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ABSTRACT 

The dynamic relationship between predators and their prey has long been and will continue to 

be one of the dominant themes of research in applied mathematics and ecology. In this thesis, 

mathematical model of prey predator with delay was studied. Firstly, local stability of the model 

in the absence and presence of delay was studied at the positive equilibrium point by linearizing 

the model. Secondly, the existence of global stability was proved by the aid of Lyapunov theorem. 

Thirdly, non-existence of limit cycle at positive equilibrium was checked by Dulac’s criterion 

and the limit cycle exists if there is no intraspecific competition rate of prey. Finally, Hopf 

bifurcation condition was well spelled out. 

 

Key words: Prey-predator model, local stability, global stability, limit cycle, Hopf bifurcation. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study 

The dynamic relationship between predators and their prey has long been and will continue to be 

one of the dominant themes in both ecology and applied mathematics due to its universal 

existence and importance (Berryman, 1992). These problems may appear to be mathematically 

simple but actually, they are challenging and complicated. Although the predator–prey theory 

has seen in much progress in the last 40 years, many long standing mathematical and ecological 

problems remain open (Berryman, 1992).The central goal in ecology is to understand the 

dynamical relationship between predator and prey (Kot, 2001). The most significant factor of the 

prey predator relationship is the predator’s rate of feeding upon prey, known as predator’s 

functional response, which is the average number of prey killed per individual predator per unit 

of time. 

Prey-predator interactions abound in the biological world, and are one of the most important 

topics in theoretical ecology. The study of predation has long history, beginning with the work of 

Lotka and Volterra and continuing to be of interest today. In most ecological models the growth 

rate of species does not only depend on the instantaneous population size but also on the past 

history of the population. For example, in the prey-predator model the loss of prey by predator 

will affect the growth rate of predators at the future time. The first prey-predator model with 

aftereffect was proposed by Volterra(Kolmanovskii and Myshkis, 1999) as follows: 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( )
,

'( ) ( ) ( ) ( )

x t a x t a x t y t a x t

y t a y t a x t y t 

   


    
     (1.1) 

where ( )x t  Population density of prey at time t , ( )y t Population density of predator at time t  

1a  intrinsic growth rate of prey,             4a  death rate of predators, 

2 5&a a  interspecific competition,  3a  intraspecific competition rate of prey, 

  the average time delay between death of prey and birth of subsequent number of 

predators and 0 ( 1,2,...,5)ia i  . 
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In the real world, there is sometimes a need to control population at a reasonable level because 

otherwise this population may cause decrease or even extinction of other populations. Bearing 

this in mind, if a controlu , taking into account some purposeful action of various factors on the 

system, acts only on predators, then model (1.1) modified to the following model (Kolmanovskii 

and Myshkis, 1999). 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( )
.

'( ) ( ) ( ) ( ) ( )

x t a x t a x t y t a x t

y t a y t a x t y t uy t 

   


     
   (1.2) 

0u   

Stability of dynamical systems plays a very important role in control system analysis and design. 

Unlike the case of linear systems, proving stability of equilibria of nonlinear systems is more 

complicated. A sufficient condition is the existence of a Lyapunov function: a positive definite 

function   defined in some region of the state space containing the equilibrium point whose 

derivative along the system trajectories is negative semi-definite. This is Lyapunov’s direct 

method, which even though addresses exactly and in a simple way the important issue of 

stability, it does not provide any coherent methodology for constructing such a function. 

Lyapunov’s indirect method that investigates the local stability of the equilibria is inconclusive 

when the linearized system has imaginary axis eigenvalues (Hassan, 2002). 

Chernet Tuge and Mitiku Daba (2017) investigated the stability analysis of delayed nonlinear 

cournot model in the sense of Lyapunov. One of the finding of this investigation indicates that 

the presence of equal information time delay in the given model causes oscillation process in the 

system and doesn’t affect the qualitative behavior of the solution (no effect on the stability of the 

equilibrium point), but only changes the transition process. In other words it delays stability as 

delay parameter increases. On the other hand, when one of the firms has implementation delay 

and the rival player makes decision without delay, it leads to instability of the dynamic system at 

least locally. 

In scientific fields as diverse as fluid mechanics, electronics, chemistry and theoretical ecology, 

there is the application of what is referred to as bifurcation analysis; the analysis of a system of 

ordinary differential equations (ODE’s) under parameter variation (Kuznetsov, 2000). 
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Bifurcation theory is the mathematical study of changes in the qualitative or topological structure 

of a given dynamical systems. Bifurcation occurs when a small change made to the parameter 

values (the bifurcation parameters) of a system causes a sudden qualitative or topological change 

in its behavior (Blanchard,2006).The name "bifurcation" was first introduced by Henri Poincaré 

in 1885 in the first paper in mathematics showing such a behavior (Kuznetsov, 2000). Local 

bifurcation occurs when a parameter change causes the stability of equilibrium to change.  

To date, many authors have studied the dynamics of predator-prey models with time delay and 

obtained complex dynamic behavior, such as stability of equilibrium, Hopf bifurcation, and limit 

cycle. For example, Song and Wei (2005) investigated further the dynamics of the system prey-

predator model by considering the time delay as the bifurcation parameter and they obtained that, 

under certain conditions, the unique positive equilibrium of the model is absolute stable while it 

is conditionally stable and there exist k switches from stability to instability to stability under 

other conditions. Further, by using normal form theory and the center manifold theorem, they 

obtained the formulae for determining the direction of Hopf bifurcations and the stability of 

bifurcating periodic solutions. Yan and Li (2006) studied the properties of Hopf bifurcation for 

prey-predator model by using normal form theory and the center manifold theorem, which is 

different from that used by Song and Wei(2005).  

