Strong Convergence of Mann Iteration for a Hybrid Pair of Mappings in a Banach Space

G. V. R. Babu

Department of Mathematics Andhra University, Visakhapatnam-530 003, Andhra Pradeshe, India; e-mail address: gvr_babu@hotmail.com

G. N. Alemayehu

Department of Mathematics, Jimma University, P.O.Box 378, Jimma, Ethiopia e-mail address: alemg1972@gmail.com

Abstract

We prove the strong convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multi-valued f-nonexpansive mapping T in Banach space E. Our result extend Theorem 2.3 of Song and Wang [Y. Song, H. Wang, Convergence of iterative algorithms for multi-valued mappings in Banach spaces, Nonlinear Analysis, 70 (2009), 1547–1556] to a hybrid pair of maps.

Mathematics Subject Classification: 54 H 25

Keywords: Strong convergence, Mann iteration, common fixed point, Multi-valued nonexpansive mapping

1 Introduction

Let E be a Banach space and K, a nonempty subset of E. We denote by 2^E , the family of all subsets of E; CB(E), the family of nonempty closed and bounded subsets of E and C(E), the family of nonempty compact subsets of E. Let $f: K \to K$ be a selfmap. Let H be a Hausdorff metric on CB(E). That is, for $A, B \in CB(E)$,

 $H(A,B) = \max\{\sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A)\},\$

where

$$d(x, B) = \inf\{\|x - y\| : y \in B\}.$$

A multi-valued mapping $T: K \to 2^K$ is called *f*-nonexpansive if

$$H(Tx, Ty) \le ||fx - fy||,$$

for all $x, y \in K$.

If $f = I_K$, the identity mapping on K, then we call T is a *multi-valued* nonexpansive mapping.

A point x is a fixed point of T if $x \in Tx$. A point x is called a common fixed point of f and T if $fx = x \in Tx$. $F(T) = \{x \in K : x \in Tx\}$ stands for the fixed point set of a mapping T and $F = F(T) \cap F(f) = \{x \in K : fx = x \in Tx\}$ stands for the common fixed point set of maps f and T.

Recently, Song and Wang [2] introduced the following Mann iterates of a Multi-valued mapping T:

Let K be a nonempty convex subset of E, $\alpha_n \in [0,1]$ and $\gamma_n \in (0,\infty)$ such that $\lim_{n\to\infty} \gamma_n = 0$. Let $T: K \to CB(K)$ be a multi-valued mapping. Let $x_0 \in K$, and

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n y_n,\tag{1}$$

where $y_n \in Tx_n$ such that $||y_{n+1} - y_n|| \le H(Tx_{n+1}, Tx_n) + \gamma_n, n = 0, 1, 2, \cdots$.

Song and Wang [2] established the following theorems on the convergence of Mann iteration.

Theorem 1.1 (Theorem 2.3, Song and Wang [2]). Let K be a nonempty, compact and convex subset of a Banach space E. Suppose that $T: K \to CB(K)$ is a multi-valued nonexpansive mappings for which $F(T) \neq \emptyset$ and for which $T(y) = \{y\}$ for each $y \in F(T)$. For $x_0 \in K$, let $\{x_n\}$ be the Mann iteration defined by (1). Assume that

$$0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1.$$

Then the sequence $\{x_n\}$ strongly converges to a fixed point of T.

The aim of this paper is to prove the strong and weak convergence of Mann iteration for a hybrid pair of maps to a common fixed point of a selfmap f and a multi-valued f-nonexpansive mapping T in Banach space E. Our results extend the results of Song and Wang [2] to a hybrid pair of maps.

502

2 Preliminary Notes

Throughout this paper E denotes real Banach space. We denote the strong convergence of $\{x_n\}$ to x in E by $x_n \to x$.

Lemma 2.1 (Nadler [1]). Let (E, d) be a complete metric space, and $A, B \in CB(E)$ and $a \in A$. Then for each positive number ε , there exists $b \in B$ such that

$$d(a,b) \le H(A,B) + \varepsilon.$$

Lemma 2.2 (Suzuki [3]). Let $\{x_n\}$ and $\{y_n\}$ be two bounded sequences in a Banach space E and $\beta_n \in [0, 1]$ with

$$0 < \liminf_{n \to \infty} \beta_n \le \limsup_{n \to \infty} \beta_n < 1.$$

Suppose $x_{n+1} = \beta_n x_n + (1 - \beta_n) y_n$ for all integers $n \ge 1$ and

$$\lim_{n \to \infty} \sup (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \le 0.$$

Then $\lim_{n \to \infty} ||x_n - y_n|| = 0.$

We will construct the following iteration.

