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Abstract 

Dynamics of interacting biological species has been studied in the past few decades from various 

angles. Many species become extinct and many others are at the verge of extinction due to 

several reasons like, over exploitation, over predation, environmental pollution, mismanagement 

of natural resources etc. Establishing the conditions for the stability of ecosystems and for stable 

coexistence of interacting populations is a problem of the highest priority in mathematical 

ecology. Bearing this in mind, in this study the stability of prey predator in the absence of delay 

was clearly stated. The minimum cutoff value at which the system loses its stability was also 

pointed out. Furthermore, the existence of global stability without linearizing the model was 

proved with an appropriate condition. Finally, non-existence of limit cycle at positive 

equilibrium was proved by Dulac’s criterion.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

Predator-prey model is the first model to illustrate the interaction between predators and prey. It 

is a topic of great interest for many ecologists and mathematicians. This model assumes that the 

predator populations have negative effects on the prey populations. The dynamic relationship 

between predators and their prey has long been and will continue to be one of the dominant 

themes in both ecology and mathematical ecology due to its universal existence and importance 

(Berryman, 1992). The central goal in ecology is to understand the dynamical relationship 

between predators and prey (Kot, 2001). The most significant factor of the prey predator 

relationship is the predator’s rate of feeding upon prey, known as predator’s functional response, 

which is the average number of prey killed per individual predator per unit of time.  

 

In recent years, predator-prey models are arguably the most fundamental building blocks of any 

biological and ecosystems as all biomasses are grown out of their resource masses. Species 

compete, evolve and disperse often simply for the purpose of seeking resources to sustain their 

struggle for their very existence. Their extinctions are often the results of their failure in 

obtaining the minimum level of resources needed for their subsistence. Mathematical models in 

terms of ordinary differential equation (ODE) have been widely used to model physical 

phenomena, engineering systems, economic behavior, biological and biomedical processes. In 

particular, ODE models have recently played a prominent role in describing the dynamic 

behavior of predator-prey systems. The study of population phenomena or growth phenomena or 

competition between two species is really dominated problem in the biological system.   The first 

prey-predator model with aftereffect was proposed by Volterra (Kolmanovskii and Myshkis, 

1999) as follows: 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( )
,

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t

y t a y t a x t y t 

   


    
     (1.1) 

where ( )x t Population density of prey at time t  , ( )y t Population density of predator at time t  
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1a  intrinsic growth rate of prey,             
4a death rate of predators, 

2 5&a a  Interspecific competition,  
3a  intraspecific competition rate of prey, 

  the average time delay between death of prey and birth of subsequent number of 

predators and 0 ( 1,2,...,5)ia i  . 

In the real world, there is sometimes a need to control a population at a reasonable level because 

otherwise this population may cause decrease or even extinction of other populations. Bearing 

this in mind, if a controlu , taking into account some purposeful action of various factors on the 

system, acts only on predators, then model (1.1) modified to the following model (Kolmanovskii 

and Myshkis, 1999). 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( ) ( )
,

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t ux t

y t a y t a x t y t 

    


    
   (1.2)  

0u   

Stability of dynamical systems plays a very important role in control system analysis and design. 

Unlike the case of linear systems, proving stability of equilibria of nonlinear systems is more 

complicated. A sufficient condition is the existence of a Lyapunov function: a positive definite 

function 𝑉 defined in some region of the state space containing the equilibrium point whose 

derivative along the system trajectories is negative semi-definite. This is Lyapunov’s direct 

method, which even though addresses exactly and in a simple way the important issue of 

stability, it does not provide any coherent methodology for constructing such a function. 

Lyapunov’s indirect method that investigates the local stability of the equilibria, is inconclusive 

when the linearized system has imaginary axis eigenvalues (Hassan, 2002). 

Chernet Tuge and Mitiku Daba, (2017), investigated the stability analysis of delayed nonlinear 

cournot model in the sense of Lyapunov. One of the finding of this investigation indicates that 

the presence of time delay in a given model causes oscillation process in the system and doesn’t 

affect the qualitative behavior of the solution (no effect on the stability of the equilibrium point), 

but only changes the transition process. In other words it delays stability as delay parameter 

increases.  
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Mathematical control theory is the area of application-oriented mathematics that deals with the 

basic principles underlying the analysis and design of control systems. To control an object 

means to influence its behavior so as to achieve a desired goal. In order to implement this 

influence, control engineers build devices that incorporate various mathematical techniques. 

Mathematical control theory is a rapidly growing field which provides theoretical and 

computational tools for dealing with a variety of problems arising in electrical and aerospace 

engineering, automatics, robotics, management, economics, applied chemistry, biology, ecology, 

medicine, etc. Selected such problems, to mention but a few, are the following : stable 

performance of motors and machinery, optimal guidance of rockets, optimal exploitation of 

natural resources, optimal investment or production strategies, regulation of physiological 

functions, and fight against insects, epidemics (Remsing, 2006).  