 

In 2017, Ahmed Buseri studied global asymptotic stability analysis of predator-prey model. 

Also, in 2017, Peng et al., studied hybrid control of Hopf bifurcation in a Lotka-Volterra 

predator-prey model with two time delays. In 2016, Murthy studied stability analysis of prey-

predator harvesting model using biological parameters. In 2015, Soliman and Jarallah, studied 

asymptotic stability of solutions of lotka-volterra predator-prey model for four species. In 2014, 

Yue and Qingling studied stability and bifurcation analysis of a singular delayed predator-prey 

bio-economic model with stochastic fluctuations. In 2013, Liu et al., studied global stability 

analysis and optimal control of a harvested eco-epidemiological prey predator model with 

vaccination and taxation.In 2012, Debasis studied the bifurcation and stability analysis of prey-

predator model with a reserved area. In 2012, Debasis studied the bifurcation and stability 

analysis of prey-predator model with a reserved area. In 2011, Xu et al., studied stability and 

Hopf bifurcation analysis for a Lotka-Volterra predator–prey model with two time delays. 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Topological
https://en.wikipedia.org/wiki/Dynamical_systems
https://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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 However, to the best knowledge of the author the stability and bifurcation analysis of the 

mathematical model of prey-predator represented by equation (1.2) is not yet investigated. 

Therefore, the central goal of this study is to investigate the dynamic behavior such as local 

stability, global stability, and existence of limit cycle and Hopf bifurcation of prey-predator 

model represented by equation (1.2). 

1.2 Statement of the Problem 

This research mainly focuses on the following problems related to prey-predator mathematical 

model given by equation (1.2). 

 Local stability analysis, 

 Global stability analysis, 

 Non-existence and existence of limit cycle, 

 Conditions for Hopf bifurcation. 

1.3 Objective of the Study 

1.3.1 General Objective of the Study 

The general objective of this study is to investigate the stability and bifurcation analysis of prey-

predator mathematical model with time delay and control of the predator represented by equation 

(1.2). 

1.3.2 Specific Objectives of the Study 

The specific objectives of the study are to: 

  Determine local stability condition of prey-predator model given by equation (1.2) using 

different methods such as Lyapunov’s indirect method. 

 Analyze global stability of prey-predator model given by equation (1.2) by constructing 

appropriate Lyapunov function. 

 Check non-existence and existence of limit cycle using Dulac’s criterion. 

 Establish conditions of Hopf bifurcation of prey-predator model given by equation (1.2). 
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1.4. Significance of the Study 

The outcomes of this study have the following importance: 

 Provides evidence on stabilizing prey-predator coexistence in a given real ecosystem 

without extinction of the preys by applying a necessary control on predators 

 The result and the method can used as bench mark for other researchers in related 

areas 

1.5 Delimitation of the Study 

This study is delimited to investigate the local stability, global stability, existence of limit cycle 

and Hopf bifurcation of prey-predator model represented by equation (1.2). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Historical background 

Mathematical population models have been used to study the dynamics of prey predator systems 

since Lotka and Volterra proposed the simple model of prey-predator interactions now called the 

Lotka-Volterra model. Since then, many mathematical models, some reviewed in this study, have 

been constructed based on more realistic explicit and implicit biological assumptions. Modeling 

is a frequently evolving process, to gain a deep understanding of the mathematical aspects of the 

problem and to yield non trivial biological insights; one must carefully construct biologically 

meaningful and mathematically tractable population models (Kuang, 2002). Some of the aspects 

that need to be critically considered in a realistic and plausible mathematical model include; 

carrying capacity which is the maximum number of prey that the ecosystem can sustain in 

absence of predator, competition among prey and predators which can be intraspecific or 

interspecific, harvesting of prey or predators and functional responses of predators.  The Lotka-

Volterra model is one of the earliest predator-prey models to be based on sound mathematical 

principles. It forms the basis of many models used today in the analysis of population dynamics 

and is one of the most popular models in mathematical ecology. In both the analysis and 

experiment, the predator and prey can coexist by reducing the frequency of contact between 

them (Luckinbill, 1973). 

2.2 Models of Prey Predator with time delay 

In nature, populations do not reproduce instantaneously; rather it is mediated by certain time 

delay required for gestation, maturation time, capturing time, or other reasons. Thus, time delays 

of one type or another have been incorporated into mathematical models of population dynamics. 

Another factor to be taken into account when modeling dynamical systems is the presence of 

delays. Delay is a general concept that can represent different phenomena such as the time it 

takes for the progeniture to reach maturity or the finite gestation period of a species.  
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Mathematical delays are input in model to correct the classical logistic model, which assumes 

that the growth rate of a population at time   is determined by the number of individual at that 

time. Of course biological delays are complex and the mathematical representation is often a 

simplification of reality. The time delay is considered into the population dynamics when the rate 

of change of the population is not only a function of the present population but also depends on 

the past population.  