Let K be a nonempty subset of a metric space X. Let $f: K \to K$, $T: K \to CB(K)$ with f(K) is convex and $Tx \subseteq f(K)$ for all $x \in K$. Let $\alpha_n \in [0,1]$, and $\gamma_n \in (0,\infty)$ such that $\lim_{n\to\infty} \gamma_n = 0$. Choose $x_0 \in K$ and $y_0 \in Tx_0$. Let $z_0 = fx_0$ and

$$z_1 = fx_1 = (1 - \alpha_0)fx_0 + \alpha_0 y_0$$
$$= (1 - \alpha_0)z_0 + \alpha_0 y_0.$$

From Lemma 2.1, there exists $y_1 \in Tx_1$ such that

$$||y_1 - y_0|| \le H(Tx_1, Tx_0) + \gamma_0.$$

Let

$$z_2 = f x_2 = (1 - \alpha_1) z_1 + \alpha_1 y_1.$$

Inductively, we have

$$z_{n+1} = f x_{n+1} = (1 - \alpha_n) z_n + \alpha_n y_n, \tag{2}$$

where $y_n \in Tx_n$ such that

$$||y_{n+1} - y_n|| \le H(Tx_{n+1}, Tx_n) + \gamma_n, \ n = 0, 1, 2, \cdots$$

3 Main Results

These are the main results of the paper.

Proposition 3.1 Let K be a nonempty subset of a Banach space E. Let $f: K \to K$ be a selfmap with f(K) is convex. Suppose $T: K \to CB(K)$ is a multi-valued f-nonexpansive mapping and $Tx \subseteq f(K)$ for all $x \in K$. For $x_0 \in K$, let $\{z_n\}$ be the Mann iteration associated with the maps T and f, defined by (2) and assume also that

 $0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1.$

Then $\lim_{n\to\infty} ||z_n - y_n|| = 0$ and $\lim_{n\to\infty} d(z_n, Tx_n) = 0$.

Proof. From the definition of the Mann iteration $\{z_n\}$ given by (2), it follows that $z_{n+1} = (1 - \alpha_n)z_n + \alpha_n y_n$, where $y_n \in Tx_n$ such that

$$||y_{n+1} - y_n|| \le H(Tx_{n+1}, Tx_n) + \gamma_n$$
$$\le ||z_{n+1} - z_{n+1}|| + \gamma_n, \ n = 0, 1, 2, \cdots$$

Therefore,

$$\limsup_{n \to \infty} (\|y_{n+1} - y_n\| - \|z_{n+1} - z_n\|) \le \limsup_{n \to \infty} \gamma_n = 0.$$

Hence, all conditions of Lemma 2.2 are satisfied. Hence, by Lemma 2.2, we obtain $\lim_{n\to\infty} ||z_n - y_n|| = 0.$

Since $y_n \in Tx_n$ for all $n = 0, 1, 2, \cdots$, we have $d(z_n, Tx_n) \le ||z_n - y_n||$. Hence, $\lim_{n \to \infty} d(z_n, Tx_n) = 0$.

Theorem 3.2 Let K be a nonempty compact subset of a Banach space E. Let $f: K \to K$ be a continuous selfmap with f(K) is convex. Suppose $T: K \to CB(K)$ is a multi-valued f-nonexpansive mapping for which $Tx \subseteq$ f(K) for all $x \in K$; $F(T) \cap F(f) \neq \emptyset$, and $d(x, Tx) \leq d(fx, Tx)$ for all $x, y \in K$. For $x_0 \in K$, let $\{z_n\}$ be the Mann iteration associated with the maps T and f, defined by (2) and assume also that

$$0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1.$$

If $T(y) = \{y\}$ for each $y \in F(T)$, then the Mann iteration $\{z_n\}$ strongly converges to a common fixed point of f and T.