 

A dynamical system is one which changes in time (in some well-defined way); what changes is 

the state of the system. For such systems, the basic problem is to predict the future behavior. For 

this purpose the differential equations are exactly tailored. The differential equation itself 

represents the (physical or otherwise) law governing the evolution of the system; this plus the 

initial conditions should determine uniquely the future evolution of the system.  

To date, many authors have studied the dynamics of predator-prey models with time delay and 

obtained complex dynamic behavior, such as stability of equilibrium, Hopf bifurcation, and limit 

cycle. For example, Song and Wei (2005) investigated further the dynamics of the system prey-

predator model by considering the time delay as the bifurcation parameter and they obtained that, 

under certain conditions, the unique positive equilibrium of the model is absolute stable while it 

is conditionally stable and there exist k switches from stability to instability to stability under 

other conditions. Further, by using normal form theory and the center manifold theorem, they 

obtained the formulae for determining the direction of Hopf bifurcations and the stability of 

bifurcating periodic solutions. Yan and Li (2006) studied the properties of Hopf bifurcation for 

prey-predator model by using normal form theory and the center manifold theorem, which is 

different from that used by Song and Wei (2005).  
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In 2017, Ahmed Buseri studied global asymptotic stability analysis of predator-prey model. In 

2016, Murthy studied stability analysis of prey-predator harvesting model using biological 

parameters. In 2015, Soliman and Jarallah, studied asymptotic stability of solutions of lotka-

volterra predator-prey model for four species. In 2014, Yue and Qingling studied stability and 

bifurcation analysis of a singular delayed predator-prey bioeconomic model with stochastic 

fluctuations. In 2013, Liu et al., studied global stability analysis and optimal control of a 

harvested eco-epidemiological prey predator model with vaccination and taxation. In 2012, 

Debasis studied the bifurcation and stability analysis of prey-predator model with a reserved 

area.  In 2012, Debasis studied the bifurcation and stability analysis of prey-predator model with 

a reserved area. In 2011, Xu et al., studied stability and Hopf bifurcation analysis for a lotka-

volterra predator–prey model with two time delays. 

However, the dynamical behavior of prey-predator model represented by equation (1.2) is not yet 

studied. Therefore, the main objective of this study is to investigate the dynamic behavior like 

local stability, global stability and existence of limit cycle of prey-predator model represented by 

equation (1.2).  

1.2 Statement of the Problem 

This research mainly focuses on the following problems related to prey-predator mathematical 

model given by equation (1.2). 

 Local stability analysis, 

 Global stability analysis, 

 To check existence and non-existence of limit cycle. 

1.3 Objective of the Study 

1.3.1 General Objective of the Study 

The general objective of this study is to investigate stability analysis of prey-predator 

mathematical model with delay and control of the prey represented by equation (1.2). 
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1.3.2 Specific Objectives of the Study 

The specific objectives of the study are to: 

 Determine local stability condition of prey-predator model given by equation (1.2) using 

Routh Hurwitz Criterion. 

 Analyze global stability of prey-predator model given by equation (1.2) by constructing 

appropriate Lyapunov function. 

  Check the existence and non-existence of limit cycle using Dulac’s criterion. 

1.4. Significance of the Study 

The outcomes of this study have the following importance: 

 Provides evidence on stabilizing prey-predator coexistence in a given real ecosystem 

without extinction of the preys by applying a necessary control on prey. 

 The result and the method can be used as bench mark for other researchers in related 

areas. 

1.5 Delimitation of the Study 

This study is delimited to investigate local stability, global stability and existence of limit cycle 

of prey-predator mathematical model represented by equation (1.2). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Historical background 

Mathematical models in terms of ordinary differential equations (ODE's) have been widely used 

to model physical phenomena, engineering systems, economic behavior, biological and 

biomedical processes. In particular, ODE models have recently played a prominent role in 

describing the dynamic behavior of predator-prey systems. To study the dynamic behavior of a 

model, mathematical modeling is used as an effective tool to describe and analyze the model. 

Mathematical population models have been used to study the dynamics of prey predator systems 

since Lotka and Volterra proposed the simple model of prey-predator interactions now called the 

Lotka-Volterra model. Since then, many mathematical models, some reviewed in this study, have 

been constructed based on more realistic explicit and implicit biological assumptions. Modeling 

is a frequently evolving process, to gain a deep understanding of the mathematical aspects of the 

problem and to yield non trivial biological insights; one must carefully construct biologically 

meaningful and mathematically tractable population models (Kuang, 2002). 