2.3 Models of Prey Predator with control 

Dynamics of interacting biological species has been studied in the past few decades from various 

angles. Many species become extinct and many others are at the verge of extinction due to 

several reasons like, over exploitation, over predation, environmental pollution, mismanagement 

of natural resources etc. To save these species, suitable measures such as restriction on 

harvesting, creating reserve zones/refuges etc. have to be considered. For example, in order to 

eliminate algal bloom, an effective way is to introduce suitable fish species (chub etc.) that 

usually feed on plankton such that algal bloom can be controlled (Penget al., 2017).   

It is well known that harvesting has a strong impact on the dynamic evolution of a population.  

The severity of this impact that may range from rapid depletion to complete preservation of a 

population depends on the implemented harvesting agency (Kar, 2003).Due to practical and 

economic utilization and biological resources in the prey predator system are extensively 

harvested nowadays. Furthermore, exploitation of biological resources has been increased by 

people’s multifarious material needs, which attract a global concern to protect the limited 

biological resources.  

Therefore, regulation of exploitation of biological resources has become a problem of major 

concern in view of dwindling resource stocks and the deteriorating environment. It is necessary 

to establish a constructive management of commercial exploitation of the biological resources. 

The techniques and issues associated with bio economic exploitation have been discussed in 

details (Clark, 1990). Taxation, license fees, lease of property rights, seasonal harvesting, and so 

forth are usually considered as possible governing instruments in regulation for harvesting as 

well as regulatory mechanisms to keep the damage to the ecosystem minimal. 
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Out of these regulating options, taxation is considered to be superior because of its economic 

flexibility, and economists are particularly attracted to taxation because a competitive system can 

be better maintained under taxation rather than other regulatory methods. There has been 

considerable interest in the modeling of harvesting of biological resources in recent decades, 

where harvest effort is considered to be a dynamic variable, and optimal harvesting policies with 

taxation are discussed.  

 

Brauer and Soudack, (1979) have analyzed the global behavior of a predator-prey system under 

constant rate predator harvesting. They showed how to classify the possibilities and determine 

the region of stability. They found that if the equilibrium point is asymptotically stable, which is 

determined by a local linearization, then every solution whose initial value is in some 

neighborhood of the stable equilibrium point tends to it as the time approaches infinity. There 

exists an asymptotically stable limit cycle when the constant rate is small and the equilibrium 

point is unstable. A predator-prey model with Holling type using harvesting efforts as control has 

been presented by (Srinivasuet al., 2001) and showed that with harvesting, it is possible to break 

the cyclic behavior of the system and introduces a globally stable limit cycle in the system. In 

2017, Peng et al., studied hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey 

model with two time delays.  
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CHAPTER THREE 

METHODOLOGY 

3.1. Study Area and Period  

The study was conducted in Jimma University under the department of Mathematics from 

September 2017 to June 2018 G.C.  

3.2. Study Design 

This study employed analytical (documentary review design) on prey-predator model given by 

equation (1.2). 

3.3. Source of Information 

The relevant sources of information for this study were books, published articles & related 

studies from internet. 

3.4. Mathematical Procedures 

This study was conducted based on the following procedures 

 Determining the steady state point of the model. 

 Linearizing the mathematical model of prey-predator under consideration. 

 Determining the local stability condition of the model. 

 Analyzing the global stability of the system. 

 Checking non-existence and existence of limit cycle. 

 Establishing conditions of Hopf bifurcation. 
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CHAPTER FOUR 

RESULT AND DISCUSSION 

4. Mathematical Model of prey predator 

Understanding predator-prey interaction has been one of the central topics in ecology and 

conservation biology. In an ecological community, most species depend on successful predation 

to survive because prey serves as food resources which provide predators with energy. 

Consequences of converting prey biomass into predator biomass through direct predation are 

referred to as a direct effect between predators and prey, and have been the focus of modeling 

predator-prey interactions (Murray, 2007). 

 

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( )

x t a x t a x t y t a x t

y t a y t a x t y t uy t 

   


          (1) 

4.1 Equilibrium point 

In dynamical system theory, equilibrium solutions are solutions which do not change with time 

(Meiss, 2007). Studying equilibrium solutions is important in mathematical biology because it 

predicts long-term behaviors of a system. 

To find the equilibrium point, equate the right hand side of equation (1) with zero. 

2

1 2 3

4 5

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

a x t a x t y t a x t

a y t a x t y t uy t 

   

     

 

Since the time delay does not affect the equilibrium point, 

                   
 

 
1 2 3

4 5

( ) ( ) ( ) 0

( ) ( ) 0

x t a a y t a x t

y t a a x t u

  

   
 

 ( ) 0x t  or 1 2 3( ) ( ) 0a a y t a x t    and ( ) 0y t  or 4 5 ( ) 0a a x t u     

 1 (0,0)  , meaning equilibrium point in the absence of the two species. 
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1 2 3

4 5

( ) ( ) 0

( ) 0

a a y t a x t

a a x t u

  

   

          (2) 

 Solving equation (2) one can obtain that, 

 4 5 ( ) 0a a x t u   
  5 4( )a x t a u  

  
4

5

( )
a u

x t
a


 

 

 

 
5 1 2 3

3 4 5

( ) ( ) 0

( ) 0

a a a y t a x t

a a a x t u

  

   
            (3) 

 Adding equation (3) and solving for y(t), 

 

1 5 3 4 3

2 5

( )
a a a a a u

y t
a a

 
  

 2 ( , )x y   , where 4

5

,
a u

x
a

 
 1 5 3 4 3

2 5

a a a a a u
y

a a

  


 

 2 ( , )x y   , indicates the presence of the two species. It is positive whenever,

1 5 3 4 3 0a a a a a u  

 

           

To find equilibrium point in the absence of prey, ( ) 0x t   and presence of predator: 

            From equation (1) one can easily obtain that ( ) 0y t 
 

            which implies in the absence of prey, predator cannot live. 