Proof. It follows from Proposition 3.1 that $\lim_{n \to \infty} d(z_n, Tx_n) = 0$. Further, since $d(x_n, Tx_n) \leq d(z_n, Tx_n)$ we get $\lim_{n \to \infty} d(x_n, Tx_n) = 0$. Now let $p \in F(T) \cap F(f)$. Then,

$$\begin{aligned} |z_{n+1} - p|| &\leq (1 - \alpha_n) ||z_n - p|| + \alpha_n ||y_n - p|| \\ &\leq (1 - \alpha_n) ||z_n - p|| + \alpha_n H(Tx_n, Tp) \\ &\leq (1 - \alpha_n) ||z_n - p|| + \alpha_n ||z_n - p|| \\ &= ||z_n - p||, \ n = 0, 1, 2, \cdots. \end{aligned}$$

Then the sequence $\{||z_n - p||\}$ is a decreasing sequence of nonnegative reals and hence $\lim_{n \to \infty} ||z_n - p||$ exists for each $p \in F(T) \cap F(f)$.

From the compactness of K, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\lim_{k\to\infty} x_{n_k} = u$ for some $u \in K$. By the continuity of f, we have $\lim_{k\to\infty} z_{n_k} = fu = q$ (say). Now

$$d(q, Tu) \le ||q - z_{n_k}|| + d(z_{n_k}, Tx_{n_k}) + H(Tx_{n_k}, Tu)$$

$$\leq \|q - z_{n_k}\| + d(z_{n_k}, Tx_{n_k}) + \|fu - fx_{n_k}\|$$

$$= 2||q - z_{n_k}|| + d(z_{n_k}, Tx_{n_k}) \to 0 \text{ as } k \to \infty.$$

Hence, $fu = q \in Tu$.

Also,

$$d(u, Tu) \leq ||u - x_{n_k}|| + d(x_{n_k}, Tx_{n_k}) + H(Tx_{n_k}, Tu)$$

$$\leq ||u - x_{n_k}|| + d(x_{n_k}, Tx_{n_k}) + ||fu - fx_{n_k}||$$

$$= ||u - x_{n_k}|| + d(x_{n_k}, Tx_{n_k}) + ||z_{n_k} - q|| \to 0 \text{ as } k \to \infty.$$

Hence, $u \in Tu$ so that $Tu = \{u\}$. Hence, $fq = q \in Tq$.

Thus, q is a common fixed point of f and T. Now replacing q in place of p, we get that $\lim_{n \to \infty} ||z_n - q||$ exists and hence $\lim_{n \to \infty} ||z_n - q|| = 0.$

Hence the conclusion follows.

Corollary 3.3 If $f = I_K$, the identity mapping on K, we get Theorem 1.1. Hence, Theorem 3.2 extends Theorem 1.1 to a hybrid pair of maps.

The following is an example in support of Theorem 3.2.

Example 3.4 Let E = R, the set of all real numbers, with the usual norm and $K = \begin{bmatrix} \frac{1}{3}, 1 \end{bmatrix}$. We define mappings $f : K \to K$ by $fx = 1 - \frac{1}{2}x$ and $T: K \to CB(K)$ by $Tx = \begin{bmatrix} \frac{2}{3}, \frac{5}{6}x + \frac{1}{3} \end{bmatrix}$.

Here $f(K) = [\frac{1}{2}, \frac{2}{3}]$, $Tx \subseteq f(K)$ for all $x \in K$, and $F(f) \cap F(T) = \{\frac{2}{3}\} \neq \emptyset$. Now we consider the following two cases.

Case (i): $x \in [\frac{1}{3}, \frac{2}{3}]$. Then, $fx = 1 - \frac{1}{2}x \ge \frac{2}{3}$, $Tx = [\frac{1}{2}x + \frac{1}{3}, \frac{2}{3}]$. Thus we have $d(x, Tx) = \frac{1}{2}(\frac{2}{3} - x) = d(fx, Tx)$. Case (ii): $x \in [\frac{2}{3}, 1]$. Then, $fx = 1 - \frac{1}{2}x \le \frac{2}{3}$, $Tx = [\frac{2}{3}, \frac{1}{2}x + \frac{1}{3}]$. Thus we have $d(x, Tx) = \frac{1}{2}(x - \frac{2}{3}) = d(fx, Tx)$. Hence, from case (i) and case (ii), it follows that

$$d(x, Tx) = d(fx, Tx)$$
 for all $x \in K$.