 Inter species or Intra species competition models have been the subjects of central discussions in 

ecological and biological systems. Among the competition models, Lotka-Volterra inter-specific 

competition model occupies the top role to discuss the competitive behavior of the biological 

species which determines the present state in terms of past state and changes with the period of 

time. The competition models are used in forecasting of species growth rate, maximum and 

minimum consumption of resource, food pre- serving, environment capacities and many others 

applications. The study of population phenomena or growth phenomena or competition between 

two species is really dominated problem in the biological system. Volterra (1926) first developed 

a competition model between a predator and a prey (Brauer and Soudack, 1979).  In the ecology 

system, the predator-prey model is among the oldest studies and also the first model to illustrate 

the interaction between predators and prey.  

This model assume that the predator populations have negative effects on the prey populations 

and this system was formulated by Vito Volterra who is an Italian mathematician and Alfred 

Lotka who is an American mathematical biologist in 1925 (Boyce, 2010). 
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2.2 Models of Prey Predator with time delay 

Predator-prey interaction is the fundamental structure in population dynamics. Understanding the 

dynamics of predator-prey models will be very helpful for investigating multiple species 

interactions. Delayed predator-prey models were first proposed by Volterra (Volterra, 1931) in 

1925 to study fish population under harvesting. Since then delayed differential equations have 

been extensively used to model population dynamics, including predator-prey interactions. The 

original delayed predator-prey models proposed by Volterra (Volterra, 1931), are described by 

integro differential equations; such delays are also called distributed delays Cushing (Cushing, 

1977) and Mac Donald (MacDonald, 1978), and discrete delays are special cases of the 

distributed delays when the kernels are taken as delta functions. 

In nature, populations do not reproduce instantaneously; rather, it is mediated by certain time 

delay required for gestation, maturation time, capturing time, or other reasons. Thus, time delays 

of one type or another have been incorporated into mathematical models of population dynamics. 

The dynamic relationship between predators and their prey has long been and will continue to be 

one of the dominant themes in both ecology and mathematical ecology because of its universal 

existence and importance (Yue and Qingling, 2014). The time delay is considered into the 

population dynamics when the rate of change of the population is not only a function of the 

present population but also depends on the past population.  

2.3 Models of Prey Predator with control 

In the context of predator-prey interaction, some studies that treat population can be extended by 

Martin and Ruan have analyzed generalized Gause predator prey models where the prey is 

harvested with constant rate while Kar considered the predator-prey model with the predator 

harvested and suggested that it is ideal to study the combined harvesting of predator and prey 

population models (Kar, 2003). The effect of constant rate of harvesting has been studied by 

Holmberg and the results showed that the constant catch quota can lead to both oscillations and 

chaos and an increased risk for over exploitation (Homberg, 1995). 

Brauer and Soudack have analyzed the global behavior of a predator-prey system under constant 

rate predator harvesting. They showed how to classify the possibilities and determine the region 

of stability. They found that if the equilibrium point is asymptotically stable which is determined 

by a local linearization, then every solution whose initial value is in some neighborhood of the 

stable equilibrium point tends to it as the time approaches infinity.  
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There exists an asymptotically stable limit cycle when the constant rate is small and the 

equilibrium point is unstable (Brauer and Soudack, 1979).   

 

A predator-prey model with Holling type using harvesting efforts as control has been presented 

by Srinivasu et al. and showed that with harvesting, it is possible to break the cyclic behavior of 

the system and introduces a globally stable limit cycle in the system (Srinivasu et al., 2001).  The 

effect of constant rate of harvesting on the dynamics of predator prey systems has been 

investigated by many authors, for example, Brauer, Soudack and Myerscough et al. Some 

interesting dynamical behaviors have been observed such as the stability of the equilibria, 

existence of Hopf bifurcation and limit cycles.  

It is well known that harvesting has a strong impact on the dynamic evolution of a population. 

Evidence shows that many species have already become extinct and many others are at the verge 

of extinction due to several natural or man-made reasons like over exploitation, indiscriminate 

harvesting and mismanagement of natural resources, and so forth. The severity of this impact 

that may range from rapid depletion to complete preservation of a population depends on the 

implemented harvesting agency (Kar, 2003). Due to practical and economic utilization, 

biological resources in the prey predator system are extensively harvested nowadays. 

Furthermore, exploitation of biological resources has been increased by people’s multifarious 

material needs, which attract a global concern to protect the limited biological resources.  

Therefore, regulation of exploitation of biological resources has become a problem of major 

concern in view of dwindling resource stocks and the deteriorating environment. It is necessary 

to establish a constructive management of commercial exploitation of the biological resources. 