            In the absence of predator that is ( ) 0y t  , one can obtain that 1 3( )( ( )) 0x t a a x t  . 

              Solving we have  ( ) 0x t   or 1

3

( )
a

x t
a

  .  

                      Thus, the equilibrium becomes

    

1
3

3

( ,0)
a

a
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4.2 Linearization 

In mathematics, linearization is finding the linear approximation to a function at a given point. In 

the study of dynamical systems, linearization is a method for assessing the local stability of an 

equilibrium point of a system of nonlinear differential equations or discrete dynamical systems.  

Linearization can be used to give important information about how the system behaves in the 

neighborhood of equilibrium points. Linearization makes it possible to use tools for studying 

linear systems to analyze the behavior of a nonlinear function near a given point.  

Let
1

1

( ) ( )

( ) ( )

x t x t x

y t y t y





 

 

1

1

( ) ( )

( ) ( )

x t x t x

y t y t y





 

 
 1

1

'( ) ' ( )

'( ) ' ( )

x t x t

y t y t




       (4) 

            Plugging equation (4) in to equation (1)             

2

1 1 1 2 1 1 3 1

1 4 1 5 1 1 1

' ( ) ( ( ) ) ( ( ) )( ( ) ) ( ( ) )

' ( ) ( ( ) ) ( ( ) )( ( ) ) ( ( ) )

x t a x t x a x t x y t y a x t x

y t a y t y a x t x y t y u y t y 

   

   

      

           

  

2 2

1 1 1 1 2 1 1 1 1 3 1 1

1 4 1 4 5 1 1 1 1 1

' ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )

' ( ) ( ) ( ) ( ) ( ) ( ) ( )

x t a x t a x a x t y t x y t y x t x y a x t x x t x

y t a y t a y a x t y t x t y x y t x y uy t uy   

      

     

              

                

 

2 2

1 1 2 3 1 1 2 1 1 2 1 2 1 3 1 3 1

1 4 5 4 1 5 1 1 5 1 5 1 1

' ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )

' ( ) ( ) ( ) ( ) ( ) ( ) ( )

x t a x a x y a x a x t a x t y t a x y t a y x t a x t a x x t

y t a y a x y uy a y t a x t y t a y x t a x y t uy t   

      

     

        

              

 

Since ( , )x y 
 is an equilibrium point:

 

  

2

1 2 3

4 5

( ) 0

0

a x a x y a x

a y a x y uy

   

   

  

   
 

  

  2

1 1 2 3 1 2 1 2 1 1 3 1

1 5 1 4 1 5 1 5 1 1

' ( ) 2 ( ) ( ) ( ) ( ) ( )

' ( ) ( ) ( ) ( ) ( ) ( ) ( )

x t a a y a x x t a x y t a x t y t a x t

y t a y x t a u y t a x y t a x t y t   

  

 

     

           

  

2

1 1 1 2 1 3 1 1 4 1

1 1 1 2 1 3 1 4 1 1

' ( ) ( ) ( ) ( ) ( ) ( )

' ( ) ( ) ( ) ( ) ( ) ( )

x t m x t m y t m x t y t m x t

y t n x t n y t n y t n x t y t   

   

       
,

 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Linear_approximation
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Stability_theory
https://en.wikipedia.org/wiki/Equilibrium_point
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Linear_system
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                     where,   

1 1 2 3

2 2

3 2

4 3

2m a a y a x

m a x

m a

m a

 



  

 

 

 

1 5

2 4

3 5

4 5

n a y

n a u

n a x

n a







  





 

 However, since 1( )x t   and 1( )y t  are small perturbation their product and any of its higher order 

greater or equal to two goes to zero. 

  

3 1 1

2

4 1

4 1 1

( ) ( ) 0

( ) 0

( ) ( ) 0

m x t y t

m x t

n x t y t 





  

 

  

1 1 1 2 1

1 1 1 2 1 3 1

'( ) ( ) ( )

'( ) ( ) ( ) ( )

x t m x t m y t

y t n x t n y t n y t 

 

    
     

 (5) 

 is the linearized form of the system. 
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4.3 Local Stability 

The stability of equilibrium may be local or global, depending on the basin of attraction of the 

equilibrium. To determine the local stability of equilibrium, linearization of a system at the 

equilibrium is a useful tool. The equilibrium is locally asymptotically stable if all eigenvalues of 

the Jacbian matrix evaluated at this point have negative real parts and is unstable if at least one 

eigenvalue has a positive real part (Meiss, 2007). If one of the eigenvalues has zero real part, 

then the linearized system is not enough to capture dynamical behaviors near by the equilibrium 

and therefore, higher order approximation is required. 