Also, T is f-nonexpansive on K, for, proceeding as in the above, we get

$$H(Tx, Ty) = \max\{\sup_{a \in Ty} d(Tx, a), \sup_{a \in Tx} d(a, Ty)\}$$
$$= |fx - fy| \text{ for all } x, y \in K;$$

and $Ty = \{y\}$ for each $y \in F(T) = \{\frac{2}{3}\}.$

Next we show that for any $x_0 \in K$, the Mann iteration defined by (2) converges to the unique common fixed point of f and T, which is the conclusion of Theorem 3.2.

Let $x_0 \in K$ be arbitrary. Let $\alpha_n \in [0, 1]$ be such that

$$0 < \liminf_{n \to \infty} \alpha_n \le \limsup_{n \to \infty} \alpha_n < 1.$$

If $x_0 \in [\frac{1}{3}, \frac{2}{3}]$. Then $fx_0 = 1 - \frac{1}{2}x_0$ and $Tx_0 = [\frac{1}{2}x_0 + \frac{1}{3}, \frac{2}{3}]$. Choose $y_0 = \frac{1}{2}x_0 + \frac{1}{3}$. Then $y_0 \in Tx_0$, and $fx_1 = \frac{2}{3} + (\frac{1}{2} - \alpha_0)(\frac{2}{3} - x_0)$.

On continuing this process, inductively we get a sequence $\{x_n\}$ in K such that

$$fx_{n+1} = \frac{2}{3} + \frac{1}{2}(\frac{2}{3} - x_0) \prod_{j=0}^{n} (1 - 2\alpha_j), \ n = 0, 1, 2, \cdots.$$
(3)

If $x_0 \in [\frac{2}{3}, 1]$. Then $fx_0 = 1 - \frac{1}{2}x_0$ and $Tx_0 = [\frac{2}{3}, \frac{1}{2}x_0 + \frac{1}{3}]$. Again, choose $y_0 = \frac{1}{2}x_0 + \frac{1}{3}$. Then $y_0 \in Tx_0$, and $fx_1 = \frac{2}{3} - (\frac{1}{2} - \alpha_0)(x_0 - \frac{2}{3})$. On continuing this process, inductively we get a sequence $\{x_n\}$ in K such that

$$fx_{n+1} = \frac{2}{3} - \frac{1}{2}(x_0 - \frac{2}{3}) \prod_{j=0}^{n} (1 - 2\alpha_j), \ n = 0, 1, 2, \cdots.$$
(4)

Since $0 < \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, there exist real numbers $0 < \gamma, \eta < 1$ Since $0 < \min_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n < 1$, there exist real numbers $0 < \gamma, \eta < 1$ such that $0 < \gamma \leq \liminf_{n \to \infty} \alpha_n \leq \limsup_{n \to \infty} \alpha_n \leq \eta < 1$, and hence there exists a positive integer N such that $\gamma \leq \alpha_n \leq \eta$ for all $n \geq N$. Hence, $\beta = \sup_{j \geq N} |2\alpha_j - 1| \leq \max\{|2\gamma - 1|, |2\eta - 1|\} < 1$. Now, by using (3) and (4) for $x_0 \in K$, we get

$$fx_{n+1} = \frac{2}{3} + \frac{1}{2}(\frac{2}{3} - x_0) \prod_{j=0}^{N-1} (1 - 2\alpha_j) \prod_{j=N}^n (1 - 2\alpha_j), \ n \ge N.$$
 (5)

Hence,

$$|fx_{n+1} - \frac{2}{3}| \le \frac{1}{2} |\frac{2}{3} - x_0| \prod_{j=0}^{N-1} |1 - 2\alpha_j| \prod_{j=N}^n |1 - 2\alpha_j|$$
(6)

$$\leq \frac{1}{2} \left| \frac{2}{3} - x_0 \right| \prod_{j=0}^{N-1} \left| 1 - 2\alpha_j \right| \beta^{n-N+1}, \ n \geq N.$$
 (7)

Hence, $fx_n \to \frac{2}{3}$ strongly as $n \to \infty$, and $\frac{2}{3}$ is a common fixed point of f and T.

References

- [1] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30 (1969), 475-487.
- [2] Y. Song, H. Wang, Convergence of iterative algorithms for multivalued mappings in Banach spaces, Nonlinear Analysis, 70 (2009), 1547–1556.
- [3] T. Suzuki, Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005 (1) (2005), 103–123.

Received: July, 2013