The techniques and issues associated with bio-economic exploitation have been discussed in 

details (Clark, 1990).  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted in Jimma University under the department of Mathematics from 

September 2017 to June 2018 G.C.  

3.2. Study Design 

This study employed mixed-design (documentary review design and experimental design) on 

prey-predator model given by equation (1.2).  

3.3. Source of Information 

The relevant sources of information for this study were books, published articles & related 

studies from internet. 

3.4. Mathematical Procedures 

This study was conducted based on the following procedures 

i. Determining the steady state point of the model. 

ii. Linearizing the mathematical model of prey-predator under consideration. 

iii. Determining the local stability condition of the model. 

iv. Analyzing the global stability of the model. 

v. Checking existence and non-existence of limit cycle. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4. Mathematical Model for prey predator 

Studying and modeling the interaction between predators and prey have been one of the central 

topics in ecology and evolutionary biology. The first prey-predator model with aftereffect and 

control on prey was proposed by Volterra as given by equation (4.1). In this study the dynamic 

behavior like equilibrium point, local stability in the absence and presence of delay, global 

stability and existence of limit cycle were studied as follows. 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t ux t

y t a y t a x t y t 

    


    
   (4.1) 

4.1 Equilibrium point 

To find equilibrium point, equate the right hand side of equation (4.1) with zero, 

2

1 2 3

4 5

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

a x t a x t y t a x t ux t

a y t a x t y t 

    

    

 (4.2) 

  Since the time delay has no effect on the equilibrium point,  

              
 

 
1 2 3

4 5

( ) ( ) ( ) ( ) 0
,

( ) ( ) 0

x t a a y t a x t ux t

y t a a x t

    


  

 

      

 

 
1 2 3

4 5

( ) 0 ( ) ( ) ( ) 0

( ) 0 ( ) 0

x t or a a y t a x t ux t

y t or a a x t

     


   

 

                1 (0,0)E   

          
1 2 3

4 5

( ) ( ) ( ) 0

( ) 0

a a y t a x t ux t

a a x t

   

  

   (4.3) 
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2 3 1

5 4

( ) ( ) ( )

( )

a y t a x t ux t a

a x t a

   



 

4

5

( )
a

x t
a

       (4.4) 

To find ( )y t  plugging equation (4.4) into equation (4.3) we get, 

1 5 3 4 4

2 5

( )
a a a a ua

y t
a a

 
            

Therefore, 
1 5 3 4 44

5 2 5

( ) ( )
a a a a uaa

x t and y t
a a a

 
                                                                            

2 ( , )E x y 
 

Where, 
4

5

a
x

a

  and    
1 5 3 4 4

2 5

a a a a ua
y

a a

  
  

  Providing that 1 5 3 4 4 0a a a a ua    

To find equilibrium point in the absence of prey and presence of predator, substitute (0, )y in 

equation (4.2). Then we get, 

0x    0y    
1 (0,0)E   

To find equilibrium point in the absence of predator and presence of prey, substitute ( *,0)x in 

equation (4.2). Then we get, 

                   
2

1 2 3

4 5

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0

a x t a x t y t a x t ux t

a y t a x t y t

    

  

 (4.5) 

2

1 2 3( ) ( )(0) ( ) ( ) 0a x t a x t a x t ux t     

                       1 3( ) ( ) 0x t a a x t u    
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    ( ) 0x t     or   
1 3 ( ) 0a a x t u  

     `

 1

3

1
( )x t a u

a
   

Therefore  3 1

3

1
( ,0).E a u
a

   

4.2 Linearization 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t ux t

y t a y t a x t y t 

    


    
  (4.6) 

Let    1( ) ( )x t x t x           and     1( ) ( )y t y t y   

      1

1

( ) ( )

( ) ( )

x t x t x

y t y t y





 


  
 

1

1

'( ) '( )

'( ) '( )

x t x t

y t y t


 


  (4.7) 

Now plugging equation (4.7) in to equation (4.6)           

               

2

1 1 1 2 1 1 3 1 1

1 4 1 5 1 1

'( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

x t a x t x a x t x y t y a x t x u x t x

y t a y t y a x t x y t y 

    

  

                            


                  

 

   

2 2

1 1 1 1 2 1 1 1 1 3 1 1 1

1 4 1 4 5 1 1 1 1

'( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

x t a x t a x a x t y t x t y x y t x y a x t x x t x ux t ux

y t a y t a y a x t y t x t y x y t x y   

       

    

                  


             

 

2 2

1 1 1 1 2 1 1 2 1 2 1 2 3 1 3 1 3 1

1 4 1 4 5 1 1 5 1 5 1 5

'( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

x t a x t a x a x t y t a x t y a x y t a x y a x t a x x t a x ux t ux

y t a y t a y a x t y t a x t y a x y t a x y   

       