 To find the characteristic equation of equation (5), 

Let 
( ) '( )

( ) '( )

t t

t t

x t re x t r e

y t se y t s e

 

 





  

  
          (6) 

 Plugging equation (6) in to (5) 

  

1 2

( ) ( )

1 2 3

t t t

t t t t

r e m re m se

s e n re n se n se

  

     



  

 

  
 

  

1 2

1 2 3

t t t

t t t t

r e m re m se

s e n re e n se n se e

  

     



  

 

  
 

 Since, 0te   
1 2

1 2 3

r m r m s

s n re n s n se 



  

 

  
 

  

1 2

1 2 3

( ) 0

( ) 0

m r m s

n e r n n e s 



 

  

   
 

 For non-trivial solution to exist, the determinant of coefficient matrix must be zero. 

  

1 2

1 2 3

0
m m

n e n n e 



 




 
 

  1 2 3 2 1( )( ) 0m n n e m n e       
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2

1 2 1 3 2 1 3 1 2

2

1 2 1 2 3 2 1 1 3

( ) ( ) 0

( ) ( ) 0

m n m n m n n e m n

m n m n n m n m n e





  

  





      

      
 

 
is the characteristic equation for equation (5).

 

 Case 1: If 0,  then the characteristic equation becomes: 

2

1 2 3 1 2 1 3 2 1( ) 0m n n m n m n m n               (7) 

 Theorem  A steady state with characteristic equation (7) is locally stable in the absence of time 

delay if condition (i) and (ii) holds. 

 1 2 3( ) 0i m n n    

 1 2 1 3 2 1( ) 0ii m n m n m n  
 

 Proof:
1 2 3 3 4 5( )i m n n a x a u a x       

 

  

4
1 2 3 3 4 5

5

( )
a u

m n n a x a u a
a

 
      

 

    

4
3 4 4

5

( )
a u

a a u a u
a


     

 

  

4
1 2 3 3

5

( ) 0
a u

m n n a
a


    

 

 1 2 1 3 2 1 3 4 3 5 2 5( ) ( ) ( )( ) ( )( )ii m n m n m n a x a u a x a x a x a y             
 

 1 2 1 3 2 1 3 5 3 5 2 5( )( ) ( )( ) ( )( )m n m n m n a x a x a x a x a x a y            
 

 1 2 1 3 2 1 3 5 3 5 2 5( ) ( )( ) ( )( )m n m n m n a x a x a x a x a x a y          
 

  1 2 1 3 2 1 2 5( )( ) 0m n m n m n a x a y    
 

            Since, x  and y  are positive for 1 5 3 4( ) 0a a a a u   . 
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 Consequently, the positive equilibrium point in the absence of delay is locally stable by Routh 

Hurtz criteria.
 

 Case 2: If 0   

  
2

1 2 1 2 3 2 1 1 3( ) ( ) 0m n m n n m n m n e            

2 ( ) 0p r s q e                  (8) 

 where  

1 2

1 2

3

1 3 2 1

( )p m n

r m n

s n

q m n m n

  



 

 

 

 For 0  .Suppose i   is a root of equation (8) it follows, 

  
2( ) ( ( ) ) 0ii pi r s i q e          

  
2 ( )(cos sin ) 0ip r is q i            

  
2 ( cos ) sin cos ( sin ) 0ip r s i s q q i                

  
2( sin cos ) ( cos sin )s q s q i r ip              

 Equating real and imaginary part:- 

 

2sin cos

cos sin

s q r

s q p

   

   

  

  
   (9) 

 Squaring both sides of equation (9),

2 2 2 2 2 4 2 2

2 2 2 2 2 2 2

sin 2 sin cos cos 2

cos 2 sin cos sin

s s q q r r

s s q q p

       

      

    

  
      (10) 

 Adding the first and the second equation of equation (10) 

  
2 2 2 4 2 2 2 22s q p r r         
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4 2 2 2 2 2( 2 ) 0p r s r q        ,   
4 2 0     ,    (11) 

 where 2 22p r s     and 2 2r q    

 Remark1: 0   

Proof: 2 22p r s             (12) 

  3 4( )p a x a u     3 4p a x a u     

  
2 2

3 4( )p a x a u    

  
2 2 2 2 2

3 3 4 3 4 4( ) ( ) 2 2 ( ) 2p a x a a x a ux a a u u               (13) 

     1 2r m n
3 4( )a x a u                                             (14) 

  3s n 
5a x  2 2 2

5( ) ( )s a x                                            (15) 

 Substituting (13), (14), and (15) in equation (12), we get, 

 
2 22p r s   2 2 2 2 2 2

3 3 4 3 4 4 3 4 3 5( ) ( ) 2 2 ( ) 2 2 2 ( ) ( )a x a a x a ux a a u u a a x a ux a x              

                      
2 2 2 2 2 2

3 4 4 5( ) ( ) ( ) 2 ( ) ( )a x a a u u a x       

                      

2 2 2 2 2 24 4
3 5 4 4

5 5

( ) ( ) ( ) ( ) ( ) 2
a u a u

a a a a u u
a a

 
      

                      

2
2 2 23

4 4 42

5

( )
( ) ( ) ( )

( )

a
a u a u a u

a
       

                     

2
2 23

4 42

5

( )
(( ) 2 )

( )

a
a a u u

a
  

      

                                   

2
2 23

4 42

5

( )
(( ) 2 ) 0

( )

a
a a u u

a
   

 

  

this completes the proof. 
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 From equation (11)  

  

2
2 4

2

  


  
  

  

2 4

2

  


  
  

 If 0  , then there is 0   such that i  . 

