ode45(@sta1,tspan,y0); 

xlabel('x'),ylabel('y'),zlabel('t'); 

plot3(y(:,1),y(:,3),t,'g'); 

hold on; 

tspan=[0 150]; 

y0=[5;5;5;5]; 

[t,y]=ode45(@sta1,tspan,y0); 
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plot3(y(:,1),y(:,3),t,'g'); 

hold on; 

y0=[1;1;1;1]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,1),y(:,3),t,'--'); 

grid  on; 

hold on; 

y0=[0.4;0.4;0.4;0.4]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,1),y(:,3),t,'-'); 

 

B: MATLAB code for fig.2 

tspan=[0 150]; 

y0=[-3;0.05;0.05;-3]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'r'); 

xlabel('x'),ylabel('y'),zlabel('t'); 

hold on; 

tspan=[0 150]; 

y0=[-5;0.05;0.05;-5]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'g'); 

hold on; 

y0=[3;0.05;0.05;3]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'--'); 

grid  on; 

hold on; 

y0=[0.4;0.05;0.05;4]; 

[t,y]=ode45(@sta1,tspan,y0); 

plot3(y(:,2),y(:,4),t,'-'); 
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C MATLAB code for fig.3 

 

tspan=[0 10]; 

y0=[0.00005;3;0.00005;3]; 

[t,y]=ode45(@sta1,tspan,y0); 

xlabel('t'),ylabel('y'); 

plot(t,y(:,1),'r'); 

hold on; 

plot(t,y(:,3),'g'); 

D MATLAB code for fig.4 

 

tspan=[0 10]; 

y0=[0.00005;1.5;0.00005;1.5]; 

[t,y]=ode45(@sta1,tspan,y0); 

xlabel('t'),ylabel('y'); 

plot(t,y(:,2),'r'); 

hold on; 

plot(t,y(:,4),'g'); 

 

 