    

           


          

 

2 2

1 1 2 3 1 1 2 1 2 1 3 1 3 1 2 1 1 1

1 4 5 4 1 5 1 1 5 1 5 1

'( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

x t a x a x y a x ux a x t a x t y a x y t a x t a x x t a x t y t ux t

y t a y a x y a y t a x t y t a x t y a x y t   

       

    

           


          
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2

1 2 3 ( ) 0a x a x y a x ux         and   
4 5 0a y a x y       

2

1 1 1 2 1 2 1 3 1 3 1 2 1 1 1

1 4 1 5 1 1 5 1 5 1

'( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

x t a x t a x t y a x y t a x t a x x t a x t y t ux t

y t a y t a x t y t a x t y a x y t   

  

 

       


        
(4.8)

 

2

1 1 2 3 1 2 1 2 1 1 3 1

1 5 1 4 1 5 1 5 1 1

'( ) 2 ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( ) ( )

x t a a y a x u x t a x y t a x t y t a x t

y t a y x t a y t a x y t a x t y t   

  

 

          


       

 

2

1 1 1 2 1 3 1 1 4 1

1 1 1 2 1 3 1 4 1 1

'( ) ( ) ( ) ( ) ( ) ( )
,

'( ) ( ) ( ) ( ) ( ) ( )

x t m x t m y t m x t y t m x t

y t n x t n y t n y t n x t y t   

    


       
(4.9) 

where  1m
1 2 32a a y a x u     , 

2m
2a x  , 3m

2a   , 4m
3a  , 

1n
5a y , 2n

4a  ,  3n
5a x , 4n 5a . 

However, 1( )x t  and 1( )y t  are small perturbation hence, its product as well as any higher order 

greater or equal to two goes to zero. 

        1( )x t 1( )y t  0 , 
2

1 ( )x t  0 , 1 1( ) ( )x t y t   0  

Therefore, equation (4.9) reduced to 

1 1 1 2 1

1 1 1 2 1 3 1

'( ) ( ) ( )
,

'( ) ( ) ( ) ( )

x t m x t m y t

y t n x t n y t n y t 

 


    
 (4.10) 

 which is the linearized form. 
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4.3 Local stability  

Local stability of the model is predicted from the linearized part 

1 1 1 2 1

1 1 1 2 1 3 1

'( ) ( ) ( )

'( ) ( ) ( ) ( )

x t m x t m y t

y t n x t n y t n y t 

 


    
 (4.11) 

The characteristics equation  

Let  1( ) tx t re   then  1' ( ) tx t r e   and   1( ) ty t se  then 1' ( ) ty t s e                   (4.12) 

Plugging equation (4.12) into equation (4.11)  

1 2

( ) ( )

1 2 3

t t t

t t t t

re m re m se

s e n re n se n se

  

       

 

  
 

1 2

1 2 3

t t t

t t t t t t

r e m re m se

s e n re e n se n se e

  

     



  

 

  
 

     Since   0te                               

1 2

1 2 3

t t

r m r m s

s n re n s n se 



  

 

  
                

1 2

1 2 3

0

0t t

m r m s r

n re n s n se s 



 

  

   
 

           
1 2

1 2 3

( ) 0

( ) 0t t

r m m s

n re s n n e 



 

  

   
     (4.13)                                                       

For equation (4.13) to have non trivial solution the determinant of coefficient matrix must be 

zero. 

     1 2

1 2 3

0
m m

n e n n e 



 




 
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     1 2 3 2 1( )( ) 0m n n e m n e         

       
2

1 2 1 2 3 1 3 2 1( ) ( ) 0 ,m n m n n m n m n e              (4.14) 

  which is the characteristics equation of equation (4.11). 

Case 1 If 0  , in the absence of time delay characteristic equation (4.14) reduced to: 

2

1 2 1 2 3 1 3 2 1( ) ( ) 0m n m n n m n m n           

2

1 2 3 1 2 1 3 2 1( ) 0m n n m n m n m n                                                  (4.15) 

Claim  1  1 2 3( ) 0i m n n  
 

       
1 2 1 3 2 1( ) 0ii m n m n m n  

 

Proof:  

1 2 3 3 4 5( ) * *i m n n a x a a x     
 

                         
4 4

3 4 5

5 5

a a
a a a

a a

   
      

   
 

        
3 4

1 2 3

5

0
a a

m n n
a


     

   1 2 1 3 2 1 3 4 3 5 2 5( *)( ) ( *)( *) ( *)( *)ii m n m n m n a x a a x a x a x a y          

                                             3 4 3 4 2 5( *)( ) ( *)( ) * *a x a a x a a a x y       

1 2 1 3 2 1 3 4 3 4 2 5( *)( ) ( *)( ) * *m n m n m n a x a a x a a a x y         

                                      3 4 3 4 2 5* * * *a a x a a x a a x y    

                   1 2 1 3 2 1 2 5 * *m n m n m n a a x y    
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                   1 2 1 3 2 1 0,m n m n m n    Since *x and *y are positive. 