 Therefore, the system becomes unstable when 0  . 

 
2 2r q   2 2

1 2 1 3 2 1( ) ( )m n m n m n     

 
2 2 2 2 2 2

1 2 1 3 2 1 1 2 1 32m n m n m n m m n n      

 
2 2 2 2 2 2

3 4 3 5 2 5 3 2 5 5( ) ( ) ( ) ( ) ( ) ( ) 2( )( )( )( )a x a u a x a x a x a y a x a x a y a y                     

 
2 2 2 2 2 2

3 5 3 5 2 5 3 2 5 5( ) ( ) ( ) ( ) ( ) ( ) 2( )( )( )( )a x a x a x a x a x a y a x a x a y a y               

 
2 2

3 2 5 5 2 52( )( )( )( ) ( ) ( )a x a x a y a x a x a y         

 2 5 3 5 2 5( )( )[2( )( ) ( )( )]a x a y a x a x a x a y         

 
2

2 5 3 5 2 5( ) [2 ]a a x y a a x a a y       

 
2 2

2 5 3 2( ) ( ) [2 ]a a x y a x a y       

 For 0  , 3 22 0a x a y    

  

1 5 3 44
3 2

5 2 5

( )
2 ( ) ( ) 0

a a a a ua u
a a

a a a

 
   

  

1 5 3 44
3

5 5

( )
2 ( ) ( ) 0

a a a a ua u
a

a a
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3 4 1 5

5

3 ( )
0

a a u a a

a

 
  

  3 4 1 53 ( ) 0a a u a a  
    3 4 3 1 53 3a a a u a a    

  3 1 5 3 43 3a u a a a a  1 5 3 4

3

3

3

a a a a
u

a


   

  

1 5
4

33

a a
u a

a
 

   

(16) 

 As a result, the positive equilibrium in the presence of delay becomes unstable when condition 

(16) is satisfied. 

 If 0  ,then we cannot find 0   

 As a result, the characteristic equation (11) has negative real part root and hence stable for 0  . 

  

1 5
4

3

0
3

a a
u a

a
      

To find the minimum value of  for which the stability of the system lost, substitute 0 in 

equation (9) we obtain. 

 

2

0 0 0 0

0 0 0 0 0

sin cos

cos sin

s q r

s q p

     

     

  

  
 

 Solving this equation for , 

  

2

0 0 0 0 0

0 0 0 0 0

[ sin cos ]

[ cos sin ]

s s q r

q s q p

      

     

  

   
 

  

2 2 2

0 0 0 0 0 0

2

0 0 0 0 0

sin cos ( )

cos sin

s qs s r

qs q qp

       

     

  

  
         (17) 
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 Adding equation (17) together, 

  
2 2 2 2

0 0 0 0 0( )sin ( )q s qp s r          

  

2

0 0 0
0 2 2 2

0

( )
sin

qp s r

q s

  
 



 



 

  

2

0 0 0
0 2 2 2

0

( )
sin( 2 )

qp s r
n

q s

  
  



 
 


          (18) 

  

2

0 0 0 0

0 0 0 0 0

[ sin cos ]

[ cos sin ]

q s q r

s s q p

     

      

  

  
 

  

2 2

0 0 0 0

2 2 2

0 0 0 0 0

sin cos ( )

cos sin

qs q q r

s qs sp

     

      

  

  
          (19) 

 Adding equation (19) together, 

  
2 2 2 2 2

0 0 0 0( )cos ( )q s q r sp         

  

2 2

0 0
0 2 2 2

0

( )
cos

q r sp

q s

 
 



 



 

  

2 2

0 0
0 2 2 2

0

( )
cos( 2 )

q r sp
n

q s

 
  



 
 


         

(20) 

 Dividing equation (18) by (20) 

  

2

0 0 0 0

2 2

0 0 0

sin( 2 ) ( )

cos( 2 ) ( )

n pq s r

n q r ps

     

    

  


  
 

  

2

0 0 0
0 2 2

0 0

( )
tan( 2 )

( )

pq s r
n

q r ps

  
  

 

 
 

 
 

  

2

0 0 0
0 2 2

0 0

( )
2 arctan( )

( )

pq s r
n

q r ps
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2

0 0 0
0 2 2

0 0

( )
arctan( ) 2

( )

pq s r
n

q r ps

  
  

 

 
 

 
 

  

2

0 0 0

2 2

0 0 0 0

( )1 2
arctan( )

( )

pq s r n

q r ps

   


   

 
 

 
 

 where,       0,1,2,3,...n   

 If 0n 
2

0 0 0
0 2 2

0 0 0

( )1
arctan( )

( )

pq s r

q r ps

  


  

 


 
is the smallest cut off value at which stability of the 

equilibrium point is lost and never be regained in the future time. 

4.4 Global Stability 

Without linearizing the system, it is possible to study global stability of a given non-linear model 

with the aid of Lyapunov function. 

4.4.1 Global Stability Without time delay 

 

1 2 3

4 5

'( ) ( )[ ( ) ( )]

'( ) ( )[ ( ) ]

x t x t a a y t a x t

y t y t a a x t u

  

   
        (21)

 

 Let 2 21 1
( , ) ( ) ( )

2 2
v x y x x y y     be a candidate Lyapunov function. 

(i) ( , ) 0v x y    

(ii) ( , ) 0v x y  , Since the square of any number is positive. 