As a result, the positive equilibrium point in the absence of delay is stable by  

Routh Hurwitz criterion.    

 Case 2 if  0,   

Equation (4.14) is reduced to     

2 ( ) 0 ,p r s q e                                                     (4.16) 

where 1 2( )p m n   ,  1 2r m n ,   3s n    and  1 3 2 1q m n m n   

Suppose i   where   > 0 is a root of equation (4.16) 

        
2 ( )( ) ( ) ( ( ) ) 0ii p i r s i q e           

         
2( ) ( ) ( )(cos sin ) 0i p i r s i q i           

       
2 cos sin cos sin 0p i r is s q qi                

        
2( sin cos ) ( cos sin )s q i s q p i r              

Equating the real and imaginary part     

2sin cos

cos sin

s q r

s q p

   

   

  

  
                                          (4.17) 

Squaring both sides of equation (4.17) 

   

2 2 2

2 2

( sin cos ) ( )

( cos sin ) ( )

s q r

s q p

   

   

  

  
 

           

2 2 2 2 2 4 2 2

2 2 2 2 2 2 2

sin 2 sin cos cos 2

cos 2 sin cos sin

s s q q r r

s s q q p

       

      

     


   
               (4.18) 
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  Adding equation (4.18) together         

             
2 2 2 2 2 2 2 4 2 2 2 2(sin cos ) (cos sin ) 2s q p r r               

                       
4 2 2 2 2 2( 2 ) 0p s r r q                                                                                                            

4 2 0,                       (4.19) 

where 
2 22p r s     and 

2 2r q    

Claim 2: 0   

Proof: 

           
2 22p r s        (4.20) 

           1 2( )p m n    

             
2 2

3 4( * )p a x a   

            
2 2 2 2

3 3 4 4( *) 2 * ( )p a x a a x a     (4.21) 

            1 2 3 4( *)( )r m n a x a        

              3 4*r a x a               (4.22) 

3 5 *s n a x     

           
2 2 2

5 ( *)s a x    (4.23) 
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Plugging equation (4.21), (4.22) and (4.23) into (4.20),  

                                  
2 2 2 2 2

3 3 4 4 5 3 4( *) 2 * ( *) 2 *a x a a x a a x a x a       

                                  
2 2 2 2 24

3 4 5

5

( *) ( )
a

a x a a
a

     

                                  
2

3( *) 0a x  
 
 hence, proved. 

From equation (4.19), 

2

2 4

2

  


  
  

`

2 4

2

  


  
  

Case 1: If 0  , we can find 0  such that i  . This indicates that the system becomes     

unstable when 0  . 

2 2r q    

2 2

1 2 1 3 2 1( ) ( )m n m n m n     

2 2 2 2 2 2

1 2 1 3 2 1 1 3 2 12m n m n m n m n m n      

2 2 2 2 2 2

3 4 3 5 2 5 3 5 2 5( *) ( ) ( *) ( *) ( *) ( *) 2( *)( *)( *)( *)a x a a x a x a x a y a x a x a x a y            

2 2 2 2 2 2 2 3

3 4 3 4 2 5 2 3 5( *) ( ) ( *) ( ) ( *) ( *) 2 ( *) *a x a a x a a x a y a a a x y     

2 3 2 2

2 3 5 2 52 ( ) ( *) * ( *) ( *)a a a x y a x a y   

 2 2

2 5 3 2( ) ( *) * 2 * *a a x y a x a y   

3 20, 2 * * 0a x a y      
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1 5 3 4 44

3 2

5 2 5

2
a a a a uaa

a a
a a a

    
    

   
 

                        
3 4 1 5 3 4 4

5 5

2a a a a a a ua

a a

 
   

                           
3 4 1 5 3 4 42a a a a a a a u     

                           
3 4 1 5 3 4 42a a a a a a a u      

                             
1 5

3 3

4

2
a a

u a a
a

             (4.24)     

As a result, in the presence of delay the system become unstable when condition (4.24) is 

satisfied.  

Case 2: If 0  , then the characteristic equation (4.16) has negative real part root. Hence, the 

system becomes stable when 0  in the presence of delay.  

1 5

3 3

4

0 2
a a

u a a
a

       

To find the minimum value of , for which the stability of the system lost. 

Substitute 
0  into equation (4.17) and solve for   

2

0 0 0 0

0 0 0 0

sin cos

cos sin

s q r

s q p

     

     

  

  
                                            (4.25) 

 

2

0 0 0 0 0

0 0 0 0

sin cos

cos sin

s s q r

q s q p

      

     

    

   
 

2 2 2

0 0 0 0 0 0

2

0 0 0 0

sin cos ( )

sin cos

s sq s r

q sq pq

       

     

  

 
                              (4.26) 
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Adding equation (4.26) 

2 2 2 2

0 0 0 0 0( )sin ( )s q pq s r          

2

0 0 0

0 2 2 2

0

( )
sin

pq s r

s q

  
 



 



 

2

0 0 0

0 2 2 2

0

( )
sin( 2 )

pq s r
k

s q

  
  



 
 


                                      (4.27) 

Similarly,                    

    
 

2

0 0 0 0

0 0 0 0 0

sin cos

cos sin

q s q r

s s q p

     

      

    

  
 

2 2

0 0 0 0

2 2 2

0 0 0 0 0

sin cos ( )

sin cos

qs q q r

qs s ps

     

      

   


    

                                        (4.28) 

Adding equation (4.28) 

2 2 2 2 2

0 0 0 0( )cos ( )s q q r ps         

2 2

0 0

0 2 2 2

0

( )
cos

( )

q r ps

s q

 
 



 



 

2 2

0 0

0 2 2 2

0

( )
cos( 2 )

( )

q r ps
k

s q

 
  



 
 


                                  (4.29) 

Dividing equation (4.27) by equation (4.29) 

2

0 0 0 0

2 2 2

0 0 0

sin( 2 ) ( )

cos( 2 ) ( )

k pq s r

k q r ps

     

    

  


  
 

2

0 0 0 0

2 2 2

0 0 0

sin( 2 ) ( )

cos( 2 ) ( )

k pq s r

k q r ps

     

    

  


  
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2

0 0 0

0 2 2 2

0 0

( )
tan( 2 )

( )

pq s r
k

q r ps

  
  

 

 
 

 
 

2

0 0 0

0 2 2 2

0 0

( )
2 arctan

( )

pq s r
k

q r ps

  
  

 

  
   

  
 

2

0 0 0

0 2 2 2

0 0

( )
arctan 2

( )

pq s r
k

q r ps

  
  

 

  
  

  
 

2

0 0 0

2 2 2

0 0 0 0

( )1 2
arctan ,

( )

pq s r k

q r ps

   


   

  
  

  
                          (4.30) 

where  0,  1,  2,  3,k    

 If k = 0, then   

2

0 0 0
0 2 2 2

0 0 0

( )1
arctan

( )

pq s r

q r ps

  


  

  
  

  
    

This value is called cut off value. It is the smallest value of time delay when stability loses and 

never regained in the future time. 

4.4 Global Stability 

4.4.1 Global stability without time delay  

       

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t ux t

y t a y t a x t y t

    


   
                                               (4.31) 

Let 2 21 1
( , ) ( ) ( )

2 2
V x y x x y y       be a candidate Lyapunov function  

i. ( *, *) 0V x y   , the function is zero at positive equilibrium 

ii. ( , ) 0V x y  , because the square of any number is positive. The function is  

positive definite  

iii. Differentiating ( , )V x y  along the solution of equation (4.31) 
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( *) ( *)
dv dx dy

x x y y
dt dt dt

                                     

 2

1 2 3 4 5( *) ( ) ( ) ( ) ( ) ( ) ( *)( ( ) ( ) ( )
dv

x x a x t a x t y t a x t ux t y y a y t a x t y t
dt

            

Let  2

1 2 3 4 5( , ) ( *) ( ) ( ) ( ) ( ) ( ) ( *)( ( ) ( ) ( )f x y x x a x t a x t y t a x t ux t y y a y t a x t y t            

Expanding 
dv

dt
 by Taylor series about the positive equilibrium point and ignoring cubic and 

higher derivatives we get the following  

2

1 2 3 4 5( , ) ( *)( ) ( *)( )f x y x x a x a xy a x ux y y a y a xy          

2

1 2 3 1 2 3 5( ) ( *)( 2 ) ( *)xf a x a xy a x ux x x a x a y a x u a y y y            

1 2 3 3 32( ) 2 2 ( *)xxf a a y a x u a x a x x        

2 2 5 52 ( *) ( *)xyf a x a x x a y a y y        

2 4 5 4 5( *)( ) ( ) ( *)( )yf x x a x a y a xy y y a a x           

42yyf a   

Evaluating the partial derivatives at positive equilibrium points   

( *, *) 0xf x y  ,   3( *, *) 2 *xxf x y a x  ,    5 2( *, *) * *xyf x y a y a x  ,     ( *, *) 0yf x y   