(iii) Differentiating ( , )v x y  along the solution of equation (21), 

dv v dx v dy

dt x dt y dt

 
 
 

 

( ) ( )
dv dx dy

x x y y
dt dt dt

      

2

1 2 3 4 5( )( ) ( )( )
dv

x x xa a xy a x y y a y a xy uy
dt

           

Let ( , )
dv

f x y
dt


 



 

22 
 

2

1 2 3 4 5( , ) ( )( ) ( )( )f x y x x a x a xy a x y y a y a xy uy           

Expanding 
dv

dt
 by Taylor Series about positive equilibrium point we get,

2

1 2 3 4 5( , ) ( )( ) ( )( )f x y x x a x a xy a x y y a y a xy uy           

 
2

1 2 3 1 2 3 5( ) ( )( 2 ) ( )( )xf a x a xy a x x x a a y a x y y a y           

 1 2 3 1 2 3 3( 2 ) ( 2 ) ( )( 2 )xxf a a y a x a a y a x x x a          

      1 2 3 3 32( ) 2 ( )( 2 )a a y a x a x x x a        

 2 2 5 5( )( ) ( )x yf a x x x a a y y a y          

      2 2 5 5( ) ( )a x a x x a y y a y         

 2 4 5 4 5( )( ) ( ) ( )( )yf x x a x a y a xy uy y y a a x u              

 4 5 4 5( ) ( )y yf a a x u a a x u        4 52( )a a x u     

         Evaluating the partial derivatives at equilibrium point 

 ( , ) 0f x y   , ( , ) 0xf x y  
,

( , ) 0yf x y   , 3( , ) 2xxf x y a x   
,

0yyf 

5 2( , )x yf x y a y a x      

                         

21
[( ) ( , ) 2( )( ) ( , )]

2
x x x y

dv
x x f x y x x y y f x y

dt

            

 

2

3 5 2

1
[( ) ( 2 ) 2( )( )( )]

2

dv
x x a x x x y y a y a x

dt

             

 

2

3 5 2( ) ( )( )( )
dv

a x x x a y a x x x y y
dt

           
 

 If 5 2 0a y a x    then 2

3 ( )
dv

a x x x
dt
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 5 2a y a x  5

2

ax

y a






 

 

2 5 54

5 1 5 3 4 2

( )( )
( )

a a aa u

a a a a a u a




   

 

52 4

1 5 3 4 2

( )

( )

aa a u

a a a a u a




   

 
2 2

2 4 1 5 3 5 4( ) ( ) ( )a a u a a a a a u   
 

 
2 2

2 4 3 5 4 1 5( ) ( ) ( )a a u a a a u a a   
 

 
2 2

4 2 3 5 1 5( )(( ) ) ( )a u a a a a a  
 

                              

2

1 5
4 2

2 3 5

( )

( )

a a
a u

a a a
 

  

2

1 5
42

2 3 5

( )

( )

a a
u a

a a a
 


                                                                      (22) 

 
0

dv

dt


 
if x x or &x x y y  

 

 

dv

dt
is negative definite when (22) is satisfied . 

 As the result, in the absence of delay there exist global stability of positive equilibrium point 

when condition (22) is satisfied by Lyapunov theorem. 
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4.5 Limit Cycle 

For predator–prey systems, the existence and stability of a limit cycle is related to the existence 

and stability of a positive equilibrium. We assume that a positive equilibrium exists, for 

otherwise the predator population tends to extinction. 

4.4.1 Limit Cycle without delay 

Consider  

2

1 2 3

4 5

'( ) ( ) ( ) ( ) ( )

'( ) ( ) ( ) ( ) ( )

x t a x t a x t y t a x t

y t a y t a x t y t uy t

  

   
 

Let 

2

1 2 3

4 5

( , )

( , )

dx
f x y a x a xy a x

dt

dy
g x y a y a xy uy

dt

   

      

1
( , )x y

xy
 

 

be a candidate Dulac’s function. Since , 0x y  then ( , )x y is continuously 

differentiable function. Hence, 
1

( , )x y
xy

  is a suitable Dulac’s function.

 

2

1 2 3 4 5

( ( , ) ( , )) ( ( , ) ( , ))

1 1
( ) ( )

x y f x y x y g x y
x y

a x a xy a x a y a xy uy
x xy y xy

 
 

 
 

    
        

    

 

                 

31 4
2 5( ) ( )

a xa a u
a a

x y y y x x

 
     
 

 

                    

3a

y
   

                    

3( ( , ) ( , )) ( ( , ) ( , ))
a

x y f x y x y g x y
x y y
 

 
  

 
 

Since ( ( , ) ( , )) ( ( , ) ( , ))x y f x y x y g x y
x y
 

 


 
is different from zero and does not change sign, by 

Dulac’s criterion there is no limit cycle for the system. 
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 ( ( , ) ( , )) ( ( , ) ( , )) 0x y f x y x y g x y
x y
 

 
 

 
,when 3 0a   

 3 0a  1 2 3 0m n n   

 
 Therefore, the characteristic equation (7) reduced to 

2

1 2 1 3 2 1 0m n m n m n    
                                                                                              

(23)

 

 Since 1 2 1 3 2 1 0m n m n m n   , then the system has pure imaginary roots and the system is center. 

Therefore, the system has limit cycle when 3 0a 
 

4.6 Hopf Bifurcation 

Bifurcation study is a powerful tool in understanding an ecological community because 

bifurcation implies an abrupt change from one state to the other. For predator-prey systems, the 

population of prey and predators may stay at a steady state or oscillate periodically. The 

bifurcation parameter considered in the model is time delay.  

 

1. From the characteristic equation (8), suppose it has a simple pair of pure imaginary 

eigenvalues , 0i     . By the same analysis made for local stability with delay, 

there exist 0  when condition (16) is satisfied. 

2. Transeversality condition 

2 ( ) 0p r s q e        

     (24)

 

Differentiate both sides of (24) with respect to where is a function of  

  
2 ( ) ( ) 0

d d d d
p se s q e

d d d d

    
   

   

       

 

 
(2 ( ) ) ( ) 0

d
p se s q e s q e

d

  
    



        

 

  
(2 ( ) ) ( )

d
p s s q e s q e

d
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( )

(2 ( ) )

d s q e

d p s s q e





  

    








   
 

                            

(2 ) ( ) )

( )

d p s s q e

d s q e





    

  





   



 

                           

(2 )

( ) ( )

d p se

d s q e s q e



 

  

     



 


  

 
 

                            

1 2
( )

( ) ( )

d p s

d s q e s q

  

     






  

 
 

               

1
(Re ( )) 2

Re
( ) ( )

d p s

d s q e s q

  

    





  
          

               

1

2

(Re ( )) 2
Re

( ) i

d i p s

d i i q e i q s

  

    





  
          

              
2 2

(2 )
Re

ii p e s

i q i q s



   

 
  

     

             

2 2 2

4 2 2 2 4 2 2 2

(2 )( )
Re

ii p s i q e s i sq

s q s q

    

   

     
  

    

             

3 2 2 2 2

4 2 2 2 4 2 2 2

( 2 2 )(cos sin
Re

si q ps pqi i s

s q s q

      

   

      
  

    

1 2 2 3 2 2

4 2 2 2 4 2 2 2

(Re ( )) (2 )cos (2 )sind q ps s pq s

d s q s q

        

    


   

        (25) 

 

2 2

2 2 2

3

2 2 2

cos

sin

q qr ps

s q

s pq rs

s q

 




  




 
 

 


  
 

      (26) 
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 Substitute equation (26) into (25) 

 

2 2 3
2 2 3

1 2 22 2 2 2 2 2

4 2 2 2 4 2 2 2

(2 ) (2 )
(Re ( ))

q qr ps s pq rs
q qs s pq

d ss q s q

d s q s q

    
   

   

    



   
  

  
       

 

1 4 2 2 4 4 2 4 2 2

4 2 2 2 2 2 2

6 2 4 4 2 4 2 2 2 2 2 2

4 2 2 2 2 2 2 4 2 2 2

(Re ( )) 2 2 2

( )( )

2 2 2

( )( )

d q qr qs pqs pqrs p s

d s q s q

s pqs s r pqs p q pqrs s

s q s q s q

       

   

      

    


     

     

    


    

 

4 2 2 2 4 2 4 2 2 6 2

1 4 4 2 4 2 2 2 2 4 4 2 2 2

4 2 2 2 2 2 2

2 2 2 2

2 2(Re ( )

( )( )

q q r pqs pqrs p s s

pqs s r pqrs p q pqrs s s qd

d s s s q

     

       

   



      
              

 

 

1 4 2 2 2 2 2 2 2 4 2 6 2

4 2 2 2 2 2 2

(Re ( ) ( 2 ) ( 2 ) 2 2

( )( )

d s p r s q p r s q s

d s s s q

     

   


       

    

 

     

1
(Re ( )

0
d

d

 





 
 

 

 

 

1 4 2 2 2 2 2 2 2 4 2 6 2

4 2 2 2 2 2 2

(Re ( ) ( 2 ) ( 2 ) 2 2

( )( )

d s p r s q p r s q s
Sign Sign

d s s s q

     

   


        

        

 

    

1
(Re ( )

1 0
d

Sign
d

 





 
  

   

 Hence, transversality condition is satisfied. 

As a result, the systems undergo Hopf bifurcation at o   when condition (16) is satisfied. 

 

  



 

28 
 

 CHAPTER FIVE  

CONCLUSION AND FUTURE WORK 

5.1. Conclusions 

In this thesis, mathematical model of prey predator with delay was studied. The result of the 

study indicates that the positive equilibrium point in the absence of delay is stable. In the 

presence of delay the system becomes stable with certain conditions and loses its stability at 

cutoff value. Furthermore, the existence of global stability in the absence of delay was proved 

using Lyapunov theorem by constructing appropriate Lyapunov function. Nonexistence of limit 

cycle was also proved by using Dulac’s criterion. However, if there is no intraspecific 

competition rate of prey there exist limit cycle for the system. Finally, by considering the 

bifurcation parameter as a time delay the system undergo Hopf bifurcation at cutoff value with 

certain condition stated by equation (16). 

5.2 Future Work 

One can investigate the Hopf bifurcation of the system by considering other parameters involved 

in the model different from time delay. Global stability with delay, direction of stability and 

Hopf bifurcation, Persistence of the prey predator, global existence of periodic solution of the 

model are also further investigation. Furthermore, it is possible to consider control that change 

with time rather than control parameter and different time delay on the two equations.  
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