4( *, *) 2yyf x y a   

              
2 21

( *) ( *, *) 2( *)( *) ( *, *) ( *) ( *, *)
2

xx xy yy

dv
x x f x y x x y y f x y y y f x y

dt
          

                       
2 2

3 5 2 4

1
2 *( *) 2( * *)( *)( *) 2 ( *)

2

dv
a x x x a y a x x x y y a y y

dt
          

 

2 2

3 5 2 4*( *) ( * *)( *)( *) ( *)
dv

a x x x a y a x x x y y a y y
dt

          
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                      0
dv

dt
 when *x x  and *y y  

                        
2 2

3 5 2 4*( *) ( * *)( *)( *) ( *)
dv

a x x x a y a x x x y y a y y
dt

          

                          
2 2

3 4 5 2*( *) ( *) ( * *)( *)( *)
dv

a x x x a y y a y a x x x y y
dt

          

                           
2 2

3 4*( *) ( *)
dv

a x x x a y y
dt

     , if   

5 2( * *) 0a y a x    
5 2* *a y a x  5

2

*

*

ax

y a
  

2 5 54

5 1 5 5 3 4 2

a a aa

a a a a u a a a

 
 

  
 52 4

1 5 5 3 4 2

aa a

a a a u a a a
 

 
 

2 2 2

1 5 5 3 4 5 2 4( ) ( ) ( )a a a u a a a a a    

2 2 2

5 1 5 2 4 3 4 5( ) ( ) ( )a u a a a a a a a    

2 2

1 5 2 4 3 4 5

2

5

( ) ( )

( )

a a a a a a a
u

a

 
  (4.32) 

  0,
dv

dt
 if condition (4.32) is satisfied  

Therefore, by Lyapunov theorem there exist global stability of the system in the absence of delay 

when condition (4.32) is satisfied  
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4.5 Limit cycle  

4.5.1 Limit cycle without delay  

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t ux t

y t a y t a x t y t

    


   

                                                          

Let 2

1 2 3( , )
dx

f x y a x a xy a x ux
dt

      

      4 5( , )
dy

g x y a y a xy
dt

     

       
1

( , )x y
xy

   be candidate Dulac’s function  

Since x, y>0 then 
1

( , )x y
xy

   is continuously differentiable function. Hence, 
1

( , )x y
xy

   is an 

appropriate Dulac’s function. 

2

1 2 3 4 5

1 1
( ( , ), ( , )) ( ( , ) ( , )) ( ( )) ( ( ))x y f x y x y g x y a x a xy a x ux a y a xy

x y x xy y xy
 

   
       

   

 

                                = 31 4
2 5( ) ( )

a xa au
a a

x y y y y x

 
     

 
   3a

y


  

                               3( ( , ), ( , )) ( ( , ) ( , ))
a

x y f x y x y g x y
x y y
 

 
 

 
 

Since ( ( , ), ( , )) ( ( , ) ( , ))x y f x y x y g x y
x y
 

 


   

is different from zero and does not change the 

sign, by Dulac’s criterion there is no limit cycle for the system. 

( ( , ), ( , )) ( ( , ) ( , )) 0,x y f x y x y g x y
x y
 

 
 

 
when  

3 0a   

                                                 
3 0a   1 2 3 0,m n n    

The characteristics equation (4.15) reduced to      

 
2

1 2 1 3 2 1 0m n m n m n      

Since 1 2 1 3 2 1 0,m n m n m n   then the characteristics equation has pure imaginary root 

and the system is center consequently the system has limit cycle when 
3 0a   
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CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

5.1. Conclusions 

In this thesis, mathematical model of prey predator with delay when control parameter applied 

on prey was studied. From the result of the study the positive equilibrium point in the absence of 

delay is stable. In the presence of delay the system becomes stable with specific condition and 

loses its stability at cutoff value which is the minimum value for time. Furthermore, the existence 

of global stability in the absence of delay was proved using Lyapunov theorem by constructing 

appropriate Lyapunov function. Nonexistence of limit cycle at positive equilibrium point was 

also proved by using Dulac’s criterion. However, if there is no intraspecific competition rate of 

prey there exist limit cycle for the system. 

5.2 Future Work 

One can carry out further study on the following issues, global stability with delay, direction of 

stability and Hopf bifurcation, Persistence of the prey predator, global existence of periodic 

solution of the model and other related things.  Furthermore, it is possible to consider control that 

change with time rather than control parameter and different time delay on the two equations. It 

is also possible to develop a new mathematical model than describe prey predator model by 

considering different assumption and then followed by the study of its qualitative behavior.   